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Abstract: Let � be a domain of R
d . In Part 1 of this paper, we introduce new tools

in order to analyse the local behavior of the boundary of �. Classifications based on
geometric accessibility conditions are introduced and compared; they are related to ana-
lytic criteria based either on local Lp regularity of the characteristic function 1�, or on
its wavelet coefficients. Part 2 deals with the global analysis of the boundary of �. We
develop methods for determining the dimensions of the sets where the local behaviors
previously introduced occur. These methods are based on analogies with the thermo-
dynamic formalism in statistical physics and lead to new classification tools for fractal
domains.

1. Introduction

1.1. Raleigh-Taylor instability and multifractal analysis . The initial motivation of this
paper was to understand the paradoxical results of numerical experiments performed on
Raleigh-Taylor instability. Let us first recall the context of these experiments. Raleigh-
Taylor instability occurs when two fluids which are not miscible are initially placed on
top of each other with the heaviest one at the top; if the viscosities are small enough, then
the two fluids get mixed without interpenetrating each other and develop mushroom-type
structures that degenerate into extremely thin and twisted filaments, see [26]. Raleigh-
Taylor instability happens in many physical situations and an important issue is to under-
stand the optical properties of this mixture and to relate them to some geometric (perhaps
fractal) properties of the interface. In order to obtain additional information concerning
these properties, several authors proposed to determine what the multifractal formalism
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yields when applied to the characteristic function of one of these two media, see [27,
28]. Before recalling the numerical results of this investigation, let us recall the purpose
of multifractal analysis. It was initially introduced in order to analyse functions whose
pointwise regularity can change abruptly. The following definition collects the different
notions attached to multifractal analysis.

Definition 1. Let x0 ∈ R
d and let α ≥ 0. A locally bounded function f : R

d → R

belongs to Cα(x0) if there exists a constant C > 0 and a polynomial P satisfying
deg(P ) < α and such that in a neighbourhood of x0,

|f (x)− P(x − x0)| ≤ C|x − x0|α. (1)

The Hölder exponent of f at x0 is

hf (x0) = sup{α : f ∈ Cα(x0)}.
We denote by EH the set of points where the Hölder exponent takes the value H (note
thatH can take the value +∞). The spectrum of singularities of f (denoted by df (H))
is the Hausdorff dimension of EH .

The support of the spectrum of singularities is the set of finite values of H that are
Hölder exponents of f .

A function f is called multifractal if its spectrum of singularities is supported, at
least, by an interval of non-empty interior. The spectrum of singularities yields local
information on the behavior of f . One can also consider the global information supplied
by the scaling function of f , ηf (p), which can be derived from the wavelet coefficients
of f . In order to define the scaling function, we need to recall some definitions and
results concerning wavelet expansions.

One can construct a function φ and wavelets ψ(i), i = 1, · · · , 2d − 1, all in the
Schwartz class, and such that the functions

{
φ(x − k), k ∈ Z,

2
dj
2 ψ(i)(2j x − k), j ≥ 0, k ∈ Z

d , i = 1...2d − 1

form an orthonormal basis of L2(Rd), see [8, 18, 23]. Therefore, any L2 function f can
be written

f (x) =
∑
k∈Zd

Ckφ(x − k)+
∑

i,j≥0,k∈Zd

C
(i)
j,k ψ

(i)(2j x − k), (2)

where Ck =
∫

Rd
f (x) φ(x − k) dx and C(i)j,k = 2dj

∫
Rd
f (x) ψ(i)(2j x − k) dx. (Note

that we choose an L∞ normalisation for the wavelets.)
We will need the following wavelet characterization of the homogeneous Hölder

spaces, see [23]:

Proposition 1. Let s > 0. A function f belongs to the homogeneous Hölder space
Cs(Rd) if and only if there exists C > 0 such that ∀i, j, k, |C(i)j,k| ≤ C2−sj .

Let us now define the scaling function of a distribution f .
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Definition 2. If f is a compactly supported L1 function and if p �= 0, then the scaling
function of f is defined by

ηf (p) = lim inf
j→+∞




log


2−dj∑

i,k

�
∣∣∣C(i)j,k
∣∣∣p



log(2−j )



, (3)

where
∑
i,k

�
means that the sum is taken over the coefficients C(i)j,k that do not vanish.

When a signal, or an image, is stored by its wavelet coefficients, the scaling function
is easily computable numerically. The multifractal formalism asserts that the spectrum
of singularities of f can be recovered from its scaling function by a Legendre transform

df (H) = inf
p
(d − ηf (p)+Hp). (4)

This formula was obtained using heuristic arguments that do not constitute a mathemat-
ical proof, see [3, 30]; and indeed, many examples for which (4) is wrong are known,
see [15] for instance.

Let us now come back to Raleigh-Taylor instability. We denote by � one of the two
domains obtained when the mixing has sufficiently been developed, and we consider
f = 1�. The purpose of the numerical computations performed by S. Mimouni in
[26] was to determine the scaling function ηf (p). Clearly, a characteristic function is
not multifractal; the support of its spectrum of singularities is restricted to one point:
H = 0. Thus, if � denotes the dimension of the interface, it follows that

d(H) = � if H = 0
= −∞ otherwise.

Therefore, if the multifractal formalism holds, according to (4), we expect that ∀p,
ηf (p) = d−�. Surprisingly, the numerical results obtained show that the scaling func-
tion is far from being constant: It is a strictly concave increasing function, see [26–28],
which one is tempted to interpret as the signature of a multifractal behavior.

One might wave these paradoxical results away as nonsignificant: They are just a few
additional counterexamples to the validity of the multifractal formalism. Our purpose
in these two joint papers will precisely be the opposite: We will try to understand why
the multifractal formalism fails in this case, and how the information supplied by the
scaling function can be interpreted in terms of new geometric information on �. This
study will have two main consequences:

– These counterexamples to the multifractal formalism will allow to understand better
the conditions for its validity.

– Once the information contained by the scaling function is well understood, it can be
used pertinently as a classification tool for fractal domains.

Of course, this second motivation goes well beyond Raleigh-Taylor instability. Let us
review briefly other fields of applications where fractal interfaces occur, and where such
classification tools could be applied.
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1.2. Fractal interfaces. In physics, mechanics or chemistry, many phenomena involve
fractal interfaces. It is the case for fractal growth mechanisms, chemical deposition [32],
fractured bodies (metals, rocks, bones,...) [12], rugosity [9], turbulent mixtures [6, 21,
33, 34], to mention just a few. Note also that natural images often contain such features
as edges of mountains, edges of trees, coastlines,..., which are typical examples of fractal
boundaries. Fractal curves have also been the object of several studies in mathematics;
it is for instance the case for level sets of statistical processes (in particular Brownian
motion or fractional Brownian motion, see [7, 37] and references therein). The study of
fractal level-sets has implications in many physics and computer science problems (see
[34] and references therein, and [19] in the context of turbulence).

A better understanding of these fractal structures requires the introduction and study
of new mathematical tools fitted to describe and classify their geometry. Up to now the
only notion used in practice was the box dimension of the interface; it was not used only
as a classification parameter: In [31] the box dimension of a turbulent interface is shown
to have a relevant physical interpretation since it is related to the stratification. In [33]
the box dimension of an oil-water turbulent interface was determined numerically. The
rugosity of rough surfaces has been studied using fractal models for the surface: It is
shown in [9] that rugosity can be related with the fractal dimension of the surface. Multi-
fractal-type arguments have also been used to derive heuristically the box-dimension of
the interface in the case of intermittent turbulence, by C. Meneveau and K. Sreenivasan
in [21]. However, the box dimension yields only one parameter; therefore it is a poor
classification tool. Furthermore, its precise numerical estimation can be either impossi-
ble or imprecise in some practical situations; for instance, in the case of turbulent jets,
see [6] where it is shown that its estimation is strongly oscillating through the scales.

