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Abstract: The compactness properties of solutions to time-discretization of compress-
ible Navier-Stokes equations are investigated in three dimensions. The existence of
generalized solutions is established.

1. Introduction

Problem formulation. A flow of compressible Newtonian fluid in bounded domain � ⊂
R

3 is governed by the Navier-Stokes equations

∂(�u)

∂t
+ div (�u ⊗ u) + ∇p(�) = �F + div �(u), (1.1a)

∂�

∂t
+ div (�u) = 0, (1.1b)

where p(�) = �γ , �, and u are pressure, density, and velocity of fluid, F ∈ C(�)3 is a
given vector field, � is a viscous stress tensor defined by

�(u) = (∇u + ∇u�) + νdiv u I, div �(u) = �u + (1 + ν)∇div u, (1.2)

where ν > − 2 is the viscosity ratio. The existence of generalized solutions to initial
boundary-value problems for Eqs. (1.1) was proved by Lions in [19] and by Feireisl,
Matus̆ů-Nec̆asová, Petzeltová, Stras̆kraba in [13] for all γ > 9/5. These results were
essentially improved by Feireisl, Novotný, and Petzeltová in paper [14], where the
existence of solutions was established for all γ > 3/2. For the range γ > 3/2, the
mathematical theory of compressible Navier-Stokes equations is covered in the book by
E. Feireisl [15]. Recall that γ = 5/3 for monoatomic gases, γ = 7/5 for air, and γ = 1
in the isothermal case. The problem of the existence of solutions to (1.1) for γ < 3/2
was listed among other unsolved problems of fluid mechanics in [20]. In the paper we
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consider a boundary-value problem for the stationary equations, obtained by the time
discretization of Eqs. (1.1),

α�u + div (�u ⊗ u) + ∇p = �F + div �(u) in D′(�), (1.3a)

α� + div (�u) = f in D′(�) , u = 0 on ∂� . (1.3b)

Here α > 0 is a parameter of the time discretization, f ∈ C(�) is a given non-negative
function.

Let K denote the cone of non-negative functions � ∈ L1(�). A pair (�, u) ∈ K ×
H

1,2
0 (�) is said to be a generalized solution to problem (1.3) if it satisfies the moment

and the mass balance equations, which are understood in the sense of distributions.

Notation. In the paper the standard notation is used for the function spaces. The space
H 1,p(�) is the Sobolev space of functions integrable along with the first order gen-
eralized derivatives in Lp(�) equipped with its natural norm. For p = 2 we use the
notation H 1,2(�) rather than H 1(�), and for real m > 0 we denote the Sobolev space
of order m by Hm,2(�). H

1,2
0 (�) is the closure of the space C∞

0 (�) in the norm of the
Sobolev space H 1,2(�). We use also the summation convention over repeated indices
i, j = 1, 2, 3, e.g., ϕi,j ξiξj = ∑3

i,j=1 ϕi,j ξiξj . The support of a function ϕ is denoted

by sptϕ. For a vector function ϕ ∈ L2(�)3 its norm is denoted by ‖ϕ‖L2(�), the same
notation is used for the tensor functions. We denote by B(x, R) ⊂ R

3 the ball of the
radius R with the centre at x, and by S

2 = ∂B(0, 1) = {x ∈ R
3 : |x| = 1} the unit

sphere in R
3. A function defined as the mapping G : �×Rλ 	→ R means G(x, λ) ∈ R

for x ∈ � and λ ∈ R. For a positive parameter ε > 0 we denote e.g., by ϕε ∈ B the
sequence as ε ↘ 0, and will speak about e.g., the strong (norm) convergence, possi-
bly for a subsequence, i.e., limε↘0 ‖ϕε − ϕ‖B = 0. We can consider as well the weak
convergence or weak star convergence for the sequence ϕε in the function space B.

In addition, by c is denoted a generic constant in all estimates given in the paper.

Generalized solutions. The local existence and uniqueness theorems for viscous steady
compressible flows were proved in the pioneering paper by M. Padula [23]. P.L. Lions,
cf. [19], established the existence result for problem (1.3) for all γ ≥ 5/3 in the case
α > 0 and γ > 5/3 in the case α = 0. Note that these results can be extended
to the range γ > 3/2 by a method developed by E. Feireisl et al in [13, 14]. The
solvability of problem (1.3) in the two-dimensional case was proved in [19] for all
(γ, α) ∈ [1, ∞) × (0, ∞) ∪ (1, ∞) × {0}. The limiting case γ = 1, α = 0 was consid-
ered by the authors in [25]. Recall that the standard energy estimate gives the following
bounds for quantities involved in the equations:

‖�γ ‖L1(�) + ‖�|u|2‖L1(�) + ‖u‖H 1,2(�) ≤ C(α, �, ‖F‖C(�), ‖f ‖C(�)) for γ ≥ 1,

(1.4a)

‖� ln(1 + �)‖L1(�) ≤ C(α, �, ‖F‖C(�), ‖f ‖C(�)) for γ = 1. (1.4b)

It is easy to see that in the three-dimensional case the energy estimates and embedding
theorems guarantee the inclusion �|u|2 ∈ Ls(�) with s > 1 if and only if γ > 3/2.
Hence, for γ ≤ 3/2 we have only an L1 estimate for the density of the kinetic energy.
The question is: under what conditions will a weak limit of approximate solutions to
Eqs. (1.3) be a solution? If a sequence of approximate solutions (�ε, uε), ε > 0, to
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problem (1.3) satisfies the inequalities (1.4) with a constant C, independent of ε, we can
assume, after passing to a subsequence, that

uε → u weakly in H
1,2
0 (�), �ε → � weakly in Lγ (�), (1.5)

�εuε ⊗ uε → M star weakly in the space of Radon measures as ε → 0, (1.6)

where M = (Mi,j )3×3 denotes a 3 × 3 matrix-valued Radon measure in �. In the
general case the weak star defect measure S = M − �u ⊗ u �= 0. This leads to the
so-called concentration problem, which was widely discussed in the mathematical liter-
ature in connection with vortex sheet dynamics, cf. [9, 10, 27].According to DiPerna and
Majda, we say �sing is a concentration set if S(� \ V ) = 0 for every open V ⊃ �sing;
the cancellation concentration phenomenon is the case when div S = 0. Hence the ques-
tion is to describe the structure of the defect measure and to find conditions under which
it is equal to 0.

Results. We intend to propose a new approach to this problem which is based on the
following result on the compactness properties of solutions to the generalized momen-
tum equation. Suppose that the tensor fields ε = 

(1)
ε + 

(2)
ε and the vector-valued

functions gε are defined on a bounded domain � ⊂ R
3 and satisfy the conditions

‖(1)
ε ‖Lq(�) + ‖gε‖L1(�) ≤ c, (1.7)

(1)
ε →  weakly in Lq(�)9, gε → g weakly in L1(�)3, (1.8)

‖(2)
ε ‖L3/2(�) + sup

B(x,R) ⊂ �

sup
0 < r ≤ R

|S(2)
ε (x, r, R)| = ξε(R) → 0 as ε → 0. (1.9)

Here the constants q > 3/2 and c is independent of ε, the integral operator S is defined
by

S(x, r, R) =
∫

r<|y|<R

1

|x − y| (I − n ⊗ n) : (y)dy , (1.10)

where n = |x − y|−1(y − x). Suppose also that a sequence (�ε, uε) ∈ K × H
1,2
0 (�)

satisfies the energy inequality (1.4a), relations (1.5), and the equations

div (�εuε ⊗ uε) + ∇p(�ε) = div ε + gε in D′(�) . (1.11)

We assume that the total energy density satisfies the weak regularity condition

lim
r↘0

r−1
∫

B(x,r)∩�

(�ε|uε|2 + p(�ε))dx = 0 for all x ∈ �. (1.12)

The first main result of this work is the following theorem.

Theorem 1. (i) If γ > 1 and α > 0, then M = �u ⊗ u. Moreover, there exists κ > 0
such that for all �′ � �, the sequences �ε|uε|2 and �ε are bounded in L1+κ(�′)
and Lγ (1+κ)(�′), respectively.
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(ii) If γ = 1 and α > 0, then M = �u⊗u+S, where the matrix-valued defect measure
S has the representation

∫

�

ϕ(x) : dS(x) =
∫

�sing

s(x) ⊗ s(x) : ϕ(x)σ (x)dH1 for all ϕ ∈ C0(�)9. (1.13)

Here �sing is a Borel set, in which every compact subset is countable (H1, 1) rectifiable,
s(x) is the unit tangent vector to �sing at a point x, H1 is the one-dimensional Hausdorff
measure, and σ is a non-negative, locally bounded function.

Recall that �sing is countable (H1, 1) rectifiable if there is a family of C1 one-dimensional
manifolds �k such that H1(�sing \ ∪k�k) = 0.

Theorem 1 leads to new results on a solvability of problem (1.3). Suppose that � is a
bounded domain with ∂� ∈ C1+β , β ∈ (0, 1), and consider a family of boundary-value
problems, depending on a small positive parameter ε,

(α� + √
ε�5)u + div

(
u ⊗ (�u − ε∇�)) + ∇p = �F + div �(u) in �, (1.14a)

α� + √
ε�5 + div (�u) − ε�� = f in �, u = 0, ∂n� = 0 on ∂�. (1.14b)

Theorem 2. For any γ ≥ 1, α > 0, F ∈ Cβ(�)3, and non-negative f ∈ Cβ(�), prob-
lem (1.14) has a solution uε ∈ C2+β(�)3, �ε ∈ C2+β(�), �ε > 0. There is a constant
c independent of ε such that

‖�ε‖Lγ (�) + ‖uε‖H 1,2(�) + ‖�ε|uε|2‖L1(�) ≤ c, (1.15a)

ε1/2‖�4+γ
ε ‖L1(�) + ε1/2‖�5

ε |uε|2‖L1(�) ≤ c, (1.15b)

ε1/8‖�ε∇uε‖L8/5(�) + ε1/8‖�εuε‖L24/7(�) ≤ c, (1.15c)

ε3/4‖∇�ε‖L2(�) + ε‖(1 + �ε)
γ −2|∇�ε|2‖L1(�) ≤ c. (1.15d)

In the case γ = 1 any solution to problem (1.14) also satisfies the inequalities

‖�ε ln(1 + �ε)‖L1(�) + ε1/2‖�5
ε ln(1 + �ε)‖L1(�) ≤ c. (1.15e)

This result along with Theorem 1 implies.

Theorem 3. (i) If γ > 1 and α > 0, then problem (1.3) admits at least one weak
solution � ∈ Lγ (�), u ∈ H

1,2
0 (�), satisfying (1.4a).

(ii) If γ = 1 and α > 0, then there are � ∈ L1(�) and u ∈ H
1,2
0 (�) which satisfy (1.3b)

and the modified momentum balance equation

α�u + div (�u ⊗ u) + ∇� + div S = �F + div � in D′(�),

where the measure-valued tensor S meets all requirements of Theorem 1.

Theorem 3 yields the alternative: Either the concentration set is empty or its Hausdorff
dimension is equal to one. Whether concentrations are cancelled or a non-trivial singular
set really exists is a question which we cannot decide with certainty. Note only that if
approximate solutions and a flow region are also invariant under the action of some
group x → x′, then a concentration set and a measure density θ also are invariant under
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the action of this group. The precise definition of the concentration set and the measure
density are given below. In particular, the velocity field and the pressure are invariant
with respect to the shift x3 → x3 + const, in the case of a two-dimensional flow in the
plane (x1, x2). Therefore, in this case �sing is the union of a countable set of straight
lines and θ is a constant along each of those. From this we conclude that div S = 0 and
concentrations are cancelled in agreement with results of [19] and [25]. The same results
hold true for axially symmetric flows. On the other hand, the simple examples show that
singularities definitely exist for solutions of the pressureless Navier-Stokes equations,
which are used in astrophysics. Finally, let us point out that the results of the present
paper can be used, in the same way as in [25], to establish the existence of solutions for
the associated shape optimization problems.

Mathematical background. There are three aspects of our method which deserve brief
description.

1. The first concerns the estimates for the trace of non-negative, measure-valued tensor
fields E with div E ∈ H

1,q
0 (�)∗, which play the key role in the proof of Theorem 1.

2. The second is the observation that the boundedness of the potential |x|−1 ∗ µ of the
measure µ in � implies the boundedness of the embedding H

1,2
0 (�) ↪→ L2(�, dµ).

3. The third is the use of the kinetic formulation of the mass balance equation (1.3b) to
obtain the convergence p(�ε) → p(�).

Now, we can explain the organization of the paper. Sections 2-5 are devoted to the
proof of Theorem 1. In Sect. 2 we derive the estimates for a non-negative, matrix-valued
Radon measure E satisfying the equation div (E − ) = g, in which a tensor field 

and a vector-valued function g satisfy the assumptions of Theorem 1. We show that the
measure density

θ(x) = lim
r→0

1

r

∫

B(x,r)

dµ (1.16)

of the Radon measure µ = Tr E and the potential

x 	→
∫

�

|x − y|−1(dµ(y) − n ⊗ n : dE(y))

are well defined and bounded on every compact subset of �. Applying these results to
the measure dEε = (�εuε ⊗ uε + p(�ε)I)dx we conclude that the Newtonian potentials
|x|−1 ∗ p(�ε) are uniformly bounded on every compact subset of �. In the next section
we consider the embedding of the Sobolev space into the space of functions, which are
square integrable with respect to some measure µ. The main result is that the embedding
H

1,2
0 (�) ↪→ L2(K, dµ), K � �, is continuous, if

ω(t) = sup
x∈K

∫

B(x,t)∩K

|x − y|−1dµ(y) < ∞.

