
Digital Object Identifier (DOI) 10.1007/s00220-005-1300-2
Commun. Math. Phys. 258, 339–348 (2005) Communications in

Mathematical
Physics

Regularity of Solutions to Vorticity Navier–Stokes System
on R

2

Maxim Arnold, Yuri Bakhtin, Efim Dinaburg�

International Institute of Earthquake Prediction Theory and Mathematical Geophysics,
113556 Moscow, Russia

Received: 8 June 2004 / Accepted: 2 September 2004
Published online: 18 February 2005 – © Springer-Verlag 2005

Abstract: The Cauchy problem for the Navier–Stokes system for vorticity on plane is
considered. If the Fourier transform of the initial data decays as a power at infinity, then
at any positive time the Fourier transform of the solution decays exponentially, i.e. the
solution is analytic.

1. Introduction. Main Results

We consider the Cauchy problem for the Navier–Stokes system on R
2 in its vorticity

formulation:

∂ω(x, t)

∂t
+ u1(x, t)

∂ω(x, t)

∂x1
+ u2(x, t)

∂ω(x, t)

∂x2
= ν�ω(x, t) + f (x, t), (1)

ω(x, t) = ∂u2(x, t)

∂x1
− ∂u1(x, t)

∂x2
, (2)

lim
|x|→∞

|u(x, t)| = 0, t � 0, (3)

ω(x, 0) = ω0(x). (4)

Here the spatial variable x belongs to the Euclidean space R
2 with the inner product

〈·, ·〉, ω : R
2 × R+ → R is the vorticity of the velocity field u : R

2 × R+ → R
2 which

is assumed to be divergence-free (i.e. 〈∇, u〉 = 0), f : R
2 × R+ → R is the vorticity

of the external forcing, ν > 0 is the viscosity parameter and ω0 : R
2 → R is the initial

data.
The theory of existence and uniqueness of solutions for the 2-dimensional Navier–

Stokes system was developed by Leray and Ladyzhenskaya, see, e.g. the survey [8].
The following existence and uniqueness theorem for the vorticity system (1) – (4) was
proved in [10].
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Theorem 1. Suppose ω0 ∈ L1(R2) ∩ L∞(R2) and all second derivatives of ω0 are
uniformly Hölder in R

2 with some exponent λ > 0. Let T > 0 be such that f ∈
L1(QT ) ∩ L∞(QT ), where QT = R

2 × [0, T ] and f is locally Hölder with the same
exponent λ with respect to spatial variables for all t ∈ [0, T ]. Then there exists a bounded
classical solution ω to the Cauchy problem (1)—(4) on [0, T ]. All the derivatives of the
solution arising in the statement of the Cauchy problem are bounded and continuous on
QT .

This solution is unique in the class of functions which are bounded for every t � 0,

sup
t∈[0,T ]

[‖ω(·, t)‖L∞(R2) + ‖ω(·, t)‖L1(R2)

]

� ‖ω0‖L∞(R2) + ‖ω0‖L1(R2) + T ‖f ‖L∞(QT ) + ‖f ‖L1(QT ),

and for every t the following representation (the Biot-Savart law) holds true:

u(·, t) = K ∗ ω(·, t), (5)

where ∗ means convolution and K(x) = 1
2π

x⊥
|x|2 , x⊥ = (−x2, x1) for x = (x1, x2) ∈ R

2.

This result allows to consider the uniquely determined global (i.e. defined on R+)
solution ω.

The problem (1) – (4) was also studied in e.g. [1, 2, 6, 7] where some existence-
uniqueness theorems were obtained as well as some regularity properties of solutions.

In this note we are concerned with the study of regularity of solution ω(x, t) in terms
of its Fourier transform under the conditions of Theorem 1.

The Gevrey class regularity of solutions to the Navier-Stokes system on 2-dimen-
sional torus (the periodic case) was obtained in [4]. It is shown in a recent paper [3] how
the techniques of [4] can be used to prove analyticity of solutions in the 3-dimensional
situation under some modest regularity assumptions on solutions to a mollified Navier–
Stokes system. This approach can be also adapted to the 2-dimensional non-periodic
case under study in this paper. However we prove analyticity for this case assuming only
minimal regularity properties of the initial data and the forcing.

