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Abstract: LetH =−�+V (x) be a three dimensional Schrödinger operator. We study
the time decay in Lp spaces of scattering solutions e−itHPcu, where Pc is the orthog-
onal projection onto the continuous spectral subspace of L2(R3) for H . Under suitable
decay assumptions on V (x) it is shown that they satisfy the so-called Lp-Lq estimates
‖e−itHPcu‖p ≤ (4π |t |)−3(1/2−1/p)‖u‖q for all 1≤q≤2≤p≤∞ with 1/p + 1/q=1
if H has no threshold resonance and eigenvalue; and for all 3/2 < q ≤ 2 ≤ p < 3 if
otherwise.

1. Introduction

The present paper is concerned with the time decay in Lp spaces of solutions of three
dimensional Schrödinger equations,

i∂tu = (−�+ V (x))u, x ∈ R3. (1.1)

Throughout the paper we assume that potentialsV (x) are real valued and decay at infinity
at least as rapidly as

|V (x)| ≤ C〈x〉−β, for some β > 5/2, (1.2)

where 〈x〉 = (1 + |x|2) 1
2 .

Under this condition, the operator H = −� + V is selfadjoint in the Hilbert space
H = L2(R3) with domain D(H) = H 2(R3), the Sobolev space of order 2, and the
solution in H of (1.1) which satisfies the initial condition u(0) = ϕ ∈ H is uniquely
given by u(t) = e−itH ϕ in terms of the unitary operator e−itH defined by the functional
calculus. The spectrum of H consists of a finite number of non-positive eigenvalues of
finite multiplicities and the absolutely continuous part [0,∞). If ϕ is an eigenfunction
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ofH , u(t) = e−itH ϕ is a stationary solution and never decays in time in any sense; how-
ever, if ϕ ∈ L2

c(H), the continuous spectral subspace forH , it is a scattering solution in
the sense that for a unique ϕ± ∈ H,

‖u(t)− e−itH0ϕ±‖2 → 0 as t → ±∞ (1.3)

(cf. [13, 23, 24]), where H0 = −� is the free Schrödinger operator.
For the free Schrödinger equation it has long been known (see e.g. [15]) that, although

e−itH0 is unitary in L2, the solution e−itH0u decays as t → ±∞ in Lp if p > 2 and it
satisfies

‖e−itH0u‖p ≤ (4π |t |)−3
(

1
2 − 1

p

)
‖u‖q, u ∈ L2∩Lq(R3), (1.4)

where 1 ≤ q < 2 is the dual exponent of p: 1/p+ 1/q = 1 and Lp is the Lebesgue Lp

space with the norm ‖u‖p. This decay estimate is known as an Lp-Lq estimate and it
has been a very useful and important tool for studying linear and nonlinear Schrödinger
equations (see e.g. [16]). In view of the relation (1.3), it is natural to expect that scattering
solutions of (1.1) also decay in Lp if p > 2. Indeed, under the condition that V satisfies
(1.2) with β > 3 and thatH is of generic type, viz.H satisfies a spectral condition at the
threshold 0 (see Definition 1.1 below), estimate (1.4) with e−itHPc in place of e−itH0 ,
Pc being the orthogonal projection onto L2

c(H),

‖e−itHPcu‖p ≤ Cpt
−3
(

1
2 − 1

p

)
‖u‖q, u ∈ L2 ∩ Lq, (1.5)

has recently been proved by Goldberg-Schlag ([8], see [12, 2, 30, 30, 31, 28, 25, 27] for
earlier and related works). It is also known that (1.5) cannot hold for all 2 ≤ p ≤ ∞ ifH
is of exceptional type as it would contradict the local decay estimate of Jensen-Kato[10]
or Murata[19].

In this paper, we show, when H is of exceptional type, how (1.5) is violated and
propose a new estimate which replaces (1.5); when H is of generic type, we prove that
(1.5) is satisfied under the assumption (1.2), relaxing the decay condition of Goldberg
and Schlag [8] (see, however, the note at the end of the introduction).

To state the main results of the paper we introduce some notation and recall some
known facts (see also the beginning of Sects. 3 and 4). For 1 ≤ p, q ≤ ∞, Lp,q is the
Lorentz space with the norm ‖u‖p,q ([3, 21]). For γ ∈ R, Hγ = L2(R3, 〈x〉2γ dx) is
the weighted L2 space. The spaces H−γ and Hγ are duals of each other with respect to
the coupling

〈u, v〉 =
∫

R3
u(x)v(x)dx.

We write R0(z) = (H0 − z)−1 and R(z) = (H − z)−1 for the resolvents of H0 and H
respectively. We define for λ ∈ C,

G0(λ)u(x) = 1

4π

∫
eiλ|x−y|

|x − y| u(y)dy. (1.6)

We haveR0(λ
2) = G0(λ) for 	λ > 0. The integral kernel ofG0(λ) is an entire function

of λ ∈ C and, using its derivatives at λ = 0, we define

Dju(x) = 1

4πj !

∫
|x − y|j−1u(y)dy, j = 0, 1, . . . , (1.7)

so that G0(λ) = D0 + iλD1 + (iλ)2D2 + · · · at least formally.
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For any 1/2 < γ < β − 1/2, the operator D0V is of Hilbert-Schmidt type in H−γ
and we denote the null space of 1 +D0V by M:

M =
{
φ ∈ H−γ : φ(x)+ 1

4π

∫
V (y)φ(y)

|x − y| dy = 0

}
. (1.8)

The space M is finite dimensional and is independent of 1/2 < γ < β − 1/2. All
φ ∈ M satisfy the stationary Schrödinger equation

−�φ(x)+ V (x)φ(x) = 0 (1.9)

and, conversely, any function φ ∈ H− 3
2

which satisfies (1.9) belongs to M. The eigen-
space E of H with eigenvalue 0 is therefore a subspace of M. The function φ ∈ M is
in E if and only if 〈V, φ〉 = 0 and codimME ≤ 1. The sesquilinear form −(u, V v) is
an inner product in M.

Definition 1.1. We say H or V is of generic type if M = {0} and is of exceptional type
otherwise.H is of exceptional type of the first kind if M 
= {0} and E = 0; of the second
kind if E = M 
= {0}; and of the third kind if {0} ⊂ E ⊂ M with strict inclusions. A
function φ ∈ M \ E is called a resonance of H .

Note that mostV are of generic type: IfV is of exceptional type, then λV is of generic
type for all λ 
= 1 near λ = 1 because D0V is compact. It is easy to see from (1.8) that
the resonance φ(x) satisfies

φ(x)− C|x|−1 ∈ H for some constant C 
= 0

and that the eigenfunctions φ ∈ E may decay as |x|→∞ as slowly asC〈x〉−2 in contrast
to the ones with negative eigenvalues, which generally decay exponentially. We write P0
for the orthogonal projection in H onto E . As φ ∈ E satisfy |φ(x)| ≤ C〈x〉−2,P0 defined
on L2 ∩Lq can be extended to a bounded operator from Lq to Lp for all 1 ≤ q < 3 and
3/2 < p ≤ ∞. We abuse notation and denote such extensions also by P0.

When H is of exceptional type of the third kind, we let φ1 ∈ M be a (uniquely
determined) resonance such that 〈V, φ1〉 > 0, −〈φ1, V φ1〉 = 1 and −〈φ1, V φj 〉 = 0
for all φj ∈ E and define the canonical resonance ([10]) by

ϕ(x) = φ1(x)+ P0VD2V φ1(x). (1.10)

Using ϕ(x), we define a constant a and a function ζ(t, x) by

a = 4πi|〈V, ϕ〉|−2, ζ(t, x) = ei
x2
4t ϕ(x). (1.11)

We define a function µ(t, x), which plays a special role in what follows, by

µ(t, x) = i

|x|
∫ 1

0
(e

i|x|2
4t − e

iθ2 |x|2
4t )dθ; (1.12)

µ(t) is multiplication with µ(t, x). We use the notation |f 〉〈g| interchangeably with
f ⊗ g to denote the rank one operator defined by the integral kernel f (x)g(y) (not
f (x)g(y)).



478 K. Yajima

Definition 1.2. We define the operators R(t) and S(t) respectively by

R(t) = ae−i
3π
4√

πt
ζ(t, ·)⊗ ζ(t, ·), (1.13)

S(t) = e−i
3π
4√
πt

(−iP0VD3VP0 + µ(t)D2VP0 + P0VD2µ(t)) . (1.14)

When H is of exceptional type of the first or the second kind, we use the same notation,
setting, of course, S(t) = 0 or R(t) = 0 respectively.

We remark that for a constant C > 0,

|ζ(t, x)− ϕ(x)| + |µ(t, x)| ≤ Cmin

(
1√
t
,

1

|x| ,
|x|
|t |
)
. (1.15)

As remarked above, eigenfunctions φ ∈ E satisfy
∫
V (x)φ(x)dx = 0. It follows that

(D2V φ)(x) are bounded and, if {φ2, . . . , φd} is an orthonormal basis ofE andwj(t, x) =
µ(t, x)(D2V φj )(x), j = 2, . . . , d, then wj(t, x) are bounded by (1.15) and S(t) may
be written in the form

e
iπ
4√
πt




d∑
j,k=2

ajkφj ⊗ φk +
d∑
j=2

(wj (t)⊗ φj + φj ⊗ wj(t))


 .

Theorem 1.3. (1) Let V satisfy |V (x)| ≤ C〈x〉−β for some β > 5/2. Suppose that H
is of generic type. Then, for any 1 ≤ q ≤ 2 ≤ p ≤ ∞ such that 1/p + 1/q = 1,

‖e−itHPcu‖p ≤ Cpt
−3
(

1
2 − 1

p

)
‖u‖q, u ∈ L2 ∩ Lq. (1.16)

(2) LetV satisfy |V (x)| ≤ C〈x〉−β for some β > 11/2. Suppose thatH is of exceptional
type. Then the following statements are satisfied:
(i) Estimate (1.16) holds when p and q are restricted to 3/2 < q ≤ 2 ≤ p < 3 and

1/p + 1/q = 1.

(ii) Estimate (1.16) holds when p = 3 and q = 3/2 provided that L3 and L
3
2 are

respectively replaced by Lorentz spaces L3,∞ and L
3
2 ,1.

(iii) When 3 < p ≤ ∞ and 1 ≤ q < 3/2 are such that 1/p + 1/q = 1, there exists
a constant Cpq such that for any u ∈ L2 ∩ Lq ,

∥∥∥
(
e−itHPc − R(t)− S(t)

)
u

∥∥∥
p

≤ Cpqt
−3
(

1
2 − 1

p

)
‖u‖q . (1.17)

If H is of exceptional type of the first kind, statement (2) holds under a weaker decay
condition |V (x)| ≤ C〈x〉−β with β > 9/2.

We remark that ‖(R(t) + S(t))u‖p ≤ C|t |− 1
2 ‖u‖q for p, q such that 3 < p ≤ ∞

and 1 ≤ q < 3/2 and that ‖(R(t) + S(t))u‖3,∞ ≤ C|t |− 1
2 ‖u‖3/2,1; however, R(t) is

not bounded from Lq to Lp for any other pairs and that Pc is, although an orthogonal
projection in H, bounded in Lp only for 3/2 < p < 3 in general. Combining Theorem
1.3 and the estimate (1.15), we immediately obtain the following theorem.
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Theorem 1.4. Let V satisfy |V (x)| ≤ C〈x〉−β for some β > 11/2. Suppose that H is
of exceptional type. Then, for 3 < p ≤ ∞ and 1 ≤ q < 3/2 such that 1/p + 1/q = 1,
there exists a constant C such that

‖e−itHPcu‖p ≤ Ct
−3( 1

2 − 1
p
)
(‖u‖q + ‖〈x〉 6

q
−5
u‖1) (1.18)

for any u ∈ L2 ∩Lq which satisfies 〈φ, u〉 = 0 for all φ ∈ M and 〈x〉 6
q
−5
u ∈ L1. If H

is of exceptional type of the first kind, the same statement holds under the weaker decay
condition |V (x)| ≤ C〈x〉−β with β > 9/2.

We display here the plan of the paper, explaining the idea of the proof of Theorem
1.3 using a slightly sloppy argument. We refer the readers to the text for a more rigorous
treatment. We say that a family of operator {T (t) : t ∈ R} is regularly dispersive if it is
a strongly continuous family of bounded operators in H and, in addition, it satisfies the
estimate (1.16) for all 1 ≤ q ≤ 2 ≤ p ≤ ∞ such that 1/p + 1/q = 1.

In Sect. 2, we collect some results, well known as the limiting absorption principle
(LAP for short), on the behavior of resolvents R0(z) and R(z) near the reals. We state
them for G0(λ) and G(λ) which is defined by G(λ) = R(λ2) on the upper half plane
	λ > 0. We also record some results on certain integrals. Lemma 2.4 and Lemma 2.7
are the main tools and are frequently used in the paper. We prove the first statement of
Theorem 1.3 for the generic case in Sect. 3, following basically the argument of [25] and
[8] but more concisely. We use the well known representation formula of the propagator:

e−itHPc = lim
δ↓0

1

iπ

∫

|λ|>δ
e−itλ

2
G(λ)λdλ. (1.19)

Here the principle value is taken to remove the contribution fromP0. We write asG(λ) =
(1 +G0(λ)V )

−1G0(λ) and expand (1 +G0(λ)V )
−1:

G(λ) =
2∑
n=0

(−1)nG0(λ)(VG0(λ))
n −G0(λ)VG(λ)VG0(λ)VG0(λ).

