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Abstract: Let H=—A 4 V (x) be a three dimensional Schrédinger operator. We study
the time decay in L” spaces of scattering solutions e "*/# P.u, where P, is the orthog-
onal projection onto the continuous spectral subspace of L*(R?) for H. Under suitable
decay assumptions on V (x) it is shown that they satisfy the so-called L”-L9 estimates
e~  Peull, < (Ar)t))3A/2=YP) ||, forall 1<g<2<p<oowith 1/p+1/g=1
if H has no threshold resonance and eigenvalue; and for all 3/2 < ¢ <2 < p <3 if
otherwise.

1. Introduction

The present paper is concerned with the time decay in L? spaces of solutions of three
dimensional Schrédinger equations,

idu=(—A+Vx)u, xeR. (1.1)

Throughout the paper we assume that potentials V (x) are real valued and decay at infinity
at least as rapidly as

[V(x)| < C{x)™#, forsomep > 5/2, (1.2)

where (x) = (1 + [x[2)2.

Under this condition, the operator H = —A + V is selfadjoint in the Hilbert space
H = L?*(R3) with domain D(H) = H?*(R?), the Sobolev space of order 2, and the
solution in H of (1.1) which satisfies the initial condition u(0) = ¢ € H is uniquely
given by u(t) = e~"" ¢ in terms of the unitary operator e /' defined by the functional
calculus. The spectrum of H consists of a finite number of non-positive eigenvalues of
finite multiplicities and the absolutely continuous part [0, 00). If ¢ is an eigenfunction
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of H,u(t) = e """ ¢ is a stationary solution and never decays in time in any sense; how-
ever, if ¢ € L%(H ), the continuous spectral subspace for H, it is a scattering solution in
the sense that for a unique ¢+ € H,

lu(t) — e ™Mo ||, — 0ast — +o0 (1.3)

(cf. [13, 23, 24]), where Hy = —A is the free Schrodinger operator.

For the free Schrodinger equation it has long been known (see e.g. [15]) that, although
e~ "Ho s ynitary in L2, the solution e~/"0y decays as t — o0 in L? if p > 2 and it
satisfies

. _3(Ll_1
”e—ltH()u”p < (47T|t|) 3(2 p)”M”q’ u 6112(-114‘1(1{3)7 (14)

where 1 < g < 2 is the dual exponent of p: 1/p+1/g = 1 and L? is the Lebesgue L?
space with the norm ||u|| ,. This decay estimate is known as an L”-L? estimate and it
has been a very useful and important tool for studying linear and nonlinear Schrédinger
equations (see e.g. [16]). In view of the relation (1.3), it is natural to expect that scattering
solutions of (1.1) also decay in L? if p > 2. Indeed, under the condition that V satisfies
(1.2) with 8 > 3 and that H is of generic type, viz. H satisfies a spectral condition at the
threshold O (see Definition 1.1 below), estimate (1.4) with e " P, in place of e~//Ho,
P, being the orthogonal projection onto Lg(H ),

} _3(1l_1
et Py < Cpr G ull,, we L2 Le, (15

has recently been proved by Goldberg-Schlag ([8], see [12, 2, 30, 30, 31, 28, 25, 27] for
earlier and related works). It is also known that (1.5) cannot hold forall2 < p < coif H
is of exceptional type as it would contradict the local decay estimate of Jensen-Kato[10]
or Murata[19].

In this paper, we show, when H is of exceptional type, how (1.5) is violated and
propose a new estimate which replaces (1.5); when H is of generic type, we prove that
(1.5) is satisfied under the assumption (1.2), relaxing the decay condition of Goldberg
and Schlag [8] (see, however, the note at the end of the introduction).

To state the main results of the paper we introduce some notation and recall some
known facts (see also the beginning of Sects. 3 and 4). For 1 < p,q < oo, LP'4 is the
Lorentz space with the norm ||ul|, , (I3, 21]). For y € R, H, = L*(R3, (x)?"dx) is
the weighted L? space. The spaces ‘H_,, and H,, are duals of each other with respect to
the coupling

(u, v) =/ u(x)v(x)dx.
R3

We write Ro(z) = (Hyp — z)~! and R(z) = (H — z)~! for the resolvents of Hy and H
respectively. We define for A € C,

etM

x=y|
u(y)dy. (1.6)
lx — yl

1
Go(Mu(x) = y /

We have Ry(A2) = Go() for 31 > 0. The integral kernel of G (1) is an entire function
of A € C and, using its derivatives at A = 0, we define

1 . .
Dju(x) = W/'x —yV luydy, j=0,1,..., (1.7)

so that Go(A) = Do + iADy + (iA)?Dy + - - - at least formally.
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For any 1/2 <y < B — 1/2, the operator DoV is of Hilbert-Schmidt type in H_,,
and we denote the null space of 1 + DoV by M:

1 Vv
M={¢€H_y:¢(x)+af%(¢))€)|ody=0}. (1.8)

The space M is finite dimensional and is independent of 1/2 < y < g — 1/2. All
¢ € M satisfy the stationary Schrodinger equation

—Apx)+V(x)p(x) =0 (1.9)

and, conversely, any function ¢ € H_ 3 which satisfies (1.9) belongs to M. The eigen-
space £ of H with eigenvalue 0 is therefore a subspace of M. The function ¢ € M is
in £ if and only if (V, ¢) = 0 and codima(E < 1. The sesquilinear form —(u, Vv) is
an inner product in M.

Definition 1.1. We say H or V is of generic type if M = {0} and is of exceptional type
otherwise. H is of exceptional type of the first kind if M # {0} and € = 0; of the second
kind if £ = M # {0}, and of the third kind if {0} C £ C M with strict inclusions. A
function ¢ € M\ € is called a resonance of H.

Note that most V are of generic type: If V is of exceptional type, then 1V is of generic
type for all A # 1 near A = 1 because DgV is compact. It is easy to see from (1.8) that
the resonance ¢ (x) satisfies

¢(x) — C|x|~' € H for some constant C # 0

and that the eigenfunctions ¢ € £ may decay as |x| — oo as slowly as C (x) ~2 in contrast
to the ones with negative eigenvalues, which generally decay exponentially. We write Py
for the orthogonal projection in H onto £. As ¢ € & satisfy |¢ (x)| < C(x)~2, Py defined
on L? N L4 can be extended to a bounded operator from L9 to L? forall 1 < ¢ < 3 and
3/2 < p < co. We abuse notation and denote such extensions also by Pp.

When H is of exceptional type of the third kind, we let ¢; € M be a (uniquely
determined) resonance such that (V, ¢1) > 0, —(¢1, V1) = 1 and —(¢1, V;) =0
for all ¢; € £ and define the canonical resonance ([10]) by

P(x) = ¢1(x) + POV D Vi (x). (1.10)

Using ¢(x), we define a constant a and a function ¢ (¢, x) by

42
a:4ni|(V,g0)|_2, C(t, x) = % p(x). (1.11)
We define a function w(t, x), which plays a special role in what follows, by

ilx? i62)x|2

. 1
w(t, x) = L/ (e F —e T)db: (1.12)
|x] Jo

w(t) is multiplication with (¢, x). We use the notation | f)(g| interchangeably with
f ® g to denote the rank one operator defined by the integral kernel f(x)g(y) (not

Fx)g).
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Definition 1.2. We define the operators R(t) and S(t) respectively by

_j3n

RO =% " tuy®c0, ) (1.13)

= ﬁ é’ s C .0, .
_j3

S() = S (“iPyVD3V Py + w()DaV Py + PoVDap()).  (1.14)
NCTi

When H is of exceptional type of the first or the second kind, we use the same notation,
setting, of course, S(t) = 0 or R(t) = 0 respectively.

We remark that for a constant C > 0,

. I 1 x|
[£(, x) — ()] + |, x)| < C min (ﬁ T It_l)' (1.15)

As remarked above, eigenfunctions ¢ € £ satisfy f V(x)p(x)dx = 0. It follows that
(D2V @) (x) arebounded and, if {¢;, . . . , ¢¢} is an orthonormal basis of £ and w; (¢, x) =

u(t, x)(D2Vepj)(x), j =2,...,d, then w;(z, x) are bounded by (1.15) and S(¢) may
be written in the form

i d d
e 4
Nz j;zajk(pj®¢k+§(wj(t)®¢j+¢j®w1'(f))

Theorem 1.3. (1) Let V satisfy |V (x)| < C(x)™P for some B > 5/2. Suppose that H
is of generic type. Then, forany 1 < q <2 < p <oosuchthat1/p+1/qg =1,

1

_ a1 1
||€7”HPCM||p < Cpt 3<2 P)”u”q, u e L2 N LY. (1.16)

(2) Let V satisfy |V (x)| < C(x)~P forsome p > 11/2. Suppose that H is of exceptional
type. Then the following statements are satisfied:
(i) Estimate (1.16) holds when p and q are restrictedto3/2 < q <2 < p <3 and
I/p+1/g =1
(ii) Estimate (1.16) holds when p = 3 and ¢ = 3/2 provided that L* and L3 are

respectively replaced by Lorentz spaces L>*° and L 30
(iii)) When 3 < p <ocoand 1 < g < 3/2 are such that 1/p + 1/q = 1, there exists
a constant Cp, such that for any u € L>N LY,

_3(1l_1
< Cpqt 3(3 ﬂ)||u||q. (1.17)
p

H (e_i’HPC —R(t) — S(t)) u

If H is of exceptional type of the first kind, statement (2) holds under a weaker decay
condition |V (x)| < C(x)"P with B > 9/2.

We remark that [|(R(¢) + S()ull, < C|t|_%||u||q for p,g suchthat3 < p < o0
and 1 < g < 3/2 and that [|[(R(¢) + S(#))ull3,00 < C|t|_%||u||3/2,1; however, R(¢) is
not bounded from L7 to L? for any other pairs and that P, is, although an orthogonal
projection in H, bounded in L? only for 3/2 < p < 3 in general. Combining Theorem
1.3 and the estimate (1.15), we immediately obtain the following theorem.
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Theorem 1.4. Let V satisfy |V (x)| < C(x)~P for some B > 11/2. Suppose that H is
of exceptional type. Then, for3 < p <ococand1 < q < 3/2 suchthat 1/p+1/q =1,
there exists a constant C such that

6

. 311 -5
le ™ Peull, < o270 (ully + 11x) 7 ully) (1.18)

6
for any u € L? N LY which satisfies (¢, u) = 0 for all ¢ € M and (x)gfsu el IfH
is of exceptional type of the first kind, the same statement holds under the weaker decay
condition |V (x)| < C{x)~F with g > 9/2.