1.3. Organization of the two papers. In Part 2, we will perform a close analysis of the
heuristic arguments that are given as a justification of the multifractal formalism. We
will establish that, in spite of the numerous computations that are currently performed
under this assumption, the Legendre transform (4) cannot be expected to yield the Haus-
dorff dimension of the sets EH : It rather yields the dimension of the sets of points x0
with a given weak-scaling exponent, see Definition 8. This remark yields a first clue to
the resolution of the paradox raised in Sect. 1.1: Of course, the Hölder exponent of a
characteristic function 1� can only take the value 0 at a point of the boundary of �; but
its weak-scaling exponent can take any nonnegative value. For instance, consider in R

2

the α-cusp (α ≥ 0),

� =
{
(x, y) ∈ R

2 such that x ≥ 0 and |y| ≤ |x|α+1
}

(5)

near the origin. One can show (see [20]) that the weak-scaling exponent of � takes the
valueα at the origin. Therefore, one may expect that the multifractal formalism yields the
dimension of the subsets of the boundary where such a behavior occurs. In order to make
this statement more precise, we have to determine which kind of geometric behaviors of
the boundary near a point x0 induces a given weak-scaling exponent. This is the initial
motivation of the first of these two papers. We will examine possible pointwise behaviors
that will be defined in three ways:

– geometrically,
– by a condition bearing directly on 1�,
– by a condition bearing on the wavelet coefficients of 1�,
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and we will compare them. The two first ways will be considered in Sect. 2.1. We will
introduce conditions of the third type in Sects. 2.2 to 2.4, where we will also prove the
first results that allow to compare these notions. The main results of this type (Theorems
1 and 2) will be proved in Sect. 3.

Part 2 will bridge the gap between local and global analysis and determine how the
local conditions introduced in the first paper can be used as the building blocks of new
multifractal formalisms that are expected to yield the dimensions of the sets where such
behaviors take place. These new multifractal spectra, associated with each kind of local
exponent, will yield many possibilities of classification of fractal interfaces and they give
very rich information on the geometry of these interfaces. Furthermore, we will prove
that, in several cases, these multifractal formalisms either yield the exact dimensions
required or, at least, upper bounds for these dimensions.

Let us finally mention that, though our main concern in these two papers is the
investigation of fractal boundaries, we will prove several results that apply in much
wider settings: For instance, Sect. 2.3 does not only deal with characteristic functions
of domains, but gives the wavelet characterization of the T pu regularity of arbitrary
functions. Similarly, in Sect. 2 of Part 2, we construct general multifractal formalisms
which apply to the weak scaling exponent of tempered distributions and to the T pu
exponent of Lp functions; in Sect. 4 of Part 2, we will show that these multifractal
formalisms yield upper bounds for the corresponding spectrums.

2. Pointwise Exponents of Fractal Boundaries

Let us consider a few typical examples of local behaviors of boundaries. In the case of
(5) we want to recover the exponent α which characterizes the ‘thinness’ of the cusp at
the origin. We will also be interested in spirals, such as the domain between the two
curves of equation (in polar coordinates)

r = θ−γ and r = (θ + π)−γ . (6)

Another example which bears similarities with spirals is the one-dimensional set

Sγ =
⋃
n∈N

[
1

(2n+ 1)γ
,

1

(2n)γ

]
, (7)

called an isolated accumulating singularity at 0 in [35, 36] (actually, the trace of a spiral
on a line which passes through its center yields such a set). In these cases, we want to
recover the exponent γ which characterizes the degree of ‘mixing’ between � and its
complement�c. We will introduce pointwise exponents that will precisely play this role
and yield at the origin the exponent α in the first case, and the exponent γ in the second
case. There are two ways to introduce such exponents.

– Geometric properties, based on accessibility conditions, can be used: The exponent α
in (5) can be recovered by estimating the measure of the setB(0, r)∩�when r → 0.
The exponent γ in (6) can be obtained by estimating the largest possible size of balls
included in B(0, r) ∩� when r → 0. The corresponding geometric definitions will
be introduced in Sect. 2.1.

– An analytic approach can be based on functional properties of the characteristic func-
tion 1� of the domain � near x0. We will investigate analytic classifications based
on decay estimates of the wavelet transform of 1� near the point x0 in Sects. 2.2 and
2.3.
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In the case of isolated singularities, both approaches have been related previously: H. K.
Moffat showed in [29] that the Fourier transform of the characteristic function of the

one-dimensional spiral (7) decays as |k|−2+ 1
1+γ , and J. C. Vassilicos and J. C. R. Hunt

remarked that the exponent in this power-law is directly related to the box dimension of
the spiral since this box dimension is precisely 1

1+γ , see [36]. However, the drawback
of properties based on Fourier analysis is that they give clear information only for one
isolated singularity. Indeed, since Fourier analysis is non-local, the information con-
cerning different local behaviors at different locations is completely mixed-up. This is
an additional reason for rather using wavelet analysis when dealing in applications with
experimental data, where many such behaviors are expected to occur.

There exist some intrinsic limitations on any analysis of the geometry of a domain
� based on local regularity conditions of 1�. Indeed, a regularity condition satisfied by
a function f means that f locally belongs to some function spaces; let �c denote the
complement of �. Since 1�c + 1� = 1, which is a smooth function, it follows that 1�c
and 1� belong locally to the same function spaces. Thus the knowledge of the function
spaces to which 1� locally belongs can only give information that cannot draw a dis-
tinction between � and its complement. For instance, cusps that point inside or outside
� cannot be separated, and it is the same for accessibility conditions from the inside and
from the outside of�. The second restriction is that, for the same reason, we should use
a notion of boundary invariant by subtracting or adding to � a set of measure 0. Thus
the relevant notion here is the essential boundary defined as follows.

Definition 3. The essential boundary of� is the set of points that remain in the bound-
ary if we subtract or add to � any set of measure 0.

If � has measure 0, its essential boundary is empty, which fits the fact that, in this
case, 1� = 0 a.e. and thus belongs to all function spaces.

The following lemma shows that, after modifying � by a set of measure 0, we can
always make the assumption that the boundary of� coincides with its essential boundary
(and therefore we make this assumption from now on).

Lemma 1. Let � be a bounded subset of R
d . There exists �′ which differs from � by a

set of measure 0, and such that the boundary of �′ is its essential boundary.

Proof of Lemma 1. We denote by meas(A) the Lebesgue measure of the set A. Con-
sider the countable collection of open balls whose centers have rational coordinates and
which have rational radii, and let us order them in some way. For each such ball Bi , if
meas(Bi ∩�) = 0, we remove from� the points inside Bi , and ifmeas(Bi ∩�c) = 0,
we remove from �c the points inside Bi . When this operation has been performed for
all balls Bi , clearly, each point has been moved at most in one way, and these moves
affect only a set of measure 0. Each point x of the boundary of the set �′ thus obtained
satisfies

∀r0, meas(� ∩ B(x, r)) > 0 and meas(�c ∩ B(x, r)) > 0 (8)

hence belongs to the essential boundary.

2.1. Geometric approach: Accessibility conditions. If the boundary of � is smooth at
x, a result much more precise than (8) holds:

meas(� ∩ B(x, r)) ∼ rd and meas(�c ∩ B(x, r)) ∼ rd; (9)
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on the other hand, the cusp (5) satisfies meas(� ∩ B(x, r)) ∼ rα+d . These scalings
suggest to consider the following geometric parameter which is fitted to describe points
of the boundary where a weak form of accessibility condition holds.

Definition 4. A point x of the boundary of � is weak α-accessible if there exist C > 0
and r0 > 0 such that ∀r ≤ r0,

min

[
meas

(
� ∩ B(x, r)) , meas(�c ∩ B(x, r))

]
≤ Crα+d . (10)

The supremum of all values of α such that (10) holds is called the weak accessibility
exponent at x. We denote it by Ew�(x).

The weak accessibility exponent is a nonnegative number, and it can be infinite. It
can be equivalently defined with the help of localLp conditions introduced by Calderón
and Zygmund in [5] as substitutes of the pointwise Hölder exponents.