Our results and techniques are parallel to those of [9] where the 2-dimensional peri-
odic case was studied. The results are stated in this section and their proofs are given in
Sect. 2.

By Fourier transform of a function f with respect to the spatial variable we mean the
function

f̂ (k) = 1

2π

∫

R2
ei〈k,x〉f (x)dx.

For the properties of Fourier transform and its inverse see [12].
To state the main theorem we need the following notation for an arbitrary function

f : R
2 → R:

|f |γ,α = sup
k

|f (k)|
(1 ∧ |k|−γ )e−α|k| , α � 0, γ > 0,

|f |γ = |f |γ,0, γ > 0.

Thus, if |f |γ is finite then f (k) decays as a power at infinity and if |f |γ,α is finite
then f (k) decays exponentially.
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Theorem 2. Let the initial data ω0 and the forcing f satisfy the conditions of Theo-
rem 1. Suppose that |ω̂0|γ < ∞ for some γ > 0 and |f̂ (·, t)|γ,α � Cf for some
α > 0, Cf > 0, all t > 0 and the same γ . Then there exist nondecreasing and positive
for t > 0 functions β(t) and D(t) such that the solution ω of the Cauchy problem (1)–(4)
satisfies inequality

|ω̂(·, t)|γ,β(t) � D(t).

There exist positive constants B and T such that β(t) = Bt for t ∈ [0, T ] and β(t) ≡ BT

for t � T . The function D(t) may be chosen to be linear for t � T . If the external forcing
is absent then D(t) may be chosen to be constant for t � T .

Remark 1. If γ > 4 in this theorem then the conditions of Theorem 1 are satisfied
automatically. This remark is also applicable to the auxiliary Theorems 3—5 below.

Remark 2. Theorem 2 means that if the Fourier transform of the initial data decays as a
negative power when |k| → ∞, then for any positive time the Fourier transform of the
solution decays exponentially at infinity, i.e. the solution is analytic.

Remark 3. In the case of unforced system analyticity of the solution for t > 0 was
proved in [11]. For unforced system with nondecaying initial velocity C∞-smoothness
of solutions has been obtained, see [5] and references therein.

The proof of Theorem 2 is based on the study of the following system describing the
evolution of the Fourier transform of vorticity:

∂ω̂(k, t)

∂t
= −ν|k|2ω̂(k, t) + 1

2π

∫

R2

ω̂(l, t)ω̂(k − l, t)
〈k, l⊥〉

|l|2 dl + f̂ (k, t). (6)

The proof will be conducted in several steps. First, we shall obtain the following result
(the demonstration is given in Sect. 2) on invariance of the set of functions decaying as
a negative power at infinity.

Theorem 3. Let the initial data ω0 and forcing f satisfy the conditions of Theorem 1.
Suppose that |ω̂0|γ < ∞ for some γ > 0 and |f̂ (·, t)|γ � Cf for some constant
Cf > 0 and all t > 0. Then there exists a function D(t) such that the solution ω of the
Cauchy problem (1)–(4) satisfies |ω̂(·, t)|γ � D(t) for all t � 0. The function D(t) may
be chosen to grow linearly and if the forcing is absent then D(t) may be chosen to be
constant.

Then, using the same method and appropriate changes of variables we shall prove The-
orems 4 and 5 which immediately imply Theorem 2. Sketches of the proofs are given in
Sect. 2.

Theorem 4. Let the initial data ω0 and forcing f satisfy the conditions of Theorem 1.
Suppose that |ω̂0|γ,α < ∞ for some γ, α > 0 and |f̂ (·, t)|γ,α � Cf for some constant
Cf > 0, all t > 0 and the same γ, α.

Then there exists a function D(t) such that the solution ω of the Cauchy problem
(1)—(4) satisfies |ω̂(·, t)|γ,α � D(t) for all t � 0. The function D(t) may be chosen to
grow linearly and if the forcing is absent then D(t) may be chosen to be constant.
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Theorem 5. Let the initial data ω0 and forcing f satisfy the conditions of Theorem 1.
Suppose that |ω̂0|γ < ∞ for some γ > 0 and |f̂ (·, t)|γ,α � Cf for some constant
Cf > 0, all t > 0, the same γ and some α > 0. Then there exist a time T > 0 and
a nondecreasing function D(t) such that for t ∈ [0, T ] the solution ω of the Cauchy
problem (1)–(4) satisfies |ω̂(·, t)|γ,tα � D(t).

