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Abstract: This paper investigates the spectral zeta function of the non-commutative har-
monic oscillator studied in [PW1, 2]. It is shown, as one of the basic analytic properties,
that the spectral zeta function is extended to a meromorphic function in the whole com-
plex plane with a simple pole at s = 1, and further that it has a zero at all non-positive even
integers, i.e. at s = 0 and at those negative even integers where the Riemann zeta function
has the so-called trivial zeros. As a by-product of the study, both the upper and the lower
bounds are also given for the first eigenvalue of the non-commutative harmonic oscillator.

1. Introduction

When we try to study the so-called spectral zeta function associated with some given
operator, basically it seems difficult to expect it to share with the Riemann zeta function
too many properties such as a precise information of the location of the poles/zeros (apart
from the so-called essential zeros in the strip 0 < Re s < 1), the functional equation,
the Euler product and so forth. However, we might understand part of the information
concerning the analytic continuation from the absolutely convergent region to the left,
an exact knowledge of the first singularity, etc. (see e.g. [MP]). Furthermore, once we
get such information, it even allows us to show the so-called Weyl law which describes
the number of eigenvalues of the operator less than x for x →∞.

The aim of the present paper is then to investigate the spectral zeta function of the
non-commutative harmonic oscillators. It is defined via the spectrum of the following
ordinary differential operator introduced in [PW1, 2]:

Q(x,Dx) = A
(
− ∂

2
x

2
+ x

2

2

)
+ J

(
x∂x + 1

2

)
, x ∈ R, ∂x := d

dx
, (1.1)
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where A =
(
α 0
0 β

)
and J =

(
0 −1
1 0

)
. We assume that α, β ∈ R are positive and

αβ > 1. Then it is known that Q defines a positive, self-adjoint operator in the Hilbert
space L2(R) ⊗ C

2 which has only a discrete spectrum (0 <)λ1 ≤ λ2 ≤ . . . ≤ λn ≤
. . . → ∞ with uniformly bounded multiplicity (see [PW2, 3]). Then the spectral zeta
function ζQ(s) of the system is defined as

ζQ(s) =
∞∑
j=1

1

λsj
(1.2)

for sufficiently large Re s > 0. We can prove in fact ([IW]) that the series converges
absolutely in Re s > 1.

As described in [PW2], when α = β the system becomes unitarily equivalent to a
couple of the usual quantum harmonic oscillators, whereas this cannot hold otherwise. In
particular, if α = β = √2 then one knows thatQ = Q0 ∼= 1

2 (−∂2
x + x2)I , with I being

the 2 × 2 identity matrix, where the intertwining unitary operator is also constructed
(see Corollary 4.1 in [PW2]). Therefore its spectrum is known and actually given by
{n+ 1

2 } (n = 0, 1, 2, . . . ) with multiplicity two. This implies the spectral zeta function
ζQ0(s) is explicitly calculated as

ζQ0(s) = 2
∞∑
n=0

1

(n+ 1
2 )
s
= 2(2s − 1)ζ(s), (1.3)

where ζ(s) = ∑∞n=1 n
−s is the Riemann zeta function. From this expression, the zeta

function ζQ(s) introduced above can be considered as a deformation of the Riemann zeta
function (see Corollary 4.7). Though theoretically, the spectrum is described by using
certain continued fractions (see [PW2, 4]) almost nothing is known in reality about the
eigenvalues when α �= β (see [NNW] for some numerical observation), since we cannot
expect the existence of the annihilation and the creation operators which enable us to
easily understand a structure of the system like the usual quantum harmonic oscillator.
Thus the main concern of the study of ζQ(s) is to discuss the following questions:

(1) Does the zeta function ζQ(s) have an analytic continuation to the whole complex
plane ?

(2) What can one say about a Weyl law for the eigenvalues ?
(3) Does one have information about the location of zeros and poles ?
(4) Is it possible to calculate the special values, for instance, at the integer points, etc. ?

As to questions (1), (2) and part of (3), we have good answers. In fact, we first recall
that the series (1.2) defining ζQ(s) converges absolutely in the region Re s > 1, that is,
ζQ(s) is holomorphic there (see Theorem 3.3 in [IW]), and, based on this result, prove
that it has a simple pole at s = 1 as in the case of ζ(s) (see §2). From this fact with the
information about the residue at s = 1 (see below), one can conclude that Weyl’s law in
the present case is stated as

∑
λn<x

1 ∼ α + β√
αβ(αβ − 1)

x (x →∞).

Furthermore, studying the heat kernel of the operator we prove that ζQ(s) can be extended
meromorphically to the whole complex plane C. To be remarkable, we can show that
ζQ(s) possesses a kind of “trivial zero” at each non-positive even integer point. In fact,
the main theorem of the paper can be formulated as follows.
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Main Theorem. There exist constantsCQ,j (j = 1, 2, . . . ) such that for every positive
integer n one has

ζQ(s) = 1

�(s)

[
α + β√

αβ(αβ − 1)

1

s − 1
+

n∑
j=1

CQ,j

s + 2j − 1
+HQ,n(s)

]
, (1.4)

where HQ,n(s) is a holomorphic function in Re s > −2n. Consequently, the spectral
zeta function ζQ(s) is meromorphic in the whole complex plane with a simple pole at
s = 1 and has zeros for s being non-positive even integers.

Obviously question (3) above should also be related to the question whether or not
there exists a functional equation and/or an Euler product. However, in our case, it seems
very hard to expect any functional equation or any Euler product expression. Hence the
problem is still mysterious whether the “essential zeros” of ζQ(s) are all situated in the
same critical strip 0 < Re s < 1 as those of ζ(s) or not. Actually, it is not yet known if
ζQ(s) is free from zero in the half plane Re s > 1, although in the case of the Riemann
zeta function the corresponding fact immediately follows from its Euler product expres-
sion ζ(s) = ∏p:primes(1 − p−s)−1 for Re s > 1. We only note (see Proposition 2.10)
that ζQ(s) does not vanish in the region Re s > σ0 with a sufficiently large σ0 > 1.
But still, in this connection, as a by-product of the study, we give the upper and lower
bounds for the first eigenvalue of the operatorQ (Theorem 2.9), which are best possible
in the sense that both these bounds coincide when α = β, i.e. when Q is essentially a
couple of the harmonic oscillators.

We will start the proof of the main theorem in §2 early and finally complete it at the
very end of §4, the last section. The method we develop here to prove the main theorem
is based on the asymptotic expansion of the trace of the heat kernel, the integral kernel
of the self-adjoint semigroup e−tQ for t ↓ 0. In this sense, the numbers CQ,j in the
theorem are regarded as analogues of Bernoulli’s numbers (see e.g. [E, T]). As to this
point, we also refer to Remark 2 in the last section. Such an approach as made in the
paper may be in a vein similar to the study [MP].

We have not treated here question (4), which describes the special values of the spec-
tral zeta function at the positive integral points. But in [IW] we have observed that these
values are closely related to certain integrals which involve elliptic integrals and further,
at least in the case where n is small, there is a close connection between the special val-
ues and the solutions of certain singly confluent Heun’s ordinary differential equations.
Here the so-called Heun differential equation is a Fuchsian type ordinary differential
equation with four regular singular points in a complex domain (see, e.g. [WW, SL]).
In fact, the values of ζQ(s) at n = 2, 3 are described in terms of the solutions of such
confluent Heun’s equations [IW]. In this sense, it is quite interesting to understand the
relation between the values ζQ(−2m + 1) = (2m − 1)!CQ,m and ζQ(2m) through
Heun’s equations.

2. Heat Kernel and its Expansion

Consider the self-adjoint operator [PW1] defined by

Q := Q(α,β)(x,Dx) = A 1

2
(−∂2

x + x2)+ J
(
x∂x + 1

2

)
, (2.1)
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where A =
(
α 0
0 β

)
with positive α, β and αβ > 1, and J =

(
0 −1
1 0

)
. It is known

[PW1] that Q has only a discrete spectrum. Let K(t, x, y) be the heat kernel for Q, i.e.
the integral kernel of the self-adjoint semigroup K(t) := e−tQ. Throughout this paper,
Tr stands for the operator trace, while tr does for the 2× 2-matrix trace.

We now use TrK(t) = ∫
trK(t, x, x)dx to define the zeta function ζQ(s) for the

operator Q through the Mellin transform

ζQ(s) = 1

�(s)

∫ ∞
0

t s−1TrK(t)dt, (2.2)

which makes sense for the moment at least for Re s sufficiently large. Now, letK1(t) be
the operator with integral kernel K1(t, x, y) given by the pseudo-differential operator

(K1(t)f )(x) =
∫
K1(t, x, y)f (y)dy

= (2π)−1
∫∫

ei(x−y)ξ exp
[
−t
(
A(ξ2 + y2)/2+ Jyiξ

)]
f (y)dydξ,

(2.3)

for f ∈ S(R,C2) = S(R)⊗ C
2. Then we put

R2(t) = K(t)−K1(t) or R2(t, x, y) = K(t, x, y)−K1(t, x, y). (2.4)

Since K(t, x, y) satisfies the heat equation

0 = (∂t +Q)K(t, x, y)
= (∂t +Q)K1(t, x, y)+ (∂t +Q)R2(t, x, y), t > 0, (x, y) ∈ R

2,

we have

(∂t +Q)R2(t, x, y) = −(∂t +Q)K1(t, x, y) =: F(t, x, y), (2.5)

and

R2(t, x, y)→ 0I, t ↓ 0,

because we can check that K1(t, x, y)→ δ(x − y)I as t ↓ 0. Therefore, by the defi-
nition of F(t, x, y) in (2.5), we have by Duhamel’s principle (see e.g., pp.202–204 in
[CH]) that

R2(t) =
∫ t

0
e−(t−u)QF(u)du,

where

(F (u)f )(x) =
∫
F(t, x, y)f (y)dy
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and also

R2(t, x, y) =
∫ t

0
du

∫
e−(t−u)Q(x, z)F (u, z, y)dz

=
∫ t

0
du

∫
K(t − u, x, z)F (u, z, y)dz

=
∫ t

0
du

∫
K1(t − u, x, z)F (u, z, y)dz

+
∫ t

0
du

∫
R2(t − u, x, z)F (u, z, y)dz. (2.6)

In view of the definition of F(t, x, y) in (2.5) again we have
∫
F(t, x, y)f (y)dy

=
∫
−(∂t +Q)K1(t, x, y)f (y)dy

= 1

2π

∫∫ [(
A
ξ2 + y2

2
+ Jyiξ

)
−
(
A
−∂2

x + x2

2
+ J

(
x∂x + 1

2

))]

×
[
ei(x−y)ξ e−t[A

ξ2+y2

2 +Jyiξ ]
]
f (y)dydξ

= 1

2π

∫∫
ei(x−y)ξ

[(
A
ξ2 + y2

2
+ Jyiξ

)
e−t[A

ξ2+y2

2 +Jyiξ ]

−
(
A
ξ2 + x2

2
e−t[A

ξ2+y2

2 +Jyiξ ]
)

−J
(
xiξ e−t[A

ξ2+y2

2 +Jyiξ ] + 1

2
e−t[A

ξ2+y2

2 +Jyiξ ]
)]
f (y)dydξ

= 1

2π

∫∫
ei(x−y)ξ

[
A
y2 − x2

2
+ J (y − x)iξ

]
e−t[A

ξ2+y2

2 +Jyiξ ]f (y)dydξ

−1

2
(2π)−1

∫∫
ei(x−y)ξ J e−t[A

ξ2+y2

2 +Jyiξ ]f (y)dydξ.

Hence we obtain

F(t, x, y) = 1

2π

∫
ei(x−y)ξ

[
A
y2 − x2

2
+ J (y − x)iξ

]
e−t[A

ξ2+y2

2 +Jyiξ ]dξ

− 1

4π

∫
ei(x−y)ξ J e−t[A

ξ2+y2

2 +Jyiξ ]dξ

= : F1(t, x, y)+ F2(t, x, y). (2.7)

We now write ζQ(s) as

ζQ(s) = 1

�(s)

∫ 1

0
t s−1TrK(t)dt + 1

�(s)

∫ ∞
1

t s−1TrK(t)dt

=: Z0(s)+ Z∞(s). (2.8)
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We show first that Z∞(s) is holomorphic, and study Z0(s) later. Actually, putting
Ẑ∞(s) := �(s)Z∞(s), we prove the following assertion with the aid of the result
obtained in [IW].

Proposition 2.1. The function Ẑ∞(s) =
∫∞

1 t s−1TrK(t)dt is holomorphic in the whole
complex plane. As a result, it is also true for Z∞(s).

Proof. We have only to show that Ẑ∞(s) is holomorphic, since 1
�(s)

is holomorphic. Let

{λn}∞n=1 be the eigenvalues ofQ. They are all positive. We have TrK(t) =∑∞n=1 e
−λnt ,

so that

Ẑ∞(s) = �(s)Z∞(s) =
∞∑
n=1

∫ ∞
1

t s−1e−λntdt.

We need to show that the last member above converges absolutely and locally uniformly
in the complex plane. Note that tae−t ≤ (a/e)a for all t > 0 and a > 0.

Suppose first that σ = Re s ≤ 1. Then, since
∑∞
n=1 λ

−2
n < ∞ (§3 in [IW] or by

Lemma 2.8 below), we have

|Ẑ∞(s)| ≤
∞∑
n=1

∫ ∞
1

e−λntdt =
∞∑
n=1

e−λn
λn
≤ 1

e

∞∑
n=1

λ−2
n <∞.

Next suppose that σ = Re s > 1. Then

|Ẑ∞(s)| ≤
∞∑
n=1

∫ ∞
1
(λn/2)

−(σ−1)((λnt/2)σ−1e−λnt/2
)
e−λnt/2dt

≤
(σ − 1

e

)σ−1 ∞∑
n=1

∫ ∞
1
(λn/2)

−(σ−1)e−λnt/2

=
(σ − 1

e

)σ−1 ∞∑
n=1

(λn/2)
−(σ−1) 2e−λn/2

λn
=
(σ − 1

e

)σ−1
2σ
∞∑
n=1

e−λn/2

λσn
<∞.