Definition 5. Let p ≥ 1; a function f ∈ Lploc(Rd) belongs to T pu (x) if there exist R > 0
and a polynomial P , such that deg(P ) < u, satisfying

∀r ≤ R

(
1

rd

∫
B(x,r)

|f (y)− P(y − x)|pdy
)1/p

≤ Cru. (11)

The p-exponent of f at x is

u
p
f (x) = sup{u : f ∈ T pu (x)}. (12)

Remarks. – The polynomial P is clearly unique. It is called the (generalized) Taylor
expansion of f at x.

– As a consequence of the condition f ∈ Lploc, if (11) holds for a given R > 0, then
it holds for any R′ > 0.

– The usual Hölder conditionCu(x) corresponds top = ∞, therefore the ∞-exponent
is the usual Hölder exponent.

– If f belongs toCu(x), then, ∀p ≥ 1, f belongs to T pu (x); more generally, ifp′ < p,

then T pu (x) ↪→ T
p′
u (x). It follows that

if 1 ≤ p ≤ p′ then u
p
f (x) ≥ u

p′
f (x). (13)

– Since the functions of Lploc belong to T p− d
p

(x), the p-exponent is always larger than

−d/p.

The purpose of Theorem 2 is to characterize the p-exponent by conditions on the
wavelet coefficients. For characteristic functions, the following lemma shows that the
T
p
u condition coincides with the weak accessibility condition.

Lemma 2. Let p ≥ 1; the domain � is weak α-accessible at x if and only if its charac-
teristic function belongs to T pα/p(x).
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Proof. Let f = 1�; if P = 0, then∫
B(x,r)

|f (y)− P(y − x)|pdy = meas(� ∩ B(x, r))

and, if P = 1, then∫
B(x,r)

|f (y)− P(y − x)|pdy = meas(�c ∩ B(x, r)).

Suppose now that � is weak α-accessible for an α > 0. First, note that the smallest of
the two quantities meas(� ∩ B(x, r)) and meas(�c ∩ B(x, r)) remains the same for r
small enough (by continuity of these two functions of r). Therefore, if (10) holds for an
α > 0, it follows that 1� belongs to T pα/p(x).

Conversely, suppose that 1� belongs to T pα/p(x) for an α > 0; then

∫
B(x,r)

|1�(y)− P(y − x)|pdy ≤ Crα+d . (14)

Let us first show that the term of order 0 of P is either 0 or 1. Indeed, if it is not the case,
let us denote this term by the constant C. In a neighbourhood of x,

|1�(y)− P(y − x)| ≥ 1

2
inf(|C|, |1 − C|),

so that (14) cannot hold for an α > 0. If α ≤ p, the result is obtained; else, one proves
by the same argument that the term of order 1 of P must necessarily vanish, and a
straightforward recursion yields that the following terms vanish up to the order [α/p].
It follows that � is weak α-accessible.

If the boundary of� is smooth at x, the following stronger accessibility condition holds:
For any r > 0, we can find at distances ∼ r two balls of radius r , one included in �
and one included in �c. This remark leads naturally to the following notion of strong
accessibility.

Definition 6. A point x ∈ ∂� is strong α-accessible if there exist C > 0, a sequence
rn → 0 and balls B1

n ⊂ � and B2
n ⊂ �c of radii rn such that

dist (B1
n, x) ≤ Cr

d
α+d
n and dist (B2

n, x) ≤ Cr
d
α+d
n . (15)

The infimum of all values of α such that (15) holds is called the strong accessibility
exponent at x. We denote it byEs�(x). (If there exists no such α, we takeEs�(x) = +∞).

The strong accessibility exponent is larger than the weak accessibility exponent be-

cause, if (15) holds and if r = 3Cr
d
α+d
n , then

inf
(
meas(� ∩ B(x, r)),meas(�c ∩ B(x, r))) ≥ Crdn ≥ C′rα+d .

Besides the example (5) of cusp singularities, an example of strong accessibility is
supplied by domains above or below the graph of Hölder continuous functions: Let
f : R

d−1 → R be a function in Ch with 0 < h ≤ 1; each point (x0, f (x0)) clearly is a
strong d( 1

h
− 1)-accessible point of the boundary of the domain above the graph of f .
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The weak and strong exponents differ when the two domains � and �c are very
mixed together. For example, let us compare the domains defined by (5) and (6): The
cusp (5) has a weak and strong accessibility exponentα at the origin.As regards the spiral
(6), the weak accessibility exponent is 0, whereas the strong accessibility exponent is
2/γ . Similarly, the accumulating singularity (7) has weak accessibility exponent 0, and
strong accessibility exponent 2/γ . Proposition 2 will draw another distinction between
strong accessibility and weak accessibility.

Remark. The fact that a domain has a fractal boundary does not necessarily imply that
it displays accessibility exponents larger than 0. For instance, one immediately checks
that the “Van Koch snowflake” (see [10]) has a (weak or strong) accessibility exponent
α = 0 at every point of its boundary.

2.2. Analytic approach: two-microlocal analysis. In this section, we estimate the size
of the wavelet coefficients of 1� in the neighbourhood of points with a given (strong or
weak) accessibility exponent.

Let us introduce simplifying notations; wavelets will be indexed by the dyadic cubes:
If λ is the cube

λ =
{
x ∈ R

d : 2j x − k ∈ [0, 1)d
}
, (16)

then we use the notations ψ(i)j,k(x) := ψ
(i)
λ (x) := ψ(i)(2j x − k). Thus

f (x) =
∑
i,λ

C
(i)
λ ψ

(i)
λ (x), (17)

where the wavelet coefficients of f are given by

C
(i)
j,k = C

(i)
λ =

∫
Rd

2djψ(i)λ (t)f (t)dt.

We will forget the index (i) in the notations, and write the wavelet coefficients either
Cj,k or Cλ.

The other tool we will use is the continuous wavelet transform; in this case, we start
with one compactly supported wavelet ψ , that can be arbitrarily smooth and with an
arbitrary large number of vanishing moments. Let θ be a rotation in R

d , a ∈ R
+ and

b ∈ R
d . The continuous wavelet transform of f is

C(a, b, θ) = 1

ad

∫
Rd
f (x)ψ

(
θ

(
x − b

a

))
dx.

Note that the function f can be reconstructed from the values of C(a, b, θ), see [22].

Definition 7. Let ψλ be a smooth wavelet basis. A distribution f belongs to the two-
microlocal space Cs,s

′
(x0) if its wavelet coefficients satisfy

|Cj,k| ≤ C2−sj (1 + |2j x0 − k|)−s′ .
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In this definition one has to use wavelets in Cm for anm larger than sup(|s|, |s′|)+1,
and which have all their moments of order up to sup(|s|, |s′|) + 1 vanishing. If such is
the case, this definition is independent of the wavelet basis which is chosen; the charac-
terization using the continuous wavelet transform is similar, and obtained by replacing
2−j by a, k2−j by b, and letting the estimates be uniform in θ .

Yves Meyer showed that two-microlocal conditions yield precise information con-
cerning the pointwise oscillatory behavior of the function near x0, see [16, 24]. The
following lemma shows a first relationship between weak accessibility and a condition
on the wavelet coefficients. A stronger result will be given in Theorem 1.

Lemma 3. If x0 is a weak α-accessible point of ∂�, then 1� belongs to Cα,−α−d(x0).

Proof of Lemma 3. Suppose for instance that meas(� ∩ B(x0, r)) ≤ Crα+d ; then, if
the wavelets are compactly supported,

|Cλ| ≤ C2dj
∫
�

|ψλ(x)|dx ≤ 2djmeas ((Cλ) ∩�) ≤ C2dj (2−j + |x0 − λ|)α+d .

The following proposition is a first application of analytic methods in the study of
geometric properties of boundaries. A second consequence of Lemma 3 will be given in
Proposition 4.

Proposition 2. For any domain �, the set of weak 0-accessible points is always dense
in ∂�, whereas there exist domains such that, for any α ≥ 0, ∂� contains no strong
α-accessible point.