We display here the plan of the paper, explaining the idea of the proof of Theorem
1.3 using a slightly sloppy argument. We refer the readers to the text for a more rigorous
treatment. We say that a family of operator {7'(¢) : t € R} is regularly dispersive if it is
a strongly continuous family of bounded operators in H and, in addition, it satisfies the
estimate (1.16) forall 1 <g <2 < p <oosuchthatl/p+1/q = 1.

In Sect. 2, we collect some results, well known as the limiting absorption principle
(LAP for short), on the behavior of resolvents Ry(z) and R(z) near the reals. We state
them for Go(A) and G(X) which is defined by G(A) = R(kz) on the upper half plane
IA > 0. We also record some results on certain integrals. Lemma 2.4 and Lemma 2.7
are the main tools and are frequently used in the paper. We prove the first statement of
Theorem 1.3 for the generic case in Sect. 3, following basically the argument of [25] and
[8] but more concisely. We use the well known representation formula of the propagator:

. 1 .
e~itHp — lim — / e GOAdA. (1.19)
LT JA|>8

Here the principle value is taken to remove the contribution from Py. We write as G(1) =
(14 Go(LM)V)~'Go(1) and expand (1 + Go(L) vyl

2
G = Z(—l)”Go(A)(VGO(A))” = GoMVGR)VGo(R)VGo(R).
n=0

Then e~ P, = Q(t) — 1 (t) + 2 (¢) + W3 (t). An explicit computation using Lemma
2.4 shows that the integral kernel of €2,,(¢) is given by

Jr A A [Tz Vx)p)

= e'w =)
T, 2 : n
2Virz S TGS g — Xl

withxg =xand x,41 = yand A; = Z'}i{ |xj —xj—1]. As is shown by [25],

.

Qut,x,y) =

dxy, ..., dx,

3
[€2, (2, x, y)| = Clt| 2
and €2, (¢) is regularly dispersive. We write N (1) = G(1)V Go()) and apply integration
by parts with respect to A, which gives
1 ,
Ws(t) = — / ef”kz(GO(A)VN(A)VGo(k))’dA.
2t Jr

Out of three integrals produced after differentiation, we explain here how to treat the
one with Go(A)VN'(L)V Go(X) as a prototype, which we denote by W3 (). It is impor-
tant to notice that, if we denote the integral kernel of L(1) = (x)° VN'(A)V (x)° by
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L(X, z2, 21), then that of W3 (¢) may be given by using the solution of the one-dimen-
sional free Schrodinger equation by

Wsi(t, x,y) =

1 / 1 ( ilAI:(. , 22, Z]))(A) ledZ2 (1 20)

V2t Jr 1672 (22)7 [x — 220(z1)% |21 — |

Here A = |x —z2| 4 |z1 — y|, A is the one dimensional Laplacian acting on the variable

denoted by - and L is the inverse Fourier transform of L with respect to the variable X.
We have

. v 1
€ L(+, 22, 2))(A)] < CI2|L( 22, 20) | s, (1.21)

provided s > 1/2. The LAP stated in Sect. 2 implies that L(A, z», z1) is indeed an
L*(R® _ )-valued H*(R;) function of A for some o > 1/2 and s > 1/2. Applying the

22,21
Schwarz inequality to (1.20) and using (1.21), we then obtain |W3;(¢, x, y)| < CItI_%.

Other integrals may be estimated similarly and we obtain |W3(¢, x, y)| < C |t|’%. This
proves statement (1) of Theorem 1.3 by the help of interpolation theory.

We study exceptional cases in Sect. 4. When H is of exceptional type, we break up
(1.19) into two parts, e "“'H P, = W), () + W (t), the high and the low energy parts, by
inserting a partition of unity x;(A) 4+ xn(X) = 1 into the integrand, where x; € Cgo (R)
is even and x;(A) = 1 for |A| < Ag/2 and x;(A) = O for |A| > X¢ for a small positive
constant A¢. The argument of Sect. 3 for the generic case shows that the high energy part
W}, (¢) which contains yy, is regularly dispersive. For the low energy part W; () we write
G(A) = Go(r) — Go(M)V (1 + Go(L)V)~1Go(1) in the integrand. The integral which
contains x;(1)Go(X) may be treated as in the generic case and it is regularly dispersive.
We are left with

Wlo(t)—hm—l / X (De™ 2 GoOIV L+ Go V)" GoMrda. (1.22)
|A]>8

1214

We study Wjo(¢) by examining the behavior of (1+Go(1)V) ™! as A — 0.After some
preparation, we study it when H is of exceptional type of the first kind in Subsect. 4.3,
the second kind in Subsect. 4.4 and, synthesizing the results of previous two subsections,
the third kind in Subsect. 4.5. If H is of exceptional type of the first kind we have (see
Theorem 4.8)

(1+GoMV) ' =1+ KM —ar™'1)(Vel,
where V K (1) satisfies the property similar to that of L () in (1.20) and a is the constant
defined in (1.11). Integral (1.22) with I + K () in place of (1 + Go(A)V)~! can then

be studied by the method of Sect. 3 for W31 () and it produces a regularly dispersive
family of operators. On the other hand —ax~!|¢)(V ¢| produces

Wi(t) = % /R X1 (We M Go(W) V) (VlGo(h)d, (1.23)

and its integral kernel may be computed explicitly:

Wit x. y) =a/ ct, AV @)V (@b ()9 (22)
6

1672|x — z2|lz1 — vl

dz1dz, (1.24)
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where A = |x — 22| + |z1 — y| and ¢(¢, A) is given by

1 a2 e~ 4 e is? A
tA)=— We NHMG) = — —— Flew x| (=) (125
ctt. )= = [ e () (5) a2
Here F is the Fourier transform. This is except for a normalization constant the well
known formula for solutions of the one dimensional free Schrodinger equation. Since
le(r, A)| < Ct~2, we have |Wi(t, x, y)| < Ct=2(x)~'(y)~". Since (x)~! € L3,
Holder’s inequality in Lorentz spaces implies

1
[Wi(ull3,00 < Ct™ 2 ||ull3/2,1- (1.26)

We have shown above that e *# P. — W;(¢) is regularly dispersive and it also satisfies
(1.26). Hence

—itH -1 )
lle™" " Peull3,00 = Ct 2 |lull3/2,1, (1.27)

and statement (2)(ii) of Theorem 1.3 follows for this case. By virtue of the interpolation
theorem for Lorentz spaces, (1.27) and the obvious L? bound |l *# P.u|, < C|lull»
imply statement (2) (i).

To prove statement (2)(iii), we first note that (1.27) and the bound |¢(x)| < C (x)_1
imply

i 1
le™" P, = R(t))ull3,00 < Ct72 llaells - (1.28)
is? iA2
If we replace in the right of (1.25) first e 4 by 1, then x;(A/2¢) by 1 and finally e 4 by
el 2
e" . , we obtain

2l

et A) — ()" 2e i T el ol i | < €13 () () (21)2 (20) 2. (1.29)

We insert (1.29) into (1.24) and recall that ¢ (x) = — DoV ¢. This produces

ae_iBTﬂ _3
Wl(tv-xvy)_ \/E ;(tax)g(tsy) SCt 2,

Since e~ P, — W;(t) is regularly dispersive, it then follows that

. 3
Ie™" ™ P — R(t)ulloo < Cr 2 |Jully. (1.30)

Interpolating (1.28) and (1.30), we obtain statement (2)(iii) of the theorem.

If H is of exceptional type of the second or the third kind, which will be discussed in
Subsects. 4.2. and 4.3 respectively, (1 + G()()»)V)’1 contains singularities also of order
2~2 and the argument becomes a bit more involved. However, basically the same idea
works. We refer to the text for the details.

We use the following notation and conventions. For s, 0 € R, H® (Rd) is the Sobolev
space of order s on R? and H; R3) = {u : (x)°u € H*(R?)} is the weighted Sobolev
space. For Hilbert spaces X and ), B(X, ))) is the Banach space of bounded operators
from X to Y, B(X) = B(X, X) and B,(X) is the Hilbert space of Hilbert-Schmidt
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operators in X'. We denote by C the complex plane, Ct* = {z € C : Iz > 0} is the

upper half plane and C" is the closed upper half plane: c = {z:3z > 0}. Fora e R,
a— (resp. a+) denotes any number smaller (resp. larger) than a. In what follows we
always assume that V at least satisfies (1.2) although some statements hold under less
stringent conditions, and after Sect. 3 we shall assume much stronger decay conditions.
We occasionally use the physics notation |v) and (u|v) to denote vectors and the inner
product.

After submission of this paper we were informed that Theorem 1.3 (1) for the generic
case has recently been proved by Goldberg [7] for more general potentials V € L"(R3) N
LS(R3),r < 3/2 < s, and that a result similar to statement (2) of Theorem 1.3 has been
obtained by Erdogan and Schlag [6] under a slightly stronger decay condition on the
potentials. We thank Professor Piero D’ Ancona and the anonymous referee for bringing
this to our attention.

2. Preliminaries

In this section we collect some results on the resolvents, Go(1) and G ()), and estimates
on the integrals which will often appear in the sequel.

2.1. Resolvents. We recall that for A € C,

oM

x=y|
u(y)dy. 2.1
lx — ¥l

1
Go(Mu(x) = Ef

For 31 > 0, Go()) is a B(H)-valued analytic function and Ro(kz) = Go(A).

Lemma 2.1. (/) Leto,t > 1/2ando+7t > 2. Then, (x)~° Go(A){x) " " isaBy(H)-val-
ued C? function of . € E+f0ranyp suchthatp < min(t+o—-2,t—1/2,0—1/2).
Ifp=j4+k, j=0,1,...,and 0 < k < 1, we have

1)~ (G (h) — G () (x) " I1s,

<C.
[A — pl*

sup [[(x) "7 G§ (1) (x) 1B, + sup

reCt AFW
We have Go(L)* = Go(—A) when A € R.

(2) Let 0 > 1/2. Then, {(x)"°Go(A){x)™? is a B(H)-valued CC’_% function of A €
EJF \ {0}. For j =0, 1, ..., we have

1) =779 GoM) (x) ™ Iy < CjIA17", 1Al = 1. (2.2)

Proof. (1) Write m = min(t + 0 — 2,7 — 1/2,0 — 1/2). We may assume 7 < o.
Suppose first that 0 < m < 1. Then, v < 3/2 and without losing generality we may
assume T < 3/2. We then have, with x = x/|x|,

B e 1 / dxdy
Hx)™" GoA) (x) "I, = 17— RO ()27 |x — y[2(y)**

= fo o o o S5
TR (02 Ure IxPTTHE = yPlylPT

</ Cdx
= e et 5%
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and [|{x) 7 Go(1){x) " ||B, is uniformly bounded. Here we changed variables y to |x|y
and used (|x|y) > |x||y| in the second step, 2+ 27 > 3 in the third and 20 +2¢ — 1 > 3
in the last.