2. Proofs

The following estimate of the nonlinear term in (6) plays the key role in the proof of
Theorems 3—5.

Lemma 1. Let Dv = |v|γ ∨ ‖v‖L2 for a function v : R
2 → R and γ > 0. There exists

a constant Q = Q(γ ) such that

∣
∣
∣
∣

1

2π

∫

R2
v(l)w(k − l)

〈k, l⊥〉
|l|2 dl

∣
∣
∣
∣ �

{
QDvDw|k|1−γ

√
1 + ln |k|, |k| � 1

QDvDw, |k| < 1.
(7)

Proof. We shall prove

∣∣∣∣
1

2π

∫

R2
v(l)w(k − l)

〈k, l⊥〉
|l|2 dl

∣∣∣∣ �
{

Q̃DvDw|k|1−γ
√

1 + ln |k|, |k| � 2
Q̃DvDw, |k| < 2,

(8)

with some Q̃ which will immediately imply (7).
First, consider the case |k| � 2. Denote J the integral we are interested in and split

the domain of integration into four parts:

J = J1 + J2 + J3 + J4 =
∫

|l|�1
+

∫

1<|l|�|k|/2
+

∫

|k|/2<|l|�2|k|
+

∫

2|k|<|l|
. (9)

In the first term |k − l| � |k| − 1 and |w(k − l)| � Dw(|k| − 1)−γ for |k| � 2. Using
inequality

|〈k, l⊥〉|
|l|2 � |k|

|l| (10)

and the conditions of the lemma we obtain

J1 � 1

2π
DvDw|k|(|k| − 1)−γ

∫

|l|�1

1

|l|dl � 2γ DvDw|k|1−γ . (11)

For the second term in (9) we have |k − l| � |k|/2 and |w(k − l)| � 2γ Dw/|k|γ . The
conditions of the lemma, inequality (10) and the Cauchy-Schwartz inequality imply

J2 � 2γ

2π
|k|1−γ Dw

∫

1<l�|k|/2

|v(l)|
|l| dl � 2γ

2π
|k|1−γ Dw‖v‖2

(∫

1<l�|k|/2

dl

|l|2
)1/2

� 2γ

√
2π

DvDw|k|1−γ [ln(|k|/2)]1/2. (12)



Regularity of Solutions to Vorticity Navier–Stokes System on R
2 343

For the third term in (9) we have |v(l)| � 2γ Dv|k|−γ and |〈k,l⊥〉|
|l|2 � 2. The Cauchy-

Schwartz inequality gives

J3 � 21+γ

2π
Dv|k|−γ

∫

|k|/2<|l|�2|k|
|w(k − l)|dl

� 21+γ

2π
Dv|k|−γ ‖w‖2

(∫

|k|/2<|l|�2|k|
dl

)1/2

� 21+γ

(2π)1/2

(
15

8

)1/2

DvDw|k|1−γ . (13)

The last term can be estimated by means of the Cauchy-Schwartz inequality and (10):

J4 � 1

2π
|k|‖w‖2

(∫

2|k|<l

|v(l)|2
|l|2 dl

)1/2

� 1

(2π)1/2 |k|‖w‖2Dv

(∫ ∞

2|k|
1

r1+2γ
dr

)1/2

� 1

(2π)1/2

1

2γ+1/2γ 1/2 |k|1−γ DvDw. (14)

Now (8) for |k| � 2 follows from (9) and (11)–(14).
In the case of |k| < 2 let us split the domain of integration in two parts:

J = J1 + J2 =
∫

|l|�4
+

∫

|l|>4
.

Then

J1 � 1

2π
DvDw

∫

|l|�4

dl

|l| = 4DvDw.

If |l| > 4 and |k| < 2 then |k − l| > |l|/2 and

J2 � 1

2π
|k|‖w‖2

(∫

2|k|<l

|v(l)|2
|l|2 dl

)1/2

� 2

(2π)1/2 ‖w‖2Dv

(∫ ∞

4

1

r1+2 γ
dr

)1/2

� 2

(2π)1/2

1

4γ (2γ )1/2 DvDw.

These estimates for J1 and J2 imply inequality (8) for |k| < 2. ��
Proof of Theorem 3. First, let us prove the following local theorem of existence and
uniqueness of the solution with finite norm | · |γ .

