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Abstract: We address the question whether Bohmian trajectories exist for all times.
Bohmian trajectories are solutions of an ordinary differential equation involving a wave-
function obeying either the Schrödinger or the Dirac equation. Some trajectories may
end in finite time, for example by running into a node of the wavefunction, where the
law of motion is ill-defined. The aim is to show, under suitable assumptions on the initial
wavefunction and the potential, global existence of almost all solutions. We provide an
alternative proof of the known global existence result for spinless Schrödinger particles
and extend the result to particles with spin, to the presence of magnetic fields, and to
Dirac wavefunctions. Our main new result is conditions on the current vector field on
configuration-space-time which are sufficient for almost-sure global existence.

1. Introduction

We study a mathematical question arising from and relevant to Bohmian mechanics
[5, 1, 11, 3, 10] and its variant based on the Dirac equation [6, 7] (henceforth referred
to as the “Bohm–Dirac theory”). In these theories, the motion of particles is defined
by ordinary differential equations (ODEs) involving the wavefunction, see (3) and (5)
below. The mathematical question we address is global existence, i.e., whether (under
what conditions and how often) the particle trajectories are well defined for all times.
One obstruction to global existence is that the velocity given by (3) or (5) is singular at
the nodes (i.e., zeros) of the wavefunction. In particular, there are trajectories that are not
defined for all times because they run into a node. Thus, the strongest statement one can
expect to be true is that global existence holds for almost all solutions of the equation of
motion. As we show, this is in fact true for suitable potentials and initial wavefunctions.
As a by-product, one obtains from almost-sure global existence the equivariance of the
|ψt |2 distributions; the definition of the notion of equivariance is given and elucidated
in Sect. 2.4 below.
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The relevance of Bohmian mechanics to the foundations of quantum mechanics arises
from the fact that a world governed by Bohmian mechanics satisfies all probability rules
of quantum mechanics [5, 1, 11, 3, 10]. Bohmian mechanics thus provides an example of
a “quantum theory without observers,” one in which no reference to observers is needed
for the formulation of the theory, and an explanation of the quantum probabilities in
terms of objective events.

The authoritative paper on global existence of Bohmian trajectories is by Berndl
et al. [4]; see also [2]. We note that the proof given by Holland [15, p. 85] is incorrect
(see [4] for details). We also remark that the general existence theory for first order ODEs
with velocity vector fields that are not Lipschitz but only in some Sobolev space [9] does
not apply to Bohmian trajectories. The results of [9] hold for vector fields with bounded
divergence, while the divergence of a Bohmian velocity field, such as in (3) and (4),
typically diverges at nodes of the wave function. Berndl et al. [4] already proved almost-
sure global existence for suitable potentials and initial wavefunctions; while they give
a proof only for spinless nonrelativistic particles, a similar proof could presumably be
devised for Bohmian mechanics with spin [1, 3] and the Bohm–Dirac theory. We provide
here an alternative proof that covers, in particular, all cases covered by their existence
theorem; in addition, our result also covers Bohmian mechanics with spin and magnetic
fields and Bohm–Dirac theory; for the latter our result and its proof become particularly
simple thanks to the fact that the Bohm–Dirac velocities are bounded by the speed of
light. Even more generally, our result can be applied to any Bohm-type dynamics, as
we formulate conditions on the current vector field on configuration-space-time that are
sufficient for almost-sure global existence.

There are three ways in which a trajectory can fail to exist globally: it can approach a
node of the wavefunction (where the equation of motion is not defined), it can approach
a singularity of the potential (where the equation of motion need not be defined), or it
can escape to infinity in finite time. Hence, the main work of any existence proof for
Bohm-type dynamics is to show that almost every trajectory avoids the “bad points”
(nodes, singularities, infinity) in configuration space. The method of Berndl et al. is
based on estimating the probability flux across surfaces surrounding the bad points and
pushing these surfaces closer to the bad points; in the limit in which the surfaces reach
the bad points, the flux vanishes.

Our method, in contrast, is based on considering a suitable nonnegative quantity along
the trajectory that becomes infinite when the trajectory approaches a bad point; if such
a quantity has finite expectation, at least locally, then the set of initial configurations for
which it becomes infinite must be a null set. That the expectation be locally finite can
be paraphrased as an integral condition on the current vector field.

To illustrate our method, we briefly describe an argument of this kind: the total dis-
tanceD traveled in configuration space in the time interval [0, T ] becomes infinite when
the trajectory escapes to infinity during [0, T ]. To prove that D is almost surely finite,
we prove that it has finite expectation. A calculation shows that

ED ≤
T∫

0

dt

∫

R3N

dq |J | , (1)

where J is the spatial component of the current vector field. Thus, the finiteness of
the right-hand side of (1) is a natural condition on the current ensuring that almost no
trajectory escapes to infinity in [0, T ].
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This argument was already sketched in [14]; it was inspired by a similar consideration
in the global existence proof of [13] for Bell’s jump process for lattice quantum field
theory, another Markov process depending on a wavefunctionψt and having distribution
|ψt |2 at any time t ; the quantity considered there was the number of jumps during [0, T ].
Finally, a related argument was also described in Remark 3.4.6 of [4], see our Remark 5
for a comparison.

Another difference between our method and that of Berndl et al. is that we do not
make use of a certain nontrivial fact that Berndl et al. need, namely that the |ψ |2-prob-
ability of crossing a surface � in configuration-space-time is bounded by

∫
�

|dσ · j |,
where dσ is the normal on � with length equal to the area of the surface element and j
is the current vector field. Indeed, we use this fact only for surfaces lying in t = const.
slices of configuration-space-time, for which it is much simpler to prove, see Lemma 1.
To be sure, the statement about general surfaces is interesting in its own right and also
relevant to other applications such as scattering theory, but its proof takes several pages
in [2].