This proves the assertion of Proposition 2.1. 
�
Before coming to the study of Z0(s) in (2.8), we explain briefly what we are going

to do for our ζQ(s) from now on, by illustrating the Riemann zeta function case. It is
easy to derive by the integral representation of the gamma function that

ζ(s) = 1

�(s)

∫ ∞
0

t s−1

et − 1
dt.

This corresponds exactly to Eq. (2.2) above for ζQ(s). Let t/(et−1) =∑∞n=0(Bn/n!)tn

(|t | < 2π) be the Taylor expansion of t/(et − 1) at t = 0, where Bn are the Bernoulli
numbers [E]. Using this expansion, we immediately get through the Mellin transform

ζ(s) = 1

�(s)

[ ∞∑
n=0

Bn

n!
· 1

s + n− 1
+
∫ ∞

1

t s−1

et − 1
dt

]
.
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Obviously, the integral on the right-hand side defines an entire function, just by the same
reasoning as in Proposition 2.1 above. Hence ζ(s) is meromorphically extended to the
whole complex plane. In particular, since B2m+1 = 0 form = 1, 2, . . . , this shows ζ(s)
has a zero at each negative integer (see Remark 2 in §4). However, to get a meromorphic
extension of ζ(s) in this way, we notice that what one needs is only to find an asymptotic
expansion of t/(et − 1) for small t > 0, since there is no problem for large t > 0,
although, one has had actually the Taylor expansion of t/(et − 1).

Thus, in the study of the property of ζQ(s), the main point is to investigate the behav-
ior of Tr K(t) when t ↓ 0, so that the problem is reduced to seeking an asymptotic
expansion of Tr K(t). As in the case of the usual harmonic oscillator, we expect the
expansion to start from the term for t−1 like

TrK(t) ∼ c−1t
−1 + c0t

0 + c1t + c2t
2 + c3t

3 + · · · . (2.9)

In order to get this expansion (2.9), we now come back to study Z0(s) in (2.8):

Z0(s) = 1

�(s)

∫ 1

0
t s−1TrK1(t) dt + 1

�(s)

∫ 1

0
t s−1TrR2(t) dt

=: Z01(s)+ Z′02(s). (2.10)

The first task turns out to determine the very first coefficient c−1 in (2.9).

Proposition 2.2. For the trace of K1(t) defined in (2.3), one has

TrK1(t) = α + β√
αβ(αβ − 1)

t−1, (2.11a)

Z01(s) = α + β√
αβ(αβ − 1)

1

�(s)
· 1

s − 1
. (2.11b)

Proof. We have by (2.3) and by change of variables ξ ′ = t1/2ξ, x′ = t1/2x,

TrK1(t) =
∫

trK1(t, x, x) dx

= 1

2πt

∫∫
tr exp

[
−
(
A(ξ2 + x2)/2+ Jxiξ

)]
dxdξ.

To calculate the last integral of the exponential or its matrix trace, we use the polar
coordinates ξ = ρ cos θ, x = ρ sin θ, 0 ≤ ρ <∞, 0 ≤ θ < 2π . Then∫∫

exp
[
−
(
A(ξ2 + x2)/2+ Jxiξ

)]
dxdξ

=
∫ ∞

0

∫ 2π

0
exp

[
−ρ2/2

(
α −i sin 2θ

i sin 2θ β

)]
ρdρdθ

=
∫ ∞

0

∫ 2π

0
exp

[
−ρ′

(
α −i sin θ ′

i sin θ ′ β

)]
dρ′dθ ′.

Integrating first in ρ′ and next in θ ′, we see the last integral is equal to
∫ 2π

0
dθ ′
[
−
(

α −i sin θ ′
i sin θ ′ β

)−1

exp
[
−ρ

(
α −i sin θ ′

i sin θ ′ β

)]]ρ=∞
ρ=0

=
∫ 2π

0
dθ ′

(
α −i sin θ ′

i sin θ ′ β

)−1

=
∫ 2π

0
dθ

(
β i sin θ

−i sin θ α

)
/(αβ − sin2 θ).
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Therefore we have

TrK1(t) = α + β
2πt

∫ 2π

0

dθ

αβ − sin2 θ

= α + β
πt

∫ π

0

dθ

(αβ − 1
2 )+ 1

2 cos 2θ
= 1

t

α + β√
αβ(αβ − 1)

.

This proves the first assertion of Proposition 2.2. Here we have used the well-known
formula

∫ π

0

dθ

a + b cos θ
= π√

a2 − b2
, a > |b|. (2.12)

For the second part, taking the Mellin transform of TrK1(t), we have for Re s > 1,

Z01(s) = 1

�(s)

∫ 1

0
t s−1TrK1(t) dt

= 1

�(s)

α + β√
αβ(αβ − 1)

∫ 1

0
t s−1t−1dt = α + β√

αβ(αβ − 1)

1

�(s)(s − 1)
.

This ends the proof of Proposition 2.2. 
�

We next study the trace of the remainder term R2(t) in (2.4).
Since by (2.6)

R2(t) =
∫ t

0
K1(t − u)F (u) du+

∫ t

0
R2(t − u)F (u) du =: K2(t)+ R3(t),

by iteration we get

R3(t) =
∫ t

0
du1

∫ t−u1

0
K(t − u1 − u2)F (u2)F (u1) du2

=
∫ t

0
du1

∫ t−u1

0
K1(t − u1 − u2)F (u2)F (u1) du2

+
∫ t

0
du1

∫ t−u1

0
R2(t − u1 − u2)F (u2)F (u1) du2

=: K3(t)+ R4(t).
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In this way we define Km(t), 1 ≤ m ≤ n, and Rn+1(t) successively by

K(t) = e−tQ =
n∑

m=1

Km(t)+ Rn+1(t), (2.13a)

Km(t) =
∫ t

0
du1

∫ t−u1

0
du2

∫ t−u1−u2

0
du3 · · ·

∫ t−u1−u2−···−um−2

0
dum−1

×K1(t − u1 − u2 − · · · − um−1)

×F(um−1)F (um−2) · · ·F(u2)F (u1), 1 ≤ m ≤ n, (2.13b)

Rn+1(t) =
∫ t

0
du1

∫ t−u1

0
du2

×
∫ t−u1−u2

0
du3 · · ·

∫ t−u1−u2−···−un−1

0
K(t − u1 − u2 − · · · − un)

×F(un)F (un−1) · · ·F(u2)F (u1) dun.

(2.13c)

Further, based on the decomposition F(u) = F1(u) + F2(u) in (2.7), we introduce a
way of decomposing Km(t) into the sum

Km(t) =
∑

ε∈Zm−1
2

Km,ε(t), (2.14)

where ε = (ε1, . . . , εm−1) ∈ Z
m−1
2 = {±}m−1 and each εj is so determined as to

be +/− according as, in the decomposition of F(um−1)F (um−2) · · ·F(u2)F (u1) in the
integrand of Km(t), one chooses F1(uj )/F2(uj ). For instance, we have

K4,(+,−,+)(t)

=
∫ t

0
du1

∫ t−u1

0
du2

∫ t−u1−u2

0
du3K1(t − u1 − u2 − u3)F1(u3)F2(u2)F1(u1).

We first observe the asymptotic behavior of Rn(t) when t ↓ 0.

Proposition 2.3. One has

|TrR2(t)| ≤ C(ε)t−ε for every ε > 0,

|TrRn+1(t)| ≤ Cn
�(1/2)n

�(1+n/2) t
n/2, n ≥ 2.

(2.15)

Here C(ε) is a positive constant independent of t but dependent on ε > 0, and C a
positive constant independent of t and n.

To prove this proposition, we provide the following lemma. If T is a compact oper-
ator on a Hilbert space with singular values {µn}∞n=1, we denote by ‖T ‖p, for p ≥ 1,
the norm ‖T ‖p = (

∑∞
n=1 µ

p
n)

1/p. For instance, ‖T ‖1 is the trace norm and ‖T ‖2 the
Hilbert–Schmidt norm.

Lemma 2.4. For small t > 0,

‖F(t)‖2 = O(t−1/2). (2.16)
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Proof. With F(t) = F1(t)+ F2(t) in (2.7), we have only to show that

‖F1(t)‖2 = O(t−1/2), (2.17a)

‖F2(t)‖2 =
(

α + β
8
√
αβ(αβ − 1)

)1/2

t−1/2. (2.17b)

First consider F2(t). Note that
∫
e−ixξ dx = 2πδ(ξ). Using this, we can calculate

‖F2(t)‖22 = Tr [F ∗2 (t)F2(t)] as

‖F2(t)‖22

= 1

(4π)2
tr
∫ [ ∫∫∫

e−i(y−x)ξ e−t[A
ξ2+x2

2 +Jxiξ ]

(−J )ei(y−z)ηJ e−t[Aη2+z2
2 +Jziη] dξdηdy

]∣∣∣
z=x

dx

= 1

(4π)2
tr
∫∫∫∫

eiy(η−ξ)eix(ξ−η)e−t[A
ξ2+x2

2 +Jxiξ ]e−t[A
η2+x2

2 +Jxiη]dξdηdydx

= 1

(4π)2
tr
∫∫∫

2πδ(η − ξ)eix(ξ−η)e−t[Aξ2+x2

2 +Jxiξ ]e−t[A
η2+x2

2 +Jxiη]dξdηdx

= 1

8π
tr
∫∫

e−2t[Aξ2+x2

2 +Jxiξ ]dξdx.

Let λ±(x, ξ) be the two eigenvalues of the matrix

q(x, ξ) := Aξ
2 + x2

2
+ Jxiξ =

(
α
ξ2+x2

2 −xiξ
xiξ β

ξ2+x2

2

)
. (2.18a)

It is clear that

λ±(x, ξ) = 1

4

[
(α + β)(ξ2 + x2)±

√
(α − β)2(ξ2 + x2)2 + 16x2ξ2

]
. (2.18b)

Then, from the calculation above we obtain

‖F2(t)‖22 =
1

8π

∫∫
[e−2tλ+(x,ξ) + e−2tλ−(x,ξ)]dξdx

= 1

8π

∫∫ [
e−

t
2 [a(ξ2+x2)+

√
b2(ξ2+x2)2+16x2ξ2]

+e− t
2 [a(ξ2+x2)−

√
b2(ξ2+x2)2+16x2ξ2]

]
dξdx,
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where we put a := α + β and b := α − β. Putting ξ = ρ cos θ, x = ρ sin θ , we have

‖F2(t)‖22 =
1

8π

∫ 2π

0

∫ ∞
0

[
e−

tρ2

2 [a+
√
b2+16 cos2 θ sin2 θ ]

+e− tρ
2

2 [a−
√
b2+16 cos2 θ sin2 θ ]

]
ρdρdθ

= 1

8π

∫ 2π

0

[
1

t[a +
√
b2 + 4 sin2 2θ ]

+ 1

t[a −
√
b2 + 4 sin2 2θ ]

]
dθ

= 1

8πt

∫ 2π

0

2a

a2 − b2 − 4 sin2 2θ
dθ = 1

8πt

∫ 2π

0

(α + β)
2αβ − 1+ cos θ

dθ

= α + β
8
√
αβ(αβ − 1)

1

t
.

Here in the last equality we have used the integral formula (2.12). This proves (2.17b).

We next consider ‖F1(t)‖2 = Tr [F ∗1 (t)F1(t)]. We have

‖F1(t)‖22 =
1

(2π)2
tr
∫ [∫∫∫

e−i(y−x)ξ e−t[A
ξ2+x2

2 +(−J )x(−i)ξ ]

×
[
A
x2 − y2

2
+ (−J )(x − y)(−i)ξ

]

×ei(y−z)η
[
A
z2 − y2

2
+ J (z− y)iη

]
e−t[A

η2+z2
2 +Jziη] dξdηdy

]∣∣∣∣
z=x

dx

= 1

(2π)2
tr
∫∫∫∫

ei(x−y)(ξ−η)e−t[A
ξ2+x2

2 +Jxiξ ]
[
A
x2 − y2

2
+ J (x − y)iξ

]

×
[
A
x2 − y2

2
+ J (x − y)iη

]
e−t[A

η2+x2

2 +Jxiη]dξdηdydx

= 1

(2π)2
tr
∫∫∫∫

eiz(ξ−η)e−t[A
ξ2+x2

2 +Jxiξ ]
[
(Ax + J iξ)z+ Az2/2

]

×
[
(Ax + J iη)z+ Az2/2

]
e−t[A

η2+x2

2 +Jxiη]dξdηdzdx (z := x − y)

= 1

(2π)2
tr
∫∫∫∫

e−t[A
ξ2+x2

2 +Jxiξ ]
([
(Ax+J iξ)(−i∂ξ )+1

2
A(−i∂ξ )2

]
eizξ

)

×
([
(Ax + J iη)(i∂η)+ 1

2
A(i∂η)

2
]
e−izη

)
e−t[A

η2+x2

2 +Jxiη]dξdηdzdx,
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where we write ∂ξ = ∂
∂ξ
, ∂η = ∂

∂η
. Then first, by integration by parts, we have

‖F1(t)‖22 =
1

(2π)2
tr
∫∫∫∫

eiz(ξ−η)

×
[
− e−t[Aξ2+x2

2 +Jxiξ ]J − (−i∂ξ )e−t[A
ξ2+x2

2 +Jxiξ ](Ax + J iξ)

+(−i∂ξ )2e−t[A
ξ2+x2

2 +Jxiξ ](A/2)
]

×
[
Je−t[A

η2+x2

2 +Jxiη] + (Ax + J iη)(−i∂η)e−t[A
η2+x2

2 +Jxiη]

+1

2
A(−i∂η)2e−t[A

η2+x2

2 +Jxiη]
]
dξdηdzdx

= 2π

(2π)2
tr
∫∫ [
−e−t[Aξ2+x2

2 +Jxiξ ]J − (−i∂ξ )e−t[A
ξ2+x2

2 +Jxiξ ](Ax + J iξ)

+(−i∂ξ )2e−t[A
ξ2+x2

2 +Jxiξ ](A/2)
]