Moreover, the embedding is compact provided that ω(t) → 0 as t → 0. These results
yield the statement of Theorem 1 for γ > 1. The proof of Theorem 1 in the case γ = 1
is based on the connection between mathematical theory of compressible fluids and
mathematical problems arising in geometric measure theory. The key observation is
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that the tensor fields �ε(uε ⊗ uε + I) converge weakly to a matrix-valued measure E
satisfying the equation div (E − ) = g with  ∈ L2(�)9 and g ∈ L1(�)3. The results
of Sect. 2 imply the existence of the measure density θ(x) = lim

r→0
r−1

∫
B(x,r)

dTr E at

each point x ∈ �. In Sect. 5 we introduce the weak star defect measure S = E��sing
,

where �sing = {x : θ(x) > 0}. Since the linear form ϕ 	→ ∫
�

∇ϕ : dE can be regarded
as the first variation of a one-dimensional varifold, the rectifiability of �sing and rep-
resentation (1.6) follow from the classical results of the theory of varifolds, see [4].
The remaining part of the paper is devoted to the existence theory for boundary-value
problem (1.3). In Sect. 6 we show that the statement of Theorem 3 holds true under the
assumption that, for γ > 1, the sequence of solutions �ε to problem (1.14) converges
almost everywhere in �. To obtain this result we apply the technique developed by Lions
and Feireisel et al (cf. [19, 12, 14]). In Sect. 7 we recall the famous results of P.L. Lions
and E. Feireisel et al on compactness properties of the viscous flux and the basic facts
from the theory of the oscillations defect measure proposed by E. Feireisl in [12].

The peculiarity of our approach is the systematic use of representations of weak
limits ϕ = w − lim

ε→0
ϕ(�ε), in the form of the Stieltjes integrals

∫
R

ϕ(λ)dλ�(x, λ), in

which a monotone distribution function �(x, ·) does not depend on ϕ and has the limits
lim

λ→±∞
�(x, λ) = 0, 1. In this setting the strong convergence of �ε is equivalent to the

equality �(1 − �) = 0. In Sect. 8, Lemma 16, we show that the distribution function
satisfies in the strip � × R the kinetic equation

∂

∂λ

[
(λα + λdiv u(x) − f (x))�

]− div
(
u(x)�

) = α� + ∂

∂λ
[λM(�) + m], (1.17)

in which m is some non-negative Borel measure and M is non-linear integro-differential
operator defined by (8.2). The preference of the method of such a kinetic equation is that
Eq. (1.17) allows us to tackle problems, in which the strong convergence does not take
place; for instance, the problems with fast oscillating data. Note that, in contrast to the
theory of conservation laws (cf. [6]), the kinetic formulation of problem (1.3) involves
the non-linear term. Nevertheless, we show that Eq. (1.17) can be renormalized, which
leads to the identity �(1 − �) = 0 and, thus, to the strong convergence of solutions to
problem (1.14).

2. Tensor Fields with Integrable Divergence

In this section we obtain the basic estimates for solutions of Eqs. (1.11). The most sig-
nificant of them are the bounds for the Newtonian potential |x|−1 ∗p(�ε) of the pressure
which are given by Proposition 2. With further applications in mind we deduce these
estimates from the general statement on non-negative tensor fields with divergence from
(H

1,3/2
0 (�))∗. Suppose that the 3 × 3 matrix-valued finite Radon measure E = (Ei,j ) is

symmetric and non-negative :

Ei,j = Ej,i , 〈Ei,j ϕi, ϕj 〉 ≥ 0 for all ϕi, ϕj ∈ C0(�), 1 ≤ i, j ≤ 3.

In particular, µ = Tr E is a non-negative Radon measure in �. Suppose also that there
exist a tensor field  ∈ L3/2(�)9 and vector-valued function g ∈ L1(�)3 such that for
every vector-function ϕ ∈ C∞

0 (�)3,
∫

�

∂j ϕi(y)dEi,j =
∫

�

∂j ϕi(y)i,j (y)dy −
∫

�

ϕi(y)gi(y)dy . (2.1)
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It is easy to see that the integral identities (2.1) can be equivalently assembled as the
differential equation div (E − ) = g. The main result of this section is the following
proposition.

Proposition 1. Suppose that a tensor field  admits the decomposition  = (1)+(2),
in which (1) ∈ Lq(�)9, q > 3/2, and

‖(2)‖L3/2(�) + sup
0 < r ≤ R

S(2)(x, r, R) ≤ CK (2.2)

for all x in a compact K � � and with R ≤ dist (K, ∂�). Then there exists a constant
cK depending only on R, CK , µ(�), ‖(1)‖Lq(�), and ‖g‖L1(�) such that

1

r

∫

B(x,r)

dµ(y) + lim
s→0

∫

s≤|x−y|≤r

1

|x − y| (dµ(y) − n ⊗ n : dE(y)) ≤ cK, (2.3)

1

r

∫

B(x,r)

dµ(y) = ζ(x, r) + ψ(x, r) for x ∈ K and r ∈ (0, R]. (2.4)

Here ζ(x, r) is a function which increases in r and the remainder is bounded |ψ(x, r)| ≤
�(r) + CK , with

�(r) = c‖(1)‖Lq(�)r
2−3/q + sup

x∈�

∫

B(x,r)∩�

|g|dx → 0 as r → 0.

Note that µ − n ⊗ n : E ≥ 0 in B(x, R) \ {0}.
The proof of Proposition 1 is based on the following lemma.

Lemma 1. Under the assumptions of Proposition 1 for each x ∈ K ,

M1(x, r)

r
+

∫

r≤|x−y|≤R

1

|x − y| (dµ(y) − n ⊗ n : dE(y)) + ζ0(x, r)

= M1(x, R)

R
− 1

R

∫

B(x,R)

Tr dy

+1

r

∫

B(x,r)

Tr dy + S(x, r, R) −
∫

B(x,R)

kr,R(y − x)dg(y), (2.5)

where kr,R(x) = min{r−1, |x|−1}−R−1 and non-negative, non-increasing in r functions
ζ0, Mi , are defined by

ζ0(x, r) =
∫

(r,R]

s−1dsM0(x, s) −
∫

(r,R]

s−1M ′
0,s(x, s)ds,

M0(x, s) =
∫

B(x,s)

n ⊗ n : dE(y), M1(x, s) =
∫

B(x,s)

dµ(y) .
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Proof. By abuse of notation we write simply ζ0(r), Mi(r) for ζ0(x, r) and Mi(x, r),
respectively. Select positive s < r and δ < R − s such that µ(∂B(x, s + δ)) = 0 and
M ′

j (s) < ∞, j = 0, 1. Choose also a sequence of smooth functions hk satisfying the
conditions

hk(t) = 1 for t ≤ s, hk(t) = 0 for t ≥ s + δ = 0, −2/δ ≤ h′
k ≤ 0,

h′
k(t) → −1/δ as k → ∞ for each t ∈ (s, s + δ).

Substituting the vector-valued function ϕ(y) = hk(|y − x|)(y − x) into (2.1) we derive
the identity

∫

B(x,s+δ)

hk(|y − x|)(dµ(y) − Tr dy) +
∫

B(x,s)

hk(|y − x|)(y − x) · g(y)dy

+
∫

s<|y−x|<s+δ

h′
k(|y − x|)|y − x|n ⊗ n : (dE(y) − (y)dy) = 0 .

Passing to the limit as k → ∞ and noting that

lim
k→∞

h′
k(|y − x|)n ⊗ n = −δ−1n ⊗ n

everywhere in the annulus s < |y − x| < s + δ we arrive at the equality

M1(s) − s

δ

(
M0(s + δ) − M0(s)

)
=

∫

B(x,s)

(Tr  − (y − x)g(y))dy

− s

δ

∫

B(x,s+δ)\B(x,s)

n ⊗ n : dy + � ,

where

|�| ≤ 1

δ

∫

s<|y−x|<s+δ

(|y − x| − s)n ⊗ n : dE(y)

+
∫

s<|y−x|<s+δ

(dµ(y) + |Tr |dy + |y − x||g(y)|dy) → 0 as δ → 0.

Letting δ → 0 we obtain that for almost every s ∈ (0, R],

M1(s) − sM ′
0(s) =

∫

B(x,s)

Tr dy − s

∫

∂B(x,s)

n ⊗ n : dS −
∫

B(x,s)

(y − x) · g(y)dy.

Multiplying both sides by s−2 and integrating the result over the interval (r, R] we
arrive at

∫

(r,R]

(
M1(s)

s2 − M ′
0(s)

s

)

ds = 1

r

∫

B(x,r)

Tr dy

− 1

R

∫

B(x,R)

Tr dy + S(x, r, R) −
∫

B(x,R)

kr,R(y − x)dg(y). (2.6)
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It is easy to see that

∫

(r,R]

(
s−2M1(s) − s−1M ′

0(s)
)
ds =

∫

(r,R]

s−2M1(s)ds −
∫

(r,R]

s−1dM1(s)

+
∫

(r,R]

s−1d(M1(s) − M0(s)) + ζ0(x, r), (2.7)

where dMi are the Stieltjes measures generated by the monotone functions Mi , i = 0, 1.
Integrating by parts the Stieltjes integral in the right-hand side of (2.7) gives

∫

(r,R]

s−2M1(s)ds −
∫

(r,R]

s−1dM1(s) = 1

r

∫

B(x,r)

dµ(y) − 1

R

∫

B(x,R)

dµ(y). (2.8)

On the other hand, Fubini’s theorem yields the identity

∫

(r,R]

s−1d(M1(s) − M0(s)) =
∫

r≤|x−y|≤R

1

|x − y| (dµ(y) − n ⊗ n : dE(y)). (2.9)

Combining (2.6)–(2.9) we obtain (2.5) and the lemma follows. ��

We are now in a position to complete the proof of Proposition 1. Since |S(x, r, R)| ≤∫
B(x,r)

|x − y|−1|(y)|dy, the Hölder inequality implies

1

s

∫

B(x,s)

|Tr (1)|dy ≤ cs2−3/q‖(1)‖Lq(�) ,

1

s

∫

B(x,s)

|Tr (2)|dy ≤ c‖(2)‖L3/2(�) ,

|S(1)(x, r, R)| ≤ cR2−3/q‖(1)‖Lq(�) ,

which along with (2.5) yields (2.3). Proceeding towards the representation (2.4) we set

ζ(x, r) = −
∫

r≤|x−y|≤R

1

|x − y| (dµ(y) − n ⊗ n : dE(y)) − ζ0(x, r)

−M1(R)

R
+

∫

B(x,R)

K(y − x) : dy − 1

R

∫

B(x,R)

(y − x) · g(y)dy,

ψ(x, r) = 1

r

∫

B(x,r)

Tr dy −
∫

B(x,r)

K(x − y) : dy

+
∫

B(x,r)

(
1

r
− 1

|x − y|
)

(y − x) · g(y)dy,
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where K(y − x) = |x − y|−1(I − n ⊗ n). It remains to note that since |K(x)| ≤ c|x|−1,

|ψ(x, r)| ≤ c

∫

B(x,r)

|(1)|dy

|y − x| +
∣
∣
∣

∫

B(x,r)

K(x − y)(2)dy

∣
∣
∣+ 1

r

∫

B(x,r)

| Tr (2)|dy

+
∫

B(x,r)

|g|(y)dy ≤ c‖(1)‖Lq(�)r
2−3/q

+ sup
x∈K

∫

B(x,r)

|g|(y)dy + CK = �(r) + CK,

and the proposition follows.
We apply Proposition 1 to obtain estimates for the solutions to Eqs. (1.11). It is easy

to see that, under the assumptions of Theorem 1, the measures dEε = (�εuε ⊗ uε +
p(�ε)I)dy and dµε = (�ε|uε|2 + 3p(�ε))dy meet all requirements of Proposition 1
which implies the following result.

Proposition 2. Under the assumptions of Theorem 1 for any R > 0 there exists a con-
stant c, which does not depend on ε, such that

1

r

∫

B(x,r)

dµε + lim
s→0

∫

s≤|x−y|≤R

�ε|ut
ε|2 + 2p(�ε)

|x − y| dy ≤ c, (2.10)

1

r

∫

B(x,r)

dµε =
∫

B(x,r)

�ε|ut
ε|2 + 2p(�ε)

|y − x| dy + ψε(x, r), (2.11)

for all r ∈ (0, R], where ut = u − (u · n)n. The remainder is bounded |ψε| ≤ �(r) +
cξε(R), where ξε(R) defined by (1.9) and

�(r) ≤ cr2−3/q + sup
x∈�

sup
ε>0

∫

B(x,r)∩�

|gε|dy → 0 as r → 0. (2.12)

Proof. Inequality (2.10) obviously follows from the assumptions of Theorem 1 and
Proposition 1. Fix an arbitrary s < r < R, R = dist (x, ∂�). Substituting Eε, µε, ε,
and gε into the identity (2.5), noting that ζ0 = 0 for ε > 0, replacing r by s and R by r

in the resulting equation we obtain

1

r

∫

B(x,r)

dµε = 1

s

∫

B(x,s)

dµε +
∫

s ≤ |x−y| ≤ r

1

|x − y|
(
�ε|ut

ε|2 + 2p(�ε)
)
dy

+A1(x, s, r) + A2(x, s, r) + a(x, s, r), (2.13)

where

Ai(x, s, r) = 1

r

∫

B(x,r)

Tr (i)dy − −1

s

∫

B(x,s)

Tr (i)
ε dy − S(i)

ε (x, s, r),

a(x, s, r) =
∫

B(x,r)

ks,rgεdy.
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It follows from (1.7), (1.9), and (1.10) that

|A1(x, s, r) + a(x, s, r)| ≤ �(r), |A2(x, s, r)| ≤ ξε(R).

Letting s → 0 in (2.13) and noting that, by hypothesis of Theorem 1,

lim
s→0

s−1
∫

B(x,s)

dµε = 0 for x ∈ �

we obtain identity (2.11) and the proposition follows. ��

3. Embedding Theorem

The objective of this section is to investigate the inequalities that allow the weighted
L2(�, �dx) norm of a function to be estimated by the L2 norm of its partial derivatives.