Lemma 2. Under the conditions of Theorem 3 there exist c, τ > 0 depending only on
viscosity ν and | · |γ -norms of the initial data and the forcing such that on the time
interval [0, τ ] the solution ω̂ of (6) satisfies |ω̂(·, t)|γ � c and it is continuous in time
with respect to | · |γ .
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Proof. Consider the integral form of (6):

ω̂(k, t) = e−ν|k|2t ω̂(k, 0) + 1

2π

∫ t

0
e−ν|k|2(t−s)

∫

R2

ω̂(l, s)ω̂(k − l, s)
〈k, l⊥〉

|l|2 dlds

+
∫ t

0
e−ν|k|2(t−s)f̂ (k, s)ds, (15)

and the following approximation scheme. Let ω̂1(k, t) = ω̂0(k) for all k ∈ R
2, t ∈ R+,

and for n � 1,

ω̂n+1(k, t) = e−ν|k|2t ω̂0(k)

+ 1

2π

∫ t

0
e−ν|k|2(t−s)

∫

R2

ω̂n(l, s)ω̂n(k − l, s)
〈k, l⊥〉

|l|2 dlds

+
∫ t

0
e−ν|k|2(t−s)f̂ (k, s)ds. (16)

Let |ωn(k, s)| � Cn(1 ∧ |k|−γ ) for s ∈ [0, t] some t and all k ∈ R
2. Then for |k| < 1

Lemma 1 implies that

|ω̂n+1(k, t)| � e−νt |k|2 |ω0(k)| + QC2
n

∫ t

0
e−ν(t−s)|k|2ds +

∫ t

0
e−ν(t−s)|k|2f (k, t)ds

� C0 + QC2
nt + Cf t, (17)

where constants Q and Cf are defined in the statements of Lemma 1 and Theorem 3
respectively and C0 = |ω̂0|γ .

If |k| � 1, then Lemma 1 implies

|ω̂n+1(k, t)| � e−νt |k|2 |ω0(k)| + QC2
n|k|−γ

∫ t

0
e−ν(t−s)|k|2 |k|

√
1 + ln |k|ds

+
∫ t

0
e−ν(t−s)|k|2 |f (k, t)|ds = I1 + I2 + I3. (18)

Clearly, I1 � C0|k|−γ , I2 � tCf |k|−γ , and I2 may be estimated using the Hõlder
inequality:

I2 � QC2
n|k|−γ

(∫ t

0
|k|pe− pν(t−s)|k|2

3 ds

) 1
p

(∫ t

0
(1 + ln |k|) q

2 e− qν(t−s)|k|2
3 ds

) 1
q

×
(∫ t

0
e− rν(t−s)|k|2

3 ds

) 1
r

= QC2
n|k|−γ J1J2J3

for p, q, r > 1, 1
p

+ 1
q

+ 1
r

= 1. If we choose p � 2, then J1 will be bounded by some
constant, independent of t . Under arbitrary choice of q > 0 the same holds for J2. In J3
a bounded function is integrated. Hence,

I2 � KC2
nt1/r
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for a constant K = K(ν, r) > Q. Here r > 2 because of the imposed restrictions on p

and q.
Finally we have

|ω̂n+1(k, t)||k|γ � C0 + Kt1/r + Cf t.

So, |ω̂n+1(k, t)| � Cn+1(1 ∧ |k|−γ ),

Cn+1 � C0 + KC2
nt1/r + Cf t. (19)

Let us show that the sequence (Cn) is bounded for sufficiently small t > 0. For small
t the quadratic equation

Kt1/rx2 − x + C0 + Cf t = 0

has two real roots. It is easily verified that if

c =
1 −

√
1 − 4Kt1/r (C0 + Cf t)

2Kt1/r

is the smallest root then the segment [0, c] is mapped into itself under the map x �→
Kt1/rx2 + C0 + Cf t . Besides that, inequality

√
1 + x < 1 + x/2 which is true for

|x| < 1 implies that 0 < C0 < c. Hence, Cn � c for all n.
Now let us estimate the difference between two successive approximations obtained

according to (16):

|ω̂n+1(k, t) − ω̂n(k, t)|
� 1

2π

∫ t

0
e−ν|k|2(t−s)

∫

R2

|ω̂n(l, s)||ω̂n(k − l, s) − ω̂n−1(k − l, s)| |〈k, l⊥〉|
|l|2 dlds

+ 1

2π

∫ t

0
e−ν|k|2(t−s)

∫

R2

|ω̂n(l, s) − ω̂n−1(l, s)||ω̂n−1(k − l, s)| |〈k, l⊥〉|
|l|2 dlds.