While our innovation concerns sufficient conditions on the current for almost-sure
global existence, there remains the functional analytic question of deriving these condi-
tions from conditions on the potential and the initial wavefunction. We carry this out in
several example cases but contribute nothing original; we employ the same arguments
as Berndl et al. or standard arguments.

This article is organized as follows. In Sect. 2 we give the definition of Bohmian
trajectories for both the Schrödinger and the Dirac equation; we elucidate the relevance
of the current vector field to the trajectories and their distribution. In Sect. 3 we state
and prove our results in terms of a current vector field. In Sect. 4 we state and prove
our results for Bohm–Dirac theory. Finally, in Sect. 5 we state and prove our results for
Bohmian mechanics.

2. Setup

We briefly recall Bohmian mechanics and the Bohm–Dirac theory for a system of N
particles. Then we describe what singularities we will allow in the potential. Finally,
we point out how for both Bohmian mechanics and Bohm–Dirac theory the trajectories
arise from a current vector field on configuration-space-time.

2.1. Equations of motion. In Bohmian mechanics, the wavefunction is a function ψ :
R×R

3N → C
k , where R represents the time axis, R3N the configuration space ofN parti-

cles, and C
k the value space of the wavefunction representing the internal degrees of free-

dom of the particles such as spin (and possibly quark flavor, etc.).ψ = ψ(t, q1, . . . , qN)
evolves according to the Schrödinger equation

i�
∂ψ

∂t
= −

N∑
i=1

�
2

2mi

(∇qi − iei
c�

A(qi )
)2
ψ + V (q1, . . . , qN)ψ, (2)

where mi and ei denote mass and charge of the ith particle, c the speed of light, A
is the external electromagnetic vector potential, and V is the potential, which may be
Hermitian k×k-matrix valued. For particles with spin in the presence of magnetic fields,
the potential includes a term

∑
i

�ei
2mic

(∇ × A)(qi ) · σ i where σ i is the vector of spin
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operators (Pauli matrices for spin- 1
2 ) acting on the spin index of particle i; this form of

the Schrödinger equation is known as the Pauli equation.
The law of motion for the trajectory Qi (t) of the ith particle reads

dQi

dt
(t) = �

mi
Im
ψ∗ (∇qi − iei

c�
A(qi )

)
ψ

ψ∗ ψ
(t,Q(t)), (3)

where Q = (Q1, . . . ,QN) is the configuration, and ψ∗φ denotes the inner product in
C
k . The right-hand side of (3) is ill-defined when and only when either ψ(t,Q) = 0

(node of ψ) or ψ is not differentiable at (t,Q). For an explicit example of a trajectory
that runs into a node of ψ , see [4].

In Bohm–Dirac theory, the wavefunction is a function ψ : R × R
3N → C

4N =
(C4)⊗N evolving according to the Dirac equation

i�
∂ψ

∂t
= −

N∑
i=1

ic� αi · ∇qi ψ + V (q1, . . . , qN)ψ, (4)

where αi denotes the vector of Dirac alpha matrices acting on the spin index of particle i;
we have included the mass terms in the potential V , which is Hermitian 4N ×4N -matrix
valued. In the presence of magnetic fields, V includes a term −∑i eiA(qi ) · αi .

The law of motion for the trajectory Qi (t) of the ith particle reads

dQi

dt
(t) = c

ψ∗ αi ψ

ψ∗ ψ
(t,Q(t)) . (5)

The right-hand side is ill-defined at nodes of ψ and only there.

2.2. Singularities of the potential. Among the physically relevant examples of potentials
V = V (q1, . . . , qN) is the Coulomb potential,

V (q1, . . . , qN) =
∑
i<j

eiej

|qi − qj |
(6)

which is singular at coincidence configurations (those with qi = qj for some i �= j ).
This motivates us to allow that V is defined only on a subset Q ⊂ R

3N ; e.g. in the
case of Coulomb interaction, Q is the set of non-coincidence configurations; in the
case of an external Coulomb potential generated by charges located at z1, . . . , zM ,
Q = (R3 \ {z1, . . . , zM})N . One cannot expect a Schrödinger wavefunction to be
differentiable on the singular set R

3N \ Q of the potential, as exemplified by the ground
state of the hydrogen atom, which is proportional to exp(−λ|q|) for suitable λ > 0. Thus,
the right-hand side of (3) may be ill-defined on R

3N \Q, and we will use differentiability
of ψ only on Q. For the Coulomb interaction and the external Coulomb potential, Q is
of the form Q = R

d \ ∪m�=1S�, where S� are hyperplanes. Our method of proof allows
somewhat weaker assumptions:

A closed set S ⊂ R
d is admissible, if there is a δ > 0 such that the distance function

q 	→ dist(q, S) is differentiable on the open set (S + δ) \ S, where S + δ = {q ∈ R
d :

dist(q, S) < δ}. Then the configuration space Q is

either Q = R
d or Q = R

d \
m⋃
�=1

S�, (7)



Simple Proof for Global Existence of Bohmian Trajectories 353

where S1, . . . , Sm are admissible sets. For example hyperplanes are obviously admissi-
ble sets.