Since 0 < p < 1, we have |¢/¢ — ¢!?| <2”|a — b|” and we may likewise estimate as
follows:

|e!MxX =Yl pinlx=yl|2

1{(x)~° (Go(A) — Go(ll«))(x)_T”%;z(H) = f

R 1672(x)%7 |x — y[2(y)*"

<f C|X—M|2dedy </ Cl|)»—li|2pdx
= Jrs (x>20|x _y|2—2p(y)2r ~ Jr3 <x>20<x)2r—2p—1

dxdy

< Calr — ul?.

Here we used 2t — 2p 4+ 2 > 3 in the second step and 27 + 200 — 2p — 1 > 3 in the
last step. This proves (1) when 0 <m < 1.If j <m < j + 1,.j =1,2,...,we have
m=1—1/2.Write p = j+k,0 < k < 1. The j" derivative G(()J)(k) has integral kernel
(4m)~Vid e ¥ =ylx — y|i=1 and ||(x)"G(()j)()»)()C)T||B2 < C follows entirely similarly
as above. As 1 <2(tr —p) <3ando > 7 > 3/2, we have

ol : - A — ¥ x — P~ Dduxdy
1) ™7 (G A = G (W) x) T I, < € f

RS ()27 (y)*°
A — 2K 2p 2p dxd
§C1/ A — ul 2(IXI + 2) xdy
R3 ()% |x = y12(y)°*

Statement (1) follows. Statement (2) is well known (see [1] and [11]). O

< Caln — ul?.

Recall that we are assuming (1.2). The following is an obvious consequence of Lemma
2.1.

Corollary 2.2. Let 1/2 < y < B — 1/2. Then, {(x)™Y Go(M)V (x)™7 is a Bo(H)-valued
C? function of ). € E+f0r any p <min(—2,y — %, B—y— %). The operator valued
function (x)TY VGo(L){(x)~Y satisfies the same property.

Under condition (1.2), it is well known (see [13]) that H = —A + V has no positive
eigenvalues and the point spectral subspace H ,(H) for H is finite dimensional. Thus
R(X\2) = (H — 2%~ ! is a B(H)-valued meromorphic function of A € CT with possible
poles iky, ... , ik, on the imaginary axis such that —Klz, el —/c,% are eigenvalues of
H. The resolvent equation implies that outside those poles in the upper half plane

R(A?) = GoW) (1 +VGoW)) ™' = 1+ GoV)'Go().

Here VGo(&) (resp.Go(A)V) is a Bo(H,,)-valued (resp. B2 (H -, )-valued) continuous
function of A € C_ if 1/2 < y < B — 1/2 by virtue of Corollary 2.2 and —1 €
o (VGo(L)) (resp. —1 € o (Go(1)V)) if and only if 22 is an eigenvalue of H (see [1]).
Since positive eigenvalues are absent from H as mentioned above, R(A?) considered

as a B(H,,, H_,) valued function is continuous up to the boundary R of C* except
possibly at A = 0. We set for A € R\ {0},

G() = GoW (A +VGo() ™ = (14 Go() V) Go(h). (2.3)
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Lemma 2.3. For 1/2 < 0,7 < B —1/2 suchthato +1 > 2, (x)"°GA){x)77, as
a By(H)-valued or B(H)-valued function of A € {, € R : |A| > ¢}, ¢ > 0, satisfies
the same smoothness and decay properties as (x)™° Go(A){(x)™" as stated in Lemma
2.1. This is true on the whole line A € R, if 1 + VGo(0) or 1 + Go(0)V is invertible
respectively in H,, or H_,, for some, and therefore for all, 1/2 <y < 8 —1/2.

Proof. We use the same notation as in the proof of Lemma 2.1. Let 0 < m < 1 first. By
virtue of (2.3), Lemma 2.1 and Corollary 2.2 we have

1{x) "G ) {x) " lIs, < C.
By telescoping the difference, we may estimate as follows:
[1{x)~7 (G ) = G(w){(x) " lIs,
< )71+ Go V)™ Hx)IIBIIx) "7 (Go() — Go())(x) " s,
+1) 771+ Go)V)Hx) [B11(x) "7 (Go(h) — Go(w))(x) " s,
[TV (L + Go( V)™ )P Tl ()T Go(u) ()T lls < CIA — el

and the lemma follows for this case. When 1 < m < 2, we differentiate (2.3) and use
the resolvent equation. We obtain

G'M)=(10-GMV)Gy(M(A — VG@Q)).

We then repeat the argument above using the previous result for 0 < m < 1. We omit
repetitious details also for general m. 0O

By the functional calculus for selfadjoint operators, the propagator e~/ may be
expressed in terms of G (1) in the following form:
. 1 ‘
eTtHp — Jim — / e~ G(A)AdA. 2.4)
34017 Jin =5

Equation (2.4) is the starting point for the proof of the main theorem.

2.2. Integrals. We collect here some formulae and estimates on integrals which will
be of frequent use in what follows. We begin with the following lemma on the Gauss
integral:

Lemma 2.4. Let s > 1/2. Then, there exists a constant Cy depending only on s such
that forany x € H*(R), Ae R, t > 0and L > 0,

'/ e‘”szfMAX()L/L)d/\
R

1

= GsllxIlgst2. (2.5)

As L — 00 we have
. . ) 2
/ eIPIHIA L (ALY L — e F e /?X(O). (2.6)
R
Suppose in addition that x is even and Ly’ (L) € H*(R) then

24 _3
’/Re SRS L)AL < Colllx las + 12X 1) Al 2.7)
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As L — oo we have

cr A2

— Ae~i% et
/ eI Y G LA — % %x(O). 2.8)
X V7

Proof. We first prove estimate (2.5). If we write x (k) = x (—«) for the conjugate Fou-
rier transform of y, the integral on the left in (2.5) is equal to V27 (ei!A X1)(A), where
A is the one dimensional Laplacian, and by virtue of the well known formula for the
kernel of the propagator e//4

x iA2
. —iF e
VZ]T(E”AXVL)(A) = ¢ \/i ' e thL—H 4tL2 X(r)dr (29)
2t

If s > 1/2, this is bounded in modulus by

Lo 1 . 1
CH72xIh = G272 X2 = Cs 2O 2 M Xl as,

and (2.5) follows. Taking the limit L — oo in (2.9) we obtain (2.6).

Since re~i™* = 5 (d /dk)e_”)‘ integration by parts shows that the integral in the
left of (2.7) is equal to
A —itA2+irA 1 —it)2+idA ~1
— [ e XA/LYdr+ — | e X (A/L)L™ dh.
2t 2it Jr

The argument of the first part shows that the first summand satisfies (2.7) and it converges
to the right-hand side of (2.8) as L — o0o. Since x’(A/L) is odd, the second summand
may be written in the form

1

T 4 drn A [! 1324
e e Y T = o eI G LY ) b,
4it Jr 4t Jo1 \Jr

where ¢ () = x/(A)A. Applying again (2.5) and (2.9) to the A-integral, we see that the

second summand is bounded in modulus by C,|A|(2¢)™ 5 I || zs and converges to zero
as L — oo. This completes the proof. O

‘We recall the Kato norm:

|V (2)ldz
Vi = SHP/ -— .
R3

acR3 Iz —al

Lemma 2.5. Let x,4+1 = x and xo = y. Then, forn =1,2, ...,

n
e 41Vl
L N C1 14 15}

(2.10)
R3 ]_["Jrl lxj —xj—1 lx =yl

Proof. By induction, it suffices to show the case n = 1:

/ V@ldz__ 4lVlic
R

slx—zllz=yl 7 Iy =yl
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Change variables z to z + y and write w = x — y. We have

[Vz+yldz 2 [V(z+y)ldz _ 2
/ ———— =< — | ———— =< —|lVlk
lZ1=lwl2 1w — zl|z] [w] |lw — z| [w]
If |z| < |w|/2, then |lw — z| > |w|/2 and
IV +yldz _ Vz+yldz _ 2
/ < —I|Vlk
lzl<|wl/2 Clw—zllzl |w| oz T qw

The lemma follows. 0O

Following is a result of the celebrated Kato smoothness theorem ([15]):

Lemma 2.6. Let T (1), . € R, be a weakly measurable family of bounded operators
in 'H such that |[(x)° T (A\){x)° g < C for some o > 1. Then, for t € R, the weak
integral

Ut) = / - e~ GoO)T (W) Go(M)AdA

converges in 'H and defines a bounded operator in 'H. The family {U(t) : t € R} is
strongly continuous and uniformly bounded in B(H).

Proof. When o > 1, the multiplication operator by (x)~° is Hp-smooth ([15]):
Lo 1x) "7 Go(Wuli3IAldr < Cllull3. It follows by the Schwarz inequality that U (¢)
is uniformly bounded in H. It also follows by the Schwarz inequality that

IU @) —Us)Hull* < C / ™ — 7P 211 (x) "0 Go(Mul|2|A|dA

and Lebesgue’s dominated convergence theorem implies the lemma. O

Lemma 2.7. Let s,0 > 1/2 and let R 2 L — G, (A) = (x)° N(A)(x)? be a By(H)-
valued H*® (R) function of ). Define

N@) = / e GoWN R Go(Wda, t# 0.
R

Then N (t) has a bounded continuous integral kernel N'(t, x, y) and it satisfies

_1
IV, x, )| < Cslt]™ 211G || s R B (1)) - (2.11)
Ifo > 3/2, then N (¢, x, y) satisfies the stronger estimate,

1
N, x, 91 < Cltl ™20 ™ 0 7 1Go L s By - (2.12)

If Go1(M) = (X)°HINQ) ()7 (resp. Goa(h) = ()N (x)° ) is By(H)-valued
H*(R), then for any t # 0,

Ni() = /R e GLN (W) Go(h)dA

(resp. Na(t) = f e Go(WN (W GH () dN)
R

has a continuous integral kernel N1(t, x, y) (resp. Na(t, x, y)) and it satisfies (2.11)
with obvious modifications.



Dispersive Estimates for Schrodinger Equations 487
Proof. We take x € C3°(R) such that x (1) = 1 for [A| < I and define

NL(@t) = f e Y (0 /L)Go(MN (W) Go(R)dA.
R

2.13) and |INL(t) = N()lIB(#,.1_,) — 0as L — oo. Denote the integral kernel of
Go () by G (A, x,y) and A = |x — 22| + [z1 — y|. Then,

NL(t’x’y)Z// eilkZHMX()»/L)mga(K,12,21) St
R JRS |x — z2] lz1 — ¥l

Ify > 3, 1GoGING)GoM s, 1) < C(1)~2IGs(M)lB, by virtue of Lemma

dzidzodA.