Let � ⊂ R
3 be a bounded domain and µ be a finite non-negative Radon measure

in �. Without loss of generality we can assume that the measure µ is extended by 0
outside of �. Denote by µK a compactly supported, finite Radon measure in R

3 such
that µK(E) = µ(E ∩ K) for every Borel set E.

V. Maz’ja established, cf. [21, 22], that the embedding H 1,2(�) ↪→ L2(�, dµ) is
continuous if and only if µ(E) ≤ c cap (E) for all Borel sets E ⊂ �. On the other hand,
D. Adams, cf. [1, 2], proved that the embedding is continuous if ‖(−�)1/2µK‖2

L2(R3)
≤

cµ(K) for each compact K ⊂ R
3. Note that formally we have

‖(−�)1/2µK‖2
L2(R3)

= −
∫

R3
(�−1µK)dµK ≤ sup

R3
|�−1µK |µ(K).

Hence one can expect that the boundedness of the potential −�−1µ provides the con-
tinuity of the embedding. In this section we develop these arguments and present a
simple condition, sufficient to guarantee that the embedding H 1,2(�) ↪→ L2(�, dµ) is
continuous and compact.

Theorem 4. Suppose that for some compact K � � and t ∈ (0, dist(K, ∂�)),

ω(t) = sup
x∈K

∫

B(x,t)∩K

|x − y|−1dµ(y) < ∞.

Then there exists a constant c0 depending only on � such that for all v ∈ H
1,2
0 (�),

∫

K

|v(y)|2dµ(y) ≤ c0
(
ω(t)‖v‖2

H 1,2(�) + ‖v‖2
L1(�)(1 + t−3)2). (3.1)

The proof relies on the following lemmas. Introduce the quadratic form L : H
1,2
0 	→ R

defined by L(v) = ω(t)‖∇v‖2
L2(�)

+ (1 + t−3)2‖v‖2
L1(�)

and set

CapL(E) := inf{L(v) : v ∈ C∞
0 (�) and v(x) ≥ 1 for all x ∈ E}.

Lemma 2. Under the assumptions of Theorem 4 there is a constant c1 depending only
on � such that µK(E) ≤ c1CapL(E) for all Borel sets E ⊂ �.
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Proof. Recall that for any v ∈ H
1,2
0 (�),

v(x) = 1

4π

∫

�

x − y

|x − y|3 · ∇v(y)dy in � and v(x) = 0 outside of �.

Choose a decreasing function η ∈ C∞(R) such that η(s) = 0 for s < t/8, η(s) = 1 for
s > t/4, and η′(s) < 16/t . Now rewrite the last identity in the form

v(x) = 1

4π

∫

�

(
1 − η(|x − y|)

) x − y

|x − y|3 · ∇v(y)dy

+ 1

4π

∫

�

η(|x − y|) x − y

|x − y|3 · ∇v(y)dy

≡ I1(x) + I2(x). (3.2)

It is easy to see that
∫

E

|I1(x)|dµK(x) ≤ c

∫

E∩K

g1 ∗ |∇v|(x)dµ(x)

= c

∫

�

|∇v|(x)






∫

K∩E

g1(y − x)dµ(y)





dx

≤ c‖∇v‖L2(�)

{∫

�

{ ∫

K∩E

g1(y − x)dµ(y)
}2

dx
}1/2

,

where g1(x) = |x|−2 for |x| ≤ t/4 and g1(x) = 0 otherwise. Since the function
g1 ∗ g1(x) ≤ c|x|−1 vanishes for |x| ≥ t , we have

{ ∫

K∩E

g1(y − x)dµ(y)
}2 =

∫

K∩E

{ ∫

K∩E

g1 ∗ g1(y − x)dµ(y)
}
dµ(x)

≤ c

∫

K∩E

{ ∫

{|x−y| ≤ t}∩K

|x − y|−1dµ(y)
}
dµ(x) ≤ cω(t)µ(E ∩ K),

which yields the inequality
∫

E

|I1(x)|dµK(x) ≤ c‖∇v‖L2(�)

√
ω(t)

√
µK(E). (3.3)

On the other hand, since the function η(|y|)|y|−3y is smooth and the norm of its gradient
is bounded by c(1 + t−3), we have |I2| ≤ c(1 + t−3)‖v‖L1(�). Thus, we get

∫

E

|I2(x)|dµK(x) ≤ c(1 + t−3)‖v‖L1(�)µK(E) ≤ c(1 + t−3)‖v‖L1(�)

√
µK(E). (3.4)
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Combining (3.3) and (3.4) we conclude that for every Borel set E ⊂ � and for all
functions v ∈ H

1,2
0 (�),

∫

E

|v|dµK ≤ c
√

L(v)µK(E). (3.5)

If v ≥ 1 on a Borel set E, then we have

µK(E) ≤
∫

E

|v|dµK(x) ≤ c
√

L(v)
√

µK(E),

and the lemma follows. ��
The next lemma is a version of a well-known Maz’ja result, see [22].

Lemma 3. There exists a positive constant c, which depends only on � and does not
depend on t , such that the inequality

∞∫

0

CapL(Nt )dt2 ≤ cω(t)‖∇v‖2
L2(�)

dx + c(1 + t−3)2(1 + ‖v‖L1(�)‖v‖2
L2(�)

) (3.6)

holds for every function v ∈ C∞
0 (�). Here Nt = {x ∈ � : |v(x)| ≥ t}.

Proof. The proof imitates the Maz’ja proof. We start with the observation that since
CapL(Nt ) decreases in t ,

∞∫

0

CapL(Nt )dt2 ≤ 3
j=∞∑

j=−∞
22j CapL(N2j ). (3.7)

Now choose a non-decreasing function η ∈ C∞(R) such that η(s) = 0 for s ≤ 0,
η(s) = 1 for s ≥ 1 and η′(s) ≤ 2 for all s. Set vj = η(21−j |v(x)|−1). Note that vj = 0
when |v(x)| < 2j−1 and vj (x) = 1 when |v(x)| ≥ 2j . Using vj as a test function we
get the inequality

CapL(N2j ) ≤ ω(t)

∫

N2j−1\N2j

|∇vj |2dx + c(1 + t−3)2
( ∫

N2j−1

|vj |dx
)2

. (3.8)

Obviously |∇vj | ≤ 22−j |∇v|. Moreover, if j ≥ 0 and x ∈ N2j−1 , then we have
|vj (x)| ≤ 21−j |v(x)|. It follows from this and (3.8) that

CapL(N2j ) ≤ 24−2j ω(t)

∫

N2j−1\N2j

|∇v|2dx + c(1 + t−3)2 for j ≤ 0 ,

CapL(N2j ) ≤ 24−2j cω(t)

∫

N2j−1\N2j

|∇v|2 + 22−2j c(1 + t−3)2
( ∫

N2j−1

|v|dx
)2

for j ≥ 0 .
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Substituting these inequalities into (3.7) we obtain

∞∫

0

CapL(Nt )dt2 ≤ cω(t)

∫

�

|∇v|2dx + c(1 + t−3)2
∑

j≥0

( ∫

N2j−1

|v|dx
)2

. (3.9)

Obviously we have

( ∫

N2j−1

|v|dx
)2 ≤ meas

(
N2j−1

)
∫

�

|v|2dx, and meas
(
N2j−1

) ≤ 21−j

∫

�

|v|dx,

which implies

( ∫

N2j−1

|v|dx
)2 ≤ 21−j‖v‖2

L2(�)
‖v‖L1(�).

Combining this inequality with (3.9) gives (3.6) and the lemma follows. ��
We are now in a position to complete the proof of Theorem 4. It suffices to prove

inequality (3.1) for functions v ∈ C∞
0 (�) normalized by the condition ‖v‖L2(�) = 1.

Since by Lemma 2, µK(E) ≤ cCapL(E) for every compact K � �, we have

∫

K

|v|2dµ(x) ≡
∞∫

0

µK(Nt)dt2 ≤ c

∞∫

0

CapL(Nt )dt2.

Estimating the right side of this inequality, by an application of (3.6) from Lemma 3
and noting that ‖v‖L2(�) = 1, ‖v‖L1(�) ≤ √

meas(�) ≤ c, we obtain (3.1), which
completes the proof.

4. Proof of Theorem 1 for γ >1

We start with the observation that, by Proposition 2, for any compact �′ � �,

sup
x∈�′

∫

�

|x − y|−1pε(y)dy ≤ C(�′).

From this, in view of the identity pε = �
γ
ε , and by an application of Theorem 4 we

obtain the estimate

‖�γ
ε |uε|2‖L1(�′) ≤ c(�′),

which along with the energy estimate (1.4a) and the embedding H
1,2
0 (�) ↪→ L6(�)

gives
∫

�′

(�ε|uε|2)1+κdx ≤
(∫

�′

�γ
ε |uε|2dx

)(1+κ)/γ (
∫

�′

|uε|6dx
)(γ −κ−1)/γ ≤ C(�′).
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Here κ = 2(γ −1)/(2+γ ). On the other hand, Eq. (1.11) obviously yields, for r < 3/2,
the estimate

‖�γ
ε ‖Lr(�′) ≤ c(�′)‖�ε|uε|2‖Lr(�′) + ‖‖Lr(�′) + ‖g‖L1(�′) + ‖�γ

ε ‖L1(�′) .

From this, (1.4a), and the assumptions of the theorem we conclude that ‖�
γ
ε ‖L1+κ (�′) ≤ c

with c independent of ε for each κ < min{3/2, 2(γ −1)/(2+γ )}. It remains to note that
since �ε → � weakly in Lγ (�), uε → u a.e. in �, and the sequence �ε|un|2 is bounded
in L1+κ(�′), the sequence �εuε ⊗ uε converges to �u ⊗ u weakly in L1+κ(�′)9.

5. Proof of Theorem 1 for γ =1

The proof of Theorem 1 for γ = 1 is more delicate. We split the proof into two steps.
First, we define the concentration set and show that either it is empty or its Hausdorff
dimension is equal to 1.

Concentration set. Let us consider the sequences (�ε, uε) and ε, gε satisfying the
hypothesis of Theorem 1. Recall that �ε → � weakly in L1(�), and �εuε,iuε,j are
uniformly bounded in L1(�). After passing to a subsequence we can assume that there
exists a 3 × 3 matrix-valued Radon measure E such that �εuε ⊗ uε + �εI → E star
weakly in the space of Radon measures on �. Obviously the measure E and its trace µ

meet all requirements of Proposition 1 with (1) =  ∈ Lq(�), (2) = 0, g = �F, and
CK=0. It follows from Proposition 1 that r−1µ(B(x, r)) = ζ(x, r) + ψ(x, r), where
ζ(x, r) increases in r and |ψ(x, r)| ≤ �(r) → 0 as r → 0. Hence the Borel function
θ(x) := lim

r→0
r−1µ(B(x, r)) is well-defined and bounded on every compact subset of �.

Split � into two disjoint parts �reg and �sing given by

�reg = {x : x ∈ �, θ(x) = 0}, �sing = {x : x ∈ �, θ(x) > 0}. (5.1)

The following theorem shows that �sing is a concentration set for the sequence
�εuε ⊗ uε.

Theorem 5. Under the assumptions of Theorem 1, for every matrix-valued function
ϕ ∈ C0(�)9 we have

∫

�

ϕ : dE := lim
ε→0

∫

�

�ε(uε ⊗ uε + I) : ϕdy

=
∫

�reg

�(u ⊗ u + I) : ϕdy +
∫

�sing

ϕ : dE . (5.2)

We divide the proof into a sequence of lemmas. In the sequel the notation Kδ =
{x| dist(x, K) ≤ δ} stands for the compact δ-vicinity of a compact K � �.

Lemma 4. If a compact K ⊂ �reg , then for any η > 0 there exist positive δ(η) and
c(η) such that the inequality

∫

Kδ

�ε|v|2 ≤ η‖v‖2
H 1,2(�)

+ c(η)‖v‖2
L2(�)

(5.3)

holds for all v ∈ H 1,2(�) and for any δ ≤ δ(η). Here the constants δ(η), c(η) depend
on K , η and do not depend on ε and v.
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Proof. First we show that there exist positive δ(η) and t (η) such that

sup
x∈Kδ(η)

sup
ε

∫

|y−x|<t(η)

|y − x|−1�ε(y)dy ≤ η. (5.4)

If the assertion is false, then there are k > 0 and sequences xε ∈ �, tε > 0, such that

lim
ε→0

dist (xε, K) = lim
ε→0

tε = 0 and
∫

|y−x|< tε

|x − y|−1�ε(y)dy ≥ k.

Set dµε(x) = �ε(|uε|2 + 3)dx, R = 2−1dist (K, ∂�), and recall that, by Proposition 2,
∫

B(x,tε)

|y − x|−1�ε(y)dy ≤ 1

tε

∫

B(xε,tε)

dµε(y)

−ψε(xε, tε), where |ψε(x, t)| ≤ �(t) + ξε(R).

Since, by (1.9) and (2.12), �(tε)+ ξε(R) → 0 for ε ↘ 0, the inequality µε(B(xε, tε) >

tεk/2 holds for all sufficiently small ε. After passing to a subsequence we can assume
that xε converge to some x ∈ K as ε → 0, and hence

1

2tε

∫

B(x,2tε)

dµε(y) > k/4 > 0 for all sufficiently small ε. (5.5)

On the other hand, Proposition 2 implies the representation µε(B(x, t)) = tζε(x, t) +
tψε(x, t), in which the function ζε is non-decreasing in t . From this and (5.5) we con-
clude that for all t > 2tε,

k

4
<

1

2tε

∫

B(x,2tε)

dµε(y) ≤ 1

t

∫

B(x,t)

dµε(y) + �(t) + �(2t) + 2ξε(R).