×
[
Je−t[A

ξ2+x2

2 +Jxiξ ] + (Ax + J iξ)(−i∂ξ )e−t[A
ξ2+x2

2 +Jxiξ ]

+1

2
A(−i∂ξ )2e−t[A

ξ2+x2

2 +Jxiξ ]
]
dξdx. (2.19)

By integrating in z again with use of
∫
eiz(ξ−η)dz = 2πδ(ξ − η), we have

‖F1(t)‖22 =
1

2π

∫∫
tr

[
e−2t[Aξ2+x2

2 +Jxiξ ] (FI1)

−e−t[Aξ2+x2

2 +Jxiξ ]J (Ax + J iξ)(−i∂ξ )e−t[A
ξ2+x2

2 +Jxiξ ] (FI2)

−e−t[Aξ2+x2

2 +Jxiξ ]J (A/2)(i∂ξ )
2e−t[A

ξ2+x2

2 +Jxiξ ] (FI3)

−(−i∂ξ )e−t[A
ξ2+x2

2 +Jxiξ ](Ax + J iξ)J e−t[Aξ2+x2

2 +Jxiξ ] (FI4)

−(−i∂ξ )e−t[A
ξ2+x2

2 +Jxiξ ](Ax + J iξ)2(−i∂ξ )e−t[A
ξ2+x2

2 +Jxiξ ] (FI5)

−(−i∂ξ )e−t[A
ξ2+x2

2 +Jxiξ ](Ax + J iξ)(A/2)(i∂ξ )2e−t[A
ξ2+x2

2 +Jxiξ ]

(FI6)

+(i∂ξ )2e−t[A
ξ2+x2

2 +Jxiξ ](A/2)J e−t[A
ξ2+x2

2 +Jxiξ ] (FI7)

+(i∂ξ )2e−t[A
ξ2+x2

2 +Jxiξ ](A/2)(Ax + J iξ)(−i∂ξ )e−t[A
ξ2+x2

2 +Jxiξ ]

(FI8)

+(i∂ξ )2e−t[A
ξ2+x2

2 +Jxiξ ](A2/4)(i∂ξ )
2e−t[A

ξ2+x2

2 +Jxiξ ]
]
dξdx. (FI9)

Among the integrals (FI1)–(FI9), we see easily that (FI1) + (FI2) + (FI4) = 0. In fact,
by integration by parts, we have

(FI2) = (FI4) = −1

2

1

2π

∫∫
tr
[
J (Ax + J iξ)(−i∂ξ )e−2t[Aξ2+x2

2 +Jxiξ ]
]
dξdx

= 1

2

1

2π

∫∫
tr
[
J 2e−2t[Aξ2+x2

2 +Jxiξ ]
]
dξdx = −1

2
(FI1).
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So by cancelling out these three integrals, we have by change of variables ξ ′ = √tξ, x′ =√
tx,

‖F1(t)‖22 =
1

2πt

∫∫
tr

[
−te−[Aξ2+x2

2 +Jxiξ ]J (A/2)(i∂ξ )
2e−[Aξ2+x2

2 +Jxiξ ] (FI3)

−(−i∂ξ )e−[Aξ2+x2

2 +Jxiξ ](Ax + J iξ)2(−i∂ξ )e−[Aξ2+x2

2 +Jxiξ ] (FI5)

−t (−i∂ξ )e−[Aξ2+x2

2 +Jxiξ ](Ax + J iξ)(A/2)(i∂ξ )2e−[Aξ2+x2

2 +Jxiξ ]

(FI6)

+t (i∂ξ )2e−[Aξ2+x2

2 +Jxiξ ](A/2)J e−[Aξ2+x2

2 +Jxiξ ] (FI7)

+t (i∂ξ )2e−[Aξ2+x2

2 +Jxiξ ](A/2)(Ax + J iξ)(−i∂ξ )e−[Aξ2+x2

2 +Jxiξ ]

(FI8)

+t2(i∂ξ )2e−[Aξ2+x2

2 +Jxiξ ](A2/4)(i∂ξ )
2e−[Aξ2+x2

2 +Jxiξ ]
]
dξdx. (FI9)

It follows that ‖F1(t)‖2 = O(t−1/2). This proves (2.17a). Thus we can conclude that
‖F(t)‖2 ≤ ‖F1(t)‖2 + ‖F2(t)‖2 = O(t−1/2). This shows (2.16). This completes the
proof of Lemma 2.4. 
�
Proof of Proposition 2.3. First we treat the case n = 2, i.e. consider R2(t). Since

TrR2(t) =
∫ t

0
Tr [e−(t−u)QF(u)]du, (2.20)

we get

|Tr [e−(t−u)QF(u)]| ≤ ‖e−(t−u)QF(u)‖1 ≤ ‖e−(t−u)Q‖2‖F(u)‖2. (2.21)

We notice here that

‖e−(t−u)Q‖2 ≤ C2(ε)(t − u)−(1/2+ε), (2.22)

with an arbitrary ε > 0 and a constant C2(ε) > 0 dependent on ε. Indeed, if {λn}∞n=1 is
the set of the eigenvalues of Q, since λn→+∞ we have

‖e−(t−u)Q‖2 =
( ∞∑
n=1

e−2(t−u)λn
)1/2

=
( ∞∑
n=1

(2(t − u)λn)−(1+ε)
{
(2(t − u)λn)1+εe−2(t−u)λn})1/2

≤
(1+ ε

2e

)(1+ε)/2( ∞∑
n=1

λ−(1+ε)n

)1/2
(t − u)−(1+ε)/2,

whence the bound (2.22) follows from the fact that ζQ(s) =
∑∞
n=1 λ

−s
n is bounded in

Re s ≥ 1 + ε for every ε > 0 (see Theorem 3.3 in [IW] or by Lemma 2.8 below).

Hence by (2.21) we obtain that |Tr [e−(t−u)QF(u)]| ≤ CC(ε)(t − u)−( 1
2+ε)u−

1
2 by use
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of ‖F(u)‖2 ≤ Cu−1/2 in Lemma 2.4. It follows from (2.20) that |Tr R2(t)| ≤ C(ε)t−ε
for every ε > 0.

We next study the case n ≥ 2. Since by Lemma 2.4 we have ‖F(u)‖2(n−1) ≤
‖F(u)‖2 ≤ Cu−1/2 with a constant C > 0, and

‖F(un−1) · · ·F(u2)F (u1)‖2 ≤ ‖F(un−1)‖2(n−1) · · · ‖F(u2)‖2(n−1)‖F(u1)‖2(n−1),

we obtain for n ≥ 2,

|TrRn+1(t)| ≤ ‖TrRn+1(t)‖1
≤
∫ t

0
du1

∫ t−u1

0
du2

∫ t−u1−u2

0
du3 · · ·

∫ t−u1−u2−···−un−1

0
dun

×‖e−(t−u1−u2−···−un)QF (un)‖2‖F(un−1) · · ·F(u2)F (u1)‖2
≤
∫ t

0
du1

∫ t−u1

0
du2

∫ t−u1−u2

0
du3 · · ·

∫ t−u1−u2−···−un−1

0
dun

×‖e−(t−u1−u2−···−un)Q‖‖F(un)‖2‖F(un−1) · · ·F(u2)F (u1)‖2
≤ Cn

∫ t

0
du1

∫ t−u1

0
du2

×
∫ t−u1−u2

0
du3 · · ·

∫ t−u1−u2−···−un−1

0
(unun−1 · · · u2u1)

−1/2dun

= Cntn/2
∫ 1

0
du1

∫ 1−u1

0
du2

×
∫ 1−u1−u2

0
du3 · · ·

∫ 1−u1−u2−···−un−1

0
(unun−1 · · · u2u1)

−1/2dun

= Cn�(1/2)
n�(1)

�(1+ n/2) t
n/2 = Cn �(1/2)n

�(1+ n/2) t
n/2.

Here in the second to last equality we have made the change of variables u′j = uj/t, j =
1, 2, . . . , n, and then rewritten the new u′j as the uj again. This shows (2.15), ending
the proof of Proposition 2.3. 
�

To proceed further, we now recall (2.2) for ζQ(s), (2.8), (2.10) for Z0(s) =
�(s)−1Ẑ0(s):

ζQ(s) = Z0(s)+ Z∞(s), (2.23a)

Z0(s) = Z01(s)+ Z′02(s), (2.23b)

and Proposition 2.1 for Z∞(s) = �(s)−1Ẑ∞(s) and Proposition 2.2 for Z01(s) =:
�(s)−1Ẑ01(s).

We perform now analytic continuation of ζQ(s), one step to the left from the region
Re s > 1.

Proposition 2.5. ζQ(s) is holomorphic in σ = Re s > 0, except at s = 1, and

ζQ(s) = α + β√
αβ(αβ − 1)

1

�(s)

1

s − 1
+ 1

�(s)
ĥ(s),

ĥ(s) := Ẑ′02(s)+ Ẑ∞(s). (2.24)
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Here Ẑ∞(s) is holomorphic in the whole complex plane, while ĥ(s) is holomorphic in
Re s > 0 and uniformly bounded in Re s ≥ ε for every ε > 0.

Proof. Putting Ẑ′02(s) = �(s)Z′02(s), we have only to show Ẑ′02(s) is holomorphic
σ = Re s > 0, because 1

�(s)
is holomorphic in the whole complex plane. We have by

Proposition 2.3 with n = 1 that

|Ẑ′02(s)| ≤
∫ 1

0
tσ−1|TrR2(t)|dt ≤ C(ε)

∫ 1

0
tσ−ε−1dt = C(ε)

σ − ε
for any ε > 0 with a constant C(ε) > 0, so that Ẑ′02(s) is holomorphic in σ = Re s > 0.
This together with the previous observation shows the assertion of Proposition 2.5. 
�

As an application of the proposition we now show the so-called Weyl law for the
spectrum of ourQ. Note that each eigenvalue λj is positive. To count the number of the
eigenvalues ofQ less than a given T > 0, we define the counting function of eigenvalues
by

NQ(T ) = #{λj ∈ SpecQ ; λj < T }.
As a corollary of Proposition 2.5 we have the following estimate of NQ(T ).

Corollary 2.6. One has

NQ(T ) ∼ α + β√
αβ(αβ − 1)

T (T →∞).

Proof. Since for a > 0 we have

e−as =
∫ ∞

0
e−st δ(t − a)dt,

it follows that, if λj > 1,

λ−sj = e−s log λj =
∫ ∞

0
e−st δ(t − log λj )dt. (2.25)

Since we can write NQ(T ) =
∑
λj<T

1 we have

∑
λj>1

δ(t − log λj ) = NQ(et )−
∑
λj≤1

1.

Note that the last sum is finite. Hence by the formula (2.25) we obtain

ζQ(s)−
∑
λj≤1

λ−sj =
∫ ∞

0
e−st

(
NQ(e

t )−
∑
λj≤1

1
)
dt

=
∫ ∞

0
e−stNQ(et )dt − 1

s

∑
λj≤1

1, (2.26)

for Re s > 0. By Proposition 2.5 we know that ζQ(s) can be written as

ζQ(s) = α + β√
αβ(αβ − 1)

1

s − 1
+ h(s),
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where h(s) is holomorphic in Re s > 0. Hence by (2.26) we have
∫ ∞

0
e−stNQ(et )dt = α + β√

αβ(αβ − 1)

1

s − 1
+ f (s) (2.27)

for some function f (s) which is holomorphic in Re s > 0. We now recall the following
Tauberian theorem due to Wiener–Ikehara (see e.g. [Wi]). 
�
Lemma 2.7. Let g(t) be a non-decreasing and positive function defined on t ≥ 0. Sup-
pose that the integral

∫∞
0 e−st g(t)dt is expressed as
∫ ∞

0
e−st g(t)dt = 1

s − 1
+ f (s)

in a domain containing Re s > 1 with some continuous function f (s) in Re s ≥ 1. Then
we have

g(t) ∼ et (t →∞). 
�
By the expression (2.27) it immediately follows that

√
αβ(αβ − 1)

α + β NQ(e
t ) ∼ et (t →∞).

This actually shows the assertion of the corollary with T = et . 
�
In order to describe a zero free region of ζQ(s) we need the following result.

Lemma 2.8. Let Q′ = A−1/2QA−1/2 = 1
2 (−∂2

x + x2) + γ J (x∂x + 1
2 ), where γ :=

(αβ)−1/2. Then for real s satisfying s > 1 it holds that

(max{α, β})−sTrQ′−s ≤ TrQ−s ≤ (min{α, β})−sTrQ′−s . (2.28)

In other words, for s > 1 one has

(max{α, β})−s2(1− γ 2)−s/2(2s − 1)ζ(s) ≤ ζQ(s)
≤ (min{α, β})−s2(1− γ 2)−s/2(2s − 1)ζ(s). (2.29)

Proof. The proofs of the left and right inequalities of (2.28) are similar, where we use
the Lieb-Thirring inequality ([LT,Ar]). We have given a proof to the right one in [IW]
as Eq.(2.28). Instead of repeating it, we show here only the left one. Since Q′−1 =
A1/2Q−1A1/2, we have for s > 1,

TrQ′−s = Tr (A1/2Q−1A1/2)s

≤ TrAs/2Q−sAs/2

= TrAsQ−s = TrQ−s/2AsQ−s/2

≤ (max{α, β})sTrQ−s .

This proves (2.28). To show (2.29), it is enough to recall the following formula (see
Eq.(3.16) in [IW]):

ζQ′(s) = TrQ′−s = 2(1− γ 2)−s/2(2s − 1)ζ(s).

Hence the lemma follows. 
�
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Remark 1. The operator Q′ above is unitarily equivalent to (αβ)−1/2 times a couple of
the usual harmonic oscillators with mass 1 and classical oscillator frequency

√
αβ − 1

(see Corollaries 4.5 and 4.1 in [PW2]), i.e.

Q′ ∼= (αβ)−1/2
[
−∂

2
x

2
+ (αβ − 1)

2
x2
]
I. 
�

Using the inequality (2.29), we can give the bounds of the first eigenvalue λ1 of the
operator Q.