For almost all (z1, z2), I(x(*A/L) — 1)Gs (X, 22, 21) | s(R,) = 0 as L — oo and (2.5)
implies that

o L2
/e”k A Y WJL)Go (M, 22, 21)d A — / TG (A, 22, 21)dA
R R

and that the left side is bounded by C |t|_% |G (-, z2, 1) || gs uniformly with respect to
L > 1. By the Schwarz inequality,

(z2)7° (z1)7°
———1Gs (-, 22, 2 | s dzidz;
|x — z2] lz1 — ¥
(z2)7° (z1)7°
= 1Go Il s (R, B, (1)) - (2.13)
|2 = xlllzz IHer = ylizz

22

It follows that |N7 (¢, x, y)| < C/ﬁ forall x,y € R3 and, by Lebesgue’s dominated
convergence theorem, that A (¢, x, y) converges to the integral kernel N (¢, x, y) of
N()as L — oo:

N, x,y) = f6 <f e”“”“%(k, 22, Z])d)») Mmdmdzz.
R

lx —z2| lz1 — ¥l

a2 . ) )
Here, [ T*4G (A, z2,71)dA is an L2(Rgl’zz)-valued continuous function of

(t,x,y),t # 0, since it is bounded in modulus by C|t|_% 1Go (-, 22, z1) |l s and, for
almost all (z1, z2), it is continuous with respect to (¢, x, y), t # 0, as can be seen from
(2.9). Then, since (z1) ™% {z2) "% /Ix — z2|ly — z1| is also a continuous function of (x, y)
with values in LZ(RS ,zz)’ N(t, x, y) is continuous with respect to (¢, x, y) if t # 0.
By virtue of (2.13), /\}'(t, x, y) satisfies the estimate (2.11). If o > 3/2, the right side of
(2.13) is bounded by Cx)™! (y)f1 |G Il s R, B, (H)) and (2.12) is satisfied. This proves
the lemma for N (¢). Modifications necessary for the proof for A () and N>(¢) are
obvious and we omit the details. O

3. The Case of Generic Type

In this section, we prove statement (1) of Theorem 1.3. Thus we assume that |V (x)| <
C(x)™P with B > 5/2 and that H is of generic type. We recall that Dy, Dy, ..., are
selfadjoint integral operators defined by
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1 i
Dju(x) = ﬁ/u =y uy)dy. 3.1
7!
If j is odd, D; is of finite rank. We have a formal expansion

Go(h) = Do+ (iM)Dy + (iA)>Dy+ -+ . (3.2)

We denote the null spaces of 14+ V Dg and 14 DV considered respectively as operators
in’H_, orinH, by

M=N(1+DyV), N =N(+VDy).
Since DyV and V Dy are compact and DoV = (V Dy)*, dim M = dim N < co. More-
over, M and NV are independent of 1/2 < y < 8 —1/2 because M (resp. N) decreases
(resp. increases) with y (see [10]).

As H is of generic type, A — G(A) € B(H,,, H_,) is continuous on R for y > 1 by
Lemma 2.3 and, by the spectral theorem,

. 1 . 1 .
e i p, = — /Re*’“\zG(k)kd)» = Lli_)moo — /Re*’“‘ZXL()»)G()»))ud)» (3.3)

as strong convergence in H, where x; (A) = x(A/L) and x € C{°(R)iseven, x (1) =1
for [A] < 1 and x (1) = O for |A| > 2. Iterating the resolvent equation G(1) = Go(L) —
Go(AM) VG (1), we insert in the right of (3.3),

2
G = X:(—l)"GO()»)(VGO(X))’Z —GoMVGoMVGR)VGo(A).
n=0

The result is e "2 P, = Qo(t) — Q1) + Q2(2) + W3(t), where forn =0, 1, 2,

Qu(1) = lim i eI 31 () Go(M)(V Go(h)) " AdA. (3.4)
R

L—oolmm

We have Qo () = e~ "0, Lemma 2.1 and Lemma 2.6 imply

sup [, llgy) <C, n=0,1,2. (3.5)
teR
Lemma 3.1. There exists a constant C > 0 such that
3 IV
12, (Dulloc < Cn + D] 2 o luolli, n=0,1,2,.... (3.6)

Proof. We follow the argument due to Rodnianski-Schlag [25]. The integral kernel of
the operator defined by the integral on the right side of (3.4) is given with C; = 1/4m,

A=Y"|x; 1 —xj|land dxy, ....dx, = dX by

1 o " Vixi)
cy / dx | — / eTIRHAY L () [t V) ) (3.7)
R n+1

i [T55) Ixj—1 = x;1

Note that the integrand is absolutely convergent by virtue of (2.10):

2|V
— e

/ / |(integrand of (3.7))|d XdA <
R JR lx — vl
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and by the help of the Fubini theorem the computation (3.7) is legitimate. Moreover,
with x = x,4+1 and y = xo,

A V( )|dX s [V (x;)ldX
[Tz 1V (x; /HJ 11V <+ DIV

[ lxj—1 — xjl

jok 1Xj—1 = X1 T

Hence, Lemma 2.4 implies that (3.7) converges as L — 00 to

cy! a2 ATl V)
3 e # P
(4imr)2 [15) Ixj—1 —xj

n
which is bounded by C(n + D)e|~3 (”‘L‘i’c) . This implies the lemma. O

Define N(A) = VGo(M) VG V. If0 < ¢ < 1/2, by virtue of Lemma 2.1, we have
[ (x) 178N (0) (x) g pg) < C(A)72. 1t follows by virtue of Lemma 2.6 that

Ws(1) = —% /R ¢~ Go(MN (L) Go(M)Ad (3.8)

is a strongly continuous family of uniformly bounded operators in 7. By integration by
parts, we may write

Ws(r) = zi f Gy MN (W) Go(h)Y di. (3.9)
tmr JrR

Differentiation in the right side produces three integrals which respectively contain
Go(W)NR)Go(r), Go(MN'(1)Go(), and Go(A)N(1)Gy(R).

Thus, in view of Lemma 2.7, Theorem 1.3(1) is a consequence of the following lemma
and the interpolation theorem for L? spaces.

Lemma 3.2. Let |V (x)| < C{x)™#, B > 5/2. Then, for some o, s > 1/2,
WFINGE)T, (TN (TN ) ()7
are By (H)-valued H® functions of . € R.

Proof. We estimate the operators by using Lemma 2.1 and Lemma 2.3. We first deal
with (x)! T N(L)(x)?. If o > 1/2 is sufficiently close to 1/2,

1) TN () (x) ||,
< )TV G () T B, 1) VGV ()% IIs < C(0) L (3.10)

We show for some s > 1/2 that for A and u € R such that |A — u| <1,
) (N () — N () ()% IB, < C) A =l 3.11)

By reducing s by an arbitrarily small amount, two estimates (3.10) and (3.11) will imply
that (x)' T N(L)(x)? € H*(R, By(H)) for some s > 1/2 (cf. [18], Theorem 10.2).
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In what follows in the proof we choose and fix parameters o, t and the exponent s
in such a way that

1 1
§<r<o+1<2, r~|—a<,3—§, E<s<min{ﬂ—o—%,r—1}
hence, 8 —o > 2and B — t > 1. We write N(A) — N(u) in the form
V(Go(A) — Go(u) VGV +VGo(w)V(G(R) — G(r)V.
Since 8 —o > 2and B — v > 1, Lemma 2.3 implies
)T VGMV)TIB <)~ 1) VG x) ™ lls < Cia) "

It follows by the choice of s that
1) 7V (Go) — Go(w) VGV (x)° llBy )

< )TV (Goh) = Go()(x) 1B, 1 (x)" VG MV (x) |18

< Clr—pl )" (3.12)

Ast < B—0 < B —1/2and G(X) and Go(Ar) satisfy similar regularity and decay
properties,

1) TV Go(m)V(GO) — G(u)V (x)° |Is,
< 1O VG (x) B - 1) VG O) — GV (x) |IB,
<Clh—pulf W) (3.13)

The two estimates (3.12) and (3.13) imply (3.11).

The operator (x)° N (1) (x) 4o satisfies estimates corresponding to (3.10) and (3.11)
because it is obtained from (x)°*! N (1) (x)? by taking the adjoint after replacing G (1)
and G (A) respectively by G(—A) and Go(—A).

Finally we deal with {(x)° N’(A)(x)° which may be written as

(X)°VGHR VGV (x)? + (x)°VGo(M) VG M)V (x)°.
Since 8 —o >2and 8 — t > 1, we have

[1{x)* VG VGV (x)? |18,

< )T VGH) () Tl )T VGV ()7 s < C(1) 7"
Replacing Go(A) and G (1) and taking the adjoint in the estimate above yield
1) VGo()VG )V (x)7 I, < C(1)~".
It follows that
[(x)? N' (W) (x)? || < C. (3.14)

Sinces < f—0—3/2 <8 —1—1/2and min(z, 8 — o) > 3/2, we have

1{x)° V(Go(r) — Go(u))V G’ MV (x)° ||,
< X)) V(Go() — Go(m) (x)™V I8, [|(x) TG’ W)V (x)° ||
<Clh—ulf)h (3.15)
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Likewise, sinces < 8 —o —3/2and [A — u| < 1,
1{(x)*VGo() V(G (A) = G'(1)V (x) |Is,
< )7V GoG){x) 7 IBll¢x) V(G (L) — G'(w)V (x) |18,
<CW—ul (3.16)
Symmetrically we have
I(xX)T VG V(GR) — Gu)V (x) 1B, < CO) A — ul,
1x)V(Go(h) = Gou) VGV x)% B, < CO) A=l (B.17)
The combination of (3.15), (3.16) and (3.17) yields
[Gx)7 (N () = N' (1)) (x)% B, < C(A) A — el (3.18)

The estimates (3.14) and (3.18) imply that (x)° VN'(A)V (x)° € H*(R, By) for some
s > 1/2. This completes the proof of the lemma. O

4. The Cases of Exceptional Type

In this section we prove statement (2) of Theorem 1.3 for the case that H is of excep-
tional type. We first reduce the proof to the analysis of a simpler operator W, (¢) to be
defined by (4.1) below. Then, because of the reasons stated in the introduction, we study
it according to the type of exceptionality of H separately in Subsects. 4.3, 4.4 and 4.5.

4.1. Reduction to low energy analysis. For an even function x; € C3°(R) such that
x1(A) = 1 near » = 0 we define

Woi () =1im_—] / ¢~ 5, (MG o () VG (W) AdA. 4.1
[A]>8

810 i

Recall that a family {7'(¢) : ¢t € R} of bounded operators in 7 is said to be regularly
dispersive if it is strongly continuous and, in addition, it satisfies

,3(1,1) )

IT@ull, <Ct "\* ?/ully, welL“NL? 4.2)
foralll < g <2 < p < oosuchthat 1/p + 1/q = 1. In this case we shall often say
simply that 7'(¢) is regularly dispersive.

Lemma 4.1. The operator Q2(t) = e IH P W) is regularly dispersive.