Note that µε(B(x, t)) → µ(B(x, t)) for almost every positive t . Letting ε → 0 in
the last inequality and noting that ξε → 0 by Proposition 2, we conclude that k ≤
4t−1µ(B(x, t)) + 4�(t) + 4�(2t) for almost every positive t . Therefore, θ(x) ≥ k/4
which contradicts to the inclusion x ∈ �reg , and the assertion follows. Now inequality
(5.4) implies that the measures dµε = �εdx satisfy the hypothesis of Theorem 4 with
K = Kδ(η), t = t (η), and ω(t) = η. Applying this theorem we obtain (5.3) which
completes the proof. ��

Lemma 5. For any compact K � �, ϕ ∈ C(�), and f, g ∈ H
1,2
0 (�),

lim
ε→0

∫

K

ϕ(�ε − �)fgdx = 0.

Proof. Fix δ > 0 and choose f̄ , ḡ ∈ C∞
0 (�) such that

‖f − f̄ ‖H 1,2(�) + ‖g − ḡ‖H 1,2(�) < δ.
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Since the Newtonian potentials of � and �ε are uniformly bounded on K , Theorem 4
yields the inequality

∫

K

(�ε + �)|u||v|dx ≤ c‖v‖H 1,2(�)‖u‖H 1,2(�) for all u, v ∈ H
1,2
0 (�).

From this we conclude that

lim sup
ε→0

∣
∣
∣

∫

K

ϕ(�ε − �)fgdx

∣
∣
∣ ≤ lim sup

ε→0

∣
∣
∣

∫

K

ϕ(�ε − �)f̄ ḡdx

∣
∣
∣

+c(ϕ) lim sup
ε→0

∫

K

(�ε + �)(|g||f − f̄ | + |f̄ ||g − ḡ|)dx

≤ cδ(‖f ‖H 1,2(�) + ‖g‖H 1,2(�)) → 0 as δ → 0 ,

which proves the lemma. ��
Lemma 6. Under the assumptions of Theorem 5 for any η > 0, a compact K � �, and
ϕ ∈ C(�), there exists δ(η) > 0 such that

lim sup
ε→0

∣
∣
∣

∫

Kδ

ϕ�ε(|uε|2 − |u|2)dx

∣
∣
∣ ≤ η for all δ ≤ δ(η). (5.6)

Proof. Note that for every � ≥ 0,
∣
∣
∣

∫

K�

ϕ�ε(|uε|2 − |u|2)dx

∣
∣
∣ ≤ c(ϕ)

(
1√
η

∫

K�

�ε|uε − u|2dx + √
η

∫

K�

�ε|uε + u|2dx

)

≤ c
√

η + c
1√
η

∫

K�

�ε|uε − u|2dx, (5.7)

where the constant c depends on ϕ and K . Set � = δ(η), where δ(η) is defined in
Lemma 4. Inequality (5.3) now implies

∫

Kδ(η)

�ε|uε − u|2 ≤ η‖uε − u‖2
H 1,2(�)

+ c(η)‖uε − u‖2
L2(�)

.

Substituting this estimate into (5.7) we finally obtain

lim sup
ε→0

∣
∣
∣
∣
∣
∣
∣

∫

Kδ(η)

ϕ�ε(|uε|2 − |u|2)dx

∣
∣
∣
∣
∣
∣
∣

≤ c
√

η + lim sup
ε→0

c(η)√
η

‖uε − u‖2
L2(�)

= c
√

η,

which completes the proof. ��
Lemma 7. The equality

∫

K

ϕdµ =
∫

K

ϕ(|u|2 + 3)�dy (5.8)

holds for all compacts K ⊂ �reg and all functions ϕ ∈ C0(�).
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Proof. It suffices to prove the lemma for ϕ ≥ 0. Choose an arbitrary non-negative
ϕ ∈ C0(�). In this case Lemma 6 implies the inequalities

∫

Kδ(η)

ϕ(|u|2 + 3)�dy − η ≤ lim inf
ε→0

∫

Kδ(η)

ϕ(|uε|2 + 3)�εdy

≤ lim sup
ε→0

∫

Kδ(η)

ϕ(|uε|2 + 3)�εdy ≤
∫

Kδ(η)

ϕ(|u|2 + 3)�dy + η . (5.9)

On the other hand, since �ε(|uε|2 + 3) converges star weakly to µ in the space of the
Radon measures on � and Kδ(η) is a compact, we have

∫

int(Kδ(η))

ϕdµ ≤ lim inf
ε→0

∫

int(Kδ(η))

ϕ(|uε|2 + 3)�εdy

≤ lim sup
ε→0

∫

Kδ(η)

ϕ(|uε|2 + 3)�εdy ≤
∫

Kδ(η)

ϕdµ .

From this and (5.9) we conclude that
∫

int(Kδ(η))

ϕdµ ≤
∫

Kδ(η)

ϕ(|u|2 + 3)�dy + η and
∫

Kδ(η)

ϕdµ ≥
∫

Kδ(η)

ϕ(|u|2 + 3)�dy − η.

(5.10)

Since ∩η>0int(Kδ(η)) = ∩η>0Kδ(η) = K , we have

lim
η→0

∫

int(Kδ(η))

ϕdµ = lim
η→0

∫

Kδ(η)

ϕdµ =
∫

K

ϕdµ.

Passing to the limit in (5.10) as η → 0 we obtain (5.8), which completes the proof. ��
Lemma 8. The inequality

∫

K

(�u ⊗ u + �I) : ϕ ⊗ ϕdx ≤
∫

K

ϕ ⊗ ϕ : dE (5.11)

holds for every compact set K � � and all vector-valued functions ϕ ∈ C0(�)3.

Proof. Recall that the sequence uε converges to u almost everywhere in �. By
Egoroff’s theorem, there exists a sequence of measurable sets Ak ⊂ K such that uε → u
uniformly on each Ak and meas (K \ Ak) → 0 as k → ∞. Lemma 5 and weak L1

convergence of �ε to � imply the relations

lim
ε→0

∫

K

(�ε − �)u ⊗ u : ϕ ⊗ ϕdy = 0, lim
ε→0

∫

Ak

�ε(uε ⊗ uε − u ⊗ u) : ϕ ⊗ ϕdy = 0,
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which along with the inequality uε ⊗ uε : ϕ ⊗ ϕ ≥ 0 yields

lim sup
ε→0

∫

K

(�εuε ⊗ uε + �εI) : ϕ ⊗ ϕdy −
∫

K

(�u ⊗ u + �I) : ϕ ⊗ ϕdy

= lim sup
ε→0

∫

K\Ak

�ε(uε ⊗ uε − u ⊗ u) : ϕ ⊗ ϕdy ≥ −
∫

K\Ak

�u ⊗ u : ϕ ⊗ ϕdy.

(5.12)

Since �|u|2 belongs to L1(�), the last term tends to 0 as k → ∞, which implies

lim sup
ε→0

∫

K

(�εuε ⊗ uε + �εI) : ϕ ⊗ ϕdy −
∫

K

(�u ⊗ u + �I) : ϕ ⊗ ϕdy ≥ 0. (5.13)

Since the non-negative L1-functions (�εuε ⊗ uε + �εI) : ϕ ⊗ ϕ converge to ϕ ⊗ ϕ : E
star weakly in the space of Radon measures on �, we have

lim sup
ε→0

∫

K

(�εuε ⊗ uε + 3�εI) : ϕ ⊗ ϕdy ≤
∫

K

ϕ ⊗ ϕ : dE,

which along with (5.13) gives (5.11), and the lemma follows. ��
We are now in a position to complete the proof of Theorem 5. Choose an arbitrary

compact K ⊂ �reg , a non-negative function h ∈ C0(�), and a vector ξ ∈ R
3. Set

ϕ(x) = √
h(x)ξ . Applying Lemma 8 we get the inequality

Bξ · ξ ≡
∫

K

ϕ ⊗ ϕ : dE −
∫

K

(�u ⊗ u + �I) : ϕ ⊗ ϕdx ≥ 0,

where the symmetric matrix B is given by

B =
∫

K

hdE −
∫

K

h(�u ⊗ u + �I)dx .

By Lemma 7, TrB = 0, which implies B = 0. Hence the equality
∫

K

h(�uiuj + �δi,j )dx =
∫

K

hdEi,j (5.14)

holds for all h ∈ C0(�). Next, choose an increasing sequence {Km}m≥1 of compact
subsets of � such that µ

(
�reg \ ∪Km

) = meas
(
�reg \ ∪Km

) = 0. From (5.14) we
conclude that for every matrix-valued function ϕ ∈ C0(�)9,

∫

�reg

ϕ : dE = lim
m→∞

∫

Km

ϕ : dE = lim
m→∞

∫

Km

ϕ : (�u ⊗ u + �I)dx

=
∫

�reg

ϕ : (�u ⊗ u + �I)dx ,

and the theorem follows.
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Rectifiability of concentration set. In this paragraph we show that the set �sing is count-
ably H1 rectifiable, and investigate in more details the structure of the measure E . Recall
some basic facts from geometric measure theory which will be used throughout this
section, cf. [11, 4].

Let µ be a non-negative Radon measure in � and a ∈ �. Then VarTan (µ, a) is a set
of those Radon measures υ on R

3 for which there is a sequence {εi}i≥1 of positive real
numbers such that lim

i→∞
εi = 0 and

∫

R3

ϕdυ = lim
i→∞

εi
−1
∫

�

ϕ
(
εi

−1(x − a)
)

dµ. (5.15)

If there exists θ(a) = lim
r→0

r−1µ(B(a, r)) < ∞, then VarTan (µ, a) is non-empty, and

υ(B(0, r)) = rυ(B(0, 1)) = rθ(a) for every member υ ofVarTan (µ, a). The tangential
cone to a measure µ at the point a is the set

Tan (µ, a) =
⋂

A
{Tan (A, a) : A ⊂ � and lim

r→0
r−1µ((� \ A) ∩ B(a, r)) = 0} ,

where for a subset A ⊂ � the notation Tan (A, a) stands for the cone

Tan (A, a) = {v ∈ R
3 : ∀ε > 0 ∃x ∈ A, r ∈ (0, R)

such that |x − a| < ε and |r(x − a) − v| < ε} .

If 0 < θ(a) < ∞ and VarTan (µ, a) consists of the only element υ = 2−1θ(a)H1�T
concentrated on a one-dimensional subspace T ⊂ R

3, then Tan (µ, a) = T . The fol-
lowing rectifiability result, cf. [4] Sect. 2.8, is a straightforward consequence of the
definitions.

Proposition 3. Suppose that µ is a non-negative Radon measure in � with θ(x) ∈ R

for each x ∈ �, and Tan (µ, x) is a one-dimensional subspace of R
3 for µ-almost

every x ∈ �sing = {x : 0 < θ(x) < ∞}. Then every compact subset of �sing is
(H1, 1)-rectifiable and

∫

�sing

f (x)dµ(x) = 1

2

∫

�sing

f (x)θ(x)dH1(x) for all f ∈ C0(�).

The main result of this section is the following theorem.

Theorem 6. Under the assumptions of Theorem 1,

(i) every compact subset of �sing is (H1, 1)-rectifiable;
(ii) for µ-almost every x ∈ �sing there is s(x) ∈ S

2 such that Tan (µ, x) = span {s(x)};
(iii) the measure E has the representation

∫

�sing

ϕ(x) : dE(x) = 1

2

∫

�sing

ϕ(x) : s(x) ⊗ s(x)θ(x)dH1(x) (5.16)

for all ϕ ∈ C0(�)9.

Proof. We start with the observation that the components of measure E are absolutely
continuous with respect to µ which implies the representation
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∫

�sing

ψ(x)dE(x) =
∫

�sing

ψ(x)M(x)dµ(x) for all ψ ∈ C0(�)9. (5.17)

Here the matrix-valued function M ∈ L1(�sing, µ)9 is non-negative and TrM(x) = 1
µ-almost everywhere in �sing . Note also that

lim
r→0

1

r

∫

B(a,r)

|M(a)−M(x)|dµ(x)= lim
r→0

1

µ(B(a, r))

∫

B(a,r)

|M(a) − M(x)|dµ(x) = 0

(5.18)

for µ-almost every a ∈ �sing . Next, represent the concentration set in the form �sing =⋃
k≥1 �k , �k = {x : 1/k < θ(x) < k}. The estimates from the geometric measure

theory imply that 1/(2k)H1(A) ≤ µ(A) ≤ kH1(A) for any Borel set A ⊂ �k . Hence,
µ(A) = 0 for every set A of zero H1-measure, and the measure µ is absolutely contin-
uous with respect to the one-dimensional Hausdorff measure. Next recall, cf. [26], that
for any function f ∈ L1(�), there is a set E of zero H1-measure such that

lim
r→0

1

r

∫

B(a,r)

|f (x)|dx = 0

everywhere in � possibly except of the set E. Since µ is absolutely continuous with
respect to the Hausdorff H1, this relation holds true for µ-almost every a ∈ �. In
particular, the equalities

lim
r→0

1

r

∫

B(a,r)

�|u|2dx = lim
r→0

1

r

∫

B(a,r)

�dx

= lim
r→0

1

r

∫

B(a,r)

||dx = lim
r→0

1

r

∫

B(a,r)

|g|dx = 0 (5.19)

holds true for µ-almost all a ∈ �. Passing to the limit in Eqs. (1.11) and using the
equalities (5.2), (5.17) we conclude that for every ϕ ∈ C1

0(�)3,
∫

�

(∇ϕ : �u ⊗ u + div ϕ�) dx+
∫

�sing

∇ϕ : M(x)dµ(x) =
∫

�

∇ϕ : dx −
∫

�

ϕ · gdx.