Then e−itHPc = �0(t)−�1(t)+�2(t)+W3(t). An explicit computation using Lemma
2.4 shows that the integral kernel of �n(t) is given by

�n(t, x, y) =
√
π

2
√
it

3
2

∫

R3j
ei

A2
j

4t
Aj
∏n
j=1 V (xj )∏n+1

j=1 |xj − xj−1|
dx1, . . . , dxn

with x0 = x and xn+1 = y and Aj = ∑n+1
j=1 |xj − xj−1|. As is shown by [25],

|�n(t, x, y)| ≤ C|t |− 3
2

and�n(t) is regularly dispersive. We writeN(λ) = G(λ)VG0(λ) and apply integration
by parts with respect to λ, which gives

W3(t) = 1

2πt

∫

R
e−itλ

2
(G0(λ)VN(λ)VG0(λ))

′dλ.

Out of three integrals produced after differentiation, we explain here how to treat the
one withG0(λ)VN

′(λ)VG0(λ) as a prototype, which we denote byW31(t). It is impor-
tant to notice that, if we denote the integral kernel of L(λ) = 〈x〉σVN ′(λ)V 〈x〉σ by
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L(λ, z2, z1), then that of W31(t) may be given by using the solution of the one-dimen-
sional free Schrödinger equation by

W31(t, x, y) = 1√
2πt

∫

R

1

16π2

(eit�Ľ( · , z2, z1))(A)

〈z2〉σ |x − z2|〈z1〉σ |z1 − y|dz1dz2. (1.20)

HereA = |x− z2|+ |z1 −y|,� is the one dimensional Laplacian acting on the variable
denoted by · and Ľ is the inverse Fourier transform of L with respect to the variable λ.
We have

|(eit�Ľ( · , z2, z1))(A)| ≤ Ct−
1
2 ‖L(·, z2, z1)‖Hs , (1.21)

provided s > 1/2. The LAP stated in Sect. 2 implies that L(λ, z2, z1) is indeed an
L2(R6

z2,z1
)-valued Hs(Rλ) function of λ for some σ > 1/2 and s > 1/2. Applying the

Schwarz inequality to (1.20) and using (1.21), we then obtain |W31(t, x, y)|≤C|t |− 3
2 .

Other integrals may be estimated similarly and we obtain |W3(t, x, y)| ≤ C|t |− 3
2 . This

proves statement (1) of Theorem 1.3 by the help of interpolation theory.
We study exceptional cases in Sect. 4. When H is of exceptional type, we break up

(1.19) into two parts, e−itHPc = Wh(t)+Wl(t), the high and the low energy parts, by
inserting a partition of unity χl(λ)+ χh(λ) = 1 into the integrand, where χl ∈ C∞

0 (R)
is even and χl(λ) = 1 for |λ| < λ0/2 and χl(λ) = 0 for |λ| > λ0 for a small positive
constant λ0. The argument of Sect. 3 for the generic case shows that the high energy part
Wh(t) which contains χh is regularly dispersive. For the low energy partWl(t) we write
G(λ) = G0(λ) −G0(λ)V (1 +G0(λ)V )

−1G0(λ) in the integrand. The integral which
contains χl(λ)G0(λ)may be treated as in the generic case and it is regularly dispersive.
We are left with

Wl0(t) = lim
δ↓0

−1

iπ

∫

|λ|>δ
χl(λ)e

−itλ2
G0(λ)V (1 +G0(λ)V )

−1G0(λ)λdλ. (1.22)

We studyWl0(t) by examining the behavior of (1+G0(λ)V )
−1 as λ → 0.After some

preparation, we study it when H is of exceptional type of the first kind in Subsect. 4.3,
the second kind in Subsect. 4.4 and, synthesizing the results of previous two subsections,
the third kind in Subsect. 4.5. If H is of exceptional type of the first kind we have (see
Theorem 4.8)

(1 +G0(λ)V )
−1 = I +K(λ)− aλ−1|φ〉〈V φ|,

where VK(λ) satisfies the property similar to that ofL(λ) in (1.20) and a is the constant
defined in (1.11). Integral (1.22) with I + K(λ) in place of (1 + G0(λ)V )

−1 can then
be studied by the method of Sect. 3 for W31(t) and it produces a regularly dispersive
family of operators. On the other hand −aλ−1|φ〉〈V φ| produces

Wl(t) = a

πi

∫

R
χl(λ)e

−itλ2
G0(λ)|V φ〉〈V φ|G0(λ)dλ, (1.23)

and its integral kernel may be computed explicitly:

Wl(t, x, y) = a

∫

R6

c(t, A)V (z1)V (z2)φ(z1)φ(z2)

16π2|x − z2||z1 − y| dz1dz2, (1.24)
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where A = |x − z2| + |z1 − y| and c(t, A) is given by

c(t, A) = 1

πi

∫

R
χl(λ)e

−itλ2+iλAdλ = e−
i3π

4 e
iA2
4t√

πt
F
(
e
is2
4t χ̌l

)(
A

2t

)
. (1.25)

Here F is the Fourier transform. This is except for a normalization constant the well
known formula for solutions of the one dimensional free Schrödinger equation. Since

|c(t, A)| ≤ Ct−
1
2 , we have |Wl(t, x, y)| ≤ Ct−

1
2 〈x〉−1〈y〉−1. Since 〈x〉−1 ∈ L3,∞,

Hölder’s inequality in Lorentz spaces implies

‖Wl(t)u‖3,∞ ≤ Ct−
1
2 ‖u‖3/2,1. (1.26)

We have shown above that e−itHPc −Wl(t) is regularly dispersive and it also satisfies
(1.26). Hence

‖e−itHPcu‖3,∞ ≤ Ct−
1
2 ‖u‖3/2,1, (1.27)

and statement (2)(ii) of Theorem 1.3 follows for this case. By virtue of the interpolation
theorem for Lorentz spaces, (1.27) and the obvious L2 bound ‖e−itHPcu‖2 ≤ C‖u‖2
imply statement (2) (i).

To prove statement (2)(iii), we first note that (1.27) and the bound |ϕ(x)| ≤ C〈x〉−1

imply

‖(e−itHPc − R(t))u‖3,∞ ≤ Ct−
1
2 ‖u‖ 3

2 ,1
. (1.28)

If we replace in the right of (1.25) first e
is2
4t by 1, then χl(A/2t) by 1 and finally e

iA2
4t by

ei
|x|2+|y|2

4t , we obtain
∣∣∣∣c(t, A)− (πt)−

1
2 e−i

3π
4 ei

|x|2
4t ei

|y|2
4t

∣∣∣∣ ≤ Ct−
3
2 〈x〉〈y〉〈z1〉2〈z2〉2. (1.29)

We insert (1.29) into (1.24) and recall that φ(x) = −D0V φ. This produces
∣∣∣∣∣Wl(t, x, y)− ae−i

3π
4√

πt
ζ(t, x)ζ(t, y)

∣∣∣∣∣ ≤ Ct−
3
2 .

Since e−itHPc −Wl(t) is regularly dispersive, it then follows that

‖(e−itHPc − R(t))u‖∞ ≤ Ct−
3
2 ‖u‖1. (1.30)

Interpolating (1.28) and (1.30), we obtain statement (2)(iii) of the theorem.
IfH is of exceptional type of the second or the third kind, which will be discussed in

Subsects. 4.2. and 4.3 respectively, (1 +G0(λ)V )
−1 contains singularities also of order

λ−2 and the argument becomes a bit more involved. However, basically the same idea
works. We refer to the text for the details.

We use the following notation and conventions. For s, σ ∈ R,Hs(Rd) is the Sobolev
space of order s on Rd and Hs

σ (R
3) = {u : 〈x〉σ u ∈ Hs(R3)} is the weighted Sobolev

space. For Hilbert spaces X and Y , B(X ,Y) is the Banach space of bounded operators
from X to Y , B(X ) = B(X ,X ) and B2(X ) is the Hilbert space of Hilbert-Schmidt
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operators in X . We denote by C the complex plane, C+ = {z ∈ C : 	z > 0} is the
upper half plane and C

+
is the closed upper half plane: C

+ = {z : 	z ≥ 0}. For a ∈ R,
a− (resp. a+) denotes any number smaller (resp. larger) than a. In what follows we
always assume that V at least satisfies (1.2) although some statements hold under less
stringent conditions, and after Sect. 3 we shall assume much stronger decay conditions.
We occasionally use the physics notation |v〉 and 〈u|v〉 to denote vectors and the inner
product.

After submission of this paper we were informed that Theorem 1.3 (1) for the generic
case has recently been proved by Goldberg [7] for more general potentialsV ∈ Lr(R3) ∩
Ls(R3), r < 3/2 < s, and that a result similar to statement (2) of Theorem 1.3 has been
obtained by Erdoǧan and Schlag [6] under a slightly stronger decay condition on the
potentials. We thank Professor Piero D’Ancona and the anonymous referee for bringing
this to our attention.

2. Preliminaries

In this section we collect some results on the resolvents,G0(λ) andG(λ), and estimates
on the integrals which will often appear in the sequel.

2.1. Resolvents. We recall that for λ ∈ C,

G0(λ)u(x) = 1

4π

∫
eiλ|x−y|

|x − y| u(y)dy. (2.1)

For 	λ > 0, G0(λ) is a B(H)-valued analytic function and R0(λ
2) = G0(λ).

Lemma 2.1. (1) Letσ, τ > 1/2 andσ+τ > 2. Then, 〈x〉−σG0(λ)〈x〉−τ is a B2(H)-val-
uedCρ function of λ ∈ C

+
for any ρ such that ρ < min(τ+σ−2, τ−1/2, σ−1/2).

If ρ = j + κ , j = 0, 1, . . . , and 0 ≤ κ < 1, we have

sup
λ∈C

+
‖〈x〉−σG(j)0 (λ)〈x〉−τ‖B2 + sup

λ
=µ
‖〈x〉−σ (G(j)0 (λ)−G

(j)
0 (µ))〈x〉−τ‖B2

|λ− µ|κ ≤ C.

We have G0(λ)
∗ = G0(−λ) when λ ∈ R.

(2) Let σ > 1/2. Then, 〈x〉−σG0(λ)〈x〉−σ is a B(H)-valued Cσ− 1
2 function of λ ∈

C
+ \ {0}. For j = 0, 1, . . . , we have

‖〈x〉−σ−j ∂jλG0(λ)〈x〉−σ−j‖B(H) ≤ Cj |λ|−1, |λ| ≥ 1. (2.2)

Proof. (1) Write m = min(τ + σ − 2, τ − 1/2, σ − 1/2). We may assume τ ≤ σ .
Suppose first that 0 < m ≤ 1. Then, τ ≤ 3/2 and without losing generality we may
assume τ < 3/2. We then have, with x̂ = x/|x|,

‖〈x〉−σG0(λ)〈x〉−τ‖2
B2

= 1

16π2

∫

R6

dxdy

〈x〉2σ |x − y|2〈y〉2τ

≤
∫

R3

dx

〈x〉2σ

{∫

R3

dy

|x|2τ−1|x̂ − y|2|y|2τ
}

≤
∫

R3

Cdx

〈x〉2σ |x|2τ−1
< ∞
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and ‖〈x〉−σG0(λ)〈x〉−τ‖B2 is uniformly bounded. Here we changed variables y to |x|y
and used 〈|x|y〉 ≥ |x||y| in the second step, 2+2τ > 3 in the third and 2σ +2t−1 > 3
in the last.

Since 0<ρ<1, we have |eia − eib|≤2ρ |a − b|ρ and we may likewise estimate as
follows:

‖〈x〉−σ (G0(λ)−G0(µ))〈x〉−τ‖2
B2(H) =

∫

R6

|eiλ|x−y| − eiµ|x−y||2
16π2〈x〉2σ |x − y|2〈y〉2τ dxdy

≤
∫

R6

C|λ− µ|2ρdxdy
〈x〉2σ |x − y|2−2ρ〈y〉2τ ≤

∫

R3

C1|λ− µ|2ρdx
〈x〉2σ 〈x〉2τ−2ρ−1 ≤ C2|λ− µ|2ρ.

Here we used 2τ − 2ρ + 2 > 3 in the second step and 2τ + 2σ − 2ρ − 1 > 3 in the
last step. This proves (1) when 0 < m ≤ 1. If j < m ≤ j + 1, j = 1, 2, . . . , we have
m = τ−1/2. Write ρ = j+κ , 0 ≤ κ < 1. The j th derivativeG(j)0 (λ) has integral kernel

(4π)−1ij eiλ|x−y||x − y|j−1 and ‖〈x〉σG(j)0 (λ)〈x〉τ‖B2 ≤ C follows entirely similarly
as above. As 1 < 2(τ − ρ) < 3 and σ ≥ τ > 3/2, we have

‖〈x〉−σ (G(j)0 (λ)−G
(j)
0 (µ))〈x〉−τ‖2

B2(H) ≤ C

∫

R6

|λ− µ|2κ |x − y|2(ρ−1)dxdy

〈x〉2σ 〈y〉2τ

≤ C1

∫

R3

|λ− µ|2κ(|x|2ρ + |y|2ρ)dxdy
〈x〉2σ |x − y|2〈y〉2τ ≤ C2|λ− µ|2κ .