Proof. As in the generic case, we decompose e ~'# P, in the form

2
e P =3 (= 1)"Qu (1) + Wa(t).
n=0
Recall the definition (3.8) of W3(¢). As was shown in (3.5) and (3.6), €2,(¢) are reg-

ularly dispersive. We define the low and the high energy parts Wy (¢) and W;(¢) of
W3(t) = Wi (1) + Wi(2) by

—1 .
Wi (1) = lim — / ¢ 21 () Go(IN (W) Go()Ada, (4.3)
810 17T Jia>5



492 K. Yajima

where x,(A) =1 — x;(A) and N(A) = VGo(A)VG(A)V. Since G (1) has no singulari-
ties on the support of yy, it follows, by virtue of Lemma 2.7 and Lemma 3.2, and in view
of the argument in Sect. 3 for the generic case, that W, (¢) is also regularly dispersive.
Using the resolvent equation, we write

2
GoINWGo(h) = GoMVG ) + Y (=1 (Go()V)! Go(h)
j=1

in (4.3) and further decompose W;(t) = Wy (t) — Wy (¢) + Wo (2):

-1 )

W (1) = —/ e 1) (GoM V) Go(MAdr, 1 <n <2. (4.4)
7T JrR

The operator W,,;(¢) is the same as the one defined by the integral in the right of (3.4)

with —x; replacing x; and the proof of Lemma 3.1 implies

3 .
IWa(Duolloo < Clel™2 I VIixclluolly, 1 <n<2. (4.5)

Lemma 2.6 clearly implies that W,;(¢) are strongly continuous families of uniformly
bounded operators in H. Thus, Wy;(¢) and W»; are regularly dispersive and so is 2(¢) =

Zﬁzo(—l)"ﬂn (t) + Wy (t) — Wy (¢) + Wy (¢). This proves the lemma. 0O

4.2. Low energy resolvent analysis. Preliminary. In the following subsections we study
Woi (¢) separately according to the kind of exceptionality. In each case, we need to inves-
tigate the behavior of G (1) near A = 0. We do it mostly following Jensen-Kato [10] and
we collect here some preliminary information.

The following two lemmas collect Lemmas 2.4, 2.5, 2.6, 3.1, 3.2 and 3.3 of [10]. We
recall the operators D;, j =0, 1, ..., are defined by (3.1) and

M=N({+ DgV), N =N+ VDy).

Lemma4.2. (1) IfveH,, % <y < % and (v, 1) =0, Dyv € H)%_z(R3).
(2) Foru,v € H%Jro such that (u, 1) = (v, 1) =0, (Dau, v) = —(Dou, Dgv).

Lemma 4.3. Let % <y<B-— % Then the following statements hold:

(WM cC H*, R and (Hy+VIM={0)If} <y <3, N(Hy+ V)= Masan
1

operator from HEV.
(2) Hy and V are isomorphisms M — N. Dy is an isomorphism N — M.
(3) Foru € M, u € Hifand only if (u, V) = 0. In this case, u € H> (R?).
I

(4) Forv € N, Dyv € H if and only if (1, v) = 0. In this case, v € Hﬁ+%_

In what follows y is always assumed to satisfy 1/2 < y < B — 1/2. Notice that
(u, Dov) is a strictly positive quadratic form on H,, and that V Dy is real and formally
selfadjoint with respect to this form. It follows that all eigenvalues A of V Dy are real
and the eigenspaces are semi-simple: N(V Do — 1) = N ((V Dy — A)?). By the duality,
the same is true for DoV.
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Lemma 4.4. There exist operators Q and K which are bounded in H_,, for any 1/2 <
y < B —1/2suchthat 0> = Q, QK = KQ = 0and

(1+DoV)Q = Q0+ DoV) =0, (14+DoV)K =K(1+ DoV)=1- 0.

(1) The projector Q is of finite rank and K — I € Bo(H ).
(2) We have the identities VK = K*V, KDy = DyoK*.

Proof. The first statement is a result of the separation of the spectrum theorem ([14], p.
178). By the same theorem 1 + DoV + Q is invertible and

(I+DoV+ Q)" —1=—(DoV+0)1+DoyV+ Q) eBa(H_)).

Since K =(14+DoV+0)"'1-0),K—1I¢ B>(H_,). Statement (2) may be found
in Lemma 3.5 of [10]. O

Ifu = Doit andv = Dgv, %, v € N, —(Vu, v) = (Dypit, 0). It follows that —(Vu, v)
defines an inner product in M and the spectral projection
1

0=—— (DoV —2)~'dz
27l |z4+1]=8

satisfies Q*V = V Q. The next lemma follows. Note that DyV and V Dy are real oper-
ators and we may choose a real basis of M and V.

Lemma 4.5. Let {¢1, ... , pa} be an orthonormal basis of M with respect to the inner
product —(Vu, v). Define j = —V ;. Then {1, ... , ¥q} is the dual basis of N with
natural coupling (¢, ¥i) = & i and, simultaneously, is orthonomal with respect to the
inner product (Dou, v). With these bases

d d
Q=Y lo)Wl, Q=) I¥;)g;l
Jj=1

Jj=1
and Q% is the spectral projection onto N with respect to 1 + V Dy. We have the identity
0Dy = DyQ*.

By virtue of Lemma 4.3 (3), the O eigenspace £ of H = —A + V is a subspace of M
of codimension at most one.

We write Q = 1 — Q. If we define closed subspaces X_,, = @H_y and V_, =
OH_,, the map A_,+Y_, > {u,v} = u +v € H_, is an isomorphism between
Banach spaces. In the direct sum decomposition H_, = X_,+YV_,,

M@®) =1+ Go(M)V
may be written in the matrix form:

Moy = (CMWO  OMMOY _ (M) Mor(%)
oOM(G)Q OMH)Q) ~ \Mi@G) Mu®))”

We often consider operators M i (A) and etc. also as operators in H_, by extending
them to the complementary subspaces as zero operators.

(4.6)
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Lemma 4.6. There exists Lo such that Moo(A) : X_,, — X_, is invertible for || < Ao
and Moo(\) ™' —1 € Bo(X_,). AsaBo(X_,)-valued function of |A| < Ao, Moo(A) ™' =1
is of class C® for 8 < min(8 —y — %, y — %, B —2).

Proof. By virtue of Lemma 2.1, Moo(A) — 1 is a Bo(X_, )-valued C % function of A

and Myp(0) = 5(1 + Dy V)a is invertible by Lemma 4.4. The lemma follows by a
Neumann series expansion. 0O

The following well known lemma is very useful.

Lemma 4.7. Let X = Xy-+X| be a direct sum decomposition of a vector space X.
Suppose that a linear operator L in X is written in the form

Loo Lo
L=
<L10 L11>

in this decomposition and that Laol exists. Set
—1
C =L —LioLy Lot
Then, L™ exists if and only if C™" exists. In this case

1-1_ (Lo +LogLoiC'LioLyy  —LggLotC™! 47
o —C_IL]()L(;O1 c! ' “.7)

4.3. Exceptional type of the first kind. In this subsection we prove Theorem 1.3 (2) when
H is of exceptional type of the first kind. In this case dim M = 1 and nontrivial ¢ € M
satisfies

b (x) — % €M, ¢e Hf%_ (4.8)

for a constant ¢ # 0. We take a uniquely determined ¢ € M such that — (¢, Vo) = 1
and (V, ¢) > O sothat Q = —|¢)(V¢|.

Theorem 4.8. Let |V (x)| < C(x)™# with B > 9/2. Assume H is of exceptional type
of the first kind. Let ¢ € M be as above. Then, in a small punctured neighbourhood
0 < |A| < Ao of zero, (1 + Go(M) V)~ may be written in the form

4mi
(V. 9) >

where (x)"T7VK L) (x)'F is a Bo(H)—valued C't° function of & € (—Xq, Ao) for
some o > 1/2and p > 1/2.

(14+GoWV) ' =TI4+KXN) +ar™'Q, a= (4.9)

Proof. We may assume 9/2 < B < 5 without losing the generality. We have 8 —
3 < (B —1)/2. We apply Lemma 4.7 to (4.6). We need to study C(A) = Mj1(A) —
M]()()L)MO_O1 (A)Mo1 (1) first. Recall D = (1/47)(1 @ 1). We define the operator J ()
by the equation

AJTO) =M@®) — (1 4+ DV +irD V) A #0.
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Wehave (M (L) —(1+ DoV +ilD1V))¢ € CV’%’(R, H_,)forany3/2 < y < /3—%
by virtue of (4.8) and Lemma 2.1 and it vanishes at A = 0 along with its derivative.

Hence, J(1)¢ and AJ (1)@ are, as H_,, -valued functions, respectively of class C y=3-

and C7~3~ including A = 0. It follows by choosing y < 8 — 1/2 arbitrarily close to
B — 1/2 that

x|<v7s|1>|2 52
LT

My (0) =< )

(V¢|J(X)¢)) Q= —ico(M)Q, (4.10)

where Acg (1), co(A) and (V¢ |J (A)¢) are functions respectively of class CA~1—, CA—2~
and C#~3~ on R. Likewise we have

J() = M$ = (iD1V +AJ ()¢ € VT3 (R, H_y),

YA =MAN)* Ve =V(—iD|V+AJ(—N)¢p € CV_%_(R, Hp—y) (4.11)
forany 3/2 < y < B — 1/2. Using these functions, we may write

Mor(3) = =A(F (1) +co(M)¢) ® Vo,
Mio(h) = =1 ® (F* () + o)V ) (4.12)

and —Mjo(A) My (WMo (1) = A%¢ (1) Q, where

1) = (1) + oMV, Moy G (M) + co())). (4.13)

Then, (4.11) and Lemma 4.6 for Moo(A)~! to (4.13) imply that ¢ (1) € C#73~. Com-
bining this with (4.10), we have

(VI
i

+ AZQ(A)) 0 with ¢, of class C# 737, (4.14)

and C(1)~! exists for small 0 < || < Ag. Moreover,

1 _ (@ p—3— . 4
clo) = (A +d(k)> 0. Aty e a= o, (4.15)

It follows from Lemma 4.7 that M (A)~! may be written in the form (4.7) with obvious
modifications. Using (4.12) and (4.15), we write

— Mgy M1 C™" = —(a + Ad(L))|E 0)) (VI
—C'"MioMyy' = —(a + Ad(W)|) (E (M),

My Mot C™ " MioMyy' = —(a + Ad ()61 (W) (E2(V)] (4.16)
with & = Moo(M) "L (A) + co(M)e) and £2(1) = Moo(AW)* 1 (Y*(A) + co(A) V) and,
by virtue of (4.11) and Lemma 4.6, (x)' 7V (x)&; (1) and (x)!T7& (1) are H-valued
H'*7 functions of |A| < Aq foro and p suchthat 1 +o, 14 p < B —3. Thus, putting the

operators in (4.16), (d(A) — 1)Q and O @ into K (1), we obtain the theorem.
O



496 K. Yajima

We are ready to study Wy;(t) when H is of exceptional type of the first kind. We
choose x; € C§°(R) such that x; is even, x1(A) = 1 when |A| < A9/2 and y;(A) =0
when |A| > Ag. We write, using (4.9),

Go(MVGQ) = Go)V (1 + Go(W)V) 1Go(h)
= Go(M)VGo(h) + Go(W VK (W)Go(L) +ar™ Go(M)V QGo(h),

and insert this in the right of (4.1) to obtain
Woi(t) = Wy (t) + Zit) + Zr(t). 4.17)

We know that Wy;(¢) is regularly dispersive from the proof of Lemma 4.1. Next we
consider

Zi1(t) = % / e~ (M) Go(W) VK (W) Go()AdA. (4.18)
R

Lemma 4.9. Assume > 9/2. Then, Z1(t) is regularly dispersive.