Proof of Proposition 2. We start with the first assertion. We can suppose that ∂� is not
empty. We use a basis of compactly supported wavelets. Let x ∈ ∂� and ε, η > 0. Since
1� does not belong to Cε(B(x, η/2)), following Proposition 1 there exists an arbitrarily
large j and a k such that

k2−j + [0, 2−j ]d ⊂ B(x, η) and |Cj,k| ≥ 2−εj .

The support of the wavelet ψj,k intersects ∂� (else the corresponding wavelet coeffi-
cient would vanish). Let x1 belong to this intersection. We continue by induction, starting
with x1 instead of x, ε/2 instead of ε and η/2 instead of η . . . . We thus obtain a Cauchy
sequence xn of points of ∂�, and its limit point x′ satisfies

|x − x′| ≤ 2η, ∃jn, kn such that |x′ − kn2−jn | ≤ C2−jn and |Cjn,kn | ≥ 2−ε2−njn .

Thus, by Lemma 3, the weak exponent at x′ vanishes, and x′ is arbitrarily close to x.
For the second part of Proposition 2, it suffices to consider the interval [0, 1] from

which we subtract all the subintervals [k2−j − 1
4 2−2j , k2−j + 1

4 2−2j ], for j ≥ 1 and
k = 1, ..., 2j −1; the result follows because the boundary of� is its essential boundary,
and � contains no interval. Generalizations in several dimensions are straightforward.

Lemma 3 implies that the weak α-accessibility can be related to the weak scal-
ing exponent introduced by Y. Meyer; recall that S0(R

d) is the set of functions in the
Schwartz class whose moments of any order vanish.
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Definition 8. A tempered distribution f belongs to �s(x0) if ∀ψ ∈ S0(R
d) ∃C(ψ) such

that

∀a ∈ (0, 1),

∣∣∣∣
∫
adf (x)ψ

(
x − b

a

)
dx

∣∣∣∣ ≤ C(ψ)as.

The weak scaling exponent at x0 is

hwsf (x0) = sup{s : f ∈ �s(x0)}.
The following characterization is proved in [24] (Theorem 1.2):

f ∈ �s(x0) ⇐⇒ ∃s′ ∈ R : f ∈ Cs,s′(x0). (18)

We will show in Part 2 that the wavelet formulation of the multifractal formalism
naturally leads to estimates on the Hausdorff dimension of the points where the weak
scaling exponent takes a given value; this is an additional reason for considering the weak
scaling exponent as a classification tool for singularities. The following result follows
directly from (18) and Lemma 3.

Corollary 1. Let� be a domain of R
d . Then, for any x ∈ ∂�, the weak scaling exponent

of 1� at x is larger than the weak accessibility exponent of � at x.

2.3. Wavelet characterizations of T pu regularity. In this section, we show how to derive
T
p
u regularity from estimates on the wavelet coefficients. In particular, Theorem 2 to-

gether with Lemma 2 will show that the weak accessibility exponent at a point x ∈ ∂�
can be derived from the wavelet coefficients of the characteristic function of�. We will
use the spaces Xs,s

′,p,q
x0 , which are weighted Besov spaces; let us start by recalling the

wavelet characterization of the homogeneous Besov spaces Bs,qp , see [23]:

f ∈ Bs,qp ⇐⇒
∑
j

(∑
k

|Cλ2(s−
d
p
)j |p
)q/p

< ∞. (19)

(It follows from Proposition 1 that Cγ (Rd) = B
γ,∞
∞ ).

Definition 9. Let s, s′ be real number and let p and q be positive real numbers. A tem-

pered distribution f belongs to Xs,s
′,p,q

x0 if its wavelet coefficients satisfy

∑
j∈Z

2(s−
d
p
)qj


∑
k∈Zd

|Cλ|p(1 + |k − 2j x0|)s′p



q
p

< +∞. (20)

The spaces Xs,s
′,p,q

x0 were introduced in order to study local oscillating behaviours,
see [25]. They coincide with more classical spaces in several cases:

– If s′ = 0, Xs,0,p,qx0 is independent of x0 and coincides with the Besov space Bs,qp .

– If p = q = +∞, Xs,s
′,∞,∞

x0 coincides with the two-microlocal space Cs,s
′
(x0).

These spaces have a local version defined as follows.
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Definition 10. A tempered distribution f belongs to Ẋs,s
′,p,q

x0 if there exists A > 0 such
that

∑
j≥0

2(s−
d
p
)qj


 ∑

|k−2j x0|≤A2j

|Cλ|p(1 + |k − 2j x0|)s′p



q
p

< +∞.

The spaces Xs,s
′,p,q

x0 and their local versions Ẋs,s
′,p,q

0 do not depend on the choice
of the wavelet basis, see [25]. The following theorem shows that T pu (x0) regularity is
closely related with these conditions; it will be proved in Sect. 3.

Theorem 1. Let p ≥ 1, s ≥ 0, x0 ∈ R
d and f ∈ Lploc.

1. If f belongs to Ẋs,−s,p,1x0 , then f belongs to T p
s− d

p

(x0).

2. If f ∈ T p
s− d

p

(x0), then ∃A,C > 0 such that the wavelet coefficients of f satisfy

∃C ∀j 2j (sp−d) ∑
|k−2j x0|≤A2j

|Cj,k|p(1 + |k − 2j x0|)−sp ≤ Cj. (21)

Let p ≥ 1, and f ∈ Lploc; if A is small enough, let

�
p
j (s, A) = 2j (sp−d) ∑

|k−2j x0|≤A2j

|Cj,k|p(1 + |k − 2j x0|)−sp (22)

and

ip(x0) = sup


s : lim inf

log
(
�
p
j (s, A)

1/p
)

−j log 2
≥ 0


 . (23)

The following theorem shows that the p-exponent (see Definition 5) can be derived from
the wavelet coefficients; it will be proved in Section 4.

Theorem 2. Let p ≥ 1 and let f ∈ Lploc; then

1. ip(x0) is positive, independent of the value of A, and of the wavelet basis;
2. the following inequality always holds

u
p
f (x0) ≤ ip(x0)− d

p
; (24)

3. if there exists δ > 0 such that f ∈ Bδ,pp , then

u
p
f (x0) = ip(x0)− d

p
. (25)
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Remark. The Hölder exponent can be characterized by a condition on the modulus of
the wavelet coefficients if f ∈ Cε(Rd) for an ε > 0, see [14, 16]; the global regularity
assumption f ∈ Bδ,pp in Part 3 of Theorem 2 plays a similar role; however, it does not
imply that f has some uniform Hölder regularity, or even that f is locally bounded. Thus
Theorems 1 and 2 can be applied to functions that are discontinuous, or even that are not
locally bounded; this is very important for applications in several fields; for instance,
the velocity of turbulent fluids is now known not to be bounded near vorticity filaments,
see [1]; most natural images are discontinuous, and it is also often the case for medical
images (mammography data for instance, see [1]). A new multifractal analysis has to be
developed for applications in these fields; Theorem 2 shows that it can be based on the
p-exponent and its wavelet characterization (an important requirement since, in practice,
signals are often stored through their wavelet coefficients).

The global regularity condition f ∈ Bδ,pp for a δ > 0 is necessary to obtain (25), as
shown by Proposition 3 below; Corollary 2 will show that this condition is satisfied for
characteristic functions of domains � under a very weak assumption on �. As regards
applications in image modelling, note that the assumption that images belong to BV
is often made; however this assumption is valid only for simple synthesis images, but
is known to be wrong for natural images, see [11] for instance. The global regularity
assumption 1� ∈ Bδ,pp for a δ > 0 is, of course, much weaker.

Proposition 3. Let (ψj,k)j,k be an orthogonal wavelet basis on R such that the wavelet
ψ is compactly supported. Let f be defined as follows: If εj = (j (log j)2)−1/p for
j > 0, and kj = [2j εj ], then the wavelet coefficients of f are

Cj,k = 2j/pεj if k = kj ,

= 0 otherwise

}
. (26)

Then f ∈ Lploc and

u
p
f (x0) = −1

p
whereas ip(x0) ≥ 1.