2.3. The current vector field. There is a common structure behind the laws of motion
(3) and (5): they are of the form

dQ

dt
(t) = J (t,Q(t))

j0(t,Q(t))
, (8)

where j = (j0, J ) is the current vector field on configuration-space-time R×Q, defined
by

j =
(
|ψ |2, �

m1
Imψ∗(∇q1

− ie1
c�

A(q1)
)
ψ, . . . , �

mN
Imψ∗(∇qN − ieN

c�
A(qN)

)
ψ
)

(9)

in the Schrödinger case and

j =
(
|ψ |2, c ψ∗α1ψ, . . . , c ψ

∗αNψ
)

(10)

in the Dirac case. Provided that ψ is sufficiently differentiable, j has the following
properties, which we take to be the defining properties of a current vector field:

j = (j0, J ) is a C1 vector field on R × Q, (11a)

div j =
d∑
µ=0

∂µj
µ = 0, (11b)

j0 > 0 whenever j �= 0, (11c)∫

Q
dq j0(t, q) = 1 ∀t ∈ R . (11d)

We will call points in N = {(t, q) ∈ R × Q : j (t, q) = 0} the nodes of j . We write
Nt = {q ∈ Q : j (t, q) = 0} for the set of nodes at time t .

Let Qq(t) denote the maximal solution of (8) starting in q ∈ Q \ N0 defined for
t ∈ (τ−

q , τ
+
q ). It is a reparameterization of an integral curve of j , see Remark 8 for

details. We will formulate our existence theorem first purely in terms of the current
vector field, and then apply our result to the currents (9) and (10).

2.4. Equivariance. We now explain the notion of equivariance, and what needs to be
shown to prove equivariance. We first remark that equivariance is a crucial property of
Bohm-type dynamics, in fact the basis of the statistical analysis of Bohmian mechanics
[11] and thus the basis of the agreement between the predictions of Bohmian mechanics
and the prescriptions of quantum mechanics. We also remark that, while full equivari-
ance will be a consequence of the existence result, a kind of partial equivariance can
be obtained before, see Lemma 1 below; our existence proof will exploit this partial
equivariance.
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Before we define equivariance, we introduce some notation. Let A (Q) denote the
Borel σ -algebra of Q. Let µt be the measure on A (Q) with density j0(t) relative to
Lebesgue measure,

µt(B) =
∫

B

dq j0(t, q) (12)

for all B ∈ A (Q). By (11d), µt is a probability measure; in Bohmian mechanics and
Bohm–Dirac theory, µt is the |ψ(t)|2 distribution. We introduce a formal cemetery con-
figuration ♦ and setQq(t) := ♦ for all t /∈ (τ−

q , τ
+
q ), respectively, if (0, q) is a node of

j ,Qq(t) := ♦ for all t �= 0. Let ϕt : Q → Q∪{♦}, ϕt (q) = Qq(t), denote the flow map
of (8), and let ϕ : R×Q → R× (Q∪{♦}) be the flow map on configuration-space-time
defined by ϕ(t, q) = (t, ϕt (q)). Let Qt = {q ∈ Q \ N0 : τ−

q < t < τ+
q } = ϕ−1

t (Q).
Standard theorems (see, e.g., Chapter II of [16]) on ODEs imply that ϕ is C1 on the
maximal domain {(t, q) ∈ R × (Q \ N0) : ϕt (q) �= ♦}, which is open; in particular,
also Qt is an open set.

Let ρt be the distribution of Qq(t) if q has distribution µ0, i.e.,

ρt = µ0 ◦ ϕ−1
t . (13)

One says that the family of measuresµt is equivariant on the time interval I ifρt = µt
for all t ∈ I . (The interval I may be finite or infinite.)

Let It := ϕt (Qt ) = ϕt (Q) ∩ Q be the image of the flow map in Q at time t . The
following lemma formulates “partial equivariance.”

Lemma 1. Let j = (j0, J ) satisfy (11a), (11b), and (11c). Then for all B ∈ A (Q) and
all t ∈ R,

ρt (B) = µt(B ∩ It ) . (14)

We know of two ways of proving this lemma, requiring comparable effort. One proof,
given in [4] and in more detail in [2], goes as follows. ρt has a density that obeys a conti-
nuity equation, and j0 satisfies the same continuity equation. By uniqueness of solutions
of this linear partial differential equation, one obtains that j0(t) coincides with the den-
sity of ρt on It . An alternative proof, which we give below, is based on applying the
Ostrogradski–Gauss integral formula to j on a cylinder formed by the trajectories over
a polyhedron in Q.

Proof (of Lemma 1). Without loss of generality, t > 0. For any d-chain of singular
simplicesE in Qt , the cylinder F formed by the trajectories overE, F = ϕ([0, t] ×E),
is a d + 1-chain in configuration-space-time R × Q. Applying the Ostrogradski–Gauss
integral formula to j and F , we obtain

0
(11b)=

∫

F

dt dq div j =
∫

∂F

dσ · j,

where dσ is the outward pointing surface normal with length |dσ | equal to the area of
the surface element. The surface ∂F of the cylinder consists of three parts: the mantle
ϕ([0, t] × ∂E), the lid ϕ({t} × E), and the bottom ϕ({0} × E). The integral over the
mantle vanishes as the mantle consists of integral curves of j and is thus tangent to j .
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The integral over the lid is
∫
ϕt (E)

dqj0(t, q) and that over the bottom is − ∫
E
dqj0(0, q).

Therefore, we obtain

0 = µt(ϕt (E))− ρ0(E) = µt(ϕt (E))− ρt (ϕt (E)) .

Any two measures that agree on the d-chains (and thus in particular on the compact
rectangles) agree on a ∩-stable generator of the σ -algebra A (Qt ) and are, by a standard
theorem, equal. Since ϕt is a bijection Qt → It , we obtain (14). ��

What remains to be shown to prove equivariance is that µt(Q \ It ) = 0.

3. A General Existence Theorem

Let B(Q) denote the set of all bounded Borel sets in Q.