Statement (1) follows. Statement (2) is well known (see [1] and [11]). ��

Recall that we are assuming (1.2). The following is an obvious consequence of Lemma
2.1.

Corollary 2.2. Let 1/2 < γ < β − 1/2. Then, 〈x〉−γG0(λ)V 〈x〉+γ is a B2(H)-valued
Cρ function of λ ∈ C

+
for any ρ < min(β−2, γ − 1

2 , β−γ − 1
2 ). The operator valued

function 〈x〉+γ VG0(λ)〈x〉−γ satisfies the same property.

Under condition (1.2), it is well known (see [13]) thatH = −�+ V has no positive
eigenvalues and the point spectral subspace Hp(H) for H is finite dimensional. Thus
R(λ2) = (H − λ2)−1 is a B(H)-valued meromorphic function of λ ∈ C+ with possible
poles iκ1, . . . , iκn on the imaginary axis such that −κ2

1 , . . . ,−κ2
n are eigenvalues of

H . The resolvent equation implies that outside those poles in the upper half plane

R(λ2) = G0(λ)(1 + VG0(λ))
−1 = (1 +G0(λ)V )

−1G0(λ).

Here VG0(λ) (resp.G0(λ)V ) is a B2(Hγ )-valued (resp. B2(H−γ )-valued) continuous

function of λ ∈ C
+

if 1/2 < γ < β − 1/2 by virtue of Corollary 2.2 and −1 ∈
σ(VG0(λ)) (resp. −1 ∈ σ(G0(λ)V )) if and only if λ2 is an eigenvalue of H (see [1]).
Since positive eigenvalues are absent from H as mentioned above, R(λ2) considered
as a B(Hγ ,H−γ ) valued function is continuous up to the boundary R of C+ except
possibly at λ = 0. We set for λ ∈ R \ {0},

G(λ) = G0(λ)(1 + VG0(λ))
−1 = (1 +G0(λ)V )

−1G0(λ). (2.3)
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Lemma 2.3. For 1/2 < σ, τ < β − 1/2 such that σ + τ > 2, 〈x〉−σG(λ)〈x〉−τ , as
a B2(H)-valued or B(H)-valued function of λ ∈ {λ ∈ R : |λ| > ε}, ε > 0, satisfies
the same smoothness and decay properties as 〈x〉−σG0(λ)〈x〉−τ as stated in Lemma
2.1. This is true on the whole line λ ∈ R, if 1 + VG0(0) or 1 + G0(0)V is invertible
respectively in Hγ or H−γ for some, and therefore for all, 1/2 < γ < β − 1/2.

Proof. We use the same notation as in the proof of Lemma 2.1. Let 0 < m ≤ 1 first. By
virtue of (2.3), Lemma 2.1 and Corollary 2.2 we have

‖〈x〉−σG(λ)〈x〉−τ‖B2 ≤ C.

By telescoping the difference, we may estimate as follows:

‖〈x〉−σ (G(λ)−G(µ))〈x〉−τ‖B2

≤ ‖〈x〉−σ (1 +G0(λ)V )
−1〈x〉σ‖B‖〈x〉−σ (G0(λ)−G0(µ))〈x〉−τ‖B2

+‖〈x〉−σ (1 +G0(λ)V )
−1〈x〉σ‖B‖〈x〉−σ (G0(λ)−G0(µ))〈x〉−τ‖B2

×‖〈x〉τ V (1 +G0(µ)V )
−1〈x〉β−τ‖B‖〈x〉τ−βG0(µ)〈x〉−τ‖B ≤ C|λ− µ|ρ,

and the lemma follows for this case. When 1 < m ≤ 2, we differentiate (2.3) and use
the resolvent equation. We obtain

G′(λ) = (1 −G(λ)V )G′
0(λ)(1 − VG(λ)).

We then repeat the argument above using the previous result for 0 < m ≤ 1. We omit
repetitious details also for general m. ��

By the functional calculus for selfadjoint operators, the propagator e−itH may be
expressed in terms of G(λ) in the following form:

e−itHPc = lim
δ↓0

1

iπ

∫

|λ|>δ
e−itλ

2
G(λ)λdλ. (2.4)

Equation (2.4) is the starting point for the proof of the main theorem.

2.2. Integrals. We collect here some formulae and estimates on integrals which will
be of frequent use in what follows. We begin with the following lemma on the Gauss
integral:

Lemma 2.4. Let s > 1/2. Then, there exists a constant Cs depending only on s such
that for any χ ∈ Hs(R), A ∈ R, t > 0 and L > 0,

∣∣∣∣
∫

R
e−itλ

2+iλAχ(λ/L)dλ
∣∣∣∣ ≤ Cs‖χ‖Hs t−

1
2 . (2.5)

As L → ∞ we have
∫

R
e−itλ

2+iλAχ(λ/L)dλ → e−i
π
4 e

iA2
4t

√
π

t
χ(0). (2.6)

Suppose in addition that χ is even and λχ ′(λ) ∈ Hs(R) then
∣∣∣∣
∫

R
e−itλ

2+iλAχ(λ/L)λdλ
∣∣∣∣ ≤ Cs(‖χ‖Hs + ‖λχ ′‖Hs )|A|t− 3

2 . (2.7)
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As L → ∞ we have

∫

R
e−itλ

2+iλAχ(λ/L)λdλ → Ae−i
π
4 e

iA2
4t

2

√
π

t3
χ(0). (2.8)

Proof. We first prove estimate (2.5). If we write χ̌(κ) = χ̂(−κ) for the conjugate Fou-
rier transform of χ , the integral on the left in (2.5) is equal to

√
2π(eit�χ̌L)(A), where

� is the one dimensional Laplacian, and by virtue of the well known formula for the
kernel of the propagator eit�,

√
2π(eit�χ̌L)(A) = e−i

π
4 e

iA2
4t√

2t

∫
e
−i Ar2tL+i r2

4tL2 χ̌(r)dr. (2.9)

If s > 1/2, this is bounded in modulus by

(2t)−
1
2 ‖χ̌‖1 ≤ Cs(2t)

− 1
2 ‖〈r〉s χ̌‖2 = Cs(2t)

− 1
2 ‖χ‖Hs ,

and (2.5) follows. Taking the limit L → ∞ in (2.9) we obtain (2.6).
Since λe−itλ2 = i

2t (d/dλ)e
−itλ2

, integration by parts shows that the integral in the
left of (2.7) is equal to

A

2t

∫

R
e−itλ

2+iλAχ(λ/L)dλ+ 1

2it

∫

R
e−itλ

2+iλAχ ′(λ/L)L−1dλ.

The argument of the first part shows that the first summand satisfies (2.7) and it converges
to the right-hand side of (2.8) as L→ ∞. Since χ ′(λ/L) is odd, the second summand
may be written in the form

1

4it

∫

R
e−itλ

2
(eiλA − e−iλA)χ ′(λ/L)

dλ

L
= A

4t

∫ 1

−1

(∫

R
e−itλ

2+iλθAζ(λ/L)dλ
)
dθ,

where ζ(λ) = χ ′(λ)λ. Applying again (2.5) and (2.9) to the λ-integral, we see that the

second summand is bounded in modulus by Cσ |A|(2t)− 3
2 ‖ζ‖Hs and converges to zero

as L → ∞. This completes the proof. ��
We recall the Kato norm:

‖V ‖K = sup
a∈R3

∫

R3

|V (z)|dz
|z− a| .

Lemma 2.5. Let xn+1 = x and x0 = y. Then, for n = 1, 2, . . . ,

∫

R3

∏n
j=1 |V (xj )|∏n+1

j=1 |xj − xj−1|
dx1, . . . , dxn ≤ (4‖V ‖K)n

|x − y| . (2.10)

Proof. By induction, it suffices to show the case n = 1:
∫

R3

|V (z)|dz
|x − z||z− y| ≤ 4‖V ‖K

|x − y| .
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Change variables z to z+ y and write w = x − y. We have
∫

|z|≥|w|/2
|V (z+ y)|dz

|w − z||z| ≤ 2

|w|
∫ |V (z+ y)|dz

|w − z| ≤ 2

|w| ‖V ‖K.

If |z| < |w|/2, then |w − z| ≥ |w|/2 and
∫

|z|<|w|/2
|V (z+ y)|dz

|w − z||z| ≤ 2

|w|
∫ |V (z+ y)|dz

|z| ≤ 2

|w| ‖V ‖K.

The lemma follows. ��
Following is a result of the celebrated Kato smoothness theorem ([15]):

Lemma 2.6. Let T (λ), λ ∈ R, be a weakly measurable family of bounded operators
in H such that ‖〈x〉σ T (λ)〈x〉σ‖B(H) ≤ C for some σ > 1. Then, for t ∈ R, the weak
integral

U(t) =
∫ ∞

−∞
e−itλ

2
G0(λ)T (λ)G0(λ)λdλ

converges in H and defines a bounded operator in H. The family {U(t) : t ∈ R} is
strongly continuous and uniformly bounded in B(H).
Proof. When σ > 1, the multiplication operator by 〈x〉−σ is H0-smooth ([15]):∫∞
−∞ ‖〈x〉−σG0(λ)u‖2

2|λ|dλ ≤ C‖u‖2
2. It follows by the Schwarz inequality that U(t)

is uniformly bounded in H. It also follows by the Schwarz inequality that

‖(U(t)− U(s))u‖2 ≤ C

∫ ∞

−∞
|e−itλ2 − e−isλ

2 |2‖〈x〉−σG0(λ)u‖2|λ|dλ

and Lebesgue’s dominated convergence theorem implies the lemma. ��
Lemma 2.7. Let s, σ > 1/2 and let R � λ → Gσ (λ) ≡ 〈x〉σN(λ)〈x〉σ be a B2(H)-
valued Hs(R) function of λ. Define

N (t) =
∫

R
e−itλ

2
G0(λ)N(λ)G0(λ)dλ, t 
= 0.

Then N (t) has a bounded continuous integral kernel N (t, x, y) and it satisfies

|N (t, x, y)| ≤ Cs |t |− 1
2 ‖Gσ‖Hs(R,B2(H)). (2.11)

If σ > 3/2, then N (t, x, y) satisfies the stronger estimate,

|N (t, x, y)| ≤ Cs |t |− 1
2 〈x〉−1〈y〉−1‖Gσ‖Hs(R,B2(H)). (2.12)

If Gσ1(λ) = 〈x〉σ+1N(λ)〈x〉σ (resp. Gσ2(λ) = 〈x〉σN(λ)〈x〉σ+1) is B2(H)-valued
Hs(R), then for any t 
= 0,

N1(t) =
∫

R
e−itλ

2
G′

0(λ)N(λ)G0(λ)dλ

(resp. N2(t) =
∫

R
e−itλ

2
G0(λ)N(λ)G

′
0(λ)dλ)

has a continuous integral kernel N1(t, x, y) (resp. N2(t, x, y)) and it satisfies (2.11)
with obvious modifications.
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Proof. We take χ ∈ C∞
0 (R) such that χ(λ) = 1 for |λ| ≤ 1 and define

NL(t) =
∫

R
e−itλ

2
χ(λ/L)G0(λ)N(λ)G0(λ)dλ.

If γ > 3
2 , ‖G0(λ)N(λ)G0(λ)‖B(Hγ ,H−γ ) ≤ C〈λ〉−2‖Gσ (λ)‖B2 by virtue of Lemma

2.1(3) and ‖NL(t) − N (t)‖B(Hγ ,H−γ ) → 0 as L → ∞. Denote the integral kernel of
Gσ (λ) by Gσ (λ, x, y) and A = |x − z2| + |z1 − y|. Then,

NL(t, x, y) =
∫

R

∫

R6
eitλ

2+iλAχ(λ/L)
〈z2〉−σ
|x − z2|Gσ (λ, z2, z1)

〈z1〉−σ
|z1 − y|dz1dz2dλ.

For almost all (z1, z2), ‖(χ(λ/L) − 1)Gσ (λ, z2, z1)‖Hs(Rλ) → 0 as L → ∞ and (2.5)
implies that

∫

R
eitλ

2+iλAχ(λ/L)Gσ (λ, z2, z1)dλ →
∫

R
eitλ

2+iλAGσ (λ, z2, z1)dλ

and that the left side is bounded by C|t |− 1
2 ‖Gσ (·, z2, z1)‖Hs uniformly with respect to

L ≥ 1. By the Schwarz inequality,

∫ 〈z2〉−σ
|x − z2| ‖Gσ (·, z2, z1)‖Hs

〈z1〉−σ
|z1 − y|dz1dz2

≤
∥∥∥∥

〈z2〉−σ
|z2 − x|

∥∥∥∥
L2
z2

∥∥∥∥
〈z1〉−σ
|z1 − y|

∥∥∥∥
L2
z1

‖Gσ‖Hs(R,B2(H)). (2.13)

It follows that |NL(t, x, y)| ≤ C/
√
t for all x, y ∈ R3 and, by Lebesgue’s dominated

convergence theorem, that NL(t, x, y) converges to the integral kernel N (t, x, y) of
N (t) as L → ∞:

N (t, x, y) =
∫

R6

(∫
eitλ

2+iλAGσ (λ, z2, z1)dλ

) 〈z2〉−σ
|x − z2|

〈z1〉−σ
|z1 − y|dz1dz2.