It follows that upf (x0) �= ip(x0)− 1
p

, so that the global regularity condition f ∈ Bδ,pp
for a δ > 0 is necessary.

Proof of Proposition 3. For j large enough, the wavelets indexed by couples (j, k) such
that Cj,k �= 0 have disjoint supports so that

‖ f ‖pLp≤ C
∑
j≥0

|Cj,kj |p2−j ≤
∑
j≥0

ε
p
j ≤ C.

First, note that �pj (1, A) ≤ C so that ip(x0) ≥ 1. Let us now estimate upf (x0).
Because of the lacunarity of the wavelet series, the quantity

∫
B(0,r) |f (y)−P(y−x)|pdy

is minimal if P = 0. If r = 2εJ , then∫
B(0,r)

|f (y)|pdx ≥
∫ ∑

j≥J
|Cj,kj ψj,kj |pdy ≥

∑
j≥J

2−j |Cj,kj |p ∼ 1

log J
,

from which it follows that upf (x0) ≤ −1
p

.
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Definition 11. Let A ⊂ R
d ; if ε > 0, letNε(A) be the smallest number of sets of radius

ε required to cover A. The upper box dimension of A is

dimB(A) = lim sup
ε→0

(
logNε(A)

− log ε

)
.

The following corollary shows that the condition dimB(∂�) < d implies the reg-
ularity assumption of Theorem 2 (f ∈ B

δ,p
p for a δ > 0). Therefore, this geometric

condition plays the role of a uniform regularity condition. When it is satisfied, the weak
accessibility exponent of � at every point can be deduced from the wavelet coefficients
of 1�.

Corollary 2. Let � be a bounded domain of R
d ; then

∀δ < d − dimB(∂�)

p
, 1� ∈ Bδ,pp .

If dimB(∂�) < d , then ∀x ∈ ∂�, Ew�(x) = pip(x)− d.

Proof. Let � = dimB(∂�); using compactly supported wavelets, ∀ε > 0 the number
of nonvanishing wavelet coefficients at each scale is bounded by C2(�+ε)j ; since 1�
is bounded, these wavelet coefficients satisfy |Cλ| ≤ C. The first statement follows
immediately. The second statement follows from Theorem 2 and Lemma 2.

2.4. Strong accessibility and the oscillation exponent. The purpose of this section is
to study how strong accessibility at a point of ∂� can be estimated by conditions on
the wavelet coefficients of 1�. The following lemma goes in the direction opposite
to Lemma 3: It shows that large wavelet coefficients can be found close to strong α-
accessible points. We use an orthonormal basis of compactly supported wavelets, see
[8].

Lemma 4. Suppose that x ∈ ∂� is strong α-accessible. Using the notations of Defi-
nition 6, let jn = −[log2(rn)]; then there exist l, which depends only on the wavelet
chosen, a sequence Jn ∈ [jnd/(d + α)− l, jn], and Kn such that

|Kn2−Jn − x| ≤ C2−jnd/(α+d)

|CJn,Kn | ≥ C′

Jn


 . (27)

Proof of Lemma 4. Orthonormal wavelet decompositions can be constructed through a
multiresolution analysis; it means that there exists a compactly supported function ϕ,
arbitrarily smooth and such that

∫
ϕ = 1 and, if

Pj (f ) =
∑
j ′<j

∑
k

〈f |ψj ′,k〉ψj ′,k,

Pj (f ) can also be written

Pj (f )(x) =
∑
k

(∫
2dj f (y)ϕ(2j y − k)dy

)
ϕ(2j x − k). (28)
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If x is strong α-accessible, then there exists l ∈ N, which depends only on the size of the
support of ϕ, such that Pjn+l (xn) = 1 and Pjn+l (yn) = 0 (where xn ∈ B1

n and yn ∈ B2
n ,

where B1
n and B2

n are as in Definition 6). Let J ≤ jn; applying the mean value theorem
to (28) and using that 1� is bounded, we obtain

|PJ (xn)− PJ (yn)| ≤ C2J |xn − yn|.
Therefore, there exists l′ ∈ N, which depends only onϕ such that, if J = djn/(d+α)−l′,
then |PJ (xn) − PJ (yn)| ≤ 1/2. It follows that either |Pjn+l (xn) − PJ (xn)| ≥ 1/4 or
|Pjn+l (yn)− PJ (yn)| ≥ 1/4. But

Pjn+l (z)− PJ (z) =
jn+l∑
J

∑
k

Cj,kψj,k(z)

and for each j the sum over k has at most C terms. Thus one of the wavelet coefficients
Cj,k is larger thanC′/(jn+l−J ). Furthermore the support of the corresponding wavelet
ψj,k contains either xn or yn. Hence Lemma 4 holds. The result can easily be extended
to the case where the wavelets have only fast decay.

Lemma 4 implies that the strong accessibility exponent can be related to the oscilla-
tion exponent, a notion introduced in [2] and that was motivated by the following situation
often met in signal analysis: Characterizing the pointwise behavior of a function with the
sole Hölder exponent yields restrictive information since it does not describe the more
or less oscillatory behavior of the function near the point x0. This oscillatory behavior
can be modelled as follows. Let t > 0 and let htf (x0) denote the Hölder exponent of
the fractional primitive of order t at x0 of a function f ∈ L∞

loc; more precisely let φ be
a C∞ compactly supported function satisfying φ(x0) = 1, and let (Id −�)−t/2 be the
convolution operator which amounts to multiply the Fourier transform of the function
with (1 + |ξ |2)−t/2; we denote by htf (x0) the Hölder exponent at x0 of the function

ft = (Id − �)−t/2(φf ). The following definition was introduced in [2] (see also [16,
17, 24] where alternative definitions are discussed).

Definition 12. Let f : R
d → R be a bounded function. If hf (x0) �= +∞, then the

oscillation exponent of F at x0 is defined by

βf (x0) =
(
∂

∂t
htf (x0)

)
t=0

− 1 (29)

(where the derivative at t = 0 should be understood as a right-derivative).

Note that the mapping t −→ htf (x0) is a concave increasing function, see [2], so that
the derivative in (29) always exists (but may be infinite).

Corollary 3. Let � be a domain of R
d . If x ∈ ∂�, let β�(x) denote the oscillation

exponent of 1� at x. Then,

∀x ∈ ∂�, β�(x) ≤ Es�(x)

d
.

Proposition 4 will yield a natural geometric condition under which this upper bound
becomes an equality.
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Proof. If f ∈ L∞
loc, then, if t > 0, the Hölder exponent of ft at x is

lim inf
j→+∞

inf
k

(
log(2−tj |Cj,k|)

log(2−j + |x − λ|)

)
,

see [2, 4]. If 1� is strong α-accessible at x, choosing the particular sequence of wavelet
coefficients given by (27), we obtain that, if t > 0, then ht1�(x) ≤ t (1 + α/d), so that
β1�(x) ≤ α/d.

Definition 13. The two-microlocal domain of f at x0, denoted by E(f (x0)), is the set
of indices (s, s′) such that f belongs to Cs,s

′
(x0). The boundary of E(f (x0)) can be

parametrized by a decreasing concave function s = Ax0(s
′), called the two-microlocal

frontier.

The fact that Ax0(s
′) is concave is proved in [13, 24]; its knowledge gives precise

information about the pointwise behavior of the function; in particular, the Hölder expo-
nent of fractional primitives of a function in L∞

loc can be derived from Ax0(s
′), see [2].

The following proposition gives the precise two-microlocal behavior at the points similar
to the cusp-singularities (5), i.e. at the points where the weak and strong accessibility
exponents coincide.

Proposition 4. Let x0 ∈ ∂� be a point where Ew�(x0) = Es�(x0); then

∀s′ ∈ (−Ew�(x0)− d, 0] Ax0(s
′) = −d

Ew�(x0)+ d
s′,

and x0 is an oscillating singularity, with an oscillation exponent β�(x0) = Ew�(x0)/d.