Theorem 1. Let Q ⊂ R
d be a configuration space as defined in (7) and let j = (j0, J )

be a current as defined in (11). Let T > 0 and let ϕt : Q → Q ∪ {♦} denote the flow
map of (8). Suppose that

∀B ∈ B(Q) :

T∫

0

dt

∫

ϕt (B)\{♦}
dq

∣∣∣∣
(
∂

∂t
+ J

j0 · ∇q
)
j0(t, q)

∣∣∣∣ < ∞ , (15)

∀B ∈ B(Q) :

T∫

0

dt

∫

ϕt (B)\{♦}
dq

∣∣∣∣J (t, q) · q|q|
∣∣∣∣ < ∞ , (16)

and, if Q = R
d \ ∪�S�, in addition that for every � ∈ {1, . . . , m},

∃δ > 0 ∀B ∈ B(Q) :

T∫

0

dt

∫

ϕt (B)\{♦}
dq 1

(
q ∈ (S� + δ)

) |J (t, q) · e�(q)|
dist(q, S�)

< ∞ . (17)

Here dist(q, S�) is the Euclidean distance of q from S� and e�(q) = −∇qdist(q, S�)
is the radial unit vector towards S� at q ∈ Q. Recall that for δ sufficiently small the
distance function is differentiable on S� + δ.

Then for almost every q ∈ Q relative to the measure µ0(dq) = j0(0, q) dq, the
solution of (8) starting at Q(0) = q exists at least up to time T , and the family of mea-
sures µt(dq) = j0(t, q) dq is equivariant on [0, T ]. In particular, if (15), (16) and, if
appropriate, (17) are true for every T > 0, then for µ0-almost every q ∈ Q the solution
of (8) starting at q exists for all times t ≥ 0.

Remarks. 1. We can formulate the meaning of each of the conditions (15), (16), and
(17) as follows. If (15) holds, then µ0-almost no trajectory approaches a node during
[0, T ]. If (16) holds, thenµ0-almost no trajectory escapes to ∞ during [0, T ]. If (17)
holds, then µ0-almost no trajectory approaches a point in the singular set ∪m�=1S�
during [0, T ].
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2. To obtain existence also for negative times, one can apply Theorem 1 to the time
reversed current

̄ (t, q) = (
j0(−t, q),−J (−t, q)) . (18)

The integral curves of ̄ are the time reverses of the integral curves of j . Obviously,
with j also ̄ satisfies (11). If ̄ satisfies (15), (16), and, if appropriate, (17) for T > 0,
we obtain almost-sure global existence of Qq(t) on [−T , 0].

3. It suffices to consider in (15), (16) and (17) for the sets B instead of all bounded
Borel sets just the balls around the origin. This is because enlarging B cannot shrink
the integral. For the same reason, it suffices to integrate over Q \ Nt instead of the
not easily accessible sets ϕt (B) \ {♦}.

4. Actually the proof of Theorem 1 works in the same way with the following slightly
weaker conditions. Instead of (16) it suffices to assume that

∀B ∈ B(Q) ∃R < ∞ :

T∫

0

dt

∫

ϕt (B)\{♦}
dq 1(|q| > R)

∣∣∣∣J (t, q) · q|q|
∣∣∣∣ < ∞ ,

and (17) can be replaced by

∀B ∈ B(Q) ∃δ > 0 :

T∫

0

dt

∫

ϕt (B)\{♦}
dq 1

(
q ∈ (S� + δ)

) |J (t, q) · e�(q)|
dist(q, S�)

< ∞ .

We chose to state the theorem with the stronger assumption to simplify the presenta-
tion and because the weaker assumptions will not be used in the following.

Proof (of Theorem 1). LetQq(t)be the maximal solution of (8) starting inq, as described
in Sect. 2.3. Since we deal only with positive times in the following, we write τq for τ+

q .
There are three ways in which Qq(t) can fail to exist globally: the trajectory can

approach a node, approach a point on the singular set ∪S�, or escape to infinity in finite
time. More precisely, if q /∈ N0 and τq < ∞ there exists an increasing sequence
(tn)n∈N with tn → τq such that either there is x ∈ Nτq ∪⋃m

�=1 S� with Qq(tn) → x or
|Qq(tn)| → ∞.

To see this, suppose that τq < ∞ and that such a sequence did not exist. Then
Qq := {(t,Qq(t)) : t ∈ (0, τq)} ⊂ (R × Q) \ N would remain bounded and bounded
away from the complement (R × ∪S�) ∪ N . Since (R × Q) \ N is open, there would
be a compact set K ⊂ (R × Q) \ N such that Qq ⊂ K◦, with K◦ the interior of K .
However, the vector field (1, J/j0) is C1 on (R×Q) \N and thus uniformly Lipschitz
on K . Therefore, all of its maximal integral curves either exist for all times or hit the
boundary of K , in contradiction to the hypotheses.

Let now q /∈ N0 and τq ≤ T . If there is x ∈ Nτq and (tn) such that Qq(tn) → x,
then j0(tn,Qq(tn)) → 0. Hence, the total variation of t 	→ log j0(t,Qq(t)) up to time
T diverges, i.e., Lq = ∞, where

Lq =
min(T ,τq )∫

0

dt

∣∣∣ d
dt

log j0(t,Qq(t)
)∣∣∣ for q ∈ Q \ N0 . (19)
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We now show that L∞ := {q ∈ Q \ N0 : Lq = ∞} is a µ0-null set. For this it suffices
to show that for any bounded set B ∈ B(Q), B ∩ L∞ is a µ0-null set. For this in turn,
it suffices that the average of Lq over B relative to the measure µ0 be finite:

∫

B

dq j0(0, q) Lq =
∫

B

dq j0(0, q)

min(T ,τq )∫

0

dt

∣∣ d
dt
j0
(
t,Qq(t)

)∣∣
j0(t,Qq(t))

=

[the order of integration can be changed since the integrand is nonnegative]

=
T∫

0

dt

∫

B

dq j0(0, q) 1(τq > t)

∣∣ d
dt
j0
(
t,Qq(t)

)∣∣
j0(t,Qq(t))

=
T∫

0

dt

∫

ϕt (B)\{♦}
ρt (dq

′)

∣∣(∂/∂t + J
j0 · ∇q ′)j0(t, q ′)

∣∣
j0(t, q ′)

=

[by Lemma 1]

=
T∫

0

dt

∫

ϕt (B)\{♦}
dq ′ ∣∣(∂/∂t + J

j0 · ∇q ′)j0(t, q ′)
∣∣ (15)
< ∞.