Proof. Denote K1(A) = x;(A)K (A). Take o, p > 1/2 asin Theorem 4.8. Then, || (x) I+o
VKi(A)(x)!te IB#) < C and, by virtue of Lemma 2.6, Z(t) is strongly continuous
and uniformly bounded in B(7). It is also obvious that Go(1)V K{(L)Go(1) is C as a
B> (H_s)-valued function and, after integration by parts we obtain

1 .
Z1(t) = _t/ e”’AZ{GO(A)VKl(A)Go(k)}’dk. 4.19)
Tt JR
Lemma 2.7 then implies || Z1 (#)u||co < C|t|’% [lu]|1 and the lemma follows by interpo-
lation. 0O

Finally we study the contribution from the singular part of (4.9):
Zot) = — / e X109 Go(MV QGo(R)d. (4.20)
T JR

Lemma 4.10. Let § > 9/2. Then, Z,(t) is a strongly continuous family of uniformly
bounded operators in 'H and its integral kernel Z(t, x, y) satisfies

i3rr

ae”'tT oteh USRS S T S|
Zo(t,x,y) — N T g()@(y)| = Cmin(t™2{x)" (y)" ", 172) (4.21)

for a constant C > 0. In particular, Z>(t) satisfies
1 3
1Za@ulls00 < Ct72ully . we L2NL2L (4.22)

Proof. Since Z,(t) = e Hp. Q@)= Z(t), Lemma4.1 and Lemma 4.9 implies the
first statement. The integral kernel Z; (¢, x, y) is given by

V(z2)¢(z2)V (z1)¢(z1)

1672|x — z2|lz1 — vl

Zr(t,x,y) = af c(t, A) dzidzo, 4.23)
R6
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where A = |x — z2| + |z1 — y| and

3 - A2
1 o e Pt jv A
ct,A) = - /I;e_”)‘ A (W dd = T}-< & X) (2t> . 4.24)

We have |¢(z, A)| < |l 11 (r6)~3, hence

D=

C [V (z2)9 (22| [V (z1)e (z1)] Ct~
V4 dzid .
|Za(t, x, y)| < — NG T P~ z1dzp < D00

(4.25)

is2
Estimate (4.25) implies (4.22). We prove (4.21). Since |e % —1| < |s2|/4t and|x;(A/t)—
1] < C|A/t|, we have

) (2)-

If we set B = 2(|x — 22llz2] + |z1 — yllz1]) + |z1]* + |z2/?, it is easy to see that
s A2 ) 2
|l AT/4 _ i THYD/4 | < B /41 Tt follows that

<t (UIs* Xl + 1AD.

t?n 'Xz -2
e 4g4te4r

Jrt

Combine (4.23) and (4.26) and use the relation (1 4+ DoV )¢ = 0 and

(I+A+ B)|V(z2)9(z2)V(z)é(z1)]
sup dzidzp < o0

RS lx — z2llz1 — ¥l

ot A) — <C(+A+B)y>. (4.26)

which follows from |V (x)¢ (x)| < C(x)"#~! with B > 9/2. We see that the left side of
(4.21) is bounded by Ct’%. Estimate (4.25) and the bound |¢ (x)| < C(x)~! show it is
also bounded by Ct_% (x)"Yy)~!. We are done. O

Proof of Theorem 1.3 w~hen H is exceptional type of the first kind. We regall Q(t) of

Lemma 4.1 and define Q(¢) = Q(¢) + Wi () + Z1(¢) so that e 77 P, = Q(1) + Z» ().
~ ~ 1

By virtue of Lemma 4.9, Q(¢) is regularly dispersive and ||Q2(*)u|lz < Ct™2 ||u||%, in

particular. Since L3! C L? and L? C L>°°, this and (4.22) imply
le™H Peatls, o0 < 172 fully 4.27)

We interpolate (4.27) with the L?-bound: [|e """ P.ul|p2 < [|u]l2.2. If we set

L 20+ % Y1 tg_042 o6
- =7 - A - =7 - 0 < <1,
g 3 2 p 3 2

then2/3 < g <2 < p <3withl/p+1/¢q = 1and, using also L?9 C LPP = LP,

we have [L2], L9,y = L9, [L¥*®, L*2)g, = LP9 C LP (see [3], Theorem 5.3.1)
and the desired estimate for this case:

i _3(i_1
e Pl < €30l = €70 (4.28)



498 K. Yajima

We next show the estimate corresponding to (1.17):
. 3(i_1L
H (e—”HPC - R(t)) uH <c33) il (4.29)
P

Estimates (4.27) and |¢ (x)| < C(x)~! imply

—; 1
e P, — R(t))ull3,00 < Ct72 lloell s - (4.30)

By virtue of (4.21), we have ||(Z2(¢) — R())u|lco < Ct_% l]]1. Combining this with
the fact that Q(r) = e " P, — Z,(¢) is regularly dispersive, we obtain

—itHp -3
Il (e Pe— R)ulloo < Ct2|ull;. (4.31)

We interpolate (4.30) and (4.31). This time we set

1 2 0 1 1 0

—=-(1-0)+-, —=-1-0+—, 0<0 <1,

q 3 1 p 3 00

sothat 1 < g <2/3,3 < p <ooand1/p+ 1/g = 1. Then, again using LP9 C L?,
we have [L2"), L1y, = L9, [L3>®, L™y, = LP4 C LP and

. 3 _a(l_1
e ™ P, — R()ul, < Ct=30=0=30 )|, = Ct (4 P)nunq, (4.32)

which is (4.29). This completes the proof of Theorem 1.3 when H is exceptional type
of the first kind.

4.4. Exceptional type of the second kind. In this subsection we prove Theorem 1.3 (2)
when H is of exceptional type of the second kind. In view of Lemma 4.1, we need to
study Wy, (¢) only. As previously we begin by studying the resolvent G (A) near A = O.
In this case M coincides with the 0 eigenspace £ of H and all ¢ € & satisfy

(V,9) =0, |¢p(x)| < C(x)72, hence ¢ € Hi_. (4.33)

Theorem 4.11. Let |V (x)| < C(x)"? for some B > 11/2. Assume that H is of excep-
tional type of the second kind and let Py be the orthogonal projection in 'H onto the
0 eigenspace of H = —A + V. Then there exists a constant Ay > 0 such that for
0 < |Al < Ao,

A+ Go)V) L =T+ KO+ A7 2PV +ir" ' PyVD3V PV, (4.34)

where (x)' TV K (L) (x)'7 isa Bo(H)-valued C'*P function of —hg < L < Ao (includ-
ing A = 0) for some o > 1/2 and p > 1/2.
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Proof. Without losing generality we assume 11/2 < 8 < 6, which implies 8 — 4 <
(B — 1)/2. We again apply Lemma 4.7 to (4.6) and the argument is parallel to that of
the proof of Theorem 4.8. We define

Ex() = (iM)2(M() — (14 DoV +iiDiV)),

JaO) = (A HMQA) — (14 DoV + -+ + (i0)> D3 V). (4.35)

It follows from (4.33) (see Lemma 2.2 (2) of [9]) that

5 1
Ex()$ € CY 3" (RH_y41), S <y <Bty

s 5 1
Er(W)*V¢ € CTV7 27 (R, Hp—y+1), S <r< B+ >

9 1
J0)p € CV TR Hoya)), 5 <y <Pt (4.36)

Since (1 + DoV +iAD1V)Q = Q(1 4+ DoV +iAD1V) =0, we have
Mo () = GAD*QE2(MQ, Mig(h) = (i2)*QE2() 0,

M0 = GAD*QE2(V)Q,
E>(A) = D2V 4+ iAD3V + (iA)>Js(h). (4.37)

Take an orthonormal basis {¢;} of M and its dual basis {—V¢;}. Then, QJ4s(1)Q =
Zj’k ajkM)(@; ® Vy) with ajr(A) = (V¢j, Ja(A)@i) and, by choosing y arbitrarily
close to B + 1/2 in the last relation of (4.36), we see that a j; (1) are of class CcP—4-, By
virtue of Lemma 4.2 (2),

0DV Q = Z(Vtﬁj, DoV i) ) (V il
= - Z<D0V¢j, DoV i) lej) (Vi = — Z((ij &) o) @kl V.
The matrix A = ({(¢;, ¢x)) is positive definite and, if we define B = A-3 and ¢y =

> i Bjkdjs then {¢1, ... , d4} becomes an orthonormal basis of M with respect to the
standard L? inner product, and

(ODVO)™" ==Y " BRI eV = =) _16,)(lV =—PV. (438)

Since (q~5j|V¢>k) = —Bji, we have P)VQ = PyV. It follows by a Neumann series
expansion that
M ()P =AT2PV(I —ixQD3V PV + A2 0L (M)PV) L0
=A2P)V +ir ' PyV D3V PV 4 QE3(M) Q. (4.39)
Here E3 (1) collects all remaining terms in the expansion and, as J4(A) is of class C p—4-,

if we write as QE3(A)Q = Y bjx(M)p; ® V. bjr()) are also of class CF~4~. We
have

Mio(0) Myg' 0)Moi(h) = A* QE2 () QMg W) QE2 (M) Q. (4.40)
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Since E»(X) ¢ and E»(1)*V ¢; satisty the property (4.36) and@M&)l (M) QisaB(H_,)-
valued C® function of A for 1/2 < 8§ < min(8 —y — 1/2, y — 1/2, B — 2) by virtue of
Lemma 4.6, the matrix elements

(E2()*V;, OMoo(L) " "QE2 (M) )

of (4.40) with respect to these bases are of class C#~*. We obtain, combining this with
(4.39), that

Mo (W) Mg Q) Mot (MM (1)~ = 2> QEs(M) Q
with E5(%) which has C#~%~ matrix elements. It follows that
C() = M (W) — MMMy )Mor(A) = (I — A2 QEs(A) Q)My1 (1)
is invertible for A # 0 and