Proof. Since x0 ∈ ∂�, then (0, 0) ∈ E(f (x0)); let α = Ew�(x0) = Es�(x0); then
Lemma 3 implies that ∀α′ < α, (α′,−α′ − d) ∈ E(f (x0)), and Lemma 4 implies that
(s, s′) /∈ E(f (x0)) if s′ > −(1 + d

α
)s. Since E(f (x0)) is convex, the first statement

follows.
It is shown in [2] that, if f ∈ L∞

loc,

1 + β(x0) = 1

1 + (Ax0)
′
g(−h(x0))

, (30)

where (Ax0)
′
g(t) denotes the left derivative of A at t (and here h(x0) = 0). The second

statement follows.

3. Proof of Theorem 1

We can assume that x0 = 0 without losing generality. We will use a compactly supported
scaling function and wavelets of class Cn, where n ≥ s and we actually suppose that
their supports are included in B(0,M), with M > 0. Thus the support of the wavelet
ψj,k is included in the cube

λj,k = k2−j +
[−M

2j
,
M

2j

]d
.
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3.1. Proof of the embedding Ẋs,−s,p,10 ⊂ T
p

s− d
p

(0). Let f ∈ Ẋ
s,−s,p,1
0 ; (20) can be

rewritten ∑
|k|≤A2j

|Cj,k|p(1 + |k|)−sp ≤ Cεj
p2(−sp+d)j (31)

with εj ∈ l1. We want to prove that there exists a polynomial P of degree less than or
equal to s − d

p
, C > 0 and R > 0 such that (11) holds (with x0 = 0). Let

�jf (x) =
∑

|k|≤A2j

Cj,kψ(2
j x − k). (32)

The wavelets are compactly supported and, since f ∈ Lploc,

f (x) =
∑
k

Ckφ(x − k)+
+∞∑
j=0

�jf (x), (33)

where convergence takes place inLploc. The function
∑
k

Ckφ(x−k) belongs toCn(Rd),

where n ≥ s corresponds to the smoothness of the wavelets; thus it belongs to T p
s− d

p

(0);

therefore we can restrict our study to the function
+∞∑
j=0

�jf (x). Let us define the poly-

nomial P .

– If s < d
p

, we set P = 0.
In this case, for ρ ≤ A, we will have to bound


∫

|x|≤ρ

∣∣∣∣
+∞∑
j=0

�jf (x)− P(x)

∣∣∣∣
p

dx




1
p

=

∫

|x|≤ρ

∣∣∣∣
+∞∑
j=0

�jf (x)

∣∣∣∣
p

dx




1
p

. (34)

– If s ≥ d
p

, let N =
[
s − d

p

]
. In this case, we set

P(x) =
∑

|α|≤N

+∞∑
j=0

(�
(α)
j f )(0)

xα

α!
. (35)

We first have to check that the definition of P in the second case makes sense, i.e.

that
+∞∑
j=0

�
(α)
j f (0) is finite for all α such that |α| ≤ N . It follows from (32) that

|�(α)j f (0)| ≤ C2j |α| ∑
|k|≤M

|Cj,k|. (36)

Since (31) implies that 2j |α| ∑
|k|≤M

|Cj,k| ≤ Cεj2j (|α|+ d
p

−s)
, this yields

|�(α)j f (0)| ≤ 2Mεj2j (|α|+ d
p

−s); (37)
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but |α| + d
p

− s ≤ 0, and εj ∈ l1; it follows that the series in (35) are convergent. In this
case we have to bound


∫

|x|≤ρ

∣∣∣∣
+∞∑
j=0

�jf (x)− P(x)

∣∣∣∣
p

dx




1
p

=

∫

|x|≤ρ

∣∣∣∣
+∞∑
j=0

�jf (x)−
∑

|α|≤N

+∞∑
j=0

�
(α)
j f (0)

xα

α!

∣∣∣∣
p

dx




1
p

. (38)

In the following, J denotes the integer defined by

2−J ≤ ρ < 2−J+1 ≤ A. (39)

3.1.1. The case s ≥ d
p

We will estimate the contributions of the�jf in (38) separately
for j ≤ J and j ≥ J .

Let us first consider the case j ≥ J . The corresponding term in (38) is bounded by
R1
J + R2

J where

R1
J =

∫

|x]≤ρ

∣∣∣∣
+∞∑
j=J

∑
|α|≤N

�
(α)
j f (0)

xα

α!

∣∣∣∣
p

dx




1
p

and R2
J =

∫

|x|≤ρ

∣∣∣∣
+∞∑
j=J

�jf (x)

∣∣∣∣
p

dx




1
p

.

(40)

We can bound R1
J by

R1
J ≤

∑
|α|≤N


∫

|x|≤ρ

∣∣∣∣
+∞∑
j=J

�
(α)
j f (0)

∣∣∣∣
p |x||α|p

(|α|!)p dx



1
p

. (41)

Using (37), we get

∣∣∣∣
+∞∑
j=J

�
(α)
j f (0)

∣∣∣∣ ≤ C

+∞∑
j=J

εj2j (|α|+ d
p

−s) ≤ C2J (|α|+ d
p

−s)
+∞∑
j=J

εj .

Using (39), it follows that

∣∣∣∣
+∞∑
j=J

�
(α)
j f (0)

∣∣∣∣ ≤ Cρ
s− d

p
−|α|

+∞∑
j=J

εj .

This yields

R1
J ≤ C

∑
|α|≤N

ρ
s− d

p
−|α|

+∞∑
j=J

εj

[∫
|x|≤ρ

|x||α|pdx
] 1
p

≤ Cρ
s− d

p
−|α|

ρ
|α|+ d

p

+∞∑
j=J

εj ≤ Cρs
+∞∑
j=J

εj . (42)
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Furthermore,

R2
J =

∫

|x|≤ρ

∣∣∣∣
+∞∑
j=J

�jf (x)

∣∣∣∣
p

dx




1
p

≤
+∞∑
j=J

[∫
|x|≤ρ

∣∣∣∣�jf (x)
∣∣∣∣
p

dx

] 1
p

. (43)

For each j and k given, there are at most (2M)d wavelets ψj,k′ non-vanishing on
the support of ψj,k . We can split the wavelets at scale j into (2M)d sets Pi such that
the wavelets in the same Pi have disjoint supports. The convexity of the function xp (if
p ≥ 1) yields

∫
|x|≤ρ

∣∣∣�jf (x)
∣∣∣pdx ≤ C

∑
i∈I


∫

|x|≤ρ

∣∣∣∣
∑
k∈Pi

Cj,kψ(2
j x − k)

∣∣∣∣
p

dx




≤ C
∑
i∈I

∑
k∈Pi

|Cj,k|p
∫

|ψ(2j x − k)|pdx

≤ C
∑

k∈�(j,ρ)
2−dj |Cj,k|p, (44)

where the sum on k actually bears on the indices belonging to the set

�(j, ρ) = {k : λj,k
⋂
B(0, ρ) �= ∅}.

If k ∈ �(j, ρ), then |k2−j | ≤ ρ + 2M

2j
. Since 2−j ≤ 2−J ≤ ρ, it follows that

|k2−j | ≤ ρ(1 + M); this yields 2−j ≤ ρ(1 +M)

|k| if |k| ≥ 1, so that, in all cases,

2−j ≤ Cρ

|k| + 1
.

Since we can assume that s ≥ 0 it follows that 2−spj ≤ ρsp

(|k| + 1)sp
. Therefore, it

follows from (44) that∫
|x|≤ρ

|�jf (x)|pdx ≤ C
∑

k∈�(j,ρ)
|Cj,k|p2(sp−d)j ρsp

(|k| + 1)sp
. (45)

Thus, using (31),
∫

|x|≤ρ
|�jf (x)|pdx ≤ Cε

p
j ρ

sp; and (43) implies that

R2
J ≤ Cρs

+∞∑
j=J

εj . (46)

Our estimates for R1
J and R2

J therefore yield


∫

|x]≤ρ

∣∣∣∣∣∣
+∞∑
j=J


�jf (x)−

∑
|α|≤N

�
(α)
j f (0)

xα

α!