This shows µ0(L∞) = 0 and thus that the solution Qq(t) of (8) µ0-almost surely does
not approach a node during [0, T ].

Now we consider the cases that either

lim
n→∞ |Qq(tn)| = ∞

or

∃ x ∈ ∪m�=1S� : Qq(tn) → x .

Hence, for such initial conditions either the total variation of t 	→ |Qq(t)| is infinite,
i.e., Dq = ∞ where

Dq =
min(T ,τq )∫

0

dt

∣∣∣ d
dt

|Qq(t)|
∣∣∣ for q ∈ Q \ N0 ,

or the total variation of t 	→ log dist(Qq(t), S�) restricted to S� + δ is infinite for some
� ∈ {1, . . . , m} and any δ > 0, in particular for the one in (17), i.e., Vq,� = ∞, where

Vq,� =
min(T ,τq )∫

0

dt 1
(
Qq(t) ∈ (S� + δ)

) ∣∣∣ d
dt

log dist(Qq(t), S�)

∣∣∣ for q ∈ Q \ N0 .

Therefore it suffices to show that D∞ := {q ∈ Q \ N0 : Dq = ∞} and V∞,� := {q ∈
Q \ N0 : Vq,� = ∞} are µ0-null sets, and for this we proceed as for L∞.
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Let B ∈ B(Q). Then (8), followed by exactly the same arguments as for Lq , shows
that local expectations of Dq are finite, i.e.

∫

B

dq j0(0, q)Dq =
T∫

0

dt

∫

ϕt (B)\{♦}
dq ′

∣∣∣∣J
(
t, q ′) · q

′

|q ′|
∣∣∣∣ (16)
< ∞ .

Hence µ0(D∞) = 0. For local expectations of Vq,� we obtain, again with (8) and
Lemma 1

∫

B

dq j0(0, q) Vq,� =
∫

B

dq j0(0, q)

min(T ,τq )∫

0

dt 1
(
Qq(t) ∈ (S� + δ)

) ∣∣∣∣∣
Q̇q(t) · e�(Qq(t))

dist(Qq(t), S�)

∣∣∣∣∣

=
T∫

0

dt

∫

ϕt (B)\{♦}
dq ′ 1

(
q ′ ∈ (S� + δ)

) ∣∣∣∣J (t, q
′) · e�(q ′)

dist(q ′, S�)

∣∣∣∣ (17)
< ∞ .

Hence also µ0(V∞,�) = 0, concluding the existence part of the theorem.
It remains to show equivariance. Since the probability of reaching ♦ before time

T vanishes, we have ρt (Q) = 1 for all t ∈ [0, T ]. Since ρt ≤ µt by Lemma 1 and
µt(Q) = 1 by (11d), we must have ρt = µt , which is equivariance. ��

Remarks. 5. A reasoning closely related to our method of proof is also applied in [4],
Remark 3.4.6. There, an expression analogous to (15) is used to control the probability
of reaching an ε-neighborhood of N before letting ε → 0. Apart from the fact that
the argument is applied there only to the nodes and not to singularities and infinity,
it is also unnecessarily complicated, mainly because it considers an ε-neighborhood
instead of fully exploiting the integral (19).

6. The proof of equivariance was the only place where we used the property (11d) of a
current vector field. The existence statement of Theorem 1 holds as well if j satisfies
(11) except for (11d); in particular, we may allow µt(Q) = ∞.

7. Here is another equivariance result that does not use (11d): Let Q be a configuration
space as in (7) and let j satisfy (11) except for (11d). Suppose that almost-sure global
existence holds in both time directions, starting from any time. Then the family of
measures µt is equivariant on R.
To see this, note that for equivariance we need to show merely that Q\It is aµt -null
set, or, in other words, that for µt -almost every q ∈ Q the integral curve of j starting
in (t, q) reaches back in time to time 0. But this is immediate from almost-sure global
existence in the other time direction, starting at time t .
Thus, if both j and ̄ as defined in (18) and their time translates satisfy (15), (16),
and, if appropriate, (17) for all T > 0, we obtain equivariance without (11d).

8. Condition (16) can be replaced by the condition

the first order derivatives of J are bounded on [0, T ] × Q . (20)

To show this, we show that under this assumption every unbounded solution Qq(t)

with τq ≤ T has Lq = ∞, with Lq defined in (19).
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To see this, first note that the solutions of (8) are reparameterizations of the inte-
gral curves of j . In more detail, let γq(s) = (

γ 0
q (s), �q(s)

)
be the unique maximal

integral curve to j ,

dγq(s)

ds
= j (γq(s)) , (21)

starting in (0, q) ∈ R×(Q\N0) and defined for s ∈ (σ−
q , σ

+
q ). Since j0 > 0 outside

nodes, γ 0
q (s) is monotonically increasing, and hence the map

s 	→ tq(s) = γ 0
q (s) =

s∫

0

ds̃
dγ 0

q

ds̃
=

s∫

0

ds̃ j0(γq(s̃))

is invertible on its image (τ−
q , τ

+
q ), where τ±

q = lims→σ±
q
tq(s), with inverse sq(t).