Theorem 2.9. The first eigenvalue λ1 of the operator Q satisfies

min{α, β}
√

1− 1/(αβ) ≤ 2λ1 ≤ max{α, β}
√

1− 1/(αβ). (2.30)

Moreover, let mQ be the multiplicity of the first eigenvalue λ1. Then,

mQ ≤ 2 when λ1 = 1

2
min{α, β}

√
1− 1/(αβ),

mQ ≥ 2 when λ1 = 1

2
max{α, β}

√
1− 1/(αβ).

Proof. Though there is a simpler second proof of (2.30), as in Remark 3 below, which
is based on the fact noted in Remark 1 above, we will give here a direct proof in due
course. Let mQ be the multiplicity of the first eigenvalue λ1. Since

ζQ(σ) = mQλ−σ1 +
∑
λn>λ1

λ−σn ≤ 2{min{α, β}
√

1− 1/(αβ)}−σ (2σ − 1)ζ(σ )

by the right inequality of (2.29), we have

mQ

(
min{α, β}√1− 1/(αβ)

2λ1

)σ
+
∑
λn>λ1

(
min{α, β}√1− 1/(αβ)

2λn

)σ

≤ 2
2σ − 1

2σ
ζ(σ )→ 2 (σ →+∞), (2.31)

because ζ(σ ) → 1. Here we used the fact that ζ(σ ) < 1 + ∫∞1 dx
xσ
= σ

σ−1 for σ > 1.
This implies in particular the inequality

min{α, β}√1− 1/(αβ)

2λ1
≤ 1.
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Further, if the equality holds above, we obviously havemQ ≤ 2. Similarly we have from
the left of (2.29) that

2
2σ − 1

2σ
ζ(σ )

≤ mQ
(

max{α, β}√1− 1/(αβ)

2λ1

)σ
+
∑
λn>λ1

(
max{α, β}√1− 1/(αβ)

2λn

)σ

≤ mQ
(

max{α, β}√1− 1/(αβ)

2λ1

)σ

+
(

max{α, β}√1− 1/(αβ)

2λ1

)σ−2 ∑
λn>λ1

(
max{α, β}√1− 1/(αβ)

2λn

)2

≤ mQ
(

max{α, β}√1− 1/(αβ)

2λ1

)σ

+1

4

(
max{α, β}√1− 1/(αβ)

2λ1

)σ−2{
max{α, β}

√
1− 1/(αβ)

}2
ζQ(2) (2.32)

for σ > 2, whence letting σ →+∞ we obtain the inequality

1 ≤ max{α, β}√1− 1/(αβ)

2λ1
.

Otherwise, the last member of (3.32) should go to 0, contradicting the fact that ζ(σ )→ 1
as σ →+∞. If the equality holds above, it is also clear that 2 ≤ mQ. Hence the assertion
follows. 
�
Remark 2. Suppose α �= β. It is known [NNW] that mQ = 1 when α and β are large
enough. 
�
Remark 3. We have given above a direct proof to the bounds (2.30) of the first eigen-
value λ1 of Q in Theorem 2.9. However, we can give a simpler proof, appealing to the
non-trivial fact on Q′ noted in Remark 1 to Lemma 2.8. Indeed, this implies that the
first eigenvalue ofQ′ is (αβ)−1/2 1

2

√
αβ − 1 = 1

2

√
1− 1/(αβ). Therefore, for the lower

bound, since Q = A1/2Q′A1/2, we have for u ∈ S(R)⊗ C
2 ,

(Qu, u) ≥ 1

2

√
1− 1/(αβ)(Au, u) ≥ 1

2
min{α, β}

√
1− 1/(αβ)(u, u).

It follows that λ1 ≥ 1
2 min{α, β}√1− 1/(αβ). This lower bound coincides with the one

in (2.30). On the other hand, for the upper bound, sinceQ′ = A−1/2QA−1/2 in turn, and
since (Qu, u) = (Q′A−1/2u,A−1/2u) ≥ λ1(A

−1u, u) for u ∈ S(R)⊗ C
2, we obtain

1

2

√
1− 1/(αβ) ≥ λ1 min{α−1, β−1} = λ1

max{α, β} .

Hence λ1 ≤ 1
2 max{α, β}√1− 1/(αβ). This upper bound coincides with the one in

(2.30).
We note also that our result (2.30) is explicitly refining an assertion, Corollary 7.11,

p.596, in [PW2], that the first eigenvalue λ1 of Q is in an unspecified neighborhood of
the point µ∗0(α, β) =

√
αβ
√
αβ − 1/(α + β), because this point lies between our two

bounds obtained in (2.30). 
�
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Related to these bounds of the first eigenvalue of Q, one can show the following

Proposition 2.10. There exists a σ0 > 1 large enough such that the zeta function ζQ(s)
does not vanish in Re s ≥ σ0.

Proof. Since

ζQ(s) = λ−s1

{
mQ +

∑
λn>λ1

(λn
λ1

)−s}
, (2.33)

if σ = Re s satisfies the condition

∑
λn>λ1

∣∣∣λn
λ1

∣∣∣
−σ

< mQ, (2.34)

we have ζQ(s) �= 0. Obviously this can be achieved if we take σ sufficiently large. This
proves the proposition. 
�

Remark 4. We try to find σ0 in Proposition 2.10 as small as possible. First note that (2.34)
is equivalent to

ζQ(σ)λ
σ
1 < 2mQ. (2.34’)

So we need to let σ0 satisfy (2.34’). Indeed, it does by the right inequality of (2.29), so
long as σ0 satisfies

(min{α, β})−σ0 2(1− γ 2)−σ0/2(2σ0 − 1)ζ(σ0) < 2mQλ
−σ0
1

or

2σ0 − 1

2σ0
ζ(σ0) < mQ

(
min{α, β}(1− γ 2)1/2

2λ1

)σ0

. (2.35)

If λ1 = 1
2 min{α, β}√1− 1/(αβ), we see, since ζ(σ ) < σ

σ−1 for σ > 1, that there exists

a σ0 ≥ mQ
mQ−1 which satisfies (2.35), so that ζQ(s) �= 0 when Re s ≥ σ0. However, if

λ1 >
1
2 min{α, β}√1− 1/(αβ), there may necessarily exist no σ0 > 1 which satisfies

(2.35), since, as σ0 → ∞, the right-hand side of (2.35) tends to 0, while the left-hand
side of (2.35) tends to 1, again because 1 ≤ ζ(σ ) < σ

σ−1 for σ > 1.

In particular, when α = β = √2, i.e. in the case of a couple of the harmonic oscilla-
tors Q = Q0, the right-hand side of (2.35) is equal to 2 because λ1 = 1

2 and mQ0 = 2,

so that 2σ0−1
2σ0 ζ(σ0) < 2. Therefore, applying the above analysis to the Riemann zeta

function case can only give the result that there exists σ0 with 1 < σ0 <
3
2 such that

ζ(s) does not vanish for Re s ≥ σ0, though ζ(s) does not vanish in fact in Re s > 1,
what can be indeed assured by the Euler product. 
�
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3. Asymptotic Behavior of Tr K2(t)

In this section, we establish the asymptotic expansion of Tr K2(t) for t ↓ 0. This is a
preparation to learn how the general case will go in the subsequent section. We shall
present necessary ideas to provide lemmas which enable us to develop the arguments in
the general case, that is, the asymptotic expansion for Tr Km(t).

The main purpose of this section is then to show the following proposition.

Proposition 3.1. For small t > 0,

TrK2(t) ∼
∞∑
j=0

c2,j t
j , (3.1)

with c2,j = 0 for j = 2� being nonnegative even integers.

Proof. Let F = F1 + F2 be in (2.7). Then, by (2.14) we may write K2(t) as

K2(t) = K2,+(t)+K2,−(t),

where from Ki(t) in (2.13b) we have

K2,+(t) =
∫ t

0
K1(t − u)F1(u)du,

K2,−(t) =
∫ t

0
K1(t − u)F2(u)du.

Then, for instance, for K2,+(t) we have

∫
K2,+(t, x, x)dx = 1

(2π)2

∫ t

0
du

∫∫∫∫
ei(x−z)ηe−(t−u)[A

η2+z2
2 +Jziη]

×
[
A
x2 − z2

2
+ J (x − z)iξ

]
ei(z−x)ξ e−u[Aξ2+x2

2 +Jxiξ ]dηdzdξdx

= 1

(2π)2

∫ t

0
du

∫∫∫∫
ei(x−z)(η−ξ)e−(t−u)[A

η2+z2
2 +Jziη]

×
[
A
x2 − z2

2
+ J (x − z)iξ

]
e−u[Aξ2+x2

2 +Jxiξ ]dηdzdξdx.

We hence get by change of variables u′ = tu, x′ = √tx, z′ = √tz, ξ ′ = √tξ, η′ =√
tη,

∫
K2,+(t, x, x)dx = 1

(2π)2t

∫ 1

0
du

∫∫∫∫
ei(x−z)(η−ξ)/t

×e−(1−u)[Aη2+z2
2 +Jziη]

[
A
x2 − z2

2
+ J (x − z)iξ

]

×e−u[Aξ2+x2

2 +Jxiξ ]dηdzdξdx. (3.2)
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Similarly we have
∫
K2,−(t, x, x)dx = − 1

2(2π)2t

∫ 1

0
du

∫∫∫∫
ei(x−z)(η−ξ)/t e−(1−u)[A

η2+z2
2 +Jziη]

×Je−u[Aξ2+x2

2 +Jxiξ ]dηdzdξdx. (3.3)

For the traces of both K2,+(t) and K2,−(t), we are going to show the following
lemma.

Lemma 3.2. For t ↓ 0, one has

(1) TrK2,+(t) ∼ 0.

(2) TrK2,−(t) ∼
∑∞
j=0 c

(2,−)
j tj , with c(2,−)j = 0 for j = 2� being nonnegative even

integers.

Proof of Proposition 3.1. Since TrK2(t) = TrK2,+(t)+ TrK2,−(t), it is clear that the
assertion of Proposition 3.1 immediately follows from this lemma by taking c2,j =
c
(2,−)
j . 
�

Now we give a proof of Lemma 3.2, which is a little lengthy. First we prove (1).

Proof of Lemma 3.2 (1). Write TrK2,+(t) = T1(t)+ T2(t). Here we put

T1(t) = 1

(2π)2t

∫ 1

0
du tr

∫∫∫∫
ei(x−z)(η−ξ)/t e−(1−u)[A

η2+z2
2 +Jziη]

×
[
A
x2 − z2

2

]
e−u[Aξ2+x2

2 +Jxiξ ]dηdzdξdx,

T2(t) = 1

(2π)2t

∫ 1

0
du tr

∫∫∫∫
ei(x−z)(η−ξ)/t e−(1−u)[A

η2+z2
2 +Jziη]

×[J (x − z)iξ ]e−u[Aξ2+x2

2 +Jxiξ ]dηdzdξdx.

We show that TrK2,+(t) is real and T1(t) = 0. For T1(t) we have

(2π)2t T1(t) =
∫ 1

0
du tr

∫∫∫∫
e−i(x−z)(η−ξ)/t e−(1−u)[A

η2+z2
2 −Jziη]

×
[
A
x2 − z2

2

]
e−u[Aξ2+x2

2 −Jxiξ ]dηdzdξdx

=
∫ 1

0
du tr

∫∫∫∫
ei(x−z)(η−ξ)/t e−(1−u)[A

η2+z2
2 +Jziη]

×
[
A
x2 − z2

2

]
e−u[Aξ2+x2

2 +Jxiξ ]dηdzdξdx (η→−η, ξ →−ξ)

=
∫ 1

0
du tr

∫∫∫∫
ei(x−z)(η−ξ)/t e−(1−u)[A

η2+z2
2 +Jziη]

×
[
A
x2 − z2

2

]
e−u[Aξ2+x2

2 +Jxiξ ]dηdzdξdx

= (2π)2t T1(t).
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Hence we have T1(t) = T1(t). In the same way we have T2(t) = T2(t). This proves
TrK2,+(t) is real.

Next, we show T1(t) = 0. This is seen, because

∫ 1

0
du tr

∫∫∫∫
ei(x−z)(η−ξ)/t e−(1−u)[A

η2+z2
2 +Jziη]

×Ax
2

2
e−u[Aξ2+x2

2 +Jxiξ ]dηdzdξdx

=
∫ 1

0
du tr

∫∫∫∫
ei(x−z)(η−ξ)/t e−(1−u)[A

η2+z2
2 −Jziη]

×Az
2

2
e−u[Aξ2+x2

2 −Jxiξ ]dηdzdξdx (x ↔ z, ξ ↔ η, 1− u↔ u)

=
∫ 1

0
du tr

∫∫∫∫
ei(x−z)(η−ξ)/t e−(1−u)[A

η2+z2
2 +Jziη]

×Az
2

2
e−u[Aξ2+x2

2 +Jxiξ ]dηdzdξdx,

where we used the relation tr (ABC) = tr (C∗B∗A∗) at the last equality.

Thus, in order to show that TrK2,+(t) ∼ 0, it suffices to prove that T2(t) ∼ 0. We need
the following lemma.

Lemma 3.3. (Asymptotic Formula). The asymptotic expansion holds:

eiλxy ∼ 2π
∞∑
k=0

ik
∂kx δ(x)∂

k
y δ(y)

k! λk+1 , λ→∞, (3.4)

in the sense of tempered distributions in R
2, i.e. in S ′(R2).

The statement of this lemma means that for all f ∈ S(R2), we have, for every positive
integer m,

〈eiλxy − 2π
m−1∑
k=0

ik
∂kx δ(x)∂

k
y δ(y)

k! λk+1 , f 〉

=
∫∫

eiλxyf (x, y)dxdy − 2π
m−1∑
k=0

ik

k! λk+1 ∂
k
x ∂
k
yf (0, 0)

= O(λ−(m+1)), λ→∞. (3.5)

Note that the lemma is stated in [EK], p. 225, but seems rather involved. So we will give
a direct proof.

Proof of Lemma 3.3. We show (3.5). Since S(R2) = S(R)⊗̂S(R), where the tensor
product is completed in the π - and/or ε-tensor product topology, because these spaces
are nuclear spaces, we have only to show it for f (x, y) = ϕ(x)ψ(y)with ϕ, ψ ∈ S(R).