Here,
∫
eitλ

2+iλAGσ (λ, z2, z1)dλ is an L2(R6
z1,z2

)-valued continuous function of

(t, x, y), t 
= 0, since it is bounded in modulus by C|t |− 1
2 ‖Gσ (·, z2, z1)‖Hs and, for

almost all (z1, z2), it is continuous with respect to (t, x, y), t 
= 0, as can be seen from
(2.9). Then, since 〈z1〉−σ 〈z2〉−σ /|x − z2||y − z1| is also a continuous function of (x, y)
with values in L2(R6

z1,z2
), N (t, x, y) is continuous with respect to (t, x, y) if t 
= 0.

By virtue of (2.13), N (t, x, y) satisfies the estimate (2.11). If σ >3/2, the right side of
(2.13) is bounded by C〈x〉−1〈y〉−1‖Gσ‖Hs(R,B2(H)) and (2.12) is satisfied. This proves
the lemma for N (t). Modifications necessary for the proof for N1(t) and N2(t) are
obvious and we omit the details. ��

3. The Case of Generic Type

In this section, we prove statement (1) of Theorem 1.3. Thus we assume that |V (x)| ≤
C〈x〉−β with β > 5/2 and that H is of generic type. We recall that D0,D1, . . . , are
selfadjoint integral operators defined by
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Dju(x) = 1

4πj !

∫
|x − y|j−1u(y)dy. (3.1)

If j is odd, Dj is of finite rank. We have a formal expansion

G0(λ) = D0 + (iλ)D1 + (iλ)2D2 + · · · . (3.2)

We denote the null spaces of 1+VD0 and 1+D0V considered respectively as operators
in H−γ or in Hγ by

M = N(1 +D0V ), N = N(1 + VD0).

SinceD0V and VD0 are compact andD0V = (VD0)
∗, dim M = dim N < ∞. More-

over, M and N are independent of 1/2 < γ < β−1/2 because M (resp. N ) decreases
(resp. increases) with γ (see [10]).

As H is of generic type, λ → G(λ) ∈ B(Hγ ,H−γ ) is continuous on R for γ >1 by
Lemma 2.3 and, by the spectral theorem,

e−itHPc = 1

iπ

∫

R
e−itλ

2
G(λ)λdλ = lim

L→∞
1

iπ

∫

R
e−itλ

2
χL(λ)G(λ)λdλ (3.3)

as strong convergence in H, where χL(λ) = χ(λ/L) and χ ∈ C∞
0 (R) is even, χ(λ) = 1

for |λ| ≤ 1 and χ(λ) = 0 for |λ| ≥ 2. Iterating the resolvent equationG(λ) = G0(λ)−
G0(λ)VG(λ), we insert in the right of (3.3),

G(λ) =
2∑
n=0

(−1)nG0(λ)(VG0(λ))
n −G0(λ)VG0(λ)VG(λ)VG0(λ).

The result is e−itHPc = �0(t)−�1(t)+�2(t)+W3(t), where for n = 0, 1, 2,

�n(t) = lim
L→∞

1

iπ

∫

R

e−itλ
2
χL(λ)G0(λ)(VG0(λ))

nλdλ. (3.4)

We have �0(t) = e−itH0 . Lemma 2.1 and Lemma 2.6 imply

sup
t∈R

‖�n(t)‖B(H) ≤ C, n = 0, 1, 2. (3.5)

Lemma 3.1. There exists a constant C > 0 such that

‖�n(t)u‖∞ ≤ C(n+ 1)|t |− 3
2

(‖V ‖K
4π

)n
‖u0‖1, n = 0, 1, 2, . . . . (3.6)

Proof. We follow the argument due to Rodnianski-Schlag [25]. The integral kernel of
the operator defined by the integral on the right side of (3.4) is given with C1 = 1/4π ,
A = ∑n+1

j=1 |xj−1 − xj | and dx1, . . . , dxn = dX by

Cn1

∫
dX

(
1

iπ

∫

R
e−itλ

2+iλAλχL(λ)dλ
) ∏n

j=1 V (xj )∏n+1
j=1 |xj−1 − xj |

. (3.7)

Note that the integrand is absolutely convergent by virtue of (2.10):
∫

R3n

∫

R
|(integrand of (3.7))|dXdλ ≤ 2n‖V ‖nK

|x − y| ‖λχL‖1
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and by the help of the Fubini theorem the computation (3.7) is legitimate. Moreover,
with x = xn+1 and y = x0,

∫
A
∏n
j=1 |V (xj )|dX∏
j |xj−1 − xj | =

n+1∑
k=1

∫ ∏n
j=1 |V (xj )|dX∏
j 
=k |xj−1 − xj | ≤ (n+ 1)‖V ‖nK.

Hence, Lemma 2.4 implies that (3.7) converges as L → ∞ to

Cn−1
1

(4iπt)
3
2

∫
ei

A2
4t

A
∏n
j=1 V (xj )∏n+1

j=1 |xj−1 − xj |
dX,

which is bounded by C(n+ 1)|t |− 3
2

( ‖V ‖K
4π

)n
. This implies the lemma. ��

DefineN(λ) = VG0(λ)VG(λ)V . If 0 < ε < 1/2, by virtue of Lemma 2.1, we have
‖〈x〉1+εN(λ)〈x〉1+ε‖B(H) ≤ C〈λ〉−2. It follows by virtue of Lemma 2.6 that

W3(t) = − 1

iπ

∫

R
e−itλ

2
G0(λ)N(λ)G0(λ)λdλ (3.8)

is a strongly continuous family of uniformly bounded operators in H. By integration by
parts, we may write

W3(t) = 1

2tπ

∫

R
e−itλ

2{G0(λ)N(λ)G0(λ)}′dλ. (3.9)

Differentiation in the right side produces three integrals which respectively contain

G′
0(λ)N(λ)G0(λ), G0(λ)N

′(λ)G0(λ), and G0(λ)N(λ)G
′
0(λ).

Thus, in view of Lemma 2.7, Theorem 1.3(1) is a consequence of the following lemma
and the interpolation theorem for Lp spaces.

Lemma 3.2. Let |V (x)| ≤ C〈x〉−β , β > 5/2. Then, for some σ, s > 1/2,

〈x〉1+σN(λ)〈x〉σ , 〈x〉σN(λ)〈x〉1+σ , 〈x〉σN ′(λ)〈x〉σ

are B2(H)-valued Hs functions of λ ∈ R.

Proof. We estimate the operators by using Lemma 2.1 and Lemma 2.3. We first deal
with 〈x〉1+σN(λ)〈x〉σ . If σ > 1/2 is sufficiently close to 1/2,

‖〈x〉1+σN(λ)〈x〉σ‖B2

≤ ‖〈x〉1+σVG0(λ)〈x〉−σ−1‖B2‖〈x〉1+σVG(λ)V 〈x〉σ‖B ≤ C〈λ〉−1. (3.10)

We show for some s > 1/2 that for λ and µ ∈ R such that |λ− µ| ≤ 1,

‖〈x〉1+σ (N(λ)−N(µ))〈x〉σ‖B2 ≤ C〈λ〉−1|λ− µ|s . (3.11)

By reducing s by an arbitrarily small amount, two estimates (3.10) and (3.11) will imply
that 〈x〉1+σN(λ)〈x〉σ ∈ Hs(R,B2(H)) for some s > 1/2 (cf. [18], Theorem 10.2).
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In what follows in the proof we choose and fix parameters σ , τ and the exponent s
in such a way that

3

2
< τ < σ + 1 < 2, τ + σ < β − 1

2
,

1

2
< s < min{β − σ − 3

2
, τ − 1}

hence, β − σ > 2 and β − τ > 1. We write N(λ)−N(µ) in the form

V (G0(λ)−G0(µ))VG(λ)V + VG0(µ)V (G(λ)−G(µ))V .

Since β − σ > 2 and β − τ > 1, Lemma 2.3 implies

‖〈x〉τ VG(λ)V 〈x〉σ‖B ≤ C〈λ〉−1, ‖〈x〉1+σVG0(µ)〈x〉−1−σ‖B ≤ C〈λ〉−1.

It follows by the choice of s that

‖〈x〉1+σV (G0(λ)−G0(µ))VG(λ)V 〈x〉σ‖B2(H)
≤ ‖〈x〉1+σV (G0(λ)−G0(µ))〈x〉−τ‖B2‖〈x〉τ VG(λ)V 〈x〉σ‖B

≤ C|λ− µ|s〈λ〉−1. (3.12)

As τ < β − σ < β − 1/2 and G(λ) and G0(λ) satisfy similar regularity and decay
properties,

‖〈x〉1+σVG0(µ)V (G(λ)−G(µ))V 〈x〉σ‖B2

≤ ‖〈x〉1+σVG0(µ)〈x〉−1−σ‖B · ‖〈x〉1+σV (G(λ)−G(µ))V 〈x〉σ‖B2

≤ C|λ− µ|s〈λ〉−1. (3.13)

The two estimates (3.12) and (3.13) imply (3.11).
The operator 〈x〉σN(λ)〈x〉1+σ satisfies estimates corresponding to (3.10) and (3.11)

because it is obtained from 〈x〉σ+1N(λ)〈x〉σ by taking the adjoint after replacingG0(λ)

and G(λ) respectively by G(−λ) and G0(−λ).
Finally we deal with 〈x〉σN ′(λ)〈x〉σ which may be written as

〈x〉σVG′
0(λ)VG(λ)V 〈x〉σ + 〈x〉σVG0(λ)VG

′(λ)V 〈x〉σ .
Since β − σ > 2 and β − τ > 1, we have

‖〈x〉σVG′
0(λ)VG(λ)V 〈x〉σ‖B2

≤ ‖〈x〉σVG′
0(λ)〈x〉−τ‖B2‖〈x〉τ VG(λ)V 〈x〉σ‖B ≤ C〈λ〉−1.

Replacing G0(λ) and G(λ) and taking the adjoint in the estimate above yield

‖〈x〉σVG0(λ)VG
′(λ)V 〈x〉σ‖B2 ≤ C〈λ〉−1.

It follows that

‖〈x〉σN ′(λ)〈x〉σ‖ ≤ C. (3.14)

Since s < β − σ − 3/2 < β − τ − 1/2 and min(τ, β − σ) > 3/2, we have

‖〈x〉σV (G0(λ)−G0(µ))VG
′(λ)V 〈x〉σ‖B2

≤ ‖〈x〉σV (G0(λ)−G0(µ))〈x〉τ V ‖B2‖〈x〉−τG′(λ)V 〈x〉σ‖B

≤ C|λ− µ|s〈λ〉−1. (3.15)
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Likewise, since s < β − σ − 3/2 and |λ− µ| < 1,

‖〈x〉σVG0(µ)V (G
′(λ)−G′(µ))V 〈x〉σ‖B2

≤ ‖〈x〉σVG0(µ)〈x〉−σ‖B‖〈x〉σV (G′(λ)−G′(µ))V 〈x〉σ‖B2

≤ C〈λ〉−1|λ− µ|s . (3.16)

Symmetrically we have

‖〈x〉σVG′
0(λ)V (G(λ)−G(µ))V 〈x〉σ‖B2 ≤ C〈λ〉−1|λ− µ|s ,

‖〈x〉σV (G′
0(λ)−G′

0(µ))VG(µ)V 〈x〉σ‖B2 ≤ C〈λ〉−1|λ− µ|s . (3.17)

The combination of (3.15), (3.16) and (3.17) yields

‖〈x〉σ (N ′(λ)−N ′(µ))〈x〉σ‖B2 ≤ C〈λ〉−1|λ− µ|s . (3.18)

The estimates (3.14) and (3.18) imply that 〈x〉σVN ′(λ)V 〈x〉σ ∈ Hs(R,B2) for some
s > 1/2. This completes the proof of the lemma. ��

4. The Cases of Exceptional Type

In this section we prove statement (2) of Theorem 1.3 for the case that H is of excep-
tional type. We first reduce the proof to the analysis of a simpler operator W0l (t) to be
defined by (4.1) below. Then, because of the reasons stated in the introduction, we study
it according to the type of exceptionality of H separately in Subsects. 4.3, 4.4 and 4.5.

4.1. Reduction to low energy analysis. For an even function χl ∈ C∞
0 (R) such that

χl(λ) = 1 near λ = 0 we define

W0l (t) = lim
δ↓0

−1

iπ

∫

|λ|>δ
e−itλ

2
χl(λ)G0(λ)VG(λ)λdλ. (4.1)

Recall that a family {T (t) : t ∈ R} of bounded operators in H is said to be regularly
dispersive if it is strongly continuous and, in addition, it satisfies

‖T (t)u‖p ≤ Ct
−3
(

1
2 − 1

p

)
‖u‖q, u ∈ L2 ∩ Lq (4.2)

for all 1 ≤ q ≤ 2 ≤ p ≤ ∞ such that 1/p + 1/q = 1. In this case we shall often say
simply that T (t) is regularly dispersive.

Lemma 4.1. The operator �(t) = e−itHPc −W0l (t) is regularly dispersive.

Proof. As in the generic case, we decompose e−itHPc in the form

e−itHPc =
2∑
n=0

(−1)n�n(t)+W3(t).