') =MW - A2 QEs()0) !
=A2P)V +ir"' PV D3V PV + QEs(A)Q 4.41)

with C#~4~ function Eg(}). From (4.36) and Lemma 4.6, it also follows that

—B+3—7H 1= — =24 B—4—
(xX)TPT2TOMoo(M) T QE2(M)Q, QE2(M)QOMppQ(x)2T € C (R, B2(H)).
Then, by virtue of (4.41), we see that the operators

—May' WMo (WCTI ), —CT )Mot (M Mgy (L),
Mg () Moi (R C™ (W) Mot (M) Mgy (1) (4.42)

are, when sandwiched by (x)””%’ and (x) 3= from the left and the right respectively,
all By(H)-valued C#~4~ functions. Since f > 11/2, putting the operators in (4.42),
QEq(A)Q and Myy — I into K (L), we obtain the theorem. 0O

Now we are ready to study Wy, (¢):

-1 .
Woi () = lim — / e_”)‘z)g (A)Go(AM)VGA)AdA (4.43)
810 17 Jir>5

in the case when H is an exceptional type of the second kind. We may choose the cut
off function y;(A) such that x(A) = O for A > Ag and y;(1) =1 for [A] < Ag/2 as
previously. By virtue of (4.34), we have

Go(MVG() = GoM)VGo(r) + Go(M)VK(R)Go(R)

+A72Go(W)V POV Go(A) + ix "L Go(L)V PyV D3V PyV Go(N).
(4.44)

The contribution of Go(A)V Go(A) to Wy (¢) is equal to Wy, (¢) and it is regularly disper-
sive. We denote the contribution from Go(A)V K (1) Go(A) by X (), which corresponds
to Z1 (¢) in the first case. By virtue of Theorem4.11 (x)° 1V K (1) (x)°+1 is a B, (H)-val-

ued H 3 function of |A] < Ag. It follows by the argument used for studying Z; (¢) of the
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previous subsection that X (¢) is regularly dispersive. Let X»(¢) and X3(¢) respectively
be the contributions from the fourth and the third summands:

-1 .
Xo(t) = — / e~ Y ()Go(WV PoV D3V PyV Go(h)do, (4.45)
7T Jr
-1 .
X3(t) = — lim e~ 371 () Go() V PoV Go(M)dA. (4.46)
1 510 [A|>8

A priori we know that X»(#) + X3(¢) is a strongly continuous family of uniformly
bounded operators in H:

(X2(r) + X3()ull2 < Cllulla, t €R, (4.47)
as it may be written as a sum of operators which satisfy this property.
Lemma 4.12. There exists C such that

IX2(ull300 < Ct~ 3 lulls ;. ueL>NLI1,  (448)
, 3.1

3
—i3F

<Ct 3 ully, wel?*NnL. (4.49)

o0

e

Xo(u+i
2(2) —

Proof. We let {q~> i} be an orthonomal basis of £ with respect to the L2%-norm. With

cjk = (¢j, VD3V i) we write

d

PoVD3VPy =Y cikl) (il cjx = ($;|VD3VIde).
jk=1

PoV D3 Pyu

We define
-1 . ..
Wir(t) = 7/Ref”xzxz()»)Go(?»)VI¢j)(¢>k|VGo(?»)dk-

Notice that Wi (¢) is exactly of the same form as Z>(¢) except that a is replaced by —i

and the resonance ¢ by the eigenfunctions ¢ ; and Hr. It follows by the argument which
led to (4.25) that the integral kernel W, (¢, x, y) of W, (¢) satisfies

_L, _
Wik, x, )| < Clel=2 ()~ ()71, (4.50)
which implies (4.48). It also implies
_,'3T7T
Tt
Here, however, as eigenfunctions decay faster than resonances and |<$j (x)] < C{x)72,

@7 —1)pj(t, x)

) @2y - ~ 3
‘ij(t,x,y)+l el ¢ ()P (y)| < Cle| 2. (4.51)

we may estimate < Ct~ L. It follows that

3
—i3f

Jrt

Summing up (4.52) with respect to j, k, we obtain the lemma. O

H Wik(Ou +1i . d0)d;| < Criul)y. (4.52)

o]



502 K. Yajima

Lemma 4.13. For ¢ € &, a zero eigenfunction of H, define

- L1 —ita? dx
w(t, x) = lim —/ e " x1(M)(Go(A) — Do)V (x)—. (4.53)
810 1w [A]>8 A

Then w(t, x) satisfies the following properties:

i, x)| < Ct™3(x) 71, (4.54)
.31 t, 3
i (z, x) — e’ﬁ%wszw <ci3, (4.55)
where wu(t, x) is the function defined by (1.12):
I Lo i92|x2
w(t, x) = ﬁf (e @ —e 7 )do. (4.56)
X[ Jo

Proof. Since ¢ satisfies (1, V¢) = 0, we may write

1 eiklx—yl -1 eik|x| -1
(Goth) = DV = o [ ( — - ) VOIp(dy.  (457)

We write the function inside the parenthesis under the integral sign in the form
iA L oyl -
—(x —y| — |x]) (el)»(G\x yI+A=0)lx]) _ ilx }Iw)dg. (4.58)
|x| 0

After rewriting (Go(A) — Do)V ¢ (x) in this way, we compute the right-hand side of
(4.53) by first performing the X integral as always. If we set A = 6|x — y| + (1 — 6)|x]|
and B = 6|x — y|, we have
1 , , ,
— | T (M — By ()dh = et, A) = (1, B),
T Jr
where c(t, X) is defined by (4.24):

Kl

eI 2 o2 0\ (X
c(t,X) = \/Eeétt]-' ey %)

and w(¢, x) may now be written in the form

i

1
/0 (/(Ix =yl = lxD(e(r, A) —c(t, B))V(y)¢(y)dy> do.  (4.59)

47 |x|
Since |c(t, X)| < Ct_% and ||x — y| — |x|| < |y], (4.59) clearly implies

- 1 1
li(r, x)| < Clx|7e2.

However, the choice of origin is arbitrary and we obtain (4.54).
Since [A? — [x[*| = 0[(lx — y| = [xD@(x = y| = [x]) + 2|xD| < 2Iy[(Ix] + 1yD,
the argument which leads to (4.26) implies uniformly with respect to 6,
_i3T” ilx?
c(t,A) — e &

Jrt

_3
2.

< COAL+ 15211 + Iy (x| + [y T < Clx) ()
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Likewise, we have ||x — y|% — |x|?| < 2|y|(|x| + |y|) and

j 3
e VE g2
e 4

c(t. B) — < Cl) (e,

mt

Note that |(y)3V(y)¢(y)| < C(y)~P*! is integrable by the assumption B > 11/2. It
follows that w(z, x) differs from

je i F (/*l( ,-\ﬂz B mirﬂ)de) (L/(l —y = XDV (n)d )
= ¢ e o xX—y X yelyay

by a function bounded by C =2 Here the function in the second parenthesis is equal to
(D2V@)(x) because (V, ¢) = 0. We have obtained (4.55). O

Lemma 4.14. Let ju(t) be the multiplication by u(t, x). Then, there exists C such that

1
1 X3(0)ull3,00 < Ct™2lull3/2,1, (4.60)
- 37
e 4
X3(H)u — Nl (w(®)D2V Py + PoV Do (t)) u

7=

Proof. Using DoV Py = —Py and PyV Dy = — Py, which follows since the 0 eigen-
functions ¢ of H satisfy DoV ¢ = —¢, we may write

<Cr 73 ull,. (461

o0

Go(MV PyVGo(A) = (Go(A) — Do)V PV (Go(X) — Do)
—(Go(A) — Do)V Py — PyV(Go(r) — Do) + Pp.

This produces X3(¢) = X31(¢) + X32(¢) + X33(¢) where

i . 2 di
X31(¢) = — lim e "y (0)(Go(h) — DY)V PV (Go(A) — Do)—,  (4.62)
T 510 [A|>8 A
L —in? dx
X32(f) = — lim e x1(A)(Go(A) — Do)V Po—, (4.63)
17T 80 Jia>s A
L —ita? di
X33(1) = — lim e X)) PoV(Go(A) — Do) —. (4.64)
1 8]0 [A|>8 A
Here the contribution from Py vanishes because e”'”‘z)ﬁl x1(A) is an odd function of
L. We take an orthonormal basis {¢1, . .. , ¢4} of € with respect to the L? inner product
and let w; (¢, x) be the w(¢, x) of Lemma 4.13 corresponding to ¢, j = 1,... ,d. Then

the integral kernels of X3 (#) and X33(¢) are given respectively by

d d
Xao(t, x,y) = Y (6, )p;(y),  X33(t,x,9) =Y _ ¢ (x)ib;(t, y),

j=1 j=1

and, by virtue of Lemma 4.13, the lemma follows if we prove

_1 _3
1 X31(Dull3,00 < Ct 2 ull32,1,  I1X31(Outlloe < Ct™ 2 Jully. (4.65)
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By using (4.57) and (4.58), we write the integral kernel of X3 (¢) in the following form.
We define

Q(I,A) — ;[_/ e—l‘l}hz—l—l’/\A)\Xl()\)d)\
R

and use the short-hand notation

Lx,y)=lx—yl—=lx|. ¥;j(x)==-Vx)¢;x), j=1,....d.