∣∣∣∣∣∣
p

dx




1
p

≤ Cρs
+∞∑
j=J

εj . (47)
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Let us consider now the case j ≤ J . We have to estimate

SJ =

∫

|x|≤ρ

∣∣∣∣
J∑
j=0

�jf (x)−
∑

|α|≤N

J∑
j=0

�
(α)
j f (0)

xα

α!

∣∣∣∣
p

dx




1
p

≤
J∑
j=0


∫

|x|≤ρ

∣∣∣�jf (x)−
∑

|α|≤N
�
(α)
j f (0)

xα

α!

∣∣∣pdx



1
p

. (48)

Therefore, using the mean value theorem,

SJ ≤
J∑
j=0

[∫
|x|≤ρ

|x|(N+1)p sup
|x|≤ρ,|α|=N+1

∣∣∣�αj f (x)
∣∣∣pdx
] 1
p

. (49)

The wavelets ψj,k which bring a non-vanishing contribution to (49) satisfy
λj,k
⋂
B(0, ρ) �= ∅. Since j ≤ J , we have ρ ≤ 2−J+1 ≤ 2.2−j and∣∣∣k2−j

∣∣∣ ≤ ρ +M2−j ≤ 2−j (1 + 2M).

Thus |k| ≤ 1 + 2M, and therefore

∀t ∈ B(0, ρ) : �αj f (t) =
∑

|k|≤2M+1

2j (N+1)Cj,kψ
(α)(2j t − k).

Thus, using (31),

sup
|t |≤ρ

∣∣∣�αj f (t)
∣∣∣p ≤ C2jp(N+1)


 ∑

|k|≤2M+1

|Cj,k|


p

≤ C2jp(N+1)
∑

|k|≤2M+1

|Cj,k|p

≤ C2jp(N+1)(4M + 3)dεpj 2j (d−sp), (50)

which, together with (49) yields

SJ ≤ C

J∑
j=0

ρ
N+1+ d

p 2(N+1)j εj2(
d
p

−s)j ≤ Cρ
N+1+ d

p

J∑
j=0

εj2(−s+N+1+ d
p
)j
.

Since 2−J ≤ ρ ≤ 2−J+1, and N + 1 − s + d
p

≥ 0, we have

SJ ≤ Cρ
N+1+ d

p

J∑
j=0

εj2(−s+N+1+ d
p
)J ≤ Cρs

J∑
j=0

εj . (51)

Using (51) and (47), we obtain

∫

|x|≤ρ

∣∣∣
+∞∑
j=0

�jf (x)− P(x)

∣∣∣pdx



1
p

≤ Cρs.

Thus Ẋs,−s,p,10 ⊂ T
p

s− d
p

(0) if s ≥ d
p

.
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3.1.2. The case s < d
p

We have to estimate (34). As before, we split the sum into two
terms, depending whether j ≥ J or j < J . If j ≥ J , we can use the bound obtained
above for R2

J since it was obtained under the sole assumption s ≥ 0. Therefore


∫

|x|≤ρ

∣∣∣
+∞∑
j=J

�jf (x)

∣∣∣pdx



1
p

≤ Cρs
+∞∑
j=J

εj . (52)

Now, we want to bound the sum in (34) restricted to j ≤ J . Let

SJ =

∫

|x|≤ρ

∣∣∣
J∑
j=0

�jf (x)

∣∣∣pdt



1
p

≤
J∑
j=0

[∫
|x|≤ρ

sup
|t |≤ρ

∣∣∣�jf (t)
∣∣∣pdx
] 1
p

. (53)

As in the previous case (s ≥ d
p

), we have a finite number of non vanishing wavelets
in the integral and this yields

∀t ∈ B(0, ρ), �jf (t) =
∑

|k|≤2M+1

Cj,kψ(2
j t − k).

Thus, using (31),

sup
|t |≤ρ

∣∣∣�jf (t)
∣∣∣p ≤ C(4M + 1)dεpj 2j (d−sp).

Coming back to (53), it follows that

SJ ≤ C

J∑
j=0

ρ
d
p εj2(

d
p

−s)j ;

since s < d
p

, and since 2−J ≤ ρ ≤ 2−J+1, then

SJ ≤ C

J∑
j=0

ρ
d
p εj2(

d
p

−s)J ≤ Cρs
J∑
j=0

εj . (54)

Coming back to (34), it follows from (52) and (54) that


∫

|x|≤ρ

∣∣∣∣
+∞∑
j=0

�jf (x)

∣∣∣∣
p

dx




1
p

≤ Cρs. (55)

Since
∑
k

Ckφ(x − k) belongs to T p
s− d

p

(0), we can conclude that

(∫
|x|≤ρ

|f (x)|pdx
) 1
p

≤ Cρs. (56)

Thus, if s < d
p

, and if f belongs to Xs,−s,p,10 , then f belongs to T p
s− d

p

(0), which

completes the proof of Part 1 in Theorem 1.
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3.2. Proof of Part 2 of Theorem 1. If f ∈ T p
s− d

p

(0), then (11) holds and there exists a

polynomial P of degree less than or equal to s − d
p

and constants C and R such that

∀ρ ≤ R,

∫
|x−x0|≤ρ

|f (x)− P(x − x0)|pdx ≤ Cρsp.

Since f belongs to T p
s− d

p

(0), it belongs to Lploc. We want to prove that (21) holds. We

rewrite (21) on the orthonormal wavelet basis ψ̃j,k = 2
dj
2 ψj,k of L2(Rd):

f (x) =
∑
j

∑
k

C̃j,kψ̃j,k with ψ̃j,k(x) = 2
dj
2 ψ(2j x − k) and C̃j,k = 2− dj

2 Cj,k.

We want to prove that, for an A > 0,

2(sp−d+ dp
2 )j

∑
|k|≤A2j

|C̃j,k|p(1 + |k|)−sp ≤ Cj. (57)

We pick A = R and we define a ∈ Z by the condition 2a ≤ R < 2a+1. For l ∈
{1, ..., j + a + 1}, let

Al,j =
∑

2l−1<|k|≤2l

|C̃j,k|p(1 + |k|)−sp; (58)

(57) can be rewritten

2(sp−d+ dp
2 )j


|C̃j,0|p +

j+a+1∑
l=1

Al,j


 ≤ Cj. (59)

Let us now derive a bound for Al,j . The basis ψ̃j,k is orthonormal in L2 so that

Al,j =
〈∑
j ′∈Z

∑
k∈Zd

C̃j ′,kψ̃j ′,k

∣∣∣∣∣∣
∑

2l−1<|k|≤2l

|C̃j,k|p−1sgn(C̃j,k)(1 + |k|)−spψ̃j,k
〉
,

(60)

where < .|. > denotes the scalar product in L2 and sgn the function such that for any
a �= 0, sgn(a) = a

|a| , and sgn(0) = 0.

Since we assumed that f ∈ T p
s− d

p

(0), there exists a polynomial P of degree less than

s − d
p

(P vanishes if s < d
p

), such that (11) holds. Since the ψ̃j,k form an orthonormal

basis of L2(Rd) with regularity Cn such that n ≥ N , all the moments of ψ of order less
than or equal toN of ψ vanish, so that, ∀j, k,

∫
P(x)ψ̃j,k(x)dx = 0. Thus, if we define

gl,j by

gl,j =
∑

2l−1<|k|≤2l

|C̃j,k|p−1sgn(C̃j,k)(1 + |k|)−spψ̃j,k, (61)
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then (60) can be rewritten

Al,j =
∫
Cl,j
(f (x)− P(x))gl,j (x)dx, (62)

where Cl,j denotes the support of gl,j .
Remark that if 2l−1 > M , Cl,j is included in a ring of center 0, of inner diameter

2. 2
l−1−M

2j
and outer diameter 2. 2

l+M
2j

. If 2l−1 ≤ M , Cl,j is included in the ball of center

0 and diameter 2. 2
l+M
2j

.
If q denotes the conjugate exponent of p, Hölder’s inequality yields

Al,j ≤
∣∣∣∣∣∣(f − P).χCl,j

∣∣∣∣∣∣
Lp

·
∣∣∣∣∣∣gl,j

∣∣∣∣∣∣
Lq
. (63)

Let us study
∣∣∣∣∣∣gl,j

∣∣∣∣∣∣
Lq

. The wavelet characterization of Lq (see Chapter 6.2 of [23])

yields

Al,j ≤ C ‖ (f − P).χCl,j ‖Lp

 ∑

2l−1<|k|≤2l

|C̃j,k|q(p−1)(1 + |k|)−sp−sq2
djq

2 −dj



1
q

.