Zeta Functions for the Spectrum of the Non-Commutative Harmonic Oscillators 719

By Taylor’s theorem

ϕ(x) =
m−1∑
k=0

ϕ(k)(0)

k !
xk + xm

(m− 1) !

∫ 1

0
(1− θ)m−1ϕ(m)(θx)dθ, (3.6)

ψ(y) =
m−1∑
k=0

ψ(k)(0)

k !
yk + ym

(m− 1) !

∫ 1

0
(1− θ)m−1ψ(m)(θy)dθ. (3.7)

Then we have by (3.6)
∫∫

eiλxyϕ(x)ψ(y)dxdy

= 1

λ

∫∫
eixyϕ(x/λ)ψ(y) dxdy (x′ := λx)

=
√

2π

λ

∫
ϕ(x/λ)ψ̂(−x) dx

=
√

2π

λ

m−1∑
k=0

ϕ(k)(0)

k ! λk

∫
xkψ̂(−x) dx +

√
2π

(m− 1) ! λm+1

×
∫
xm

∫ 1

0
(1− θ)m−1ϕ(m)(θx/λ)dθ ψ̂(−x) dx

=: Im(λ)+ Rm(λ), (3.8)

where ψ̂ is the Fourier transform of ψ .
To calculate Im(λ), we see that

∫
xkψ̂(−x) dx = (−1)k

∫
xkψ̂(x) dx = (−1)k

∫
eixξ xkψ̂(x) dx

∣∣∣
ξ=0

= (−1)k
√

2π
(−i∂ξ )kψ(ξ)ϑ

∣∣∣
ξ=0
=
√

2πikψ(k)(0). (3.9)

Therefore

Im(λ) = 2π
m−1∑
k=0

ik
ϕ(k)(0)ψ(k)(0)

k ! λk+1 . (3.10)

To estimate Rm(λ), we have
∣∣∣∣
∫
xm

∫ 1

0
(1− θ)m−1ϕ(m)(θx/λ)dθ ψ̂(−x) dx

∣∣∣∣

=
∣∣∣∣(−1)m

∫
xm

∫ 1

0
(1− θ)m−1ϕ(m)(θx/λ)dθ ψ̂(x) dx

∣∣∣∣

=
∣∣∣∣
∫
xm

∫ 1

0
(1− θ)m−1ϕ(m)(θx/λ)dθ ψ̂(x)(1+ x2)(1+ x2)−1 dx

∣∣∣∣
≤ π sup

x
|ϕ(m)(x)| sup

x
|xm(1+ x2)ψ̂(x)| =: Cm

′,
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because
∫∞
−∞(1+ x2)−1dx = π . Hence we obtain

|Rm(λ)| ≤
√

2π
1

(m− 1) ! λm+1Cm
′ ≤ Cmλ−(m+1). (3.11)

Thus with (3.10) and (3.11) we have proved Lemma 3.3. 
�

Let us return to the proof of T2(t) ∼ 0.
In the following, we shall abuse the notation to write the distributional inner product

like the first member of (3.5) as the integral

∫∫ (
eiλxy − 2π

m−1∑
k=0

ik
∂kx δ(x)∂

k
y δ(y)

k!λk+1

)
f (x, y)dxdy.

Then by Lemma 3.3 above we have for small t > 0,

T2(t) ∼
∞∑
j=0

1

(2π)2t

∫ 1

0
du tr

∫∫∫∫
(2π)tj+1 i

j ∂
j
x δ(x − z)∂jη δ(η − ξ)

j !

×e−(1−u)[Aη2+z2
2 +Jziη]J (x − z)iξe−u[Aξ2+x2

2 +Jxiξ ]
)
dηdzdξdx

∼ 1

2π

∞∑
j=0

tj
∫ 1

0
du tr

∫∫∫∫
δ(x − z)δ(η − ξ)∂jη

(
e−(1−u)[A

η2+z2
2 +Jziη]

)

×∂jx
(
J (x − z)iξe−u[Aξ2+x2

2 +Jxiξ ]
)
dηdzdξdx. (3.12)

In other words, if we write T2(t) ∼
∑∞
j=0 c

(2,+)
j tj , by the Leibniz formula we obtain

c
(2,+)
j = 1

2π

ij

j !

∫ 1

0
du tr

∫∫∫
δ(x − z)∂jξ

(
e−(1−u)[A

ξ2+z2
2 +Jziξ ]

)

×
[
jJ iξ(∂

j−1
x e−u[Aξ2+x2

2 +Jxiξ ])+ J (x − z)iξ(∂jx e−u[Aξ2+x2

2 +Jxiξ ])
]
dzdξdx

= 1

2π

ij

j !

∫ 1

0
du

×tr
∫∫ (

∂
j
ξ e
−(1−u)[Aξ2+z2

2 +Jziξ ]
)
jJ iξ

(
∂
j−1
x e−u[Aξ2+x2

2 +Jxiξ ]
)
dξdx. (3.13)

We are hence going to show all the c(2,+)j vanish. To estimate the integrand of the last

integral in (3.13), we use the Taylor expansion of e−t[A
ξ2+x2

2 +Jxiξ ]. First, note here that
if λ−(x, ξ) is the smaller one of the two positive eigenvalues (see (2.18ab)) of the matrix

[Aξ2+x2

2 + Jxiξ ], then its matrix norm obeys:

‖e−t[Aξ2+x2

2 +Jxiξ ]‖ = e−tλ−(x,ξ) ≤ e−ct (ξ2+x2) (3.14)
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for all (x, ξ) with c := c(α, β) = αβ−1

(α+β)+
√
(α−β)2+4

> 0. Indeed, to see this, we use

the polar coordinates ξ = r cos θ, x = r sin θ to get

λ−(x, ξ) = r2

4

[
(α + β)−

√
(α − β)2 + 4 sin2 2θ

]
≥ αβ − 1

(α + β)+
√
(α − β)2 + 4

r2,

when αβ > 1.
We now recall the Taylor theorem for a matrix M:

e−tM =
n∑
j=0

(−t)j
j !

Mj + (−t)
n+1

n!
Mn+1

∫ 1

0
(1− τ)ne−τ tMdτ.

Then

e−t[A
ξ2+x2

2 +Jxiξ ] =
n∑
p=0

(−t)p
p!

[A
ξ2 + x2

2
+Jxiξ ]p+ (−t)

n+1

n!
[A
ξ2 + x2

2
+ Jxiξ ]n+1

×
∫ 1

0
(1− τ)ne−τ t[Aξ2+x2

2 +Jxiξ ]dτ. (3.15)

Taking the x-derivatives ∂jx , we have

∂
j
x e
−t[Aξ2+x2

2 +Jxiξ ]

=
n∑

p=[j/2]+1

(−t)p
p!

∂
j
x [A

ξ2 + x2

2
+ Jxiξ ]p + (−t)

n+1

n!
∂
j
x

(
[A
ξ2 + x2

2
+ Jxiξ ]n+1

×
∫ 1

0
(1− τ)ne−τ t[Aξ2+x2

2 +Jxiξ ]dτ
)
.

(3.16)

Hence, by virtue of the estimate (3.14) we obtain

∂
j
x e
−t[Aξ2+x2

2 +Jxiξ ]

=
n∑

p=[j/2]+1

(−t)p
p!

∂
j
x [A

ξ2 + x2

2
+ Jxiξ ]p + T (j)n+1(t, x, ξ), (3.17)

where the matrix norm of T (j)n+1(t, x, ξ) satisfies

‖T (j)n+1(t, x, ξ)‖ ≤ C
tn+1

n!
[R2n+2−j + tjR2n+2+j ], (3.18)

with ξ2+x2 ≤ R2. The same is valid for the ξ -derivatives. Thus we see that the expansion

e−t[A
ξ2+x2

2 +Jxiξ ] =
∞∑
p=0

(−t)p
p!

[A
ξ2 + x2

2
+ Jxiξ ]p (3.19)
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is, together with all its x- and ξ -derivatives, convergent in the matrix norm uniformly
on each closed disc, ξ2 + x2 ≤ R2, with radius R > 0.

We introduce a radially symmetric cutoff function χR(x, ξ) for R > 0. Let ρ(r) be
a nonnegative C∞-function in r ≥ 0 with ρ(r) = 1 for r ≤ 1/2 and = 0 for r ≥ 1. Put
χR(x, ξ) = ρ((ξ2 + x2)1/2/R). Then, from (3.13) we see that

2π
j !

ij
c
(2,+)
j = lim

R→∞

∫ 1

0
du

× tr
∫∫

χR(x, ξ)
(
∂
j
ξ e
−(1−u)[Aξ2+x2

2 +Jxiξ ]
)
jJ iξ

(
∂
j−1
x e−u[Aξ2+x2

2 +Jxiξ ]
)
dξdx.

(3.20)

Now using (3.17) we see for the (ξ, x)-integral in (3.20) that

tr
∫∫

χR(x, ξ)
(
∂
j
ξ e
−(1−u)[Aξ2+x2

2 +Jxiξ ]
)
jJ iξ(∂

j−1
x e−u[Aξ2+x2

2 +Jxiξ ])
]
dξdx

= tr
∫∫

χR(x, ξ)
[ n∑
p=[j/2]+1

(−(1− u))p
p!

∂
j
ξ [A

ξ2 + x2

2
+ Jxiξ ]p

+T (j)n+1(1− u, x, ξ)
]

×
[
jJ iξ

( n∑
q=[j/2]

(−u)q
q!

∂
j−1
x [A

ξ2 + x2

2
+ Jxiξ ]q + T (j−1)

n+1 (u, x, ξ)
)]
dξdx.

The integrals on the right-hand side above except the ones involving the remainders
T
(j)
n+1(1 − u, x, ξ) or T (j−1)

n+1 (u, x, ξ) vanish, because the integrands of these integrals
are odd in x or ξ , or by taking the matrix trace. Thus we arrive at the estimate∣∣∣∣tr

∫∫
χR(x, ξ) · · ·

∣∣∣∣

≤
∫∫

dξdx χR(x, ξ) C
[ n∑
p=[j/2]+1

(1− u)p
p!

R2p‖T (j)n+1(1− u, x, ξ)‖

+
n∑

q=[j/2]

uq

q!
R2q‖T (j)n+1(1− u, x, ξ)‖ + ‖T (j−1)

n+1 (1− u, x, ξ)‖‖T (j)n+1(u, x, ξ)‖
]

≤ C π
[
eR

2 R2n+4+j−1 + R2n+4+j

n!
+ R

4n+6+2j−1

(n!)2

]
−→ 0, n→∞,

for fixed R > 0. This shows the desired assertion c(2,+)j = 0 and hence completes the
proof of (1) of Lemma 3.2. 
�

We come now to the proof of (2) of Lemma 3.2.

Proof of Proposition 3.2 (2). From the expression (3.3) of TrK2,−(t) ∼
∑∞
j=0 c

(2,−)
j tj ,

we have with the aid of Lemma 3.3,

c
(2,−)
j = − 1

2(2π)

ij

j !

∫ 1

0
du tr

∫∫∫∫
δ(x − z)δ(η − ξ)∂jη

(
e−(1−u)[A

η2+z2
2 +Jziη]

)

×J∂jx
(
e−u[Aξ2+x2

2 +Jxiξ ]
)
dηdzdξdx. (3.21)
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Now we show that the c(2,−)j vanish with j = 2� being non-negative even integers.
We have from (3.21) that

c
(2,−)
2� = − 1

2(2π)

(−1)�

(2�)!

∫ 1

0
du tr

∫∫∫∫
δ(x − z)δ(η − ξ)

×∂2�
η

(
e−(1−u)[A

η2+z2
2 +Jziη]

)
J∂2�

x

(
e−u[Aξ2+x2

2 +Jxiξ ]
)
dηdzdξdx

= − 1

2(2π)

(−1)�

(2�)!

∫ 1

0
du tr

∫∫
J∂2�

x

(
e−u[Aξ2+x2

2 +Jxiξ ]
)
∂2�
ξ

×
(
e−(1−u)[A

ξ2+x2

2 +Jxiξ ]
)
dξdx

= − lim
R→∞

1

2(2π)

(−1)�

(2�)!

∫ 1

0
du tr

∫∫
χR(x, ξ)J ∂

2�
x

(
e−u[Aξ2+x2

2 +Jxiξ ]
)
∂2�
ξ

×
(
e−(1−u)[A

ξ2+x2

2 +Jxiξ ]
)
dξdx. (3.22)

In the same reasoning as used before, we have only to show that for every R > 0,

tr
∫∫

χR(x, ξ)J ∂
2�
x

(
e−u[Aξ2+x2

2 +Jxiξ ]
)
∂2�
ξ

(
e−(1−u)[A

ξ2+x2

2 +Jxiξ ]
)
dξdx=0.

(3.23)

Using (3.17) and its counterparts for the ξ -derivative, one finds the integrand in the last
member of (3.22) turns out to be

tr
∫∫

dξdx χR(x, ξ)J
( n∑
p=�+1

(−u)p
p!

∂2�
x [A

ξ2 + x2

2
+ Jxiξ ]p + T (2�)n+1 (u, x, ξ)

)

×
( n∑
q=�+1

(−(1− u))q
q!

∂2�
ξ [A

ξ2 + x2

2
+ Jxiξ ]q + T (2�)n+1 (1− u, x, ξ)

)
.

Then, by analogous arguments used before, we see that the integrals except the ones
involving the remainder terms T (2�)n+1 (u, x, ξ) and T (2�)n+1 (1 − u, x, ξ) vanish, by taking
the matrix trace or because the integrands are odd in x or ξ . Therefore, for fixed R > 0,
the left-hand side of (3.23) obeys
∣∣∣∣tr
∫∫

χR(x, ξ) · · ·
∣∣∣∣

≤ tr
∫∫

dξdxχR(x, ξ)

[ n∑
p=�+1

up

p!
R2p−2�‖T (2�)n+1 (1− u, x, ξ)‖

+
n∑

q=�+1

(1− u)q
q!