Since

d

dt
�q(sq(t)) = J

(
γ (sq(t))

)
j0
(
γ (sq(t))

) ,
Qq(t) = �q(sq(t)) is the unique maximal solution of (8) with Qq(0) = q; it is
defined for t ∈ (τ−

q , τ
+
q ).

Now suppose that |Qq(tn)| → ∞ for some tn → τ+
q . Then also |�q(sq(tn))| → ∞.

Since the derivatives of J are bounded, there are constants A, R > 0 such that
|J (t, q)| ≤ A|q| for all t ∈ [0, T ] and all q ∈ Q with |q| > R. Since d�q/ds =
J (γq(s)), it follows that |�q(s)| ≤ max(|�q(0)|, R) eAs ; thus, an integral curve of j
cannot escape to spatial infinity in a finite interval of the parameter s; in other words,
σ+
q = ∞. But then

τ+
q =

∫ ∞

0
ds j0(γq(s)) < ∞

implies the existence of an increasing sequence (sn) with sn → ∞ such that
j0(γq(sn)) → 0, and therefore Lq = ∞.

4. Global Existence of Bohm–Dirac Theory

The Dirac Hamiltonian for N particles is

HD = −
N∑
i=1

ic�αi · ∇qi + V (q1, . . . , qN) ,

where we assume a nonsingular V ∈ C∞(R3N, Herm(C4N )). According to [8], HD is
essentially self-adjoint on C∞

0 (R
3N,C4N ) and we denote byHD the unique self-adjoint

extension.
Since the Dirac matrices α have eigenvalues ±1, the velocities in (5) are bounded

by c. Consequently, the Dirac current (10) satisfies |J | ≤ c
√
N j0. This fact makes the

proof of global existence particularly simple, as expressed in the following corollary to
Theorem 1.
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Corollary 1. Let Q = R
d and let j = (j0, J ) be a current as defined in (11). Suppose

that there is a global bound on velocities, i.e., a constant c > 0 such that |J | ≤ c j0.
Then for µ0-almost all q ∈ R

d , the solution of (8) starting at Q(0) = q exists for
all times, and the family of measures µt is equivariant.

Proof (of Corollary 1). We show that assumptions (15) and (16) of Theorem 1 are
satisfied for any T > 0. The key observation is that due to the bound on velocities,
bounded sets in configuration space stay bounded under the flow. More explicitly, for
any bounded set B ∈ B(Rd) contained in, say, the ball Br of radius r > 0 around the
origin, ϕt (B) \ {♦} will be contained in Br+ct and thus in Br+cT provided t ∈ [0, T ].
Now

∣∣(∂t + J
j0 · ∇q)j0

∣∣ ≤ ∣∣∂t j0
∣∣+ c

∣∣∇qj0
∣∣, and the functions |J |, ∣∣∂t j0

∣∣, and c
∣∣∇qj0

∣∣
are continuous and therefore bounded on the compact set [0, T ] × Br+cT . Hence the
integrals in (15) and (16) are finite. This implies existence for all positive times. For
negative times apply the same argument to the time-reversed current ̄ , for which the
same velocity bound holds. ��

Applying Corollary 1 to Bohm–Dirac theory, we obtain global existence of Bohm–
Dirac trajectories under very general conditions.

Theorem 2. Let V ∈ C∞(R3N, Herm(C4N )) and ψ(t) = e−itHD ψ(0) with ψ(0) ∈
C∞(R3N,C4N ) ∩ L2(R3N,C4N ) and ‖ψ(0)‖ = 1.

Then the solutionQq(t) = (Q1(t), . . . ,QN(t)) of (5) withQq(0) = q exists glob-
ally in time for almost all q ∈ R

3N relative to the measure µ0(dq) = |ψ(0, q)|2dq, and
the |ψ(t)|2 distributions are equivariant.

Proof. According to [8], for ψ(0) ∈ C∞
0 (R

3N,C4N) one has ψ(t) ∈ C∞
0 (R

3N,C4N)

and ψ(t, q) ∈ C∞(R × R
3N,C4N ). But then linearity and the finite propagation speed

(Proposition 1.1 in [8]) imply that ψ(t, q) ∈ C∞(R × R
3N,C4N ) also for ψ(0) ∈

C∞(R3N,C4N ) ∩ L2(R3N,C4N ). Hence, the Dirac current (10) satisfies (11). Since
|J | ≤ c

√
N j0, Corollary 1 implies the theorem. ��

Corollary 2. Let now Q = R
d \ ∪m�=1S�, where S� is a hyperplane with codimension ≥

2 for � = 1, . . . , m, and let j = (j0, J ) be a current as defined in (11). Suppose
that there is a global bound c on velocities, |J | ≤ c j0, and that J and the first order
derivatives of j0 are bounded on bounded sets.

Then for µ0-almost all q ∈ R
d , the solution of (8) starting at Q(0) = q exists for

all times, and the family of measures µt is equivariant.

Proof. First note that R
d \ Q is a Lebesgue-null set and hence also a µ0-null set. For

q ∈ Q we apply Theorem 1. The conditions (15) and (16) of Theorem 1 follow as in the
proof of Corollary 1 using the fact that J and the derivatives of j0 are locally bounded.

To check (17), let d� be the dimension of S� and assume without loss of generality
that S� contains the origin. Then with |J | ≤ C on Bdr+cT , the ball of radius r + cT

around the origin in R
d , and Bdr+cT ⊂ B

d�
r+cT × B

d−d�
r+cT we find that

∫ T

0
dt

∫

Bdr+cT

dq
|J (t, q)|

dist(q, S�)
≤ T

∫

B
d�
r+cT

dx

∫

B
d−d�
r+cT

dy
C

|y| < ∞ .