(5.20)

Now fix an arbitrary a ∈ �sing satisfying (5.18), (5.19) and a vector-valued function
ϕ ∈ C1

0(R3)3. Substituting ϕ(ε−1(x − a)) in (5.20) we arrive at

1

ε

∫

�sing

∇ϕ

(
x − a

ε

)

: M(a)dµ(x)

= 1

ε

∫

�sing

∇ϕ

(
x − a

ε

)

:(M(a) − M(x))dµ(x)+ 1

ε

∫

�

∇ϕ

(
x − a

ε

)

:( − �u ⊗ u) dx

−1

ε

∫

�

div ϕ

(
x − a

ε

)

�dx − 1

ε

∫

�

ϕ

(
x − a

ε

)

· gdx . (5.21)
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Note that, by (5.18) and (5.19), the right side of this equality tends to 0 as ε → 0. Choose
an element υ ∈ VarTan (µ, a) and the sequence εi satisfying (5.15). Substituting ε = εi

into (5.21) and passing to the limit we obtain
∫

R3

∇ϕ(x) : M(a)dυ(x) = 0 for all ϕ ∈ C1
0(R3)3. (5.22)

It follows from this that the matrix-valued measure M(a)υ satisfies all assumptions of
Lemma 1 with  = 0, g = 0, and � = R

3. Replacing E by M(a)υ in identity (2.5) and
noting that Tr M(a) = 1 we obtain

1

r

∫

B(0,r)

dυ +
∫

r ≤ |y|≤R

1

|y| (1 − n ⊗ n : M(a))dυ + ζ0(0, r) = 1

R

∫

B(0,R)

dυ, (5.23)

where ζ0 ≥ 0 and n = y/|y|. Since r−1υ(B(0, r)) = R−1υ(B(0, R)), we conclude
from this that

∫

r ≤ |y|≤R

1

|y| (1 − n ⊗ n : M(a))dυ = 0 for all r, R.

Therefore, |y|−y⊗y : M(a) = 0 for υ-almost every y ∈ R
3. It is possible if and only if

there exists s(a) ∈ S
2 such that M(a) = s(a) ⊗ s(a) and υ = 2−1θ(a)H1�span {s(a)}.

Hence Tan (µ, a) = span {s(a)} for µ-almost every a ∈ �sing . From this we conclude
that the measure µ satisfies the hypothesis of Proposition 3. Applying this proposition
we obtain (5.16) which completes the proof of Theorem 6. ��

We return to the proof of Theorem 1. It remains to note that the statement of
Theorem 1 for γ = 1 is an obvious consequence of Theorems 5 and 6.

6. Proof of Theorems 2 and 3

Proof of Theorem 2. In order to avoid repetitions we give only the proof for γ > 1. Fix
an arbitrary ε > 0 and consider the family of boundary-value problems, depending on
parameter t ∈ [0, 1],

(α� + √
ε�5)u + div

(
u ⊗ (t�u − ε∇�)) + t∇p(�) = t�F + div �(u) in �,

(6.1a)

α� + √
ε�5 + tdiv (�u) − ε�� = tf in �, u = 0, ∂n� = 0 on ∂�. (6.1b)

We begin with proving a priori estimates for solution to problem (6.1). Multiplying both
sides of Eqs. (6.1a) and (6.1b) by γ −1

γ
u and �γ −1, respectively, integrating over �, and

combining the obtained results we arrive at the identity

γ − 1

γ

∫

�

(
|∇u|2 + (1 + ν)|div u|2 + �|u2|

2
(α + √

ε�4)
)
dx

+
∫

�

(
α�γ + √

ε�4+γ + ε(γ − 1)�γ −2|∇�|2
)
dx

=
∫

�

(
t
γ − 1

γ
�Fu + f (�γ −1 − |u|2

2
)
)
dx ,
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which holds true for every smooth solution (�, u), with a positive density �, to problem
(6.1). Noting that for ν > −2,

∫

�

(
|∇u|2 + (1 + ν)|div u|2

)
dx ≥ c(ν)

∫

�

|∇u|2dx, where c(ν) > 0,

we obtain the estimates

‖�‖Lγ (�) + ‖u‖H 1,2(�) + ‖�|u|2‖L1(�) ≤ c, (6.2)

ε1/2‖�4+γ ‖L1(�) + ε1/2‖�5|u|2‖L1(�) + ε‖(1 + �)2−γ |∇�|2‖L1(�) ≤ c (6.3)

with a constant c independent of t and ε. Next, multiplying both sides of (6.1b) by√
ε�m−1, 1 ≤ m ≤ 4, and integrating the result over � we obtain

∫

�

(
ε3/2(m − 1)�m−2|∇�|2 + ε1/2α�m + ε�4+m

)
dx

= √
ε

∫

�

(
�m−1f − t

m − 1

m
�mdiv u

)
dx .

Noting that

∣
∣
∣

∫

�

�m−1f dx

∣
∣
∣+
∣
∣
∣

∫

�

�mdiv udx

∣
∣
∣ ≤ c1

(∫

�

�2m
)1/2 ≤ c2

(∫

�

�4+m
)1/2 + c3,

we arrive at the inequality
∫

�

(
ε3/2(m − 1)�m−2|∇�|2 + ε1/2α�m + ε�4+m

)
dx ≤ c4

√
ε
(∫

�

�4+m
)1/2 + c5,

which with m = 2 and m = 4 gives the estimates

ε3/4‖∇�‖L2(�) + ε1/8‖�‖L8(�) ≤ c. (6.4)

Next note that (6.2)–(6.4) imply the estimates

‖�∇u‖L8/5(�) ≤ ‖∇u‖L2(�)‖�‖L8(�) ≤ cε−1/8, (6.5a)

‖|u||∇�|‖L3/2(�) ≤ ‖u‖L6(�)‖∇�‖L2(�) ≤ cε−3/4, (6.5b)

‖�u‖L24/7(�) ≤ ‖u‖L6(�)‖�‖L8(�) ≤ cε−1/8, (6.5c)

‖�5|‖L8/5(�) ≤ ‖�‖5
L8(�)

≤ cε−5/8. (6.5d)

It is easy to see that a solution to (6.1a) has the representation � = �1 + �2 in which �i

satisfy the equations

(ε� − α)�1 = tdiv (�u), (ε� − α)�2 = √
ε�5,

and the homogeneous Neumann boundary conditions. From this, in view of the embed-
dings H 1,24/7(�) ↪→ C(�), H 2,8/5(�) ↪→ C(�), and inequalities (6.5c), (6.5d), we
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conclude that � ≤ cε, where a constant cε does not depend on t . Since � is bounded
from above, Eq. (6.1a) can be rewritten in the form

�u + (1 + ν)∇div u = div G2 + G1 in �,

with the terms in the right side satisfying the inequalities |Gi | ≤ cε(1 + |u|i ), i = 1, 2.
Embedding H 1,3(�) ↪→ Lr(�), r > 1, inequality (6.2) and a priori estimates for ellip-
tic equations yield ‖u‖Lr(�) ≤ cε(r). Arguing as before we conclude that ‖u‖H 1,r (�) ≤
cε(r) for every r > 1 and hence |u| ≤ cε. Therefore, � and |u| are bounded by a constant
independent of t . From this and the results from the theory of weakly nonlinear elliptic
equations, see Theorem 13.1 in [3], we conclude that the inequality

‖(�, u)‖C2+β(�) < C∗(ε, �, ‖(f, F)‖Cβ(�), α, ν) (6.6)

holds for every solution (�, u) ∈ C1+β(�), � > 0, to problem (6.1).
To tackle the existence question we need to reformulate problem (6.1) as a nonlinear

operator equation in the form (�, u) = �t(�, u). Introduce the mapping �t : (�̂, û) 	→
(�, u) defined as a solution to the boundary-value problem

div �(u) = (α�̂ + √
ε�̂5)û + div

(
(t �̂û − ε∇�̂) ⊗ û) + t∇p(�̂) − t �̂F, (6.7a)

ε�� − α� = √
ε�̂4� + tdiv (�̂û) − f in �, u = 0, ∂n� = 0 on ∂�. (6.7b)

Obviously, the mapping (�̂, û, t) 	→ (�, u) denoted by � : C1+β(�)4 × [0, 1] 	→
C2+β(�)4 is continuous. The remaining part of the proof relies on the following lemma,
but first we recall an abstract result useful for our purposes.

The proof of Lemma 9 is based on the following result from the theory of positive
operators, cf. [18], ch.7.3.10. Let E1, E2 be Banach spaces with the cones Ki ⊂ Ei ,
i = 1, 2. A bounded operator A : E2 	→ E1 is said to be positive if AK2 ⊂ K1.

Proposition 4. Suppose that bounded operators B1, B2 : E1 	→ E2 satisfy the following
conditions:

1. The operator B1 has the bounded, positive inverse.
2. The operator B−1

1 (B1 − B2) is compact.
3. There is an element �0 ∈ Int K1 and a positive constant κ such that B2�0 ≥ κB1�0.
4. (B1 − B2)u ∈ K2 for all u ∈ K1, in other words, B1 ≥ B2.

Then the operator B2 has a positive inverse.

The following lemma is an application of the abstract result.

Lemma 9. Let � ⊂ R
3 be a bounded domain with the boundary ∂� ∈ C2+β , vector

field u ∈ C1+β(�)3 vanishes on ∂�, and a function b ∈ Cβ(�) is strictly positive in
the closure cl�. Then for any non-negative f ∈ Cβ(�) the problem

−ε�� + div (�u) + b� = f in �, ∂n� = 0 on ∂�, (6.8)

has a unique strictly positive solution � ∈ C2+β(�).

Proof. Now denote by E1 the closed subspace of C2+β(�) which consists of all functions
satisfying the homogeneous boundary Neumann condition on ∂�, and set E2 = Cβ(�).
Let Ki ⊂ Ei , i = 1, 2, be the cones of non-negative functions. Let L : E1 	→ E2 be a
linear operator defined by L� ≡ −ε�� + div (�u). Hence our task is to prove that there
exists the bounded positive operator (L + b)−1 : E2 	→ E1. We start with proving that
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the equation L�0 = 0 has a strictly positive solution �0 ∈ E1. It follows from the general
theory of boundary-value problems for the second order elliptic differential equations
[16] that for fixed k > sup

�

(|div u(x)| + b(x)) and all f ∈ E2, the Neumann problem

(L + k)� = f ∈ E2, � ∈ E1 (6.9)

has the unique non-negative solution. By the maximum principle � is non-negative if
f is non-negative. Hence the compact positive operator is defined by A = (L + k)−1 :
E2 	→ E2. We can apply the maximum principle ([16], Theorem 9.6) for (6.9), to obtain
that � does not attain the non-positive minimum in �. Hence a solution to problem (6.9)
is strictly positive inside � for all f ∈ K2 \{0}. Moreover, the solution is strictly positive
in the closure of �. In order to prove the last statement suppose, on the contrary to our
claim, that Af (x0) = 0 at some point x0 ∈ ∂�. Observe that the function � = Af ∈ E1
is positive inside � and satisfies the inequality (L+ k)� ≥ 0 in �. Furthermore, � takes
the zero value for the minimum at x0. By Lemma 3.4 in [16] the interior normal deriva-
tive of � at point x0 is strictly positive, which is in contradiction with the homogeneous
Neumann boundary condition.

Set �1 = A1, where 1 is the characteristic function of �. Since Af continuous and
strictly positive, for every f ∈ K2 \ {0} there exist positive constants α, β depending on
f such that α�1 ≤ Af ≤ β�1. Hence A : E2 	→ E2 is a compact �1-positive operator,
[17]. Classical results from the theory of positive operators, see Theorems 2.8, 2.10 and
2.13 from [17] for example, imply that A has a positive simple eigenvalue λ0 such that
the corresponding eigenfunction is strictly positive and λ0 > |λ| for any eigenvalue
λ �= λ0.

Our next task is to show that λ0 = (k)−1. We begin with observation that the operator
equation (k)−1�−A� = 1 is equivalent to the boundary-value problem L� = k, � ∈ E1,
which has no solutions. Therefore, by the Fredholm alternative, k−1 is an eigenvalue
of the operator A. Let us prove that k−1 is the maximal eigenvalue. If this assertion is
false, then there exists the positive eigenvalue λ0 > k−1. By the definition of A, the
eigenfunction �0 ∈ E1 satisfying the equation λ0�0 − A�0 = 0 is a solution to the
boundary-value problem (L + τ)�0 = 0, �0 ∈ E1, where τ = k − λ−1

0 > 0. Let us
consider the parabolic boundary-value problem

∂v

∂t
− ε�v + div (vu) = 0 in � × (0, ∞), ∇v · n = 0 on ∂� × (0, ∞) ,

v(x, 0) = v0(x) in � .

For any v0 ∈ Cβ(�) this problem has the unique smooth solution, which is positive if v0
is non-negative. Introduce the operator V (t) : v0(·) 	→ v(·, t). Obviously V (t) preserves
the order and the charge, i.e., V (t)v′

0 ≥ V (t)v0 for any v′
0 ≥ v0 and

∫
�

V (t)v0(x)dx =
∫

�
v0dx. Since for every u, v ∈ Cβ(�) the function max{u, v} ∈ Cβ(�) we can apply

the Crandall-Tartar Theorem [7] which implies that V (t) is a non-expansive operator in
the metric of L1(�). In particular, we have ‖V (t)�0‖L1(�) = ‖�0‖L1(�). On the other
hand, equation (L + τ)ρ0 = 0 implies that V (t)�0 = eτ t�0. Hence τ = 0 which gives
λ0 = k−1 and the assertion follows. Recall that �0 satisfies the equation L�0 = 0.

Therefore, the operators B1 = (L + k), B2 = (L + b) : E2 	→ E1 are continuous
and the inverse (L + k)−1 = A : E1 	→ E2 is positive. Moreover, L + k ≥ L + b and
(L + b)�0 = b�0 ≥ κk�0 = κ(L + k)�0 for some positive κ. Obviously �0 > 0 is the
interior point of the cones K1 and K2. From this we conclude that the operator L + b

has the bounded positive inverse, which completes the proof. ��
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Let us turn back to the proof of Theorem 2. Denote by J a subset of C1+β(�)4

defined by the inequalities {(�, u) : � ≥ 0, ‖(�, u)‖C1+β(�) ≤ C∗}. It follows from
Lemma 9 that every fixed point (�, u) of �t satisfies inequality (6.6). Moreover, � ∈ J
is strictly positive. Hence there are no fixed points of �t at ∂J for all t ∈ [0, 1]. On the
other hand, the mapping �0 has the unique fixed point inside J . By the Leray-Schauder
fixed point Theorem, problem (6.1) has a solution (�, u) ∈ int J . It remains to note that
estimates (1.15) follows from (6.2)–(6.5d) and the proof of Theorem 2 is completed.