R2q−2�‖T (2�)n+1 (u, x, ξ)‖+‖T (2�)n+1 (1− u, x, ξ)‖‖T (2�)n+1 (u, x, ξ)‖
]

≤ Cπ
[
eR

2 R2n+4 + R2n+4

n!
+ R

4n+6+4�

(n!)2

]
−→ 0, n→∞.

This yields (3.23) and hence c(2,−)j = 0 when j = 2� is a non-negative even integer.
This completes the proof of (2) of Lemma 3.2. 
�
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Corollary 3.4. With Ẑ∞(s) in Proposition 2.1,

ζQ(s) = α + β√
αβ(αβ − 1)

1

(s − 1)�(s)
+ 1

�(s)

×
[ k∑
j=1

c2,2j−1

s + 2j − 1
+ ĥ1(s)+ ĥ2(s)+ Ẑ∞(s)

]
, (3.24)

where ĥ1(s) is holomorphic in Re s > −2k−1, having a bound |ĥ1(s)| ≤ C1(k)/(Re s+
2k + 1) for every positive integer k with a positive constant C1(k) dependent on k, and
ĥ2(s) is holomorphic in Re s > −1, having a bound |ĥ2(s)| ≤ C2/(Re s + 1) with a
positive constant C2.

Proof. We have by (2.2)/(2.13a),

ζQ(s) = 1

�(s)

[ ∫ ∞
1

t s−1Tr e−tQ dt +
∫ 1

0
t s−1Tr [K1(t)+K2(t)+ R3(t)]dt

]

= 1

�(s)

[ ∫ ∞
1

t s−1Tr e−tQ dt +
∫ 1

0
t s−1Tr [K1(t)+

k∑
j=1

c2,2j−1t
2j−1

+{K2(t)−
k∑
j=1

c2,2j−1t
2j−1} + R3(t)]dt

]

= Z∞(s)+ α + β√
αβ(αβ − 1)

1

(s − 1)�(s)

+ 1

�(s)

k∑
j=1

c2,2j−1
1

s + 2j − 1
+ h1(s)+ h2(s),

where we have by Proposition 3.1 and by (2.15),

ĥ1(s) := �(s)h1(s) =
∫ 1

0
t s−1Tr

{
K2(t)−

k∑
j=1

c2,2j−1t
2j−1} dt

=
∫ 1

0
t s−1O(t2k+1) dt,

ĥ2(s) := �(s)h2(s) =
∫ 1

0
t s−1TrR3(t) dt =

∫ 1

0
t s−1O(t) dt.

From these expressions, it is easy to verify that ĥ1(s) is holomorphic in Re s > −2k−1
and ĥ2(s) is holomorphic in Re s > −1, respectively, with their bounds mentioned in
the assertion. This proves Corollary 3.4. 
�

4. Asymptotic Behavior of Tr Km(t) and the Main Theorem

In this section, we study the trace of Km(t), m = 3, 4, . . . , in general. Actually, we
show the following asymptotic expansion of Tr Km(t) for small t > 0 by developing
the idea used in the previous section. Using this result, we will obtain the asymptotic
expansion of Tr K(t) and hence the main theorem of the present paper.
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Theorem 4.1. For m = 2, 3, . . . , one has for t ↓ 0,

TrKm(t) ∼
∞∑
j=0

cm,j t
j , (4.1)

with cm,j = 0 for 0 ≤ j < m− 2 and j = 2� being positive even integers.

To save space and argument we shall use the following notations: LetV (x) be a linear
space of formal power series in x. We denote by V even(x) (resp. V odd(x)) the subspace
of V (x) consisting of the even (resp. odd) power series. LetD+ (resp.D−) be the space
of all diagonal (resp. anti-diagonal) 2× 2 matrices with entries in C.

Since D±D± ⊂ D+, D±D∓ ⊂ D−, D∓D± ⊂ D−, we can see from the Taylor
expansion, already given in (3.19),

e−u[Aξ2+x2

2 +Jξix] =
∞∑
p=0

(−u)p
p!

(
A
ξ2 + x2

2
+ Jxiξ

)p

the following

Lemma 4.2.

e−u[Aξ2+x2

2 +Jξix] ∈ V even(x)⊗ V even(ξ)⊗D+ + V odd(x)⊗ V odd(ξ)⊗D−.(4.2)

Here the parameter u is regarded as a positive number and each tensor product ⊗ is
understood to be commutative. 
�

From this fact, for each positive integer j , it immediately follows that

∂
2j−1
x e−u[Aξ2+x2

2 +Jξix] ∈ V odd(x)⊗ V even(ξ)⊗D+
+V even(x)⊗ V odd(ξ)⊗D−, (4.3)

∂
2j
x e−u[Aξ2+x2

2 +Jξix] ∈ V even(x)⊗ V even(ξ)⊗D+
+V odd(x)⊗ V odd(ξ)⊗D−. (4.4)

The above formulas obviously hold also for the differentiation ∂ξ in place of ∂x . (For

explicit calculation of the derivatives of e−u[Aξ2+x2

2 +Jξix] by x and ξ , see Lemma 4.9
below, though we don’t use them in the discussion in the sequel.)

We are now trying to illustrate with the present notations how to recover our result
obtained in Proposition 3.1 by means of the following

Example. In Proposition 3.1/Lemma 3.2, we have shown that in the expansionTrK(2,−)(t)
∼∑∞j=0 c

(2,−)
j tj , all the coefficients c(2,−)2j of the even powers of t vanish. In the proof

of Lemma 3.2, we have used the Taylor theorem to estimate the remainder terms. As a
result, we have shown these remainder terms did not give any effect on the evaluation of
the values of the coefficients c(2,−)2j . Therefore, since the integrals like (3.22) are guar-
anteed to converge because they are essentially Gaussian integrals, it turns out that only
what we have to perform is termwise integration for the terms coming from the Taylor
expansion (3.19), by taking account of the parity in ξ or x, or the matrix trace.
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Thus, by the expression (3.22) we have

(−1)j+14π(2j)!c(2,−)2j

=
∫ 1

0
du tr

[
J

∫∫
∂

2j
ξ e
−u[Aξ2+x2

2 +Jxiξ ]∂
2j
x e
−(1−u)[Aξ2+x2

2 +Jxiξ ]dξdx
]

∈ tr
∫∫ [

J
{
V even(x)⊗ V even(ξ)⊗D+ + V odd(x)⊗ V odd(ξ)⊗D−

}

×
{
V even(x)⊗ V even(ξ)⊗D+ + V odd(x)⊗ V odd(ξ)⊗D−

}]
dξdx

⊂ tr
∫∫ [

J
{
V even(x)⊗ V even(ξ)⊗D+ + V odd(x)⊗ V odd(ξ)⊗D−

}]
dξdx

= trD+ ×
∫∫

V odd(x)⊗ V odd(ξ)dξdx = {0},

which reproduces the desired assertion in Lemma 3.2 (2). 
�

Now we deal with the general case. Let

�m−1 = {u = (u1, . . . , um−1) ∈ R
m−1 ; uj ≥ 0, u1 + · · · + um−1 ≤ 1}

be the simplex in R
m−1, du = du1 · · · dum−1 and denote by θm−1(u) the characteristic

function of the simplex �m−1. Namely, for instance, θ1(u) = θ(u)θ(1 − u) if m = 2,
and θ2(u1, u2) = θ(u1)θ(1− u1)θ(u2)θ(1− u2)θ(1− u1 − u2) if m = 3, etc., where
θ(u) is the Heaviside function. Put

T+(x, y, ξ) = Ax
2 − y2

2
+ J (x − y)iξ,

T−(x, y, ξ) = −1

2
J.

For ε = (ε1, . . . , εm−1) ∈ Z
m−1
2 , where εj = ±, we denote by �(ε) = #{j ; εj = +,

(1 ≤ j ≤ m − 1)} the number of the + in ε. Note that the function T+ is homoge-

neous; T+(t
1
2 x, t

1
2 y, t

1
2 ξ) = tT+(x, y, ξ) for t > 0. Recall the decomposition (2.14) of

Km(t). Then it is not hard to see from (2.13b) with (2.3) and (2.7) that TrKm,ε(t) can
be represented as

TrKm,ε(t) = t−�(ε)−1
∫

�m−1
du θm−1(u)

∫ ⊗2m m∏
j=1

dξj

m−1∏
j=0

dzj
1

(2π)m

×ei[(z0−zm−1)ξm+(zm−1−zm−2)ξm−1+···+(z1−z0)ξ1]/t

× tr
{
e
−(1−u1−···−um−1)

[
A
ξ2
m+z2m−1

2 +Jξmizm−1

]

←−
m−1∏
j=1

Tεj (zj−1, zj , ξj )e
−uj

[
A
ξ2
j
+z2
j−1

2 +Jξj izj−1

]}
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= t−�(ε)−1
∫

�m−1
du θm−1(u)

∫ ⊗2m m∏
j=1

dξj

m−1∏
j=0

dzj
1

(2π)m

m−1∏
j=1

ei(zj−zj−1)(ξj−ξm)/t

× tr
{
e
−(1−u1−···−um−1)

[
A
ξ2
m+z2m−1

2 +Jξmizm−1

]

←−
m−1∏
j=1

Tεj (zj−1, zj , ξj )e
−uj

[
A
ξ2
j
+z2
j−1

2 +Jξj izj−1

]}
. (4.5)

Here we note that

(z0 − zm−1)ξm + (zm−1 − zm−2)ξm−1 + · · · + (z1 − z0)ξ1 =
m−1∑
j=1

(zj − zj−1)(ξj − ξm)

and use the convention
←−
m−1∏
j=1

Bj = Bm−1 · · ·B1,

−→
m−1∏
j=1

Bj = B1 · · ·Bm−1 (4.6)

for matrices Bj .
Using the asymptotic expansion formula described in Lemma 3.3, we see that

m−1∏
j=1

ei(zj−zj−1)(ξj−ξm)/t ∼ (2π)m−1
∞∑
�1=0

· · ·
∞∑

�m−1=0

i�1+···+�m−1 t�1+···+�m−1+m−1

�1! · · · �m−1!

m−1∏
j=1

∂
�j
zj δ(zj − zj−1)∂

�j
ξj
δ(ξj − ξm). (4.7)

Integration by parts for each ξj -variable therefore yields

TrKm,ε(t) ∼ 1

2π

∞∑
�1=0

· · ·
∞∑

�m−1=0

i�1+···+�m−1

�1! · · · �m−1!
t�1+···+�m−1+m−�(ε)−2

×
∫

�m−1
du θm−1(u)

∫ ⊗2m m∏
j=1

dξj

m−1∏
j=0

dzj

×
m−1∏
j=1

(−1)�j ∂
�j
zj−1δ(zj − zj−1)

m−1∏
j=1

(−1)�j δ(ξj − ξm)

× tr

[{
e
−(1−u1−···−um−1)

[
A
ξ2
m+z2m−1

2 +Jξmizm−1

]}

×
←−
m−1∏
j=1

∂
�j
ξj

{
Tεj (zj−1, zj , ξj )e

−uj
[
A
ξ2
j
+z2
j−1

2 +Jξj izj−1

]}]
. (4.8)
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Here we note that there are no terms with respect to tk with k negative integers in the
asymptotic expansion (4.8) for small t > 0, because we see by (2.13abc) and (2.15) that
Km(t) is part of Rm(t) and |TrRm(t)| ≤ Cmt(m−1)/2 with a constant Cm > 0 dependent
on m for m large.

Now we introduce the following convention: Assign a pair of integers k, j to each
of the four cases

f (x, ξ) ∈




V even(x)⊗ V even(ξ)⊗D± : k ≡ j ≡ 0 mod 2,
V even(x)⊗ V odd(ξ)⊗D± : k ≡ 0, j ≡ 1 mod 2,
V odd(x)⊗ V even(ξ)⊗D± : k ≡ 1, j ≡ 0 mod 2,
V odd(x)⊗ V odd(ξ)⊗D± : k ≡ j ≡ 1 mod 2,

to write

f (x, ξ) = x(k)ξ(j)D± .

The idea of the following lemma is useful.

Lemma 4.3. For each non-negative integer L one has

∫
δ(x − z) ∂Lx

{
T−(x, z, ξ)e

−u
[
A
ξ2+x2

2 +Jξix
]}
dz

= x(L)ξ(0)D− + x(1+ L)ξ(1)D+, (4.9)
∫
δ(x − z) ∂Lξ

{
T−(x, z, ξ)e

−u
[
A
ξ2+x2

2 +Jξix
]}
dz

= x(0)ξ(L)D− + x(1)ξ(1+ L)D+, (4.10)
∫
δ(x − z) ∂Lx

{
T+(x, z, ξ)e

−u
[
A
ξ2+x2

2 +Jξix
]}
dz

=
{
x(L)ξ(0)D+ + x(L+ 1)ξ(1)D− (L ≥ 1),
0 (L = 0),

(4.11)

∫
δ(x − z) ∂Lξ

{
T+(x, z, ξ)e

−u
[
A
ξ2+x2

2 +Jξix
]}
dz = 0. (4.12)

Proof. By the formulas (4.2) and (4.3) after Lemma 4.2, note first that

∂Lx e
−u
[
A
ξ2+x2

2 +Jξix
]
= x(L)ξ(0)D+ + x(1+ L)ξ(1)D−. (4.13)

Since JD± ⊂ D∓, we have the first two assertions (4.9)/(4.10) immediately.
Now we prove the third, (4.11). It is clear in the case L = 0, so we may assume

L ≥ 1. Then by (4.13) we see that
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∂Lx

{
T+(x, z, ξ)e

−u
[
A
ξ2+x2

2 +Jξix
]}

= ∂Lx
{(
A
x2 − z2

2
+ J (x − z)iξ

)
e
−u
[
A
ξ2+x2

2 +Jξix
]}

= L(L− 1)

2
A∂L−2

x e
−u
[
A
ξ2+x2

2 +Jξix
]
+ L(Ax + J iξ)∂L−1

x e
−u
[
A
ξ2+x2

2 +Jξix
]

+
(
A
x2 − z2

2
+ J (x − z)iξ

)
∂Lx e

−u
[
A
ξ2+x2

2 +Jξix
]
.