��
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5. Global Existence of Bohmian Mechanics

We now apply Theorem 1 to Bohmian mechanics and consider the abstract Hamiltonian

H0 = −1

2

(
m− 1

2
(∇q − iA(q)

))2
1Ck + V (q) , D(H0) = C∞

0 (Q,Ck) , (22)

where, for the moment, A ∈ H 1
loc(R

d ,Rd) and V ∈ L2
loc(Q,Herm(Ck)). The mass

matrix m = diag(m1, . . . , md) has positive entries mi > 0. These conditions assure
that H0 is well defined and symmetric on C∞

0 (Q,Ck). Since H0 commutes with com-
plex conjugation, H0 has at least one self-adjoint extension. We also assume that Q =
R
d \∪m�=1S�, where each S� is a (d−3)-dimensional hyperplane in R

d .As to be explained
in the example below, for d = 3N the coincidence set of N particles moving in R

3 has
exactly this structure and therefore singular pair-potentials like the Coulomb potential
are included. In these abstract terms the Bohmian equation of motion reads

dQ

dt
(t) = m−1Im

ψ∗ (∇q − iA
)
ψ

ψ∗ ψ
(t,Q(t)) . (23)

Theorem 3. LetH be a self-adjoint extension ofH0 as in (22) with domainD(H). Sup-
pose that for some ψ(0) ∈ D(H) with ‖ψ(0)‖ = 1 the solution ψ(t) = e−itHψ(0) of
the Schrödinger equation satisfies

(i) ψ ∈ C2(R × Q,Ck),
(ii) for every T > 0 there is a constant CT < ∞ such that

∫ T

−T
dt
(

‖ |∇ψ(t)| ‖2 + ‖ |Aψ(t)| ‖2 + ‖A · ∇ψ(t) ‖2
)
< CT .

Then the solution Qq(t) of (23) with Qq(0) = q exists globally in time for almost all
q ∈ R

d relative to the measure µ0(dq) = |ψ(0, q)|2dq, and the |ψ(t)|2 distributions
are equivariant.

Remarks. 9. Note that condition (i) in Theorem 3 is typically satisfied only if the poten-
tials A and V are sufficiently smooth on Q, more than we required after (22). We
decided to state the condition in terms of ψ since the exact type of smoothness
required for A and V depends on, among other factors, the dimension d.

Proof (of Theorem 3). First note that R
d \ Q is a Lebesgue-null set and hence also a

µ0-null set. For q ∈ Q we apply Theorem 1. According to Sect. 2.3 and by virtue of (i),
the Schrödinger current

j (t, q) =
(
ψ∗(t, q)ψ(t, q), m−1Imψ∗(t, q)(∇q − iA(q))ψ(t, q)

)

satisfies (11). We now check (15), (16) and (17), in order to prove existence for positive
times. For negative times one concludes analogously by applying exactly the same argu-
ments to the time reversed current.

With ψ(t) = e−itHψ(0), the Cauchy–Schwarz inequality, and (ii) we obtain
∫
Q
dq

∣∣∣∂t j0(t, q)

∣∣∣ =
∫

Rd
dq
∣∣∂t (ψ∗(t, q)ψ(t, q))

∣∣ ≤ 2
∫

Rd
dq
∣∣ψ∗(t, q)Hψ(t, q)

∣∣
≤ 2‖Hψ(t)‖ = 2‖Hψ(0)‖ .
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For the second term in (15) we find, after a straightforward computation involving
Cauchy–Schwarz first on C

k and then on L2(Rd) and finally on L2([0, T ]), that

T∫

0

dt

∫

Q\Nt

dq

∣∣∣∣ Jj0 · ∇j0(t, q)

∣∣∣∣

≤ 1

m0

T∫

0

dt

∫

Rd

dq
(
|∇ψ(t, q)|2 + |ψ(t, q)| |A(q) · ∇ψ(t, q)|

)
≤ CT + √

T CT

m0
,

where m0 = min{m1, . . . , md}. Hence, (15) holds. Analogously (16) follows from

T∫

0

dt

∫

Q
dq |J (t, q)|≤

T∫

0

dt
1

m0

∫

Rd

dq |ψ(t, q)| (|∇ψ(t, q)| + |A(q)ψ(t, q)|) ≤
√
T CT

m0
.

We now come to (17). Since S� is a (d−3)-dimensional hyperplane, it can be written
as S� = {q ∈ R

d : y�(q) = a�} with y� : R
d → R

3, q 	→ (q · y1
� , q · y2

� , q · y3
� ), where

y1
� , y2

� , y3
� are 3 orthogonal unit vectors normal to the hyperplane S� and a� ∈ R

3 is a
constant. The distance to the hyperplane is given by dist(q, S�) = |y�(q)− a�|.

To prove (17) for δ = ∞, we use the generalized Hardy inequality introduced in [4],
Eq. (25). It states that for all φ ∈ H 1(Rd ,C), the first Sobolev space,

∫
Rd
dq

|φ(q)|2
4|y�(q)− a�|2 ≤

∫
Rd
dq |∇φ(q)|2 .