Recall the definition (3.8) of W3(t). As was shown in (3.5) and (3.6), �n(t) are reg-
ularly dispersive. We define the low and the high energy parts Wh(t) and Wl(t) of
W3(t) = Wh(t)+Wl(t) by

Wh,l(t) = lim
δ↓0

−1

iπ

∫

|λ|>δ
e−itλ

2
χh,l(λ)G0(λ)N(λ)G0(λ)λdλ, (4.3)
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where χh(λ) = 1 − χl(λ) and N(λ) = VG0(λ)VG(λ)V . Since G(λ) has no singulari-
ties on the support of χh, it follows, by virtue of Lemma 2.7 and Lemma 3.2, and in view
of the argument in Sect. 3 for the generic case, that Wh(t) is also regularly dispersive.
Using the resolvent equation, we write

G0(λ)N(λ)G0(λ) = G0(λ)VG(λ)+
2∑
j=1

(−1)j (G0(λ)V )
jG0(λ)

in (4.3) and further decompose Wl(t) = W0l (t)−W1l (t)+W2l (t):

Wnl(t) = −1

iπ

∫

R
e−itλ

2
χl(λ)(G0(λ)V )

nG0(λ)λdλ, 1 ≤ n ≤ 2. (4.4)

The operator Wnl(t) is the same as the one defined by the integral in the right of (3.4)
with −χl replacing χL and the proof of Lemma 3.1 implies

‖Wnl(t)u0‖∞ ≤ C|t |− 3
2 ‖V ‖jK‖u0‖1, 1 ≤ n ≤ 2. (4.5)

Lemma 2.6 clearly implies that Wnl(t) are strongly continuous families of uniformly
bounded operators in H. Thus,W1l (t) andW2l are regularly dispersive and so is�(t) =∑2
n=0(−1)n�n(t)+Wh(t)−W1l (t)+W2l (t). This proves the lemma. ��

4.2. Low energy resolvent analysis. Preliminary. In the following subsections we study
W0l (t) separately according to the kind of exceptionality. In each case, we need to inves-
tigate the behavior ofG(λ) near λ = 0. We do it mostly following Jensen-Kato [10] and
we collect here some preliminary information.

The following two lemmas collect Lemmas 2.4, 2.5, 2.6, 3.1, 3.2 and 3.3 of [10]. We
recall the operators Dj , j = 0, 1, . . . , are defined by (3.1) and

M = N(1 +D0V ), N = N(1 + VD0).

Lemma 4.2. (1) If v ∈ Hγ , 1
2 < γ ≤ 5

2 , and 〈v, 1〉 = 0, D0v ∈ H 2
γ−2(R

3).
(2) For u, v ∈ H 5

2 +0 such that 〈u, 1〉 = 〈v, 1〉 = 0, 〈D2u, v〉 = −〈D0u,D0v〉.

Lemma 4.3. Let 1
2 < γ < β − 1

2 . Then the following statements hold:

(1) M ⊂ H 2
− 1

2 −(R
3) and (H0 + V )M = {0}. If 1

2 < γ < 3
2 , N(H0 + V ) = M as an

operator from H 2−γ .
(2) H0 and V are isomorphisms M → N . D0 is an isomorphism N → M.
(3) For u ∈ M, u ∈ H if and only if 〈u, V 〉 = 0. In this case, u ∈ H 2

1
2 −(R

3).

(4) For v ∈ N , D0v ∈ H if and only if 〈1, v〉 = 0. In this case, v ∈ Hβ+ 1
2 −.

In what follows γ is always assumed to satisfy 1/2 < γ < β − 1/2. Notice that
(u,D0v) is a strictly positive quadratic form on Hγ and that VD0 is real and formally
selfadjoint with respect to this form. It follows that all eigenvalues λ of VD0 are real
and the eigenspaces are semi-simple: N(VD0 − λ) = N((VD0 − λ)2). By the duality,
the same is true for D0V .
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Lemma 4.4. There exist operators Q and K which are bounded in H−γ for any 1/2 <
γ < β − 1/2 such that Q2 = Q, QK = KQ = 0 and

(1 +D0V )Q = Q(1 +D0V ) = 0, (1 +D0V )K = K(1 +D0V ) = 1 −Q.

(1) The projector Q is of finite rank and K − I ∈ B2(H−γ ).
(2) We have the identities VK = K∗V, KD0 = D0K

∗.

Proof. The first statement is a result of the separation of the spectrum theorem ([14], p.
178). By the same theorem 1 +D0V +Q is invertible and

(I +D0V +Q)−1 − I = −(D0V +Q)(1 +D0V +Q)−1 ∈ B2(H−γ ).

SinceK = (1 +D0V +Q)−1(1 −Q),K − I ∈ B2(H−γ ). Statement (2) may be found
in Lemma 3.5 of [10]. ��

If u = D0ũ and v = D0ṽ, ũ, ṽ ∈ N , −(V u, v) = (D0ũ, ṽ). It follows that −(V u, v)
defines an inner product in M and the spectral projection

Q = − 1

2πi

∫

|z+1|=δ
(D0V − z)−1dz

satisfies Q∗V = VQ. The next lemma follows. Note that D0V and VD0 are real oper-
ators and we may choose a real basis of M and N .

Lemma 4.5. Let {φ1, . . . , φd} be an orthonormal basis of M with respect to the inner
product −(V u, v). Define ψj = −V φj . Then {ψ1, . . . , ψd} is the dual basis of N with
natural coupling 〈φj , ψk〉 = δjk and, simultaneously, is orthonomal with respect to the
inner product (D0u, v). With these bases

Q =
d∑
j=1

|φj 〉〈ψj |, Q∗ =
d∑
j=1

|ψj 〉〈φj |

andQ∗ is the spectral projection onto N with respect to 1 + VD0. We have the identity
QD0 = D0Q

∗.

By virtue of Lemma 4.3 (3), the 0 eigenspace E of H = −� + V is a subspace of M
of codimension at most one.

We write Q = 1 − Q. If we define closed subspaces X−γ = QH−γ and Y−γ =
QH−γ , the map X−γ +̇Y−γ � {u, v} �→ u + v ∈ H−γ is an isomorphism between
Banach spaces. In the direct sum decomposition H−γ = X−γ +̇Y−γ ,

M(λ) = 1 +G0(λ)V

may be written in the matrix form:

M(λ) =
(
QM(λ)Q QM(λ)Q

QM(λ)Q QM(λ)Q

)
≡
(
M00(λ) M01(λ)

M10(λ) M11(λ)

)
. (4.6)

We often consider operators Mjk(λ) and etc. also as operators in H−γ by extending
them to the complementary subspaces as zero operators.
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Lemma 4.6. There exists λ0 such that M00(λ) : X−γ → X−γ is invertible for |λ| < λ0

andM00(λ)
−1−I ∈ B2(X−γ ). As a B2(X−γ )-valued function of |λ| < λ0,M00(λ)

−1−I
is of class Cδ for δ < min(β − γ − 1

2 , γ − 1
2 , β − 2).

Proof. By virtue of Lemma 2.1, M00(λ) − 1 is a B2(X−γ )–valued Cδ function of λ
and M00(0) = Q(1 + D0V )Q is invertible by Lemma 4.4. The lemma follows by a
Neumann series expansion. ��

The following well known lemma is very useful.

Lemma 4.7. Let X = X0+̇X1 be a direct sum decomposition of a vector space X .
Suppose that a linear operator L in X is written in the form

L =
(
L00 L01
L10 L11

)

in this decomposition and that L−1
00 exists. Set

C = L11 − L10L
−1
00 L01.

Then, L−1 exists if and only if C−1 exists. In this case

L−1 =
(
L−1

00 + L−1
00 L01C

−1L10L
−1
00 −L−1

00 L01C
−1

−C−1L10L
−1
00 C−1

)
. (4.7)

4.3. Exceptional type of the first kind. In this subsection we prove Theorem 1.3 (2) when
H is of exceptional type of the first kind. In this case dim M = 1 and nontrivial φ ∈ M
satisfies

φ(x)− c

|x| ∈ H, φ ∈ H 2
− 1

2 − (4.8)

for a constant c 
= 0. We take a uniquely determined φ ∈ M such that −〈φ, V φ〉 = 1
and 〈V, φ〉 > 0 so that Q = −|φ〉〈V φ|.
Theorem 4.8. Let |V (x)| ≤ C〈x〉−β with β > 9/2. Assume H is of exceptional type
of the first kind. Let φ ∈ M be as above. Then, in a small punctured neighbourhood
0 < |λ| < λ0 of zero, (1 +G0(λ)V )

−1 may be written in the form

(1 +G0(λ)V )
−1 = I +K(λ)+ aλ−1Q, a = 4πi

|〈V, φ〉|2 , (4.9)

where 〈x〉1+σVK(λ)〈x〉1+σ is a B2(H)–valued C1+ρ function of λ ∈ (−λ0, λ0) for
some σ > 1/2 and ρ > 1/2.

Proof. We may assume 9/2 < β < 5 without losing the generality. We have β −
3 < (β − 1)/2. We apply Lemma 4.7 to (4.6). We need to study C(λ) ≡ M11(λ) −
M10(λ)M

−1
00 (λ)M01(λ) first. Recall D1 = (1/4π)(1 ⊗ 1). We define the operator J (λ)

by the equation

λ2J (λ) = M(λ)− (1 +D0V + iλD1V ) λ 
= 0.
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We have (M(λ)−(1+D0V + iλD1V ))φ ∈ Cγ− 1
2 −(R,H−γ ) for any 3/2 < γ < β− 1

2
by virtue of (4.8) and Lemma 2.1 and it vanishes at λ = 0 along with its derivative.

Hence, J (λ)φ and λJ (λ)φ are, as H−γ -valued functions, respectively of class Cγ− 5
2 −

and Cγ− 3
2 − including λ = 0. It follows by choosing γ < β − 1/2 arbitrarily close to

β − 1/2 that

M11(λ) =
(
λ|〈V φ|1〉|2

4iπ
− λ2〈V φ|J (λ)φ〉

)
Q = −λc0(λ)Q, (4.10)

where λc0(λ), c0(λ) and 〈V φ|J (λ)φ〉 are functions respectively of classCβ−1−,Cβ−2−
and Cβ−3− on R. Likewise we have

ψ̃(λ) ≡ M(λ)φ = (iD1V + λJ (λ))φ ∈ Cγ− 3
2 −(R,H−γ ),

ψ̃(λ)∗ ≡ M(λ)∗V φ = V (−iD1V + λJ (−λ))φ ∈ Cγ− 3
2 −(R,Hβ−γ ) (4.11)

for any 3/2 < γ < β − 1/2. Using these functions, we may write

M01(λ) = −λ(ψ̃(λ)+ c0(λ)φ)⊗ V φ,

M10(λ) = −λφ ⊗ (ψ̃∗(λ)+ c0(λ)V φ) (4.12)

and −M10(λ)M
−1
00 (λ)M01(λ) = λ2c1(λ)Q, where

c1(λ) = 〈ψ̃∗(λ)+ c0(λ)V φ,M
−1
00 (λ)(ψ̃(λ)+ c0(λ)φ)〉. (4.13)

Then, (4.11) and Lemma 4.6 for M00(λ)
−1 to (4.13) imply that c1(λ) ∈ Cβ−3−. Com-

bining this with (4.10), we have

C(λ) =
(
λ|〈V φ|1〉|2

4iπ
+ λ2c2(λ)

)
Q with c2 of class Cβ−3−, (4.14)

and C(λ)−1 exists for small 0 < |λ| < λ0. Moreover,

C−1(λ) =
(a
λ

+ d(λ)
)
Q, d(λ) ∈ Cβ−3−, a = 4πi

|〈V, φ〉|2 . (4.15)

It follows from Lemma 4.7 that M(λ)−1 may be written in the form (4.7) with obvious
modifications. Using (4.12) and (4.15), we write

−M−1
00 M01C

−1 = −(a + λd(λ))|ξ1(λ)〉〈V φ|,
−C−1M10M

−1
00 = −(a + λd(λ))|φ〉〈ξ2(λ)|,

M−1
00 M01C

−1M10M
−1
00 = −(a + λd(λ))|ξ1(λ)〉〈ξ2(λ)| (4.16)

with ξ1 = M00(λ)
−1(ψ̃(λ)+ c0(λ)φ) and ξ2(λ) = M00(λ)

∗−1(ψ̃∗(λ)+ c0(λ)V φ) and,
by virtue of (4.11) and Lemma 4.6, 〈x〉1+σV (x)ξ1(λ) and 〈x〉1+σ ξ2(λ) are H-valued
H 1+ρ functions of |λ| < λ0 for σ and ρ such that 1+σ, 1+ρ < β−3. Thus, putting the
operators in (4.16), (d(λ)− 1)Q andM00(λ)

−1 −Q intoK(λ), we obtain the theorem.
��
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We are ready to study W0l (t) when H is of exceptional type of the first kind. We
choose χl ∈ C∞

0 (R) such that χl is even, χ1(λ) = 1 when |λ| < λ0/2 and χl(λ) = 0
when |λ| ≥ λ0. We write, using (4.9),

G0(λ)VG(λ) = G0(λ)V (1 +G0(λ)V )
−1G0(λ)

= G0(λ)VG0(λ)+G0(λ)VK(λ)G0(λ)+ aλ−1G0(λ)VQG0(λ),

and insert this in the right of (4.1) to obtain

W0l (t) = W1l (t)+ Z(t)+ Z2(t). (4.17)

We know that W1l (t) is regularly dispersive from the proof of Lemma 4.1. Next we
consider

Z1(t) = −1

iπ

∫

R
e−itλ

2
χl(λ)G0(λ)VK(λ)G0(λ)λdλ. (4.18)

Lemma 4.9. Assume β > 9/2. Then, Z1(t) is regularly dispersive.