Hence we have

∫
δ(x − z) ∂Lx

{
T+(x, z, ξ)e

−u
[
A
ξ2+x2

2 +Jξix
]}
dz

= L(L− 1){x(L− 2)ξ(0)AD+ + x(L− 1)ξ(1)AD−}
+Lx{x(L− 1)ξ(0)AD+ + x(L)ξ(1)AD−}
+Lξ{x(L− 1)ξ(0)JD+ + x(L)ξ(1)JD−}
= L(L− 1){x(L− 2)ξ(0)D+ + x(L− 1)ξ(1)D−}
+L{x(L)ξ(0)D+ + x(L+ 1)ξ(1)D−}
+L{x(L− 1)ξ(1)D− + x(L)ξ(0)D+}
= L(L− 1){x(L)ξ(0)D+ + x(L+ 1)ξ(1)D−} + L{x(L)ξ(0)D+
+x(L+ 1)ξ(1)D−}
= L{x(L)ξ(0)D+ + x(L+ 1)ξ(1)D−}.

This proves the third assertion. The last assertion (4.12) is clear because there is always
a factor x − z and it holds that xδ(x) = 0. This completes the proof of the lemma. 
�

In order to prove the terms of t2k with integers k ≥ 0 are absent from the asymptotic
expansion of TrKm(t) for small t , we need a little more preparation. First, by analogous
arguments made in the proof of Lemma 4.3 above, we see also that

∂Lξ

{
T+(x, z, ξ)e

−u
[
A
ξ2+x2

2 +Jξix
]}
∈ D−(x − z)∂L−1

ξ e
−u
[
A
ξ2+x2

2 +Jξix
]

+
(
A
x2 − z2

2
+ J (x − z)iξ

)
∂Lξ e

−u
[
A
ξ2+x2

2 +Jξix
]

∈ D−(x − z)
(
x(0)ξ(L− 1)D+ + x(1)ξ(L)D−

)

+
(
(x2 − z2)D+ + (x − z)ξD−

)(
x(0)ξ(L)D+ + x(1)ξ(L+ 1)D−

)
.

We may regard

D−(x − z)
(
x(0)ξ(L− 1)D+ + x(1)ξ(L)D−

)

= D−(x − z)ξ
(
x(0)ξ(L)D+ + x(1)ξ(L+ 1)D−

)
,



730 T. Ichinose, M. Wakayama

since we only have to keep the parity of functions. Hence we obtain

∂Lξ

{
T+(x, z, ξ)e

−u
[
A
ξ2+x2

2 +Jξix
]}

∈
(
(x2 − z2)D+ + (x − z)ξD−

)(
x(0)ξ(L)D+ + x(1)ξ(L+ 1)D−

)
. (4.14)

A relation with T−(x, z, ξ) in place of T+(x, z, ξ) also is easily obtained, rather as a
special case of (4.14). Thus, defining

κ(ε) =
{

1 if ε = +,
0 if ε = − ,

we have shown by (4.14) the following

Lemma 4.4.

∂Lξ

{
Tε(x, z, ξ)e

−u
[
A
ξ2+x2

2 +Jξix
]}

∈
{
κ(ε)A(x, z, ξ)+ (1− κ(ε))D−

}(
x(0)ξ(L)D+ + x(1)ξ(L+ 1)D−

)
,

(4.15)

where

A(x, z, ξ) := (x2 − z2)D+ + (x − z)ξD−. 
�
We are now in a position to show that the coefficients of t2k with k non-negative

integers vanish in the asymptotic expansion of TrKm(t) for t ↓ 0.

Proposition 4.5. For m ≥ 2, one has cm,2� = 0 for every integer � ≥ 0.

Proof. Since Km(t) =
∑
ε∈Zm−1

2
Km,ε(t), we have

cm,k =
∑

ε∈Zm−1
2

c
(m,ε)
k , (4.16)

so that the assertion immediately follows if we prove c(m,ε)2� = 0. Note by (4.8) that the

coefficient c(m,ε)k of tk in the asymptotic expansion TrKm,ε(t) ∼
∑∞
k=0 c

(m,ε)
k tk is given

by

c
(m,ε)
k =

∑
�1,...,�m−1≥0;

�1+···+�m−1+m−�(ε)−2=k

c
(m,ε)
�1,··· ,�m−1

, (4.17a)

c
(m,ε)
�1,··· ,�m−1

= i�1+···+�m−1

2π�1! · · · �m−1!

∫

�m−1
du θm−1(u)

×
∫ ⊗2m m∏

j=1

dξj

m−1∏
j=0

dzj

m−1∏
j=1

∂
�j
zj−1δ(zj − zj−1)

m−1∏
j=1

δ(ξj − ξm)
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× tr

[{
e
−(1−u1−···−um−1)

[
A
ξ2
m+z2m−1

2 +Jξmizm−1

]}

×
←−
m−1∏
j=1

∂
�j
ξj

{
Tεj (zj−1, zj , ξj )e

−uj
[
A
ξ2
j
+z2
j−1

2 +Jξj izj−1

]}]
. (4.17b)

Hence by Lemmas 4.2 and 4.4 it is easy to verify with �m ≡ 0 that

c
(m,ε)
�1,··· ,�m−1

∈ tr
∫

�m−1
du θm−1(u)

∫
dξ

∫ ⊗m m−1∏
j=0

dzj

m−1∏
j=1

∂
�j
zj−1δ(zj − zj−1)

×
[ m∏
j=1

{
zj−1(0)ξ(�j )D

+ + zj−1(1)ξ(�j + 1)D−
}

×
m−1∏
j=1

{
κ(εj )A(zj−1, zj , ξ)+ (1− κ(εj ))D−

}]
. (4.18)

Note here that it is legitimate to change the order of the products in the integrand above
because we have the relation D+D− = D−D+ = D−, etc.

Integration by parts with respect to z0 therefore yields

c
(m,ε)
�1,··· ,�m−1

∈ tr
∫

�m−1
du θm−1(u)

∫
dξ

∫ ⊗m m−1∏
j=0

dzj

m−1∏
j=2

∂
�j
zj−1δ(zj − zj−1)

×
[ m∏
j=2

{
zj−1(0)ξ(�j )D

+ + zj−1(1)ξ(�j + 1)D−
}

×
m−1∏
j=2

{
κ(εj )A(zj−1, zj , ξ)+ (1− κ(εj ))D−

}

×δ(z1 − z0)∂
�1
z0

{(
z0(0)ξ(�1)D

+ + z0(1)ξ(�1 + 1)D−
)

×
(
κ(ε1)A(z0, z1, ξ)+ (1− κ(ε1))D

−
)}]

. (4.19)

Here we use the Leibniz formula to calculate the ∂�1
z0 derivative as

∂�1
z0

{(
z0(0)ξ(�1)D

+ + z0(1)ξ(�1 + 1)D−
)(
κ(ε1)A(z0, z1, ξ)+ (1− κ(ε1))D

−
)}

=
2∑
k=0

(
�1

k

){
∂�1−k
z0

(
z0(0)ξ(�1)D

+ + z0(1)ξ(�1 + 1)D−
)}

×
{
∂kz0

(
κ(ε1)A(z0, z1, ξ)+ (1− κ(ε1))D

−
)}

∈
(
z0(�1)ξ(�1)D

+ + z0(�1 + 1)ξ(�1 + 1)D−
)

×
(
κ(ε1)A(z0, z1, ξ)+ (1− κ(ε1))D

−
)
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+
(
z0(�1 − 1)ξ(�1)D

+ + z0(�1)ξ(�1 + 1)D−
)
κ(ε1)(z0D

+ + ξD−)

+
(
z0(�1 − 2)ξ(�1)D

+ + z0(�1 − 1)ξ(�1 + 1)D−
)
κ(ε1)D

+

⊂
(
z0(�1)ξ(�1)D

+ + z0(�1 + 1)ξ(�1 + 1)D−
)

×
(
κ(ε1)

(
D+ + A(z0, z1, ξ))+ (1− κ(ε1))

)
D−

)
. (4.20)

Thus by (4.20) we see that (4.19) becomes

c
(m,ε)
�1,··· ,�m−1

∈ tr
∫

�m−1
du θm−1(u)

∫
dξ

∫ ⊗m−1 m−1∏
j=1

dzj

m−1∏
j=2

∂
�j
zj−1δ(zj − zj−1)

×
[ m∏
j=2

{
zj−1(0)ξ(�j )D

+ + zj−1(1)ξ(�j + 1)D−
}

×
m−1∏
j=2

{
κ(εj )A(zj−1, zj , ξ)+ (1− κ(εj ))D−

}

×
{
z1(�1)ξ(�1)D

+ + z1(�1 + 1)ξ(�1 + 1)D−
}](

κ(ε1)D
+ + (1− κ(ε1))D

−
)
.

(4.21)

By integration by parts with respect to the next variable z1, we see by (4.20) that

c
(m,ε)
�1,··· ,�m−1

∈ tr
∫

�m−1
du θm−1(u)

∫
dξ

∫ ⊗m−1 m−1∏
j=1

dzj

m−1∏
j=3

∂
�j
zj−1δ(zj − zj−1)

×
[ m∏
j=3

{
zj−1(0)ξ(�j )D

+ + zj−1(1)ξ(�j + 1)D−
}

×
m−1∏
j=3

{
κ(εj )A(zj−1, zj , ξ)+ (1− κ(εj ))D−

}

×δ(z2 − z1)∂
�2
z1

{(
z1(�1)ξ(�1 + �2)D

+ + z1(�1 + 1)ξ(�1 + �2 + 1)D−
)

×
(
κ(ε2)A(z1, z2, ξ)+ (1− κ(ε2))D

−
)}]

×
(
κ(ε1)D

+ + (1− κ(ε1))D
−
)
. (4.22)

Calculation of the ∂�2
z1 derivative, similar to (4.20), gives

∂�2
z1

{(
z1(�1)ξ(�1 + �2)D

+ + z1(�1 + 1)ξ(�1 + �2 + 1)D−
)

×
(
κ(ε2)A(z1, z2, ξ)+ (1− κ(ε2))D

−
)}

∈
(
z1(�1 + �2)ξ(�1 + �2)D

+ + z1(�1 + �2 + 1)ξ(�1 + �2 + 1)D−
)

×
(
κ(ε2)(D

+ + A(z1, z2, ξ))+ (1− κ(ε2))D
−
)
. (4.22)
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Hence it follows from (4.21) that

c
(m,ε)
�1,··· ,�m−1

∈ tr
∫

�m−1
du θm−1(u)

∫
dξ

∫ ⊗m−2 m−1∏
j=2

dzj

m−1∏
j=3

∂
�j
zj−1δ(zj − zj−1)

×
[ m∏
j=3

{
zj−1(0)ξ(�j )D

+ + zj−1(1)ξ(�j + 1)D−
}

×
m−1∏
j=3

{
κ(εj )A(zj−1, zj , ξ)+ (1− κ(εj ))D−

}

×
{
z2(�1 + �2)ξ(�1 + �2)D

+ + z2(�1 + �2 + 1)ξ(�1 + �2 + 1)D−
}]

×
2∏
k=1

(
κ(εk)D

+ + (1− κ(εk))D−
)
. (4.23)

Continuing this procedure successively and recalling �m = 0, we now arrive at the
following result. 
�
Lemma 4.6.

c
(m,ε)
�1,··· ,�m−1

∈ tr

[ ∫

�m−1
du θm−1(u)

∫ ∫
dξdzm−1

×
{
zm−1(�1 + · · · + �m−1)ξ(�1 + · · · + �m−1)D

+

+zm−1(�1 + · · · + �m−1 + 1)ξ(�1 + · · · + �m−1 + 1)D−
}

×
m−1∏
j=1

(
κ(εj )D

+ + (1− κ(εj ))D−
)]
. 
� (4.24)

Proof of Proposition 4.5 (continuation). It follows from Lemma 4.6 that

c
(m,ε)
�1,··· ,�m−1

∈ tr

[ ∫

�m−1
du θm−1(u)

∫
dξ

×
{
ξ(�1 + · · · + �m−1)D

+ + ξ(�1 + · · · + �m−1 + 1)D−
}
(D+)�(ε)(D−)m−1−�(ε)

⊂ tr

[ ∫
dξ
{
ξ(�1 + · · · + �m−1)(D

−)m−1−�(ε)

+ξ(�1 + · · · + �m−1 + 1)(D−)m−�(ε)
}]
= {0}, (4.25)

whenever �1 + · · · + �m−1 +m− �(ε) is even. Thus the coefficient c(m,ε)�1,··· ,�m−1
vanishes

when �1+· · ·+�m−1+m−�(ε) is even. This completes the proof of the proposition. 
�
What remains for the proof of Theorem 4.1 is to show the following proposition.
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Proposition 4.7. Suppose m ≥ 2. The coefficients cm,k vanish for k < m− 2.

Proof. Recall the coefficients c(m,ε)k and c(m,ε)�1,··· ,�m−1
in (4.17ab) with respect to tk in the

asymptotic expansion TrKm,ε(t) ∼
∑∞
k=0 c

(m,ε)
k tk . Therefore, to show the assertion, it

suffices to check that c(m,ε)�1,··· ,�m−1
= 0 when �1 + · · · + �m−1 < �(ε). In this case, since

�(ε) ≤ m − 1, there exists some i with 1 ≤ i ≤ m − 1 such that �i = 0 and εi = +.
Hence, by analogous arguments used to derive (4.19) from (4.18), we can see that there
is a factor δ(zi+1 − zi)A(zi, zi+1, ξ) in the integrand. Since δ(x)x = 0, we have the
assertion. This proves the proposition. 
�

It is clear that Theorem 4.1 immediately follows from Proposition 4.5 and Proposition
4.7. In particular, the fact we have shown, that those coefficients {cm,j } in the asymptotic
expansion (4.1) are arranged in an (almost) triangular array, is highly non-trivial and is
quite important. As a result, we can show that the spectral zeta function ζQ(s) has a zero
at each non-positive even integer, i.e. at s = 0 and at the same point as the Riemann zeta
function has. In fact, we have the following theorem.