Note that |L(x, y)| < |y|. If we define Yj;(z, x, y, 0,0 fork =1,...,4and j =
1,...,dby

—1
2—/ L(x,z2)L(y, z0)¥;(z2)¥;(z1)a(t, Ay)dzidza,
[x[|yl Jrs

Yij = 167

where the variables A1, ..., As inside a(¢, Ay) are respectively given by

Al =0lx =2 +0ly —al+ A=)y, Ax=0|x — 2| +6'ly —zl,
A3 =0lx — 22l + (1 = D)x| +6'ly — z1l,
A =0lx — 22| + (1 = O)x| + 6y — z1] + (1 = 8)]yl,

then, the integral kernel of X3;(#) may be written in the form

4 d 1 1
X31(t,x,y)=ZZ(—1)k/0 /O Yij(t, x,y,0,0")d6do’. (4.66)

k=1 j=1
Clearly |Ax| < ({x) + (z2) + (z1) + (y), k=1,... 4 and

lat, A)| < C1™2,  |a(t, A)| < Cr2|A], 4.67)
by virtue of (2.5) and (2.7). It follows that

1

th%an+@») “68)

[X31(¢, x, y)| < Cmin ,
||yl x|yl

Here again the choice of the origin of coordinates is irrelevant for the estimate and we

may replace 2 (1/[x|ly]) by Ct=2 (1/(x) (y)) and ™3 ((x) + () /lx|[y]) by £~ ((x) +
(¥)/{x){y)) in (4.68) and (4.65) follows. This completes the proof of the lemma. O

Proof of Theorem 1.3 when H is exceptional type of the second kind. We have shown
that e=""# P, — (X(t) + X3(1)) is regular dispersive. It follows by virtue of Lemma
4.12 and Lemma 4.14,

™" Ptz o0 < Ct ™2 ully (4.69)
—i 1
I Pe = RO)ullsoo < Cr72lull3 ;. (4.70)
iy _3
™" Pe = R@)ulloo < C172 u] 1. 4.71)

We interpolate (4.69) with the L? bound |le™*# P.u|l» < ||lu||> and (4.70) with (4.71).
The argument is virtually a repetition of the corresponding part of the previous subsection
and we omit the details.
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4.5. Exceptional case of the third kind. We finally consider the case when H is of excep-
tional type of the third kind. As usual we begin by studying M(A)~! = (1 +Go(L)V)~!
near A = 0. We take the orthonormal (with respect to the inner product —(Vu, v)) basis
{d1, ..., ¢pa} of M of Lemma 4.5 in such a way that {¢>, ... , ¢4} is a basis of PyH and
such that (¢, V) > 0. The last condition determines ¢; uniquely. Define the orthogo-
nal projections 1 onto {¢1} and mp onto Py’H with respect to this inner product, viz.

w1 =—1p1)(Vei| and 2 = — 39_, [¢;)(V¢;]. and

Qo=0=1-0, 01=0mQ, 0r»=0m0.

We have Q = Q1 + Q». As previously we write ¥/; = —Ve¢; : j =1,...,d. {{;}1is
the basis of ' = M* which is dual to {¢;}.

Lemma 4.15. As identities in H_,,, we have the following:

QjOk =68k (jik=0,1,2)and Qo+ Q1+ Q2 =1, (4.72)

(14+DoV)Q1 =1+ DyV)Q, =0, 4.73)
02D1VQo=0, 02D1VQ1 =0, 0:D1VQ>=0, (4.74)
QoD1VQ, =0, O01D1VQ;=0. (4.75)

Proof. Equations (4.72) and (4.73) are obvious. Since D1 = (1/4m)|1)(1|, (4.74) and
(4.75) follow from Q»|1) =0and (1|VQ, =0. O

We first study [Q M () Q]_1 by using Lemma 4.7. We write Q M (1) Q in matrix form
with respect to the decomposition M = QM + Qr M:

_(QM)Q1 QM) Q2)\ _ (Mii(A) Mia(d)
OM@R)0 = (QzM(k)Q1 QzM(?»)Qz) = (le()») MzzO»))' (4.76)

In what follows we assume 11/2 < 8 < 6sothat 8 — 4 < %(ﬂ — 1) and irrespectively
denote by E (L) various finite dimensional operator valued functions of A which are of
class CP~*~ in a neighborhood of . = 0.

The function (V¢1|Go(X)|V ¢1) is of class CP~1- because Vo € Hﬂ_%_. Since ¢

satisfies (1 + DoV)¢1 = 0 and (V, ¢1) # 0, it follows as in the case of the first type
that with ¢ € cP-3-,

M1 (L) = c(W) Q1 with c(A) = @) "' ANV, 1) + 221 (A).

Hence M11(A) is invertible for 0 < |A| < X¢ for sufficiently small 1y > O and, with
a = 4mi|(V, ¢1)|~? as previously,

M ) =0"la+d0)Qr, decf 4.77)
Likewise M1>(%) and My (A) are of CF~1~ and, as Q2 D1V = DV 0, =0,

Mip(h) = =22 Q1(D2V + LE(X)) 02,
My (b)) = =22 Q2(D2V + LE(X)) 01,
Moy MM Q)M = 22 02(aD2V Q1 D2V + LE (L)) Oa. (4.78)

Since Vg (x) € Hﬂ+%_ for2 < j <d, Mx»(}) is of class CP~ and

M (L) = —A202(D2V +iAD3V — A2E(X)) 0. (4.79)
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Notice that M»; (1) is what corresponds to M1 ()) of the previous Subsect. 4.4. Hence
(4.38) and (4.39) imply, with Py being the orthogonal projection in H onto £ that
(02D2V02)~' = —PyV, PV Qs = PyV and that

My ' =A172P)V +ix " PV D3V PV + PyVE(L) Q5. (4.80)
It follows by a Neumann series expansion that
Cn(h) = M () — Ma (WM W Mi2(h)
= Mn(W)(1 — My (V)™ Moy (WM (W M2 (L)
is invertible and
Cy' (W) = A72PgV +ia "' PyV D3V PV
+(1)»_1P0VD2VQ1D2VP()V+P()VE()L)P()V. (4.81)

If weset g, = PoVDyVy € PyH, then PV D,V Q1 D2V PyV = —|¢1)(¢1|V and the
right side of (4.81) may be written in the form

ATEPGV + i T PV D3V POV — a7 algn) (1 1V + POVE() PV, (4.82)
Using (4.77), (4.78), (4.81) and the definition of d~>1, we may write
— M OM10)CL (M) = —ar " g1) (1]V + EQ),
—CR MMuOIM (1) = —ar " 1E1) 1]V + EQL),
M M) Co WM (WM () = E(L). (4.83)

Combining (4.77), (4.82) and (4.83) by means of Lemma 4.7, we see that (Q M (1) o)1
is in matrix form given modulo an E () by

—ar' 1) (Veul —a eVl 4
—ar @) (Verl AT2PV +ida ' PoV D3V PV — 2 lalg ) (Vi) T

and, therefore, if we define the canonical resonance ¢ = ¢ — ¢; as in (1.10), ¢ still
satisfies ¢ € M and (¢, V) = 1, and we obtain

PyV + iPyV D3V PyV

-1 _
EMMO) ™" = = -

- §|¢><¢>|v +EQN).  (485)

For studying M (A)~! we repeat a similar argument. We write M (1) in the matrix
form with respect to the decomposition H_,, = QH_,, + M:

_ (Loox) Lot(d)

oMM Q0 OMMK)Q
M) = < ) = <L10()») Lii(3) >’

OM()Q OM()Q

where the right-hand side is the definition. By virtue of Lemma 4.6, forany 1/2 < y <
B—1/2, A(A) = Loo(A)~! exists in OH_, and of class C? forany § < min(f — y —
1/2,y—1/2,8—2)and A()) —Eis of Hilbert-Schmidt class. By virtue of (4.73), (4.74)
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and (4.75), with respect to the decomposition Q = Q1 + QO», Llo()»)Laol (M Lot(A) =
OM(A)A(A)M (L) Q may be written as

_ (AMEi(0) ABERO)

OIMMAMMM Q1 QIMMWAMMMR) Q2
T \WEy(W) AMEn))”

OQIMMAMMM) Q1 Q2MR)AMM () 02
where E;; are of class CP—4=_ Since Ll_ll (A) = (OM (W) Q)7 is of the form

ALEQ) rlE(,\))

-1 _
Ly ) = (A_IE(A) A ZE(N) (4.86)

by virtue of (4.84), in the decomposition in M = Q1 M+Qr M,

2
NG = L 0 L1oG) Lyg ) Lo () = (AE('\) A E(A)>'

AEQN)  A2E()

It follows that C(A) = L1 (1) —Llo(A)Laol (MLoi(X) = L11(M)(1—N (X)) is invertible
for 0 < |A] < Ao,

' =L +A-NO)TINOL (4.87)
and (1 — N(0)™'N()Ly, (&) is of the form

AEQ)  PEG)) (AT'EG) ATTEMW) _
<)LE()L) sz()»)) <)L_1E()L) )\—ZE()L))_E()‘)- (4.88)

We have Loj (L) = QM (L) Q = AQF1 (L) Q1 + A2Q F>(1) Q2 with
Fi() =27'Go)V Q1  F(h) = A72Go(M)V 02(M).

Here A ~1Go(1) V1 isanH_, -valued C¥ ~3/2~ functionof A forany3/2 < y < f—1/2
and, as in (4.36), A"2Go(M)V¢;, 2 < j < d, are H_,1—valued C¥ /2~ functions
forany 5/2 < y < g+ 1/2. It follows by applying Lemma 4.6 for Loo(}) respectively
withy = —2—eandwithy = — 1 — e with 0 < & < J that A(A) OF; (A)¢; and
AN QOF, M¢j,2 < j <d are B(M, H_gi24¢)-valued CP~* functions of A (recall
that A(A) = LO_O1 (1)). Combining this with (4.86), (4.87) and (4.88), we conclude that

-1 —1
AL GIC™ ) = (:A0OR0 01 2400R00) ((p) T 2kl)

is a B(M, H_g42+e)—valued C#~4~ function of A near A = 0. By an argument dual to
the previous one, we see that

C' M L1o(M) Ly, (1) is also of class P74~

as a B(H_»—¢, M)—valued function of A near the origin. Summarizing the results by
using Lemma 4.7, we have shown the following theorem:
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Theorem 4.16. Suppose V satisfies |V (x)| < C(x)~? with % < B and H is of excep-
tional type of the third kind. Let ¢ be the canonical resonance and a = 4mwi|(V, )| =2
Then,

_ PyV n i PV D3V PyV

(I +GoV)™ =1 = =3 -

- §|¢><¢|v +K(). (4.89)

where K () is such that (x)'7V K (1) (x)'*% is a By (H)—valued C'** function of A in
a neighbourhood of X for some o, s > 1/2.

Once Theorem 4.16 is obtained, the proof of Theorem 1.3 for the case H is an excep-
tional type of the third kind completed by combining the arguments in the preceding
two subsections. We may safely omit the repetitious proof.

4.6. Dispersive estimates. Finally we prove Theorem 1.4. We may assume H is an
exceptional type of third kind. We have |¢ (7, x) — ¢(x)| + | (t, x)| < C min ('x‘ ! )

AT
Hence,

3 6
12(t, %) — o) + u(t, x)| < C¥ 7 |x[a 7>, 1< q <3/2.
Thus, if (u, ¢) = 0 for all ¢ € M, then, for any p > 3,

IR@ull, < *l/L”L’HwIlpI(c(t) —@,u)| < Ct_3<5_7>lllx|3*5ull1. (4.90)

For¢ € £,wehave |D, V¢ (x)| <C.Itfollows, since (¢, VDo (t)u) ={(D2 Ve, u(t)u),
that

3.6
¢, VDop(0u)| < Cllu@ully < 7 |[x|e ulli, ¢ €&

Since ¢ € £ belong to L? for p > 3, we also have

1

_3(1_1 6
IS@ull, < Ct 3(‘1 2)IIIXITSMIIL (4.91)

We choose p > 3 as the dual exponent of 1 < g < 3/2 and combine (4.90) and (4.91)
with (1.17). We obtain (1.18). This completes the proof.
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