Proof of Theorem 3. The proof is based on the following lemmas.

Lemma 10. Let (uε, �ε) be a sequence of solutions to problem (1.14). Then there is a
subsequence, still denoted by (uε, �ε), such that

uε →u weakly in H
1,2
0 (�), �ε → � weakly in Lγ (�), �εuε → �u weakly in L1(�),

(6.10)√
ε‖�5

ε‖L1(�) + √
ε‖�5

εuε‖L1(�) + ε‖|uε|∇�ε‖L3/2(�) → 0 as ε → 0. (6.11)

Proof. The first two convergences in (6.10) obviously follows from Theorem 2. In order
to prove the third convergence note that by Egoroff’s theorem for every η > 0 there
exists E ⊂ � such that uε → u uniformly on E, and meas(� \ E) < η which yields

lim sup
ε→0

∣
∣
∣

∫

�

h(�εuε − �u)dx

∣
∣
∣ ≤ 2‖h‖L∞(�) lim sup

ε→0

∫

E

�ε|uε|dx

≤ c lim sup
ε→0

(∫

E

�εdx
)1/2(

∫

E

�ε|uε|2dx
)1/2

≤ c lim sup
ε→0

(∫

E

�εdx
)1/2 → 0 as η → 0.

Since, by (1.15b) and (1.15e), the sequence
√

ε�5
ε ln(1 + �ε) is bounded in L1(�), we

have

lim sup
ε→0

√
ε

∫

�

�5
εdx ≤ lim sup

ε→0

√
ε

∫

�ε>N

�5
εdx

≤ ln(1 + N)−1 lim sup
ε→0

√
ε

∫

�ε>N

�5
ε ln(1 + �ε)dx

≤ c ln(1 + N)−1 → 0 as N → ∞,

which implies the convergence of the first term in (6.11). Noting that
√

ε‖�5
εuε‖L1(�) ≤ N

√
ε‖�5

ε‖L1(�) + N−1√ε‖�5
ε |uε|2‖L1(�)

≤ N
√

ε‖�5
ε‖L1(�) + cN−1

we obtain lim sup
ε→0

√
ε‖�5

εuε‖L1(�) ≤ cN−1, which gives the convergence of the second

term in (6.11). It remains to note that, by (1.15d),

ε‖|uε|∇�ε‖L3/2(�) ≤ ε‖∇�ε‖L2(�)‖uε‖L6(�) ≤ cε1/4 ,

and the lemma follows. ��
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Lemma 11. If γ = 1, then �εuε ⊗ uε → �u ⊗ u + S in D′(�), where S meets all
requirements of Theorem 1. If γ > 1 then for any �′ � �,

�ε → � weakly in Lγ (1+κ)(�′), �εuε ⊗ uε → �u ⊗ u weakly in L(1+κ)(�′).

Proof. We start with the observation that Eq. (1.14a) can be written in the form (1.11)
with the terms in the right side defined by

(1)
ε = �(uε), (2)

ε = −ε∇�ε ⊗ uε, gε = �εF − �εuε − √
ε�5

εuε. (6.12)

Hence the lemma will be proved if we show that the functions satisfy all assumptions
of Theorem 1. Since the sequence 

(1)
ε is bounded in L2(�)9, it follows from (6.10)

and (6.11) that it suffices to show that 
(2)
ε satisfy (1.9). To this end note that formulae

(1.10) and (6.12) yield the representation

S(2)
ε (x, r, R) =

R∫

r

dt

t

∫

|x−y| = t

δi�εuε,idS,

where δi = ∂i − nink∂k denotes the tangential derivatives on the sphere {y ∈ R
3 :

|x − y| = t} for a fixed x. Integrating by parts over this sphere we obtain the identity

S(2)
ε (x, r, R) = −

R∫

r

dt

t

∫

|x−y|=t

�εδiuε,idS −
R∫

r

dt

t2

∫

|x−y|=t

�εuε · ndS,

which along with (1.15c) implies the estimate

|S(2)
ε (x, r, R)| ≤ ε

∫

B(x,R)

( |�ε∇uε|
|y| + |�εuε|

|y|2
)
dy

≤ cε‖�ε∇uε‖L8/5(�) + cε‖�εuε‖L27/4(�) ≤ cε7/8 → 0 as ε → 0.

Hence 
(i)
ε and gε satisfy all conditions of Theorem 1 which completes the proof. ��

It follows from Lemma 11 that for every �′ � � the sequence pε converges weakly
in L1+κ(�′) to some function p ∈ L1(�) ∩ L1+κ

loc (�). The following theorem plays an
important role in the proof of Theorem 3.

Theorem 7. Let γ > 1. Then p = p(�).

Proof. Sections 7, 8 are devoted to the proof. ��

It remains to note that the statement of Theorem 3 is an obvious consequence of Lemmas
10, 11 and Theorem 7.
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7. Young Measures, Viscosity Flux, and Oscillations

Young measures and distribution functions. In this paragraph we give the representa-
tions of weak limits of approximate solutions via the Young measures. Let us consider
the sequence of solutions to problem (1.14). It follows from Lemma 11 that there exists a
subsequence, still denoted by (�ε, uε), which enjoys the following property. Let positive
γ and κ be given. For any continuous function G : �×Rλ 	→ R satisfying the conditions

(1 + |λ|)−γ (1+κ) sup
x∈�

|G(x, λ)| → 0 as |λ| → ∞ (7.1)

and �′ � �, the sequence G(x, �ε) converges weakly in L1(�′) to some function
G ∈ L1

loc(�). Moreover, for any continuous bounded function ϕ : R 	→ R, the func-
tions ϕ(�ε)div uε converge weakly in L2(�) to some function ϕdiv u. The Ball’s version
[5] of the fundamental theorem on Young measures implies the following result.

Lemma 12. There exists a weakly measurable family of probability measures σx ∈
C0(R)∗ with sptσx ⊂ [0, ∞) such that the equality

G =
∫

[0,∞)

G(x, λ)dσx(λ) (7.2)

holds for any function G satisfying condition (7.1). Moreover, the function

x 	→
∫

[0,∞)

λγ (1+κ)dσx(λ)

belongs to L1
loc(�). If the function G satisfy more restrictive condition (1 + |λ|)−γ

sup
x∈�

| G(x, λ)| → 0 for |λ| → ∞, then G(x, �ε) → G weakly in L1(�). In particular,

the functions p ∈ L1(�) and � ∈ Lγ (�) are given by

p(x) =
∫

[0,∞)

λγ dσx(λ), �(x) =
∫

[0,∞)

λdσx(λ). (7.3)

For technical reasons it is convenient to replace the measure σx with its distribu-
tion function �(x, λ) := σx(−∞, λ] such that the measure σx is the Stieltjes measure
dλ�(x, λ). The distribution function is measurable with respect to (x, λ) ∈ � × Rλ,
monotone and continuous from the right in λ,

�(x, λ) = 0 for λ < 0, �(x, λ) ↗ 1 as λ ↗ ∞. (7.4)

Recalling that σx is the Stieltjes measure associated with �(x, ·) we get the following
formulae:

p(x) = γ

∫

[0,∞)

λγ −1(1 − �(x, λ))dλ, �(x) =
∫

[0,∞)

(1 − �(x, λ))dλ. (7.5)

Remark 1. Relations (7.5) imply that equality �(1−�) = 0 a.e. in �×Rλ which yields
p = p(�).



Concentrations of Solutions to Time-Discretizied Compressible Navier-Stokes Equations 595

In the rest of this paragraph we consider the family of Radon measures mε on �×Rλ

defined by
∫

�×Rλ

�(x, λ)dmε(x, λ) := ε

∫

�

�(x, �ε(x))|∇�ε(x)|2dx (7.6)

for each � ∈ C0(� × Rλ). It follows from Theorem 2 that there exist a subsequence,
still denoted by {�ε}, and a Radon measure m on � × Rλ such that
∫

�×Rλ

�(x, λ)dmε(x, λ) →
∫

�×Rλ

�(x, λ)dm(x, λ) for all � ∈ C0(� × Rλ). (7.7)

Obviously m(� × (−∞, 0)) = 0. Moreover, estimates (1.15d) from Theorem 2 yield
∫

�×Rλ

(1 + |λ|)−1dm(x, λ) < ∞ . (7.8)

The effective viscosity flux. Following [19] we introduce the quantity V (�, u) = p(�)−
(2+ν)div u called the effective viscous flux. As it was shown in [19, 12, 14] the effective
viscous flux enjoys many remarkable properties. The most important is the multiplica-
tive relation ϕ(�)V = ϕ(�) V which was proved in [19] for all γ > 3/2. The simple
proof of this result, based on the new version of the compensated compactness prin-
ciple, was given in papers [12, 14]. In our case, by Lemma 11, the critical estimate
‖�ε|uε|2‖L(1+κ)(�′) ≤ c(�′) holds for every �′ � �, which leads to the following local
version of the compensated compactness result from [14].

Let us consider a function � ∈ C(� × R) such that

�(·, λ) ∈ C0(�) for all λ ∈ R
+, �(·, λ) = �∞(·) ∈ C0(�) for all λ > N > 0.

(7.9)

Lemma 13. Let (uε, �ε) be a sequence of solutions to problem (1.14) satisfying the
hypotheses of Theorem 2. Then for � ∈ C(� × R) satisfying (7.9),

∫

�

�(·, �)V (�, u)dx =
∫

�

� V dx, where V = p − (2 + ν)div u. (7.10)

Proof. We start with the observation that for every δ > 0 there exists a function

�δ(x, λ) =
n∑

k=0

hk(x)ϕk(λ), hk ∈ C∞
0 (�), ϕk ∈ C∞(R+), (7.11)

such that ϕ′
k(λ) = 0 for λ > 2N, and |�δ − �| ≤ δ. In order to construct �δ note that

there are functions ψk ∈ C∞(0, 2N) , hk ∈ C∞
0 (�), k = 1, .., n and h0 ∈ C∞

� such
that

∣
∣
∣
∣
∣
�(x, λ) − �∞(x) −

n∑

k=1

hk(x)ψk(x)

∣
∣
∣
∣
∣
≤ δ

2
, |�∞(x) − h0(x)| ≤ δ

2
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for all (x, λ) ∈ � × [0, 2N ]. Set ϕ0 = 1,

ϕk = η(λ)ψk(λ) for λ ≤ 2N, and ϕk = 0 otherwise ,1 < k ≤ n, (7.12)

where η : R 	→ [0, 1] is a smooth function satisfying the conditions

η(λ) = 1 for λ ≤ N, η(λ) = 0 for λ ≥ 2N.

It is clear that the function �δ defined by (7.11), (7.12) is the desired approximation.
Hence it suffices to prove the proposition for �(x, λ) = h(x)ϕ(λ) with h ∈ C∞

0 (�) and
ϕ ∈ C∞(R) such that ϕ′(λ) = 0 for large λ.

Denote by 1� the extension operator such that 1�u = u in � and 1�u = 0 outside
�. The adjoint operator 1∗

� assigns to every function its restriction to �. Introduce the
linear vectorial operator A and the matrix operator R with the components

Ai = 1∗
��−1∂xi

1�, Rij = 1∗
�∂xi

�−1∂xj
1�, 1 ≤ i, j ≤ 3.

Recall that the operators Rij : Lr(�) 	→ Lr(�), Ai : Lr(�) 	→ H 1,r (�) are bounded
for every r > 1. Multiplying regularized moment balance equation (1.14a) by h we
arrive at

h(α�ε + √
ε�5

ε )uε + div
{
huε ⊗ (�εuε − ε∇�ε) − �(huε) + hpεI + uε ⊗ ∇h

+∇h ⊗ uε + ν∇h · uεI
}

−
{

uε ⊗ (�εuε − ε∇�ε) − �(uε) + pεI
}
∇h = h�εF.

Next apply to both sides of this identity the operator A to obtain

A · {h(α�ε + √
ε�5

ε )uε − h�εF} + R : {huε ⊗ (�εuε − ε∇�ε) − �(huε) + hpεI

+2uε ⊗ ∇h + ν∇h · uεI} = A ·
{(

uε ⊗ (�εuε − ε∇�ε) − �(uε) + pεI
)
∇h
}
.

(7.13)

Since h is compactly supported in �, we have

R : {−�(huε) + hpεI} = hV (�ε, uε) − (2 + ν)∇h · uε,

R : ((∇h · uε)I) = ∇h · uε. (7.14)

Multiplying both sides of (7.13) by ϕε = ϕ(�ε), integrating the result over �, and using
relations (7.14) we obtain

∫

�

hϕεV (�ε, uε)dx +
∫

�

ϕε

(
Pε + Qε + R : (h�εuε ⊗ uε)

)
dx = 0, (7.15)

Pε = −2∇h · uε + 2R : (uε ⊗ ∇h)

−A · {(�εuε ⊗ uε − �(uε) + pεI)∇h + �εh(F − αuε)
}
,

Qε = A · {h√
ε�5

εuε + (εuε ⊗ ∇�ε)∇h
}− R : (εhuε ⊗ ∇�ε).