Proof. DenoteK1(λ) = χl(λ)K(λ). Take σ, ρ > 1/2 as in Theorem 4.8. Then, ‖〈x〉1+σ
VK1(λ)〈x〉1+σ‖B(H) ≤ C and, by virtue of Lemma 2.6, Z1(t) is strongly continuous
and uniformly bounded in B(H). It is also obvious that G0(λ)VK1(λ)G0(λ) is C1 as a
B2(H−σ )-valued function and, after integration by parts we obtain

Z1(t) = 1

πt

∫

R
e−itλ

2{G0(λ)VK1(λ)G0(λ)}′dλ. (4.19)

Lemma 2.7 then implies ‖Z1(t)u‖∞ ≤ C|t |− 3
2 ‖u‖1 and the lemma follows by interpo-

lation. ��
Finally we study the contribution from the singular part of (4.9):

Z2(t) = −a
iπ

∫

R
e−itλ

2
χl(λ)G0(λ)VQG0(λ)dλ. (4.20)

Lemma 4.10. Let β > 9/2. Then, Z2(t) is a strongly continuous family of uniformly
bounded operators in H and its integral kernel Z2(t, x, y) satisfies

∣∣∣∣∣Z2(t, x, y)− ae−i
3π
4√

πt
ei

(x2+y2)
4t φ(x)φ(y)

∣∣∣∣∣ ≤ Cmin(t−
1
2 〈x〉−1〈y〉−1, t−

3
2 ) (4.21)

for a constant C > 0. In particular, Z2(t) satisfies

‖Z2(t)u‖3,∞ ≤ Ct−
1
2 ‖u‖ 3

2 ,1
, u ∈ L2 ∩ L 3

2 ,1. (4.22)

Proof. Since Z2(t) = e−itHPc−�(t)−Z1(t), Lemma 4.1 and Lemma 4.9 implies the
first statement. The integral kernel Z2(t, x, y) is given by

Z2(t, x, y) = a

∫

R6
c(t, A)

V (z2)φ(z2)V (z1)φ(z1)

16π2|x − z2||z1 − y| dz1dz2, (4.23)
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where A = |x − z2| + |z1 − y| and

c(t, A) = 1

iπ

∫

R
e−itλ

2+iλAχl(λ)dλ = e−i
3π
4 ei

A2
4t√

πt
F
(
e
is2
4t χ̌l

)(
A

2t

)
. (4.24)

We have |c(t, A)| ≤ ‖χ̌l‖1(πt)
− 1

2 , hence

|Z2(t, x, y)| ≤ C√
t

∫

R6

|V (z2)φ(z2)|
|x − z2|

|V (z1)φ(z1)|
|z1 − y| dz1dz2 ≤ Ct−

1
2

〈x〉〈y〉 . (4.25)

Estimate (4.25) implies (4.22).We prove (4.21). Since |e is
2

4t −1| ≤ |s2|/4t and |χl(A/t)−
1| ≤ C|A/t |, we have

∣∣∣∣F
(
e
is2
4t χ̌l

)(
A

2t

)
− 1

∣∣∣∣ ≤ Ct−1(‖s2χ̌l‖L1 + |A|).

If we set B = 2(|x − z2||z2| + |z1 − y||z1|) + |z1|2 + |z2|2, it is easy to see that
|eiA2/4t − ei(x

2+y2)/4t | ≤ B/4t . It follows that
∣∣∣∣∣∣
c(t, A)− e−i

3π
4 ei

x2
4t ei

y2

4t√
πt

∣∣∣∣∣∣
≤ C(1 + A+ B)t−

3
2 . (4.26)

Combine (4.23) and (4.26) and use the relation (1 +D0V )φ = 0 and

sup
x,y

∫

R6

(1 + A+ B)|V (z2)φ(z2)V (z1)φ(z1)|
|x − z2||z1 − y| dz1dz2 < ∞

which follows from |V (x)φ(x)| ≤ C〈x〉−β−1 with β > 9/2. We see that the left side of
(4.21) is bounded by Ct−

3
2 . Estimate (4.25) and the bound |φ(x)| ≤ C〈x〉−1 show it is

also bounded by Ct−
1
2 〈x〉−1〈y〉−1. We are done. ��

Proof of Theorem 1.3 when H is exceptional type of the first kind. We recall �(t) of
Lemma 4.1 and define �̃(t) = �(t)+W1l (t)+Z1(t) so that e−itHPc = �̃(t)+Z2(t).
By virtue of Lemma 4.9, �̃(t) is regularly dispersive and ‖�̃(t)u‖3 ≤ Ct−

1
2 ‖u‖ 3

2
, in

particular. Since L
3
2 ,1 ⊂L 3

2 and L3 ⊂L3,∞, this and (4.22) imply

‖e−itHPcu‖3,∞ ≤ Ct−
1
2 ‖u‖ 3

2 ,1
. (4.27)

We interpolate (4.27) with the L2-bound: ‖e−itHPcu‖2,2 ≤ ‖u‖2,2. If we set

1

q
= 2

3
(1 − θ)+ θ

2
,

1

p
= 1

3
(1 − θ)+ θ

2
, 0 < θ < 1,

then 2/3 < q < 2 < p < 3 with 1/p + 1/q = 1 and, using also Lp,q ⊂ Lp,p = Lp,

we have [L
3
2 ,1, L2]θ,q = Lq , [L3,∞, L2,2]θ,q = Lp,q ⊂ Lp (see [3], Theorem 5.3.1)

and the desired estimate for this case:

‖e−itHPcu‖p ≤ Ct−
1
2 (1−θ)‖u‖q = Ct

−3
(

1
2 − 1

p

)
‖u‖q . (4.28)
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We next show the estimate corresponding to (1.17):

∥∥∥
(
e−itHPc − R(t)

)
u

∥∥∥
p

≤ Ct
−3
(

1
2 − 1

p

)
‖u‖q . (4.29)

Estimates (4.27) and |φ(x)| ≤ C〈x〉−1 imply

‖(e−itHPc − R(t))u‖3,∞ ≤ Ct−
1
2 ‖u‖ 3

2 ,1
. (4.30)

By virtue of (4.21), we have ‖(Z2(t) − R(t))u‖∞ ≤ Ct−
3
2 ‖u‖1. Combining this with

the fact that �̃(t) = e−itHPc − Z2(t) is regularly dispersive, we obtain

‖(e−itHPc − R(t))u‖∞ ≤ Ct−
3
2 ‖u‖1. (4.31)

We interpolate (4.30) and (4.31). This time we set

1

q
= 2

3
(1 − θ)+ θ

1
,

1

p
= 1

3
(1 − θ)+ θ

∞ , 0 < θ < 1,

so that 1 < q < 2/3, 3 < p < ∞ and 1/p + 1/q = 1. Then, again using Lp,q ⊂ Lp,

we have [L
3
2 ,1, L1]θ,q = Lq , [L3,∞, L∞]θ,q = Lp,q ⊂ Lp and

‖(e−itHPc − R(t))u‖p ≤ Ct−
1
2 (1−θ)− 3

2 θ‖u‖q = Ct
−3
(

1
2 − 1

p

)
‖u‖q, (4.32)

which is (4.29). This completes the proof of Theorem 1.3 when H is exceptional type
of the first kind.

4.4. Exceptional type of the second kind. In this subsection we prove Theorem 1.3 (2)
when H is of exceptional type of the second kind. In view of Lemma 4.1, we need to
study W0l (t) only. As previously we begin by studying the resolvent G(λ) near λ = 0.
In this case M coincides with the 0 eigenspace E of H and all φ ∈ E satisfy

〈V, φ〉 = 0, |φ(x)| ≤ C〈x〉−2, hence φ ∈ H 1
2 −. (4.33)

Theorem 4.11. Let |V (x)| ≤ C〈x〉−β for some β > 11/2. Assume that H is of excep-
tional type of the second kind and let P0 be the orthogonal projection in H onto the
0 eigenspace of H = −� + V . Then there exists a constant λ0 > 0 such that for
0 < |λ| < λ0,

(1 +G0(λ)V )
−1 = I +K(λ)+ λ−2P0V + iλ−1P0VD3VP0V, (4.34)

where 〈x〉1+σVK(λ)〈x〉1+σ is a B2(H)-valuedC1+ρ function of −λ0 < λ < λ0 (includ-
ing λ = 0) for some σ > 1/2 and ρ > 1/2.
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Proof. Without losing generality we assume 11/2 < β < 6, which implies β − 4 <
(β − 1)/2. We again apply Lemma 4.7 to (4.6) and the argument is parallel to that of
the proof of Theorem 4.8. We define

E2(λ) = (iλ)−2(M(λ)− (1 +D0V + iλD1V )),

J4(λ) = (iλ)−4(M(λ)− (1 +D0V + · · · + (iλ)3D3V )). (4.35)

It follows from (4.33) (see Lemma 2.2 (2) of [9]) that

E2(λ)φ ∈ Cγ− 5
2 −(R,H−γ+1),

5

2
< γ < β + 1

2
;

E2(λ)
∗V φ ∈ Cγ− 5

2 −(R,Hβ−γ+1),
5

2
< γ < β + 1

2
;

J4(λ)φ ∈ Cγ− 9
2 −(R,H−γ+1),

9

2
< γ < β + 1

2
. (4.36)

Since (1 +D0V + iλD1V )Q = Q(1 +D0V + iλD1V ) = 0, we have

M01(λ) = (iλ)2QE2(λ)Q, M10(λ) = (iλ)2QE2(λ)Q,

M11(λ) = (iλ)2QE2(λ)Q,

E2(λ) = D2V + iλD3V + (iλ)2J4(λ). (4.37)

Take an orthonormal basis {φj } of M and its dual basis {−V φj }. Then, QJ4(λ)Q =∑
j,k ajk(λ)(φj ⊗ V φk) with ajk(λ) = 〈V φj , J4(λ)φk〉 and, by choosing γ arbitrarily

close to β + 1/2 in the last relation of (4.36), we see that ajk(λ) are of class Cβ−4−. By
virtue of Lemma 4.2 (2),

QD2VQ =
∑

〈V φj ,D2V φk〉|φj 〉〈V φk|
= −

∑
〈D0V φj ,D0V φk〉|φj 〉〈V φk| = −

∑
〈φj , φk〉|φj 〉〈φk|V.

The matrix A = (〈φj , φk〉) is positive definite and, if we define B = A− 1
2 and φ̃k =∑

j Bjkφj , then {φ̃1, . . . , φ̃d} becomes an orthonormal basis of M with respect to the

standard L2 inner product, and

(QD2VQ)
−1 = −

∑
B2
jk|φj 〉〈φk|V = −

∑
|φ̃j 〉〈φ̃k|V = −P0V. (4.38)

Since 〈φ̃j |V φk〉 = −Bjk , we have P0VQ = P0V . It follows by a Neumann series
expansion that

M11(λ)
−1 = λ−2P0V (I − iλQD3VP0V + λ2QJ4(λ)P0V )

−1Q

= λ−2P0V + iλ−1P0VD3VP0V +QE3(λ)Q. (4.39)

HereE3(λ) collects all remaining terms in the expansion and, as J4(λ) is of classCβ−4−,
if we write as QE3(λ)Q = ∑

bjk(λ)φj ⊗ V φk , bjk(λ) are also of class Cβ−4−. We
have

M10(λ)M
−1
00 (λ)M01(λ) = λ4QE2(λ)QM

−1
00 (λ)QE2(λ)Q. (4.40)
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SinceE2(λ)φk andE2(λ)
∗V φj satisfy the property (4.36) andQM−1

00 (λ)Q is a B(H−r )–
valued Cδ function of λ for 1/2 < δ < min(β − γ − 1/2, γ − 1/2, β − 2) by virtue of
Lemma 4.6, the matrix elements

〈E2(λ)
∗V φj ,QM00(λ)

−1QE2(λ)φk〉

of (4.40) with respect to these bases are of class Cβ−4. We obtain, combining this with
(4.39), that

M10(λ)M
−1
00 (λ)M01(λ)M11(λ)

−1 = λ2QE5(λ)Q

with E5(λ) which has Cβ−4− matrix elements. It follows that

C(λ) = M11(λ)−M10(λ)M
−1
00 (λ)M01(λ) = (I − λ2QE5(λ)Q)M11(λ)

is invertible for λ 
= 0 and

C−1(λ) = M11(λ)
−1(I − λ2QE5(λ)Q)

−1

= λ−2P0V + iλ−1P0VD3VP0V +QE6(λ)Q (4.41)

with Cβ−4− function E6(λ). From (4.36) and Lemma 4.6, it also follows that

〈x〉−β+ 5
2 −QM00(λ)

−1QE2(λ)Q, QE2(λ)QM00Q〈x〉 5
2 + ∈ Cβ−4−(R,B2(H)).