Hence,

T∫

0

dt

∫
Q
dq

|J (t, q) · e�(q)|
dist(q, S�)

≤ 1

m0

T∫

0

dt

∫
Rd
dq

|ψ∗(t, q)(∇ − iA(q))ψ(t, q)|
|y�(q)− a�|

≤ 1

m0

T∫

0

dt

∫
Rd
dq

|ψ(t, q)|(|∇ψ(t, q)| + |A(q)ψ(t, q)|)
|y�(q)− a�|

≤ 1

m0

T∫

0

dt

(∫
Rd
dq

|ψ(t, q)|2
|y�(q)− a�|2

) 1
2

(‖ |∇ψ(t)| ‖ + ‖ |Aψ(t)| ‖)

≤ 1

m0

T∫

0

dt (2‖ |∇ψ(t)| ‖2 + ‖ |∇ψ(t)| ‖ ‖ |Aψ(t)| ‖) ≤ 3CT
m0

. ��

We shall not try to verify the assumptions of Theorem 3 under as general as possible
conditions on A and V . Instead we consider two examples where they can be checked
without too much effort.
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Our first example concerns a molecular system in external fields. More precisely we
consider N electrons in R

3 with configuration q = (q1, . . . , qN) ∈ R
3N interacting

through Coulomb potentials

Vel(q) =
N−1∑
i=1

N∑
j=i+1

1

|qi − qj |

in the electric potential

Vnu(q) = −
N∑
i=1

M∑
j=1

Zj

|qi − zj |

of M static nuclei located at zj ∈ R
3 with charges Zj , j = 1, . . . ,M . Furthermore we

allow for an external magnetic field B(x) = ∇ ×A(x)with A ∈ C∞(R3,R3) such that
∇ · A = 0 and B and A are bounded. The Hamiltonian of the system thus is

Hmol =
(

− 1
2

N∑
i=1

(∇qi + iA(qi )
)2 + Vel(q)+ Vnu(q)

)
1(C2)⊗N −

N∑
i=1

B(qi ) · σ i

(24)

with domainD(Hmol) = H 2(R3N, (C2)⊗N). Here σ i is the vector of Pauli matrices act-
ing on the spin index of particle i. It is well known thatVel,Vnu, and ∇q are infinitesimally
bounded with respect to �q . Hence Hmol = − 1

2�q + R with

R :=
(
− 1

2

N∑
i=1

(
2iA(qi ) · ∇qi− A(qi )

2)+ Vel(q)+ Vnu(q)

)
1(C2)⊗N −

N∑
i=1

B(qi ) · σ i

is self-adjoint by virtue of Kato’s theorem.

Corollary 3. Let ψ(t) = e−itHmolψ(0) with ψ(0) ∈ C∞(Hmol) = ∩∞
n=1D(H

n
mol) and

‖ψ(0)‖ = 1. Then the Bohmian trajectories Qq(t) exist globally in time for almost
all q ∈ R

3N relative to the measure |ψ(0, q)|2dq, and the |ψ(t)|2 distributions are
equivariant.

Proof. First note that Hmol is of the form (22) with d = 3N and k = 2N . The configu-
ration space of the system is

Q = R
3N \

((
∪N−1
i=1 ∪Nj=i {q ∈ R

3N : qi = qj }
)

∪
(
∪Ni=1∪Mj=1{q ∈ R

3N : qi = zj }
))

,

where the N(N − 1)/2 electron–electron and the NM electron–nucleus coincidence
hyperplanes are all (3N − 3)-dimensional. As remarked above, Hmol is self-adjoint on
H 2(R3N, (C2)⊗N) and thus satisfies the hypotheses of Theorem 3. Hence it suffices to
check that ψ(t) satisfies the hypotheses (i) and (ii) of Theorem 3. As for (i), note that
all potentials in (24) are C∞ on Q. Then methods of elliptic regularity can be applied
to show that for ψ(0) ∈ C∞(Hmol) the solution of the Schrödinger equation satisfies
ψ ∈ C∞(R × Q). For details see the appendix in [4]. Finally notice that, since A is
assumed to be bounded and since ‖ψ(t)‖ = ‖ψ(0)‖, (ii) follows if we can show that
the kinetic energy ‖ |∇ψ(t)| ‖ remains bounded. This is also standard but we give the
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short argument anyway: since R is infinitesimally bounded with respect to �, there
are constants 0 < a < 1 and b > 0 such that ‖Rφ‖ ≤ a‖ 1

2�φ‖ + b‖φ‖ for all
φ ∈ H 2 = D(Hmol). Hence

‖�ψ(t)‖ = 2‖( 1
2�− R + R)ψ(t)‖ ≤ 2‖Hψ(t)‖ + 2‖Rψ(t)‖

≤ 2‖Hψ(t)‖ + a‖�ψ(t)‖ + 2b‖ψ(t)‖
together with ‖Hψ(t)‖ = ‖Hψ(0)‖ and ‖ψ(t)‖ = ‖ψ(0)‖ implies

‖�ψ(t)‖ ≤ 2‖Hψ(0)‖ + 2b‖ψ(0)‖
1 − a

= C .

But then also

‖ |∇ψ(t)| ‖2 =〈∇ψ(t), ·∇ψ(t)〉 = −〈ψ(t),�ψ(t)〉 ≤ ‖ψ(t)‖ ‖�ψ(t)‖ ≤ ‖ψ(0)‖C .
��

The last corollary coincides exactly with the result of [4] (see their Corollary 3.2).

Corollary 4. In (22) let k = 1, A = 0 and V = V1 + V2 ∈ C∞(Q,C), where V1 is
bounded below and V2 is − 1

2�-form bounded with relative bound < 1. Then the form
sum H = − 1

2� + V is a self-adjoint extension of H0 and for ψ(t) = e−itHψ(0) with
ψ(0) ∈ C∞(H) = ∩∞

n=1D(H
n), ‖ψ(0)‖ = 1, the Bohmian trajectories Qq(t) exist

globally in time for almost all q ∈ R
d relative to the measure |ψ(0, q)|2dq, and the

|ψ(t)|2 distributions are equivariant.

Proof. For the statement about the form sum see [12]. Again, as shown in the appendix
of [4], elliptic regularity implies that ψ ∈ C∞(R × Q). Hence, in order to apply Theo-
rem 3 it suffices to show that ‖ |∇ψ(t)| ‖ remains bounded. This follows by an argument
analogous to the one given in the proof of Corollary 3. For the details see the proof of
Corollary 3.2 in [4]. ��
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