On the other hand, multiplying both sides of regularized mass balance equation (1.14b)
by hϕ′(�ε) we get

hϕ′
ε(�ε)

(
α�ε + √

ε�5
ε

)+ div (hϕεuε) + h
(
ϕ′

ε(�ε)�ε − ϕε

)
div uε − ϕε∇h · uε

= ε
[
�(hϕε) − 2∇h · ∇ϕε − ϕε�h − hϕ′′(�ε)|∇�ε|2

]
+ hϕ′(ε)f. (7.16)
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Introduce the vector field

vε = �(n)
ε uε where �(n)

ε = min{n, �}, n ≥ 1.

Applying the operator vε ·A := vε,iAi to both sides of (7.16), integrating the result over
�, and using the identities

∫

�

vε · A�(hϕε)dx =
∫

�

∇(hϕε)Rvεdx,

∫

�

vε · A(hϕ′′(�ε)|∇�ε|2)dx = −
∫

�

hϕ′′(�ε)|∇�ε|2A · vεdx

we arrive at the equality
∫

�

{
vε(Pε + Qε) − h(A · vε)Iε

}
dx +

∫

�

vεR
(
hϕεuε

)
dx = 0, (7.17)

Pε = A ·
{
αhϕ′(�ε)�ε + h(ϕ′(�ε)�ε − ϕε)div uε − ϕε∇h · uε − hϕ′(�ε)f

}
,

Qε = A · {2ε∇h∇ϕε + εϕε�h + h
√

ε�5
ε} − εR∇(hϕε),

Iε = εϕ′′(�ε)|∇�ε|2.

Combining (7.15), (7.17) and noting that
∫

�

(
vεR(hϕεuε)−ϕεR : (h�εuε ⊗ uε)

)
dx =

∫

�

(
vεiRij (hϕεuεj ) − ϕεRij (hvεiuεj )

)
dx

+
∫

�

ϕεR : [(�(n)
ε − �ε)huε ⊗ uε]dx =

∫

�

huεj

(
ϕεRij vεi − vεiRij ϕε

)
dx

+
∫

�

ϕεR : [(�(n)
ε − �ε)huε ⊗ uε]dx,

we obtain the equality
∫

�

hϕεV (�ε, uε)dx =
∫

�

(
vε(Pε+Qε) − ϕε(Pε + Qε)+Rε − h(A · vε)Iε

)
dx + �ε,

(7.18)

in which components of the vector Rε and the scalar �ε defined by

Rε,i = huε,j

(
ϕεRij vεi − vεiRij ϕε

)
, �ε =

∫

�

ϕεR : [(�(n)
ε − �ε)huε ⊗ uε]dx.

(7.19)

Recall that �εuε ⊗ uε∇h → �u ⊗ u∇h and pε∇h → p∇h weakly in L1+κ(�) as
ε → 0. Hence,

Pε → P ≡ −2∇hu + 2R : (u ⊗ ∇h) − A · {(�u ⊗ u − �(u) + pI
)∇h

+h�(F − αu)} in Lr(�) for some r > 1, (7.20)

Pε → P ≡ A · {αhϕ� + h(ϕ′� − ϕ)div u − ϕ∇h · u − ϕ′hf } in L2(�). (7.21)
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Estimates (6.11) yield

Qε → 0 in L1(�) and Qε → 0 in L2(�) as ε → 0. (7.22)

Next, the functions Iε are uniformly bounded in L1(�) and converge weakly in the space
of Radon measures C∗

0 (�) to the Radon measure Mϕ defined by

〈Mϕ, h〉 =
∫

�×[0,∞)

h(x)ϕ′′(λ)dm(x, λ),

where the measure m is given by (7.6) . Since the sequence vε converges weakly in
L6(�), the continuous functions A · vε converge uniformly in � to A · v which leads to

lim
ε→0

∫

�

h(A · vε)Iεdx = 〈Mϕ, hA · v〉. (7.23)

Since the sequences ϕε and vε are bounded in L∞(�) and L6(�), respectively, it follows
from the compensated compactness Lemma from [14] that

ϕεRij vεi − vεiRij ϕε → ϕRij vi − viRij ϕ weakly in L2(�).

Therefore, Rε converges weakly in L3/2(�) to R = {uj (ϕRij vi − viRij ϕ)}. Passing to
the limit in (7.18) and using (7.20)–(7.23) we obtain

∫

�

hϕV dx =
∫

�

(
vP − ϕP + R)dx −

∫

�

hA · vdMϕ(x) + � (7.24)

with |� | ≤ lim sup |�ε|. On the other hand, passage to the limit in equalities (7.13) and
(7.16) gives

hα� + div
{
h�u ⊗ u − �(hu) + hpI + u ⊗ ∇h + ∇h ⊗ u + ∇h · u

}

−(�u ⊗ u − �(u) + pI
)∇h = h�F, (7.25)

αhϕ′� + div (hϕu) + h(ϕ′� − ϕ)div u − ϕ∇h · u + hMϕ = ϕ′f. (7.26)

Applying to both sides of (7.25), (7.26) the operators ϕA and v · A, respectively, and
arguing as before we obtain

∫

�

hϕV dx =
∫

�

(
vP − ϕP + R

)
dx +

∫

�

hA · vdMϕ(x) + � , (7.27)

where

� =
∫

�

ϕR : [h(v − �u) ⊗ u]dx.

Combining (7.24) and (7.27) we finally obtain
∫

�

hϕV dx −
∫

�

hϕV dx = � − �. (7.28)
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By Lemma 11 the sequence h�εuε ⊗ uε converges weakly in L1+κ(�) to h�u ⊗ u;
obviously �

(n)
ε uε = vε converges weakly in L6(�) to v. From this we conclude that

|� | ≤ ‖R : [h(v − �u) ⊗ u]‖L1(�) ≤ c‖h(v − �u) ⊗ u‖L1+κ/2(�)

≤ c lim sup
ε→0

‖h(vε − �εuε) ⊗ uε‖L1+κ/2(spth).

The similar arguments give the same bound for lim sup
ε→0

|�ε|. Since the sequence �εuε ⊗
uε is bounded in L1+κ

loc (�) and the sequence �ε is bounded in L1(�), we have

‖h(vε − �εuε) ⊗ uε‖L1+κ/2(spth) ≤ c(h)‖(�(n)
ε − �ε)uε ⊗ uε‖L1+κ/2(spth)

≤ c






∫

{�ε>n}∩spth

(�ε|uε|2)1+κ/2dx






2/(2+κ)

≤ c‖�ε|uε|2‖L1+κ (spth) mes {�ε < n}ι ≤ cn−ι,

where ι = κ(1 + κ)−1(2 + κ)−1 > 0. Hence |� | + |� | → 0 as n → ∞. It remains to
note that the left side of (7.28) does not depend on n, and the lemma follows. ��

The oscillation defect measure. The notion of oscillation defect measure was introduced
in [12] in order to justify the existence theory for isentropic flows with "small" values
of the adiabatic constant γ . Following [12, 15] the oscillation defect measure associated
with the sequence �ε is defined as follows:

oscp[�ε → � ](�) := sup
k≥1

(
lim sup

ε→0

∫

�

|Tk(�ε) − Tk(�)|pdx
)
,

where Tk(z) = kT (z/k), T (z) is a smooth concave function, which is equal to z for
z ≤ 1 and is a const for z ≥ 3. The smoothness properties of Tk are not important and
we can take it in the simplest form Tk(z) = min{z, k}. In particular, for the sequence of
�ε satisfying the hypotheses of Lemma 12 we have

oscp[�ε → � ](�) = sup
k≥1

lim
ε→0

∫

�

| min{�ε, k} − min{�, k}|pdx ≥ sup
k≥1

∫

�

|Tk|pdx ,

where Tk = min{�, k} − min{�, k}. The important consequence of Lemma 13 is the
following version of the result of E. Feireisl et al [12, 14] on the integrability of the
oscillations defect measure. In order to formulate the result we introduce the func-
tion Tϑ(x) defined by the equality Tϑ(x) = min{�, ϑ}(x) − min{�(x), ϑ(x)} for any
ϑ ∈ C(�).

Lemma 14. Under the assumptions of Theorem 1 and Lemma 12, there is a constant c

independent of ϑ such that the inequalities

‖Tϑ‖1+γ

L1+γ (�)
≤ lim

ε→0

∫

�

| min{�ε(x), ϑ(x)} − min{�(x), ϑ(x)}|1+γ dx ≤ c (7.29)

hold for all ϑ ∈ C(�). Recall that the limit in the right side exists by the choice of the
sequence �ε.
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Proof. The proof imitates the proof of Lemma 4.3 from [14]. It is easily seen that

‖Tϑ‖1+γ

L1+γ (�)
≤ lim sup

ε→0

∫

�

| min{�ε(x), ϑ(x)} − min{�(x), ϑ(x)}|1+γ dx. (7.30)

Hence, it suffices to show that the right side of this inequality has a bound independent
of ϑ . Noting that

| min{s′, ϑ} − min{s′′, ϑ}|1+γ

≤ (min{s′, ϑ} − min{s′′, ϑ})(s′γ − s′′γ ) for all s′, s′′ ∈ R
+,

and �γ ≥ �γ , min{�, ϑ} ≤ min{�, ϑ} we get for any compactly supported, non-negative
function h ∈ C(�),

lim
ε→0

∫

�

h| min{�ε, ϑ} − min{�, ϑ}|1+γ dx

≤ lim
ε→0

∫

�

h(min{�ε, ϑ} − min{�, ϑ})(�γ
ε − �γ )dx

≤ lim
ε→0

∫

�

h(min{�ε, ϑ} − min{�, ϑ})(�γ
ε − �γ )dx

+
∫

�

(�γ − �γ )(min{�, ϑ} − min{�, ϑ})dx

= lim
ε→0

∫

�

h(�γ
ε min{�ε, ϑ} − �γ min{�, ϑ})dx

= lim
ε→0

∫

�

h(pε min{�ε, ϑ} − pmin{�, ϑ})dx. (7.31)

By Lemma 13 with �(�, x) = h(x) min{�, ϑ(x)}, the right side of (7.31), divided by
(2 + ν), is equal to

lim
ε→0

∫

�

h(min{�ε, ϑ}div uε − min{�, ϑ}div u)dx

= lim
ε→0

∫

�

h(min{�ε, ϑ} − min{�, ϑ})div uεdx

− lim
ε→0

∫

�

h(min{�ε, ϑ} − min{�, ϑ})div udx

≤ δ lim sup
ε→0

∫

�

h| min{�ε, ϑ} − min{�, ϑ}|1+γ dx

+δ−γ lim sup
ε→0

∫

�

h(|div uε| + |div u|)(1+γ )/γ

≤ δ lim sup
ε→0

∫

�

h| min{�ε, ϑ} − min{�, ϑ}|1+γ dx + cδ−γ ‖h||C(�). (7.32)
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Combining (7.32) and (7.31), letting h → 1, and choosing δ sufficiently small gives
(7.29). ��

We reformulate this result in terms of the distribution function �. Recall that the
functions min{�ε, λ} are uniformly bounded and min{�ε, λ}div uε converges weakly in
L2(�) for each non-negative λ. Introduce the functions

Vλ =
(

min{�, λ}div u
)

− min{�, λ}div u ∈ L2(�), (7.33)

H =
∫

[0,∞)

�(x, s)(1 − �(x, s))ds, x ∈ �.

Lemma 15. There is a constant c independent of λ such that

‖H‖L1+γ (�) + sup
λ

‖Vλ‖L1(�) ≤ c. (7.34)

Proof. We begin with the observation that by Lemma 12,

Tϑ(x) =
∫

[0,∞)

min{λ, ϑ(x)}dλ�(x, λ) − min






∫

[0,∞)

λdλ�(x, λ), ϑ





(7.35)

for each ϑ ∈ C(�). From this and the identity �(x) = ∫
[0,∞)

(1 − �(x, λ))dλ we
conclude that

Tϑ(x)=
ϑ(x)∫

0

�(x, s)ds for ϑ(x) ≥ �(x) and Tϑ(x)=
∞∫

ϑ(x)

(1 − �(x, s))ds otherwise.

(7.36)

Next choose a sequence of continuous non-negative functions ϑk → � as k → ∞ a.e.
in �. By Lemma 14, the functions Tϑk

are uniformly bounded in L1+γ (�) and converges
a.e. in � to the function

T�(x) =
�(x)∫

0

�(x, s)ds =
∞∫

�(x)

(1 − �(x, s))ds,

which yields the inclusion T� ∈ L1+γ (�). It remains to note that estimate (7.34) for H
obviously follows from the inequality H ≤ 2T�.

In order to estimate Vλ note that

Vλ =w- lim
ε→0

(
(min{�ε, λ}−min{�, λ})div uε

)
−
(

w- lim
ε→0

min{�ε, λ}−min{�, λ}
)

div u,

where w − lim is the weak limit in L1(�). From this and the boundedness of norms
‖div uε‖L2(�) we obtain

‖Vλ‖L1(�) ≤ lim sup
ε→0

(‖div uε‖L2(�)

+‖div u‖L2(�))‖ min{�ε(x), λ} − min{�(x), λ}‖L2(�) ,

which along with (7.29) yields (7.34) and the lemma follows. ��
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8. Proof of Theorem 7

It follows from Remark 1 that Theorem 7 will be proved if we show that �(x, λ)(1 −
�(x, λ)) = 0 almost everywhere in � × R. We split the proof of this equality into three
steps. First, the kinetic equation for the distribution function is derived.

Kinetic formulation of the mass balance equation. In this paragraph we show that the
distribution function �(x, λ) of the Young measure, associated with a sequence of solu-
tions to problem (1.14), satisfies some integro-differential transport equation named a
kinetic equation. This result is given by the following lemma.