Then, by virtue of (4.41), we see that the operators

−M−1
00 (λ)M01(λ)C

−1(λ), −C−1(λ)M01(λ)M
−1
00 (λ),

M−1
00 (λ)M01(λ)C

−1(λ)M01(λ)M
−1
00 (λ) (4.42)

are, when sandwiched by 〈x〉−β+ 5
2 − and 〈x〉 5

2 − from the left and the right respectively,
all B2(H)-valued Cβ−4− functions. Since β > 11/2, putting the operators in (4.42),
QE6(λ)Q and M00 − I into K(λ), we obtain the theorem. ��

Now we are ready to study W0l (t):

W0l (t) = lim
δ↓0

−1

iπ

∫

|λ|>δ
e−itλ

2
χl(λ)G0(λ)VG(λ)λdλ (4.43)

in the case when H is an exceptional type of the second kind. We may choose the cut
off function χl(λ) such that χ(λ) = 0 for λ > λ0 and χl(λ) = 1 for |λ| < λ0/2 as
previously. By virtue of (4.34), we have

G0(λ)VG(λ) = G0(λ)VG0(λ)+G0(λ)VK(λ)G0(λ)

+λ−2G0(λ)V P0VG0(λ)+ iλ−1G0(λ)V P0VD3VP0VG0(λ).

(4.44)

The contribution ofG0(λ)VG0(λ) toW0l (t) is equal toW1l (t) and it is regularly disper-
sive. We denote the contribution fromG0(λ)VK(λ)G0(λ) byX1(t), which corresponds
toZ1(t) in the first case. By virtue of Theorem 4.11 〈x〉σ+1VK(λ)〈x〉σ+1 is a B2(H)-val-

uedH
3
2 + function of |λ| < λ0. It follows by the argument used for studyingZ1(t) of the
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previous subsection that X1(t) is regularly dispersive. Let X2(t) and X3(t) respectively
be the contributions from the fourth and the third summands:

X2(t) = −1

π

∫

R
e−itλ

2
χl(λ)G0(λ)V P0VD3VP0VG0(λ)dλ, (4.45)

X3(t) = −1

iπ
lim
δ↓0

∫

|λ|>δ
e−itλ

2
λ−1χl(λ)G0(λ)V P0VG0(λ)dλ. (4.46)

A priori we know that X2(t) + X3(t) is a strongly continuous family of uniformly
bounded operators in H:

‖(X2(t)+X3(t))u‖2 ≤ C‖u‖2, t ∈ R, (4.47)

as it may be written as a sum of operators which satisfy this property.

Lemma 4.12. There exists C such that

‖X2(t)u‖3,∞ ≤ Ct−
1
2 ‖u‖ 3

2 ,1
, u ∈ L2 ∩ L 3

2 ,1, (4.48)
∥∥∥∥∥X2(t)u+ i

e−i
3π
4√
πt
P0VD3P0u

∥∥∥∥∥∞
≤ Ct−

3
2 ‖u‖1, u ∈ L2 ∩ L1. (4.49)

Proof. We let {φ̃j } be an orthonomal basis of E with respect to the L2-norm. With
cjk = 〈φ̃j , VD3V φ̃k〉 we write

P0VD3VP0 =
d∑

j,k=1

cjk|φ̃j 〉〈φ̃k|, cjk = 〈φ̃j |VD3V |φ̃k〉.

We define

Wjk(t) = −1

π

∫

R
e−itλ

2
χl(λ)G0(λ)V |φ̃j 〉〈φ̃k|VG0(λ)dλ.

Notice that Wjk(t) is exactly of the same form as Z2(t) except that a is replaced by −i
and the resonance φ by the eigenfunctions φ̃j and φ̃k . It follows by the argument which
led to (4.25) that the integral kernel Wjk(t, x, y) of Wjk(t) satisfies

∣∣Wjk(t, x, y)
∣∣ ≤ C|t |− 1

2 〈x〉−1〈y〉−1, (4.50)

which implies (4.48). It also implies
∣∣∣∣∣Wjk(t, x, y)+ i

e−i
3π
4√
πt
ei

(x2+y2)
4t φ̃j (x)φ̃k(y)

∣∣∣∣∣ ≤ C|t |− 3
2 . (4.51)

Here, however, as eigenfunctions decay faster than resonances and |φ̃j (x)| ≤ C〈x〉−2,

we may estimate

∣∣∣∣(ei
x2
4t − 1)φ̃j (t, x)

∣∣∣∣ ≤ Ct−1. It follows that

∥∥∥∥∥Wjk(t)u+ i
e−i

3π
4√
πt
(u, φ̃k)φ̃j

∥∥∥∥∥∞
≤ Ct−

3
2 ‖u‖1. (4.52)

Summing up (4.52) with respect to j, k, we obtain the lemma. ��
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Lemma 4.13. For φ ∈ E , a zero eigenfunction of H , define

w̃(t, x) = lim
δ↓0

1

iπ

∫

|λ|>δ
e−itλ

2
χl(λ)(G0(λ)−D0)V φ(x)

dλ

λ
. (4.53)

Then w̃(t, x) satisfies the following properties:

|w̃(t, x)| ≤ Ct−
1
2 〈x〉−1, (4.54)

|w̃(t, x)− e−i
3π
4
µ(t, x)√
πt

(D2V φ)(x)| ≤ Ct−
3
2 , (4.55)

where µ(t, x) is the function defined by (1.12):

µ(t, x) = i

|x|
∫ 1

0
(e

i|x|2
4t − e

iθ2 |x|2
4t )dθ. (4.56)

Proof. Since φ satisfies 〈1, V φ〉 = 0, we may write

(G0(λ)−D0)V φ(x) = 1

4π

∫ (
eiλ|x−y| − 1

|x − y| − eiλ|x| − 1

|x|
)
V (y)φ(y)dy. (4.57)

We write the function inside the parenthesis under the integral sign in the form

iλ

|x| (|x − y| − |x|)
∫ 1

0
(eiλ(θ |x−y|+(1−θ)|x|) − ei|x−y|λθ )dθ. (4.58)

After rewriting (G0(λ) − D0)V φ(x) in this way, we compute the right-hand side of
(4.53) by first performing the λ integral as always. If we set A = θ |x − y| + (1 − θ)|x|
and B = θ |x − y|, we have

1

iπ

∫

R
e−itλ

2
(eiλA − eiλB)χl(λ)dλ = c(t, A)− c(t, B),

where c(t, X) is defined by (4.24):

c(t, X) = e−i
3π
4√
πt
e
iX2
4t F

(
e
is2
4t χ̌l

)(
X

2t

)
,

and w̃(t, x) may now be written in the form

i

4π |x|
∫ 1

0

(∫
(|x − y| − |x|)(c(t, A)− c(t, B))V (y)φ(y)dy

)
dθ. (4.59)

Since |c(t, X)| ≤ Ct−
1
2 and ||x − y| − |x|| ≤ |y|, (4.59) clearly implies

|w̃(t, x)| ≤ C|x|−1t−
1
2 .

However, the choice of origin is arbitrary and we obtain (4.54).
Since |A2 − |x|2| = θ |(|x − y| − |x|)(θ(|x − y| − |x|) + 2|x|)| ≤ 2|y|(|x| + |y|),

the argument which leads to (4.26) implies uniformly with respect to θ ,
∣∣∣∣∣c(t, A)− e−i

3π
4√
πt
e
i|x|2

4t

∣∣∣∣∣ ≤ C(|A| + ‖s2χ̌‖1 + |y|(|x| + |y|))t− 3
2 ≤ C〈x〉〈y〉2t−

3
2 .
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Likewise, we have ||x − y|2 − |x|2| ≤ 2|y|(|x| + |y|) and
∣∣∣∣∣c(t, B)− e−i

3π
4√
πt
e
iθ2 |x|2

4t

∣∣∣∣∣ ≤ C〈x〉〈y〉2t−
3
2 .

Note that |〈y〉3V (y)φ(y)| ≤ C〈y〉−β+1 is integrable by the assumption β > 11/2. It
follows that w̃(t, x) differs from

ie−i
3π
4√

πt |x|
(∫ 1

0
(e

i|x|2
4t − e

iθ2 |x|2
4t )dθ

)(
1

4π

∫
(|x − y| − |x|)V (y)φ(y)dy

)

by a function bounded by Ct−
3
2 . Here the function in the second parenthesis is equal to

(D2V φ)(x) because 〈V, φ〉 = 0. We have obtained (4.55). ��
Lemma 4.14. Let µ(t) be the multiplication by µ(t, x). Then, there exists C such that

‖X3(t)u‖3,∞ ≤ Ct−
1
2 ‖u‖3/2,1, (4.60)∥∥∥∥∥X3(t)u− e−i

3π
4√
πt

(µ(t)D2VP0 + P0VD2µ(t)) u

∥∥∥∥∥∞
≤ Ct−

3
2 ‖u‖1. (4.61)

Proof. Using D0VP0 = −P0 and P0VD0 = −P0, which follows since the 0 eigen-
functions φ of H satisfy D0V φ = −φ, we may write

G0(λ)V P0VG0(λ) = (G0(λ)−D0)V P0V (G0(λ)−D0)

−(G0(λ)−D0)V P0 − P0V (G0(λ)−D0)+ P0.

This produces X3(t) = X31(t)+X32(t)+X33(t) where

X31(t) = i

π
lim
δ↓0

∫

|λ|>δ
e−itλ

2
χl(λ)(G0(λ)−D0)V P0V (G0(λ)−D0)

dλ

λ
, (4.62)

X32(t) = 1

iπ
lim
δ↓0

∫

|λ|>δ
e−itλ

2
χl(λ)(G0(λ)−D0)V P0

dλ

λ
, (4.63)

X33(t) = 1

iπ
lim
δ↓0

∫

|λ|>δ
e−itλ

2
χl(λ)P0V (G0(λ)−D0)

dλ

λ
. (4.64)

Here the contribution from P0 vanishes because e−itλ2
λ−1χl(λ) is an odd function of

λ. We take an orthonormal basis {φ1, . . . , φd} of E with respect to the L2 inner product
and let w̃j (t, x) be the w̃(t, x) of Lemma 4.13 corresponding to φj , j = 1, . . . , d. Then
the integral kernels of X32(t) and X33(t) are given respectively by

X32(t, x, y) =
d∑
j=1

w̃j (t, x)φj (y), X33(t, x, y) =
d∑
j=1

φj (x)w̃j (t, y),

and, by virtue of Lemma 4.13, the lemma follows if we prove

‖X31(t)u‖3,∞ ≤ Ct−
1
2 ‖u‖3/2,1, ‖X31(t)u‖∞ ≤ Ct−

3
2 ‖u‖1. (4.65)
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By using (4.57) and (4.58), we write the integral kernel ofX31(t) in the following form.
We define

a(t, A) = i

π

∫

R
e−itλ

2+iλAλχl(λ)dλ

and use the short-hand notation

L(x, y) = |x − y| − |x|, ψj (x) = −V (x)φj (x), j = 1, . . . , d.

Note that |L(x, y)| ≤ |y|. If we define Ykj (t, x, y, θ, θ ′) for k = 1, . . . , 4 and j =
1, . . . , d by

Ykj = −1

16π2|x||y|
∫

R6
L(x, z2)L(y, z1)ψj (z2)ψj (z1)a(t, Ak)dz1dz2,

where the variables A1, . . . , A4 inside a(t, Ak) are respectively given by

A1 = θ |x − z2| + θ ′|y − z1| + (1 − θ ′)|y|, A2 = θ |x − z2| + θ ′|y − z1|,
A3 = θ |x − z2| + (1 − θ)|x| + θ ′|y − z1|,
A4 = θ |x − z2| + (1 − θ)|x| + θ ′|y − z1| + (1 − θ ′)|y|,

then, the integral kernel of X31(t) may be written in the form

X31(t, x, y) =
4∑
k=1

d∑
j=1

(−1)k
∫ 1

0

∫ 1

0
Ykj (t, x, y, θ, θ

′)dθdθ ′. (4.66)

Clearly |Ak| ≤ (〈x〉 + 〈z2〉 + 〈z1〉 + 〈y〉), k = 1, . . . , 4 and

|a(t, A)| ≤ Ct−
1
2 , |a(t, A)| ≤ Ct−

3
2 |A|, (4.67)

by virtue of (2.5) and (2.7). It follows that

|X31(t, x, y)| ≤ Cmin

(
t−

1
2

|x||y| ,
t−

3
2 (〈x〉 + 〈y〉)

|x||y|

)
. (4.68)

Here again the choice of the origin of coordinates is irrelevant for the estimate and we

may replace t−
1
2 (1/|x||y|) by Ct−

1
2 (1/〈x〉〈y〉) and t−

3
2 (〈x〉+ 〈y〉/|x||y|) by t−

3
2 (〈x〉+

〈y〉/〈x〉〈y〉) in (4.68) and (4.65) follows. This completes the proof of the lemma. ��
Proof of Theorem 1.3 when H is exceptional type of the second kind. We have shown
that e−itHPc − (X2(t) + X3(t)) is regular dispersive. It follows by virtue of Lemma
4.12 and Lemma 4.14,

‖e−itHPcu‖3,∞ ≤ Ct−
1
2 ‖u‖ 3

2 ,1
, (4.69)

‖(e−itHPc − R(t))u‖3,∞ ≤ Ct−
1
2 ‖u‖ 3

2 ,1
, (4.70)

‖(e−itHPc − R(t))u‖∞ ≤ Ct−
3
2 ‖u‖1. (4.71)

We interpolate (4.69) with the L2 bound ‖e−itHPcu‖2 ≤ ‖u‖2 and (4.70) with (4.71).
The argument is virtually a repetition of the corresponding part of the previous subsection
and we omit the details.
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4.5. Exceptional case of the third kind. We finally consider the case whenH is of excep-
tional type of the third kind. As usual we begin by studyingM(λ)−1 = (1+G0(λ)V )

−1

near λ = 0. We take the orthonormal (with respect to the inner product −(V u, v)) basis
{φ1, . . . , φd} of M of Lemma 4.5 in such a way that {φ2, . . . , φd} is a basis of P0H and
such that 〈φ1, V 〉 > 0. The last condition determines φ1 uniquely. Define the orthogo-
nal projections π1 onto {φ1} and π2 onto P0H with respect to this inner product, viz.
π1 = −|φ1〉〈V φ1| and π2 = −∑d

j=2 |φj 〉〈V φj |, and

Q0 = Q = 1 −Q, Q1 = Qπ1Q, Q2 = Qπ2Q.