Theorem 4.8. One has

ζQ(s) = α + β√
αβ(αβ − 1)

1

�(s)

1

s − 1

+ 1

�(s)

[ n∑
j=1

c2j−1

s + 2j − 1
+ ĥ1(s)+ ĥ2(s)+ Ẑ∞(s)

]
, (4.26)

where ĥ1(s) is holomorphic in σ = Re s > −2n − 1, having a bound |ĥ1(s)| ≤
C1(n)/(Re s + 2n+ 1), and ĥ2(s) holomorphic in σ = Re s > −n/2, having a bound
|ĥ2(s)| ≤ C2(n)/(Re s+n/2), for every positive integer nwith positive constantsC1(n)

and C2(n) dependent on n. Consequently, ζQ(s) is meromorphic in the whole complex
plane with a simple pole at s = 1, and has zeros for s being non-positive even integers.

Proof. Note that TrK(t) = ∑n
m=1 TrKm(t) + TrRn+1(t), where |TrRn+1(t)| ≤

Cn
�(1/2)n

�(1+n/2) t
n/2 with a constantC > 0, by (2.13) and Proposition 2.3. Hence by Theorem

4.1 together with Proposition 2.2 we have

TrK(t) ∼ α + β√
αβ(αβ − 1)

t−1 + c2,1t + c2,3t
3 + c2,5t

5 + c2,7t
7 + c2,9t

9 + · · ·

+ c3,1t + c3,3t
3 + c3,5t

5 + c3,7t
7 + c3,9t

9 + · · ·
+ c4,3t

3 + c4,5t
5 + c4,7t

7 + c4,9t
9 + · · ·

+ c5,3t
3 + c5,5t

5 + c5,7t
7 + c5,9t

9 + · · ·
+ c6,5t

5 + c6,7t
7 + c6,9t

9 + · · ·
· · · · · · .

Thus, putting c2j = 0 and c2j−1 =
∑2j+2
�=2 c�,2j−1, we have

TrK(t) ∼ α + β√
αβ(αβ − 1)

t−1 +
n∑
j=1

c2j−1t
2j−1

+{
n∑

m=2

TrKm(t)−
n∑
j=1

c2j−1t
2j−1}+ Cn�(1/2)n

�(1+ n/2)O(t
n/2).
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Noting this fact, to show the remaining part of the assertion we may use exactly the same
argument as in the proof of Corollary 3.4. Here we have for ĥ1(s) and ĥ2(s) in (4.26) ,

|ĥ1(s)| =
∣∣∣∣∣∣

∫ 1

0
t s−1{ n∑

m=2

TrKm(t)−
n∑
j=1

c2j−1t
2j−1}dt

∣∣∣∣∣∣

≤ C1(n)

∫ 1

0
tRe s+2ndt = C1(n)

Re s + 2n+ 1
,

and

|ĥ2(s)| ≤
∣∣∣∣
∫ 1

0
t s−1 TrRn+1(t)dt

∣∣∣∣

≤ Cn �(1/2)n

�(1+ n/2)
∫ 1

0
tRe s−1+n/2dt = Cn�(1/2)n

�(1+ n/2)
1

Re s + n/2 .

Thus the theorem has been shown. 
�

Putting CQ,j := c2j−1, the main theorem in the Introduction follows immediately
from Theorem 4.8.

For Re s > 1, it is easy to verify that in the classical limit, i.e. the limit when q := α/β
approaches 1, ζQ(s) yields (α2 − 1)−s/2 · 2(2s − 1)ζ(s) (see [PW1] or Lemma 2.8).
Moreover, since the theorem above is true for all positive α, β with αβ > 1, we conclude
that the classical limit of ζQ(s) essentially becomes the Riemann zeta function.

Corollary 4.9. As α/β → 1, ζQ(s) converges to (α2 − 1)−s/2 · 2(2s − 1)ζ(s) as mero-
morphic functions. Of course, this agrees with the well-known fact that ζ(s) has a simple
pole at s = 1 with residue 1. 
�

Remark 1. It is furthermore interesting to study the situation in the limit when the ratio
q = α/β tends to 0 (or +∞) with the value of the product αβ kept fixed, and to com-
pare it with a so-called q-analogue [KKW] of the Riemann zeta function as well as the
corresponding crystal zeta function [KWY]. See also [P] for a study of a perturbation
of the spectrum of the non-commutative harmonic oscillator which may provide some
idea to this direction. 
�

As a concluding remark of the paper, we discuss whether or not one can take the limit
n→∞ in (4.26) in Theorem 4.8, namely, (1.4) in the main theorem. First we note that
though we have C2(n) = Cn�(1/2)n

�(1+n/2) → 0 as n→∞, we cannot conclude that the C1(n)

tend to 0 nor are even bounded. In fact, it is not easy to get an effective estimate which
allows us to conclude that the series

∑n
j=1

c2j−1
s+2j−1 converges as n→∞. To explain the

situation we try to give some estimation of ∂Lx ∂
M
ξ e
−uq(x,ξ) which is necessary to have a

good bound of c(m,ε)k . Here recall (2.18a), that is,

q(x, ξ) = Aξ
2 + x2

2
+ Jxiξ =

(
α
ξ2+x2

2 −xiξ
xiξ β

ξ2+x2

2

)
.
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Lemma 4.10. The matrix ∂Lx ∂
M
ξ e
−uq(x,ξ) is hermitian for any non-negative integers L

and M when x, ξ ∈ R. One has

∂ξ e
−uq(x,ξ) = P(x, ξ)e−uq(x,ξ) = e−uq(x,ξ) P (x, ξ)∗, (4.27)

with P(x, ξ) = P1(x, ξ)+ iP2(x, ξ), where Pj (x, ξ) are hermitian matrices given by

P1(x, ξ) = −∂ξq(x, ξ)u = −(Aξ + J ix)u,
P2(x, ξ) = i

[
∂ξq(x, ξ), q(x, ξ)

]

= −x
2 − ξ2

4
x[J, A]u2 = −(α − β)x

2 − ξ2

4
xu2K.

Here the commutator of matricesM1 andM2 is denoted by [M1,M2] = M1M2−M2M1,

andK =
(

0 1
1 0

)
. A similar equation also holds for the differentiation with respect to x

in place of ξ . Moreover, for higher order derivatives, it holds that for any non-negative
integersL, M there is a matrix-valued polynomial fL,M(x, ξ) of degree 3(L+M) such
that

∂Lx ∂
M
ξ e
−uq(x,ξ) = fL,M(x, ξ)e−uq(x,ξ) = e−uq(x,ξ)fL,M(x, ξ)∗.

Proof. The first assertion is obvious. For the second, note that

q(x, ξ + h) = Ax
2 + (ξ + h)2

2
+ J ix(ξ + h) = q(x, ξ)+ Aξh+ Ah

2

2
+ J ixh

= q(x, ξ)+ (Aξ + J ix)h+ Ah
2

2
= q(x, ξ)+ ∂ξq(x, ξ)h+O(h2).

We employ the Campbell-Hausdorff formula (see, e.g. [H]) which says that
exp(tA) exp(tB) = exp

(
tA+ tB + t2

2 [A, B]+O(t3)). Then we have

1

h

(
e−uq(x,ξ+h) − e−uq(x,ξ)

)
= 1

h

(
e−uq(x,ξ+h)euq(x,ξ) − 1

)
· e−uq(x,ξ)

= 1

h

[
exp

{
− u∂ξq(x, ξ)h

−u
2

2

[
∂ξq(x, ξ), q(x, ξ)

]
h+O(h2)

}
− 1

]
· e−uq(x,ξ).

Thus taking the limit h→ 0 we see that

∂ξ e
−uq(x,ξ) = −

(
u∂ξq(x, ξ)+ u

2

2

[
∂ξq(x, ξ), q(x, ξ)

])
e−uq(x,ξ).

Then we have

∂ξ e
−uq(x,ξ) = −((Aξ + J ix)u+ i(α − β)x

2 − ξ2

4
xKu2)e−uq(x,ξ),
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since

[
∂ξq(x, ξ), q(x, ξ)

] = [Aξ + J ix, Ax
2 + ξ2

2
+ J ixξ]

= x2 + ξ2

2
ix[J, A]+ ξixξ [A, J ]

= x2 − ξ2

2
ix[J, A] = i(α − β)x

2 − ξ2

2
xK.

This proves the first equality of (4.27). The second one follows by taking the adjoint.
The last assertion follows from the first formula. 
�

From this lemma we easily see that the hermitian matrix ∂Lx ∂
M
ξ e
−uq(x,ξ) obeys e.g.

‖∂Lx ∂Mξ e−uq(x,ξ)‖2 =
[

tr
(
fL,M(x, ξ)fL,M(x, ξ)

∗e−2uq(x,ξ))]1/2

≤ ‖fL,M(x, ξ)‖2‖e−uq(x,ξ)‖.
Here we denote the norm and the Hilbert-Schmidt norm for a matrix by the same nota-
tions ‖·‖ and ‖·‖2, respectively, as used for an operator in §2. Obviously, ‖e−uq(x,ξ)‖ =
e−uλ+(x,ξ), and ‖fL,M(x, ξ)‖2 is a polynomial in x and ξ of degree 3(L+M), though
of degree L + M when α = β because the term P2(x, ξ) disappears. Therefore, for
instance, if L = 0, M = 1, we have

‖f0,1(x, ξ)‖22 = ‖P(x, ξ)‖22 = tr
(
(P1(x, ξ)− iP2(x, ξ))(P1(x, ξ)+ iP2(x, ξ))

)

= u2 tr
(
(Aξ + J ix)2)+ u4 tr

((
(α − β)x

2 − ξ2

4
xK

)2)

= u2(α2 + β2)ξ2 + 2u2x2 + u
4

8
(α − β)2(x2 − ξ2)2x2.

Accordingly, the observation above together with Lemma 4.10 will suggest to us only to
hold that the absolute values of the coefficients c2j−1 are dominated by
j3j/2/j ! , which is clearly insufficient when α �= β to prove the convergence of the se-
ries “

∑∞
j=1

c2j−1
s+2j−1 ". It would be desirable to elucidate whether this estimate |c2j−1| ≤

(constant) × j3j/2/j ! for all sufficiently large j is best possible or the same estimate
|c2j−1| ≤ (constant)× jj/2/j ! holds as in the case where α = β (see Remark 3 below).
In the latter case we may let n→∞ in Theorem 4.8, but not in the former case.

Remark 2. Note the zero of ζQ(s) at s = 0 is simple. We conjecture also that the zeros
of ζQ(s) (which are at least produced by �(s)−1) at the negative even integer s = −2j
are all simple. 
�
Remark 3. Recall Bernoulli’s numbers Bn (see e.g. [E], p.11) are defined by

t

et − 1
=
∞∑
n=0

Bn

n!
tn = 1− 1

2
t + 1

6

t2

2!
− 1

30

t4

4!
+ 1

42

t6

6!
− · · · (|t | < 2π).

Note thatB2m+1 = 0 form = 1, 2, . . . . (Notice that the definition of Bernoulli’s number
in [T] is different from the present one.) Then it is well-known that

ζ(0) = −1

2
, ζ(−2m) = 0, ζ(1− 2m) = −B2m

2m
(m = 1, 2, . . . ). (4.27)
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Since Q = Q0 ∼= 1
2 (−∂2

x + x2)I when α = β = √2, the trace of the heat kernel is
given by

TrK(t) = Tr e−Q0t

= 2
∞∑
n=0

e−(n+
1
2 )t = 2e

1
2 t · 1

et − 1

= 2
{

1+ 1

2
t + 1

2!

(1

2
t
)2 + 1

3!

(1

2
t
)3 + 1

4!

(1

2
t
)4 + · · ·

}

×
{1

t
− 1

2
+ B2

t

2!
− B4

t3

4!
+ · · ·

}

= 2

[
t−1 − 1

8
t +

(1

2
· 1

2!
B2 − 1

2
· 1

2!22 +
1

3!23

)
t2

+
(
− 1

2
· 1

3!23 +
1

2!22 ·
1

2!
B2 + 1

4!24 −
1

4!
B4

)
t3 + · · ·

]

= 2t−1 − 1

4
t + 14

4! 5!
t3 + · · · ,

because B2 = 1
6 , B4 = 1

30 , etc. Note here that the equation above is the Laurent
expansion of TrK(t) = (sinh t

2 )
−1 at t = 0 (0 < |t | < 2π). Since the coefficients

of this expansion are closely involved with Bernoulli’s numbers, we are suggested to
consider the constantsCQ,j defined in the proof of the main theorem above as analogues
of Bernoulli’s numbers.

Notice also that when α = β we may take the limit n→∞ in Theorem 4.8 (hence
in the main theorem) because |c2j−1| are dominated by jj/2/j !. This is compatible with
the fact that Bn

n! → 0 (see §2). Actually, since B2n
(2n)! = 2(−1)n−1(2π)−2nζ(2n) and

|ζ(s)| → 0 when Re s → ∞, from the Euler product expression we have B2n
(2n)! → 0

and B2n+1 ≡ 0 for n ≥ 1.
Moreover, by the partial fraction expansion of sec z, the functional equation ζ(s) =

�(s)−12s−1πs
(

cos sπ2

)−1
ζ(1− s) of ζ(s) ([E], [T]) yields

ζQ0(s) = 2(2s − 1)ζ(s) = 1

�(s)

[
2s+1(2s − 1)πs−1

∞∑
j=−∞

(−1)j+1

s − 2j + 1

]
ζ(1− s).

Hence, this equation together with the above interpretation of CQ,j shows the main
theorem may be considered to give a quasi-functional equation of ζQ(s). 
�

References

[Ar] Araki, H.: On an inequality of Lieb and Thirring. Lett. Math. Phys. 19, 167–170 (1990)
[CH] Courant, R., Hilbert, D.: Methods of Mathematical Physics, Vol. II, Partial Differential Equa-

tions. New York: Interscience, 1962
[E] Edwards, H. M.: Riemann’s Zeta Function. London-New York: Academic Press, Inc., 1974
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