Since |k| ≥ 2l−1, it follows that (1 + |k|)−sp−sq ≤ C(1 + |k|)−sp(1 + 2l )−sq , which
yields

Al,j ≤ C ‖ (f − P).χCl,j ‖Lp (1 + 2l )−s

 ∑

2l−1<|k|≤2l

|C̃j,k|p(1 + |k|)−sp



1
q

2
dj
2 − dj

q

= C ‖ (f − P)χCl,j ‖Lp (1 + 2l )−s2
dj
2 − dj

q A
1
q

l,j .

Thus

Al,j ≤ C ‖ (f − P).χCl,j ‖pLp (1 + 2l )−sp.2
djp

2 − djp
q , (64)

or, equivalently

2(sp+ dp
2 −d)jAl,j ≤ C ‖ (f − P).χCl,j ‖pLp 2spj (1 + 2l )−sp. (65)

Because of (58), in order to obtain an upper-bound of (59), we add up these estimates
for l ∈ {1, ..., j + a + 1}. We get

2(sp−d+ dp
2 )j

j+a+1∑
l=1

∑
2l−1<|k|≤2l

|C̃j,k|p(1 + |k|)−sp

≤ C

j+a+1∑
l=1

‖ (f − P).χCl,j ‖pLp 2spj (1 + 2l )−sp

=
j+a+1∑
l=1

2spj (1 + 2l )−sp
∫
Cl,j

|f (t)− P(t)|pdt.
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By definition of T p
s− d

p

(0),
∫
Bl,j |f (t)−P(t)|pdt ≤ C

(
2l

2j

)sp
. It follows that, since s is

positive,

j+a+1∑
l=1

2spj (1 + 2l )−sp
∫
Cl,j

|f (t)− P(t)|pdt

≤
j+a+1∑
l=1

2spj (1 + 2l )−sp(2l−j )sp ≤ C(j + a + 1). (66)

In order to obtain the upper-bound on (59), we just need to evaluate

|C̃j,0| =
∣∣∣∣
∫

2dj/2f (x)ψ(2j x)dx

∣∣∣∣ =
∣∣∣∣
∫

2dj/2(f (x)− P(x))ψ(2j x)dx

∣∣∣∣ ,
which, by Hölder’s inequality, is bounded by

2dj/2
[∫

|x|≤M2−j
|f (x)− P(x)|p

]1/p

‖ ψ(2j ·) ‖1/q
q ≤ 2dj/2[(M2−j )sp]1/p2−dj/q,

therefore |C̃j,0| ≤ C2−spj2dj (1−p/2). Thus (59) is finite.

4. Proof of Theorem 2

First, note that the independence of ip(x0) from the wavelet basis chosen follows from

the same result for the spaces Xs,s
′,p,q

x0 .

Lemma 5. The following properties hold for any function f ∈ Lp:

1. �pj (s, A) is an increasing function of A,

2. if B > A, then �pj (s, B) = �
p
j (s, A)+O(1),

3. if s ≤ 0, ∀A, �pj (s, A) = O(1).

Proof. The first part is obvious. If f ∈ Lp, then f ∈ B0,∞
p (see [23]), so that

∃C, ∀j,
∑
k

2−dj |Cj,k|p ≤ C;

but

�
p
j (s, B) = �

p
j (s, A)+ 2−dj ∑

A≤|λ−x0|≤B
|Cj,k|p(2−j + |λ− x0|)−sp,

and the last term is bounded by C2−dj∑
k |Cj,k|p = O(1); therefore, the second part

holds.
The third part is also a direct consequence of the embedding Lp ↪→ B

0,∞
p .

We can assume that the wavelets are compactly supported in B(0,M) for anM > 0,
and that f ∈ L

p
loc. Let A > 0 and B > A; on B̃ = B(0, B + 2M), f coincides with

a function g ∈ Lp and, because of our choice of the radius of B̃, ∀j ≥ 0, �pj (s, B)
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coincide for f and g and �pj (s, A) also coincide for f and g. Therefore Part 3 of
Lemma 5 implies that ∀A, ip(x0) defined by (23) is positive. Furthermore, since ip(x0)

is determined by the values of s such that

∃ε > 0, ∃jn : �
p
j (s, A) ≥ 2εjn . (67)

Part 2 of 5 implies that (67) holds forA if and only if it holds forB. Therefore, ip(x0)

is positive and independent of the value of A. Hence the first part of Theorem 2 holds.
Let us now prove (24). By definition of upf (x0), ∀u0 < u

p
f (x0), f belongs to T pu0(x0);

thus, using Theorem 1, f satisfies (21), and there exists a constant A > 0 such that

∀j ≥ 0, 2u0pj


 ∑

|k−2j x0|≤A2j

|Cj,k|p(1 + |k − 2j x0|)−(u0p+d)

 ≤ Cj, (68)

which can be rewritten

�
p
j

(
u0 + d

p

)
≤ Cj, (69)

so that

lim inf
j→∞

log
(
�
p
j (u0 + d

p
)

1
p

)
−j log 2

≥ 0. (70)

Coming back to (23), we see that

u0 ≤ ip(x0)− d

p
. (71)

Since this is true ∀u0 < u
p
f (x0), it follows that (24) holds.

Let us now prove (25). Suppose first that ip(x0) = 0; since necessarily upf (x0) ≥ − d
p

,

(24) implies that upf (x0) = − d
p

= ip(x0)− d
p

, and (25) holds.

Suppose now that ip(x0) �= 0 and that f belongs to Bδ,pp for a δ > 0. We can assume
without loss of generality that x0 = 0 and A = 1. We want to prove that, if i0 < ip(0),
then f belongs to T p

i0− d
p

(0). Using Part 1 of Theorem 1 it is sufficient to prove that f

belongs to Ẋi0,−i0,p,10 , i.e. that

2(i0p−d)j ∑
|k|≤2j

|Cj,k|p(1 + |k|)−i0p ≤ Cε
p
j with εj ∈ l1. (72)

Let i0 < ip(0) be given. The hypotheses are the following:

– By definition of ip(0), ∀s < ip(0), ∀ε > 0,

2(sp−d)j∑
k

|Cj,k|p(1 + |k|)−sp ≤ C(s, ε)2εj . (73)
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– f ∈ Bδ,pp for a δ > 0, so that

2(δp−d)j∑
k

|Cj,k|p ∈ l1. (74)

We pick an s satisfying i0 < s < ip(0). Let θ ∈ (0, 1) which will be fixed later. First,
we estimate the sum on the left hand side of (72) for |k| ≥ 2θj ; it is bounded by

2(i0p−d)j∑
k

|Cj,k|p(1 + 2θj )−i0p,

which, using (74) is bounded by 2i0p(1−θ)j2−δpj . Therefore, if we pick θ close enough
to 1, this term decays exponentially.

Having thus fixed the value of θ , we now estimate the sum on the right hand side of
(72) for |k| < 2θj ; it is equal to

2(i0p−d)j ∑
|k|<2θj

|Cj,k|p(1 + |k|)−sp(1 + |k|)(s−i0)p,

which, using (73) is bounded by

C(s, ε)2εj2−pj (1−θ)(s−i0),

which also decays exponentially if ε is picked small enough.
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37. Xiao,Y.: Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian
random fields. Prob. Th. Rel. Fields, 109(1), 129–157 (1997)

Communicated by M. B. Ruskai