We have Q = Q1 +Q2. As previously we write ψj = −V φj : j = 1, . . . , d. {ψj } is
the basis of N = M∗ which is dual to {φj }.
Lemma 4.15. As identities in H−γ , we have the following:

QjQk = δjk (j, k = 0, 1, 2) and Q0 +Q1 +Q2 = I, (4.72)

(1 +D0V )Q1 = (1 +D0V )Q2 = 0, (4.73)

Q2D1VQ0 = 0, Q2D1VQ1 = 0, Q2D1VQ2 = 0, (4.74)

Q0D1VQ2 = 0, Q1D1VQ2 = 0. (4.75)

Proof. Equations (4.72) and (4.73) are obvious. Since D1 = (1/4π)|1〉〈1|, (4.74) and
(4.75) follow from Q2|1〉 = 0 and 〈1|VQ2 = 0. ��

We first study [QM(λ)Q]−1 by using Lemma 4.7. We writeQM(λ)Q in matrix form
with respect to the decomposition M = Q1M +̇Q2M:

QM(λ)Q =
(
Q1M(λ)Q1 Q1M(λ)Q2
Q2M(λ)Q1 Q2M(λ)Q2

)
≡
(
M11(λ) M12(λ)

M21(λ) M22(λ)

)
. (4.76)

In what follows we assume 11/2 < β < 6 so that β − 4 < 1
2 (β − 1) and irrespectively

denote by E(λ) various finite dimensional operator valued functions of λ which are of
class Cβ−4− in a neighborhood of λ = 0.

The function 〈V φ1|G0(λ)|V φ1〉 is of class Cβ−1− because V φ1 ∈ Hβ− 1
2 −. Since φ1

satisfies (1 + D0V )φ1 = 0 and 〈V, φ1〉 
= 0, it follows as in the case of the first type
that with c1 ∈ Cβ−3−,

M11(λ) = c(λ)Q1 with c(λ) = (4πi)−1λ|〈V, φ1〉|2 + λ2c1(λ).

Hence M11(λ) is invertible for 0 < |λ| < λ0 for sufficiently small λ0 > 0 and, with
a = 4πi|〈V, φ1〉|−2 as previously,

M−1
11 (λ) = (λ−1a + d(λ))Q1, d ∈ Cβ−3−. (4.77)

Likewise M12(λ) and M21(λ) are of Cβ−1− and, as Q2D1V = D1VQ2 = 0,

M12(λ) = −λ2Q1(D2V + λE(λ))Q2,

M21(λ) = −λ2Q2(D2V + λE(λ))Q1,

M21(λ)M
−1
11 (λ)M12(λ) = λ3Q2(aD2VQ1D2V + λE(λ))Q2. (4.78)

Since V φj (x) ∈ Hβ+ 1
2 − for 2 ≤ j ≤ d , M22(λ) is of class Cβ− and

M22(λ) = −λ2Q2(D2V + iλD3V − λ2E(λ))Q2. (4.79)
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Notice that M22(λ) is what corresponds to M11(λ) of the previous Subsect. 4.4. Hence
(4.38) and (4.39) imply, with P0 being the orthogonal projection in H onto E that
(Q2D2VQ2)

−1 = −P0V , P0VQ2 = P0V and that

M22(λ)
−1 = λ−2P0V + iλ−1P0VD3VP0V + P0VE(λ)Q2. (4.80)

It follows by a Neumann series expansion that

C22(λ) = M22(λ)−M21(λ)M
−1
11 (λ)M12(λ)

= M22(λ)(1 −M22(λ)
−1M21(λ)M

−1
11 (λ)M12(λ))

is invertible and

C−1
22 (λ) = λ−2P0V + iλ−1P0VD3VP0V

+ aλ−1P0VD2VQ1D2VP0V + P0VE(λ)P0V. (4.81)

If we set φ̃1 = P0VD2V φ1 ∈ P0H, then P0VD2VQ1D2VP0V = −|φ̃1〉〈φ̃1|V and the
right side of (4.81) may be written in the form

λ−2P0V + iλ−1P0VD3VP0V − λ−1a|φ̃1〉〈φ̃1|V + P0VE(λ)P0V. (4.82)

Using (4.77), (4.78), (4.81) and the definition of φ̃1, we may write

−M−1
11 (λ)M12(λ)C

−1
22 (λ) = −aλ−1|φ1〉〈φ̃1|V + E(λ),

−C−1
22 (λ)M21(λ)M

−1
11 (λ) = −aλ−1|φ̃1〉〈φ1|V + E(λ),

M−1
11 (λ)M12(λ)C

−1
22 (λ)M21(λ)M

−1
11 (λ) = E(λ). (4.83)

Combining (4.77), (4.82) and (4.83) by means of Lemma 4.7, we see that (QM(λ)Q)−1

is in matrix form given modulo an E(λ) by

(−aλ−1|φ1〉〈V φ1| −aλ−1|φ1〉〈V φ̃1|
−aλ−1|φ̃1〉〈V φ1| λ−2P0V + iλ−1P0VD3VP0V − λ−1a|φ̃1〉〈V φ̃1|

)
(4.84)

and, therefore, if we define the canonical resonance ϕ = φ1 − φ̃1 as in (1.10), ϕ still
satisfies ϕ ∈ M and 〈ϕ, V 〉 = 1, and we obtain

(QM(λ)Q)−1 = P0V

λ2 + iP0VD3VP0V

λ
− a

λ
|ϕ〉〈ϕ|V + E(λ). (4.85)

For studying M(λ)−1 we repeat a similar argument. We write M(λ) in the matrix
form with respect to the decomposition H−γ = QH−γ +̇ M:

M(λ) =
(
QM(λ)Q QM(λ)Q

QM(λ)Q QM(λ)Q

)
≡
(
L00(λ) L01(λ)

L10(λ) L11(λ)

)
,

where the right-hand side is the definition. By virtue of Lemma 4.6, for any 1/2 < γ <

β − 1/2, A(λ) ≡ L00(λ)
−1 exists in QH−γ and of class Cδ for any δ < min(β − γ −

1/2, γ−1/2, β−2) andA(λ)−Q is of Hilbert-Schmidt class. By virtue of (4.73), (4.74)
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and (4.75), with respect to the decomposition Q = Q1 +Q2, L10(λ)L
−1
00 (λ)L01(λ) =

QM(λ)A(λ)M(λ)Q may be written as

(
Q1M(λ)A(λ)M(λ)Q1 Q1M(λ)A(λ)M(λ)Q2
Q1M(λ)A(λ)M(λ)Q1 Q2M(λ)A(λ)M(λ)Q2

)
=
(
λ2E11(λ) λ

3E12(λ)

λ3E21(λ) λ
4E22(λ)

)
,

where Eij are of class Cβ−4−. Since L−1
11 (λ) = (QM(λ)Q)−1 is of the form

L−1
11 (λ) =

(
λ−1E(λ) λ−1E(λ)

λ−1E(λ) λ−2E(λ)

)
(4.86)

by virtue of (4.84), in the decomposition in M = Q1M+̇Q2M,

N(λ) ≡ L−1
11 (λ)L10(λ)L

−1
00 (λ)L01(λ) =

(
λE(λ) λ2E(λ)

λE(λ) λ2E(λ)

)
.

It follows thatC(λ) = L11(λ)−L10(λ)L
−1
00 (λ)L01(λ) = L11(λ)(1−N(λ)) is invertible

for 0 < |λ| < λ0,

C−1(λ) = L−1
11 (λ)+ (1 −N(λ))−1N(λ)L−1

11 (λ) (4.87)

and (1 −N(λ))−1N(λ)L−1
11 (λ) is of the form

(
λE(λ) λ2E(λ)

λE(λ) λ2E(λ)

)(
λ−1E(λ) λ−1E(λ)

λ−1E(λ) λ−2E(λ)

)
= E(λ). (4.88)

We have L01(λ) = QM(λ)Q = λQF1(λ)Q1 + λ2QF2(λ)Q2 with

F1(λ) = λ−1G0(λ)VQ1, F2(λ) = λ−2G0(λ)VQ2(λ).

Hereλ−1G0(λ)V φ1 is an H−γ -valuedCγ−3/2− function ofλ for any 3/2 < γ < β−1/2
and, as in (4.36), λ−2G0(λ)V φj , 2 ≤ j ≤ d , are H−γ+1–valued Cγ−5/2− functions
for any 5/2 < γ < β + 1/2. It follows by applying Lemma 4.6 for L00(λ) respectively
with γ = β − 2 − ε and with γ = β − 1 − ε with 0 < ε < 1

2 that A(λ)QF1(λ)φ1 and
A(λ)QF1(λ)φj , 2 ≤ j ≤ d are B(M,H−β+2+ε)-valued Cβ−4 functions of λ (recall
that A(λ) = L−1

00 (λ)). Combining this with (4.86), (4.87) and (4.88), we conclude that

A(λ)L01(λ)C
−1(λ) = (

λA(λ)QF1(λ)Q1 λ
2A(λ)QF2(λ)Q2

) (λ−1E(λ) λ−1E(λ)

λ−1E(λ) λ−2E(λ)

)

is a B(M,H−β+2+ε)–valued Cβ−4− function of λ near λ = 0. By an argument dual to
the previous one, we see that

C−1(λ)L10(λ)L
−1
00 (λ) is also of class Cβ−4−

as a B(H−2−ε,M)–valued function of λ near the origin. Summarizing the results by
using Lemma 4.7, we have shown the following theorem:
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Theorem 4.16. Suppose V satisfies |V (x)| ≤ C〈x〉−β with 11
2 < β and H is of excep-

tional type of the third kind. Let ϕ be the canonical resonance and a = 4πi|〈V, ϕ〉|−2.
Then,

(I +G0(λ)V )
−1 − I = P0V

λ2 + iP0VD3VP0V

λ
− a

λ
|ϕ〉〈ϕ|V +K(λ), (4.89)

whereK(λ) is such that 〈x〉1+σVK(λ)〈x〉1+σ is a B2(H)–valued C1+s function of λ in
a neighbourhood of λ for some σ, s > 1/2.

Once Theorem 4.16 is obtained, the proof of Theorem 1.3 for the caseH is an excep-
tional type of the third kind completed by combining the arguments in the preceding
two subsections. We may safely omit the repetitious proof.

4.6. Dispersive estimates. Finally we prove Theorem 1.4. We may assume H is an

exceptional type of third kind. We have |ζ(t, x)− ϕ(x)| + |µ(t, x)| ≤ Cmin
( |x|
t
, 1

|x|
)

.

Hence,

|ζ(t, x)− ϕ(x)| + |µ(t, x)| ≤ Ct
2− 3

q |x| 6
q
−5
, 1 ≤ q ≤ 3/2.

Thus, if 〈u, φ〉 = 0 for all φ ∈ M, then, for any p > 3,

‖R(t)u‖p ≤ |a|√
πt

‖ϕ‖p|〈ζ(t)− ϕ, u〉| ≤ Ct
−3
(

1
q
− 1

2

)
‖|x| 6

q
−5
u‖1. (4.90)

For φ ∈ E , we have |D2V φ(x)|≤C. It follows, since 〈φ, VD2µ(t)u〉=〈D2V φ,µ(t)u〉,
that

|〈φ, VD2µ(t)u〉| ≤ C‖µ(t)u‖1 ≤ Ct
2− 3

q ‖|x| 6
q
−5
u‖1, φ ∈ E .

Since φ ∈ E belong to Lp for p > 3, we also have

‖S(t)u‖p ≤ Ct
−3
(

1
q
− 1

2

)
‖|x| 6

q
−5
u‖1. (4.91)

We choose p > 3 as the dual exponent of 1 ≤ q < 3/2 and combine (4.90) and (4.91)
with (1.17). We obtain (1.18). This completes the proof.

References

1. Agmon, S.: Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm.
Sup. Pisa Cl. Sci. 2(4), 151–218 (1975)

2. Artbazar, G., Yajima, K.: The Lp-continuity of wave operators for one dimensional Schrödinger
operators. J. Math. Sci. Univ. Tokyo 7, 221–240 (2000)

3. Bergh, J., Löfström, J.: Interpolation spaces, an introduction. Berlin-Heidelberg-New York:
Springer-Verlag, 1976

4. Cuccagna, S.: Stabilization of solutions to nonlinear Schrödinger equations. Commun. Pure Appl.
Math. 54, 1110–1145 (2001)

5. Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger operators with application to quan-
tum mechanics and global geometry. Berlin: Springer-Verlag, 1987
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