Lemma 16. Suppose that all assumptions of Theorem 7 are satisfied and � is a distribu-
tion function of theYoung measure associated with a sequence �ε of solutions to problem
(1.14). Then for any ζ ∈ C∞

0 (� × R),
∫

�×Rλ

ζ {λα − f (x)}dλ�(x, λ)dx +
∫

�×Rλ

�(x, λ)∇x,λζ · wdλdx

+
∫

�×Rλ

∂λζdm(x, λ) +
∫

�×Rλ

∂λζλM(x, λ)dx = 0. (8.1)

Here m is the Radon measure on � × Rλ given by (7.7), the solenoidal vector field
w = (u(x), −λdiv u), and the function M is defined by the equalities

M = − 1

2 + ν

∫

(−∞,λ)

(sγ − p)ds�(x, s) = 1

2 + ν

∫

[λ,∞)

(sγ − p)ds�(x, s), (8.2)

in which p(x) = ∫
R

p(λ)dλ�(x, λ). For almost every x the non-negative function
M(x, ·) has a bounded variation VarλM(x, ·), which belongs to L1(�). Note that the
integral identity (8.1) is equivalent to the kinetic equation (1.17), which is understood
in the sense of distributions.

Proof. Choose an arbitrary ϕ ∈ C∞(R) vanishing near +∞, and note that for an arbi-
trary h ∈ C∞

0 (�),
∫

�

{
hϕ′

ε(�ε)(α�ε + √
ε�5

ε − f ) − ϕε∇h · uε + h(ϕ′
ε(�ε)�ε − ϕε)div uε

}
dx

+
∫

�

ε
{
−�hϕε + hϕ′′(�ε)|∇�ε|2

}
dx = 0.

Letting ε → 0 we obtain
∫

�

(
αϕ′�h − ϕ∇h · u − hf ϕ′

)
dx

+
∫

�

h(ϕ′(�)� − ϕ)div udx +
∫

�×Rλ

h(x)ϕ′′(λ)dm(x, λ) = 0. (8.3)
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Lemma 13 gives the expression for the second integral at the right side
∫

�

h(ϕ′(�)� − ϕ)div udx

=
∫

�

h
[
(ϕ′� − ϕ)div u + 1

2 + ν

(
(ϕ′� − ϕ)p − (ϕ′� − ϕ)p

)]
dx . (8.4)

Next choose an arbitrary smooth function η(λ) vanishing near +∞ and set ϕ(λ) =∫∞
λ

η(s)ds. Lemma 12 yields the representations

ϕ′�(x) = −
∫

[0,∞)

λη(λ)dλ�(x, λ), ϕ′(x) = −
∫

[0,∞)

η(λ)dλ�(x, λ),

ϕ(x) =
∫

[0,∞)






∞∫

λ

η(s)ds





dλ�(x, λ) =

∫

[0,∞)

η(λ)�(x, λ)dλ,

which are substituted into (8.3) and (8.4) and lead to the equality
∫

�×Rλ

hη{f − λα − λdiv u}dλ�dx −
∫

�×Rλ

ηdiv (hu)�dxdλ

−
∫

�×Rλ

hη′dm(x, t) + 1

2 + ν

∫

�

h
(
(ϕ′� − ϕ)p − (ϕ′� − ϕ)p

)
dx. (8.5)

Recall that � and m vanish for λ < 0, the function G(λ, x) = (ϕ′(λ)λ − ϕ(λ))h(x)

satisfies all conditions of Lemma 12, and h is compactly supported in �. It follows from
this and Lemma 12 that
∫

�

h
(
(ϕ′� − ϕ)p − (ϕ′� − ϕ)p

)
dx = −

∫

�×Rλ

hηλ(λγ − p)dλ�(x, λ)dx

−
∫

�×Rλ

h






∞∫

λ

η(s)ds





(λγ − p)dλ�(x, λ)dx =(2 + ν)

∫

�×Rλ

hηdλ

(
λM(x, λ)

)
dx.

(8.6)

Since dλ�(x, ·) is a probability measure and p(λ) = λγ , the function M is non-negative
and Var λM ≤ 2p ∈ L1(�). Substituting (8.6) into (8.5) and noting that the linear hull
of the set of functions in the form hη is dense in C∞

0 (� × R), we obtain (8.1) which
completes the proof. ��

Renormalization of the kinetic equation. Renormalization of kinetic equation (1.17) is
a core of our method. Recall that the notion of a renormalized solution, introduced in
the pioneering paper [8], plays an important role in the theory of compressible Navier-
Stokes equations developed by P.L. Lions and E. Feireisl et al. Moreover, the kinetic
equation itself is a result of the renormalization procedure. Formally we can renormalize
Eq. (1.17) multiplying both its sides by a function � ′(�), which leads to the transport
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equation for a function �(�). The justification of this construction is a delicate ques-
tion because we do not know whether the function � ′(�) is integrable with respect to
the measure m or not. Instead of this property we show that � ′(�) satisfies the simple
and effective integral inequality. The result is given by the following lemma. Choose an
arbitrary t > 1 and function η ∈ C∞(R) satisfying the conditions

η(λ) = 1 for λ ≤ t − 1, η(λ) = 0 for λ ≥ t + 1, η′(λ) ≤ 0,

and fix a function � ∈ C2(R) such that

� ′′(λ) ≤ 0, �(λ) ≥ 0 for λ ∈ [0, 1], �(0) = 0 .

Lemma 17. Under the assumptions of Lemma 16 for all t > 2 + 2‖f ‖L∞(�)/α,

∫

�×[−∞,t−1)

�(�)dxdλ ≤ −(t + 1)

∫

�×Rλ

η′
{
�(�)(|div u| + 2α) + σM

}
dxdλ

−σ(t + 1)

∫

�×Rλ

η′λ−1dm(x, λ), σ = max
[0,1]

|� ′|. (8.7)

Proof. Let θ3 and θ1 be regularising kernels in R
3 and R

1, respectively i.e.

θj ∈ D+(Rj ),

∫

Rj

θj (x)dx = 1, spt θj � {|x| ≤ 1}.

The corresponding mollifiers are defined by the equalities

uk,∞(x, λ) = k3
∫

�

θ3(k(x − y))u(y, λ)dy,

u∞,k(x, λ) = k

∫

R

θ1(k(λ − µ))u(x, µ)dµ,

for each u ∈ L1
loc(� × R) and dist (x, ∂�) > k−1. We will simply write uk,n instead of

(uk,∞)∞,n. Substituting the test function

ζ(x, λ) = k3nϑ3(k(x0 − x))ϑ1(n(λ0 − λ)), dist (x0, ∂�) > k−1, λ0 ∈ R,

into (8.1) we arrive at the equality

∂λ

{
[(λ(α + div u) − f ]�k,n

}− α�k,n − div (�k,nu) − ∂λ(m + λM)k,n

= (r1)k,∞ + r2 + ∂λr3 ≡ r, (8.8)

which holds true in any domain �′ ×Rλ with dist (�′, ∂�) < k−1. Here the remainders
rj are given by

r1 = −(α + div u)∂λ[(λ�)∞,n − λ�∞,n], r2 = div [(�∞,nu)k,∞ − �k,nu],

r3 = λ�k,ndiv u − λ(�∞,ndiv u)k,∞ + (�∞,nf )k,∞ − �k,nf .
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Recall that �k,n and (m + λM)k,n are smooth functions in �′ × R. Multiplying both
sides of (8.8) by � ′(�k,n) and noting that ∂λ� ′(�k,n) ≤ 0, M, m ≥ 0 we obtain

(λα − f )∂λ�(�k,n)−div x,λ(�(�k,n)w) − ∂λ

(
� ′(�k,n)(m + λM)k,n

)
≥ � ′(�k,n)r .

(8.9)

Choose an arbitrary non-negative function h ∈ C∞
0 (�) with spth � �′. Multiplying

both sides of (8.9) by h(x)η(λ) and integrating the result over �′ × Rλ we arrive at the
inequality

∫

�′×Rλ

�(�k,n)η
[
αh − ∇h · u

]
dxdλ +

∫

�′×Rλ

hη′�(�k,n)(λdiv u + λα − f )dxdλ

−
∫

�′×Rλ

hη′� ′(�n,k)(m + λM)k,ndxdλ ≤ −
∫

�′×Rλ

hη� ′(�k,n)rdxdλ .

Since η′ ≤ 0 and m + λM ≥ 0, we have
∫

�′×Rλ

hη′� ′(�k,n)(m + λM)k,ndxdλ ≤ min
[0,1]

� ′
∫

�′×Rλ

hη′(m + λM)k,ndxdλ ,

which yields

∫

�′×Rλ

�(�k,n)η
[
αh − ∇h · u

]
dxdλ +

∫

�′×Rλ

hη′�(�k,n)(λdiv u + λα − f )dxdλ

− min
[0,1]

� ′
∫

�′×Rλ

hη′(m + λM)k,ndxdλ ≤ −
∫

�′×Rλ

hη� ′(�k,n)rdxdλ . (8.10)

Now our task is to show that the right side tends to 0 as k, n → ∞. Fix an arbitrary
n > 0. Since the mapping (x, λ) → u(x), which does not depend on λ, belongs to
L∞(Rλ, H 1(�)), it follows from Lemma 2.3 in [8] that r2 → 0 in L1

loc(� × R) when
k → ∞. Obviously, the sequence r3 → 0 converges in L2

loc(� × R) when k → ∞. It
follows from this that for each fixed n,

lim
k→∞

∫

�′×Rλ

hη� ′(�k,n)rdxdλ =
∫

�′×Rλ

h� ′(�∞,n)ηr1dxdλ .

It is easy to see that

∂λ[(λ�)∞,n−λ�∞,n](x, λ)=k

∫

R

θ(k(λ − µ))�(x, µ)dµ, θ(s) = sθ1′
(s) + θ1(s).

Since θ is compactly supported and
∫
R

θ(s)ds = 0, the sequence ∂λ[(λ�)∞,n −λ�∞,n]
(x, λ) converges to 0 in Lr

loc(� × R) for each r < ∞. Hence r1 → 0 in Lr
loc(� × R),

which implies
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lim
n→∞ lim

k→∞

∫

�′×Rλ

hη� ′(�k,n)rdxdλ = 0.

Letting k → ∞, n → ∞ in (8.10) we conclude that the inequality
∫

�×[−∞,t−1)

h�(�)dxdλ −
∫

�×Rλ

η�(�)∇h · udxdλ

≤ −(t + 1)

∫

�×Rλ

hη′
(
�(�)(|div u| + 2α) + M

)
dxdλ

−(t + 1)

∫

�×Rλ

hη′λ−1dm(x, λ) (8.11)

holds for all t > 2α−1‖f ‖L∞(�) + 2 and all non-negative h ∈ C∞
0 (�). Now choose

a sequence of functions hj ∈ C∞
0 (�) such that hj → 1 as j → ∞ in � and

|∇hj (x)| ≤ jdist (x, ∂�). Substituting h = hj into (8.1), letting j → ∞, and not-
ing that ‖∇hj · u‖L1(�) → 0 we finally obtain (8.7) which completes the proof. ��
The proof of equality �(1 −�) = 0. The last part of the proof is based on the following
lemma

Lemma 18. Under the above assumptions,
∫

Rλ

η′(λ)M(x, λ)dλ = −
∫

[0,∞)

η′′(λ)Vλ(x)dλ , (8.12)

where Vλ is defined by (7.33).

Proof. It is easy to see that

−(2+ν)

∫

Rλ

η′(λ)M(x, λ)dλ=
∫

[0,∞)






∫

[λ,∞)

η′′(s)ds











∫

[λ,∞)

(tγ − p)dt�(x, t)




 dλ

=
∫

[0,∞)

η′′(s)






∫

[0,s)

dλ

∫

[λ,∞)

(tγ − p)dt�(x, t)




 ds

=
∫

[0,∞)

η′′(s)






∫

[0,∞)

min{t, s}(tγ − p)dt�(x, t)




 ds

=
∫

[0,∞)

η′′(s)(min{�, s}p − min{�, s}p)ds.

On the other hand, Lemma 13 yields min{�, λ}p −min{�, λ}p = (2 + ν)Vλ(x), and the
lemma follows. ��

Take � in the simplest form �(�) = �(1 − �) with σ = 1. Since η′(λ) vanishes for
λ < 1, we have
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−
∫

�×Rλ

η′�(�)(|div u| + 2α)dxdλ

=
∫

[1,∞)

η′′(λ)dλ

∫

�×[1,λ)

�(�(x, s))(|div u(x)| + 2α)dxds,

−
∫

�×Rλ

η′λ−1dm(x, λ) =
∫

[1,∞)

η′′(λ)dλ

∫

�×[1,λ)

s−1dm(x, s).

Substituting these identities along with (8.12) into (8.7) implies the inequality
∫

�×[−∞,t−1)

�(�)dxdλ ≤ (1 + t)

∫

[1,∞)

η′′(λ)℘ (λ)dλ, (8.13)

in which the function ℘ : [1, ∞) 	→ R is given by

℘(λ)=
∫

�×[1,λ)

�(�(x, s))(|div u(x)| + 2α)dxds+
∫

�

Vλ(x)dx +
∫

�×[1,λ)

s−1dm(x, s).

It follows from Lemma 15 that for λ > 1,

|℘(λ)|≤c(1 + ‖u‖H 1,2(�))‖H‖L2(�)+‖Vλ‖L1(�)+c

∫

�×[1,∞)

(1 + λ)−1dm(x, λ) ≤ c ,

where a constant c does not depend on λ. Next set η(λ) =
∞∫

λ

ω(s − t)ds, where ω is

a smooth, even, non-negative function supported on the interval (−1, 1) and such that∫
R

ω(s)ds = 1. Then inequality (8.13) can be rewritten in the form
∫

�×[−∞,t−1)

�(�)dxdλ ≤ (1 + t)
d

dt
(ω ∗ ℘)(t). (8.14)

Since the smooth function (ω ∗ ℘)(t) is uniformly bounded on the interval [1, ∞), then
there is a sequence tk → ∞ such that lim

k→∞
(tk + 1) d

dt
(ω ∗ ℘)(tk) ≤ 0. Substituting

t = tk into (8.14) and letting k → ∞ we conclude that �(�) = 0 a.e. in �×Rλ, which
completes the proof of Theorem 7.
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