(20)

Let |ω̂n+1(k, t) − ω̂n(k, t)| � �n(1 ∧ |k|−γ ). Then estimates involving Lemma 1 anal-
ogous to those derived above show that one may choose

�n+1 � 2Kt1/rc�n.

So, for some τ > 0 and t < τ the series
∑∞

n=1 �n is convergent. Hence ω̂n is a Cauchy
sequence with respect to the norm |f (·, ·)|γ = supk,t

f (k,t)

1∧|k|−γ and converges to some
limiting function. Passing to the limit in (16), we have that this limiting function is a
solution of (6) and hence coincides with ω̂. So, |ω̂|γ � lim sup |ω̂n|γ � c. It is easy to
verify along the same lines that the family of functions (ω̂n) is equicontinuous on [0, τ ]
with respect to | · |γ . Consequently, the limiting function ω̂ is continuous with respect
to this norm. Lemma 2 is proved. ��

Coming back to the proof of Theorem 3, let us denote ω̂(1) = �ω̂, ω̂(2) = �ω̂ and
rewrite the system (6) as
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∂ω̂(1)(k, t)

∂t
= −ν|k|2ω̂(1)(k, t)

+ 1

2π

∫

R2

[ω̂(1)(l, t)ω̂(1)(k − l, t) − ω̂(2)(l, t)ω̂(2)(k − l, t)]

×〈k, l⊥〉
|l|2 dl + f (1)(k, t), (21)

∂ω̂(2)(k, t)

∂t
= −ν|k|2ω̂(2)(k, t)

+ 1

2π

∫

R2

[ω̂(1)(l, t)ω̂(2)(k − l, t) + ω̂(1)(l, t)ω̂(2)(k − l, t)]

×〈k, l⊥〉
|l|2 dl + f (2)(k, t), (22)

Theorem 1 implies that there exists a nondecreasing linear function E(t) such that

‖ω(·, t)‖L1 � E(t), t � 0, (23)

‖ω(·, t)‖L∞ � E(t), t � 0, (24)

|ω̂0|γ < E(0). (25)

Then

‖ω̂(·, t)‖L2 = ‖ω(·, t)‖L2 �
√

‖ω(·, t)‖L1‖ω(·, t)‖L∞ � E(t), (26)

‖ω̂(·, t)‖L∞ � 1

2π
‖ω‖L1 � E(t). (27)

Results from [6] imply that if there is no forcing term then function E may be chosen
constant.

Denoting D(t) = DK0(t) = E(t)K
γ
0 for K0 > 1, we get |ω̂(k, t)| � DK0(t)(1 ∧

|k|−γ ) for all t � 0 and |k| � K0.
In order to show that this inequality is fulfilled also for all the other values of k

let us assume that, on the contrary, |ω̂(·, t)|γ > DK0(t) at some time t ∈ (0, τ ]. Let
t1 be the infimum of such times. Since |ω̂(·, t)|γ depends on t continuously, we have
|ω̂(·, t)|γ � DK0(t) when t ∈ [0, t1].

If t � t1, |k| > K0, i ∈ {1, 2} |ω̂(i)(k, t)| � DK0(t)|k|−γ /2, then dω̂(i)(k,t)
dt

=
− sgn ω̂(i)(k, t). Indeed (for definiteness we suppose ω̂(i)(k, t) > 0 without loss of
generality), Lemma 1 and (26) imply

dω̂(i)(k, t)

dt
< −ν|k|2−γ DK0(t)

2
+ 2D2

K0
(t)Q|k|1−γ

√
1 + ln |k| + Cf |k|−γ ,

i.e. the derivative is negative for sufficiently large K0 and |k| > K0. This contradicts the
assumption made, because for all t in the time interval under consideration |ω̂(i)(k, t)| �
DK0(t)/

√
2 and |ω̂(·, t)|γ � DK0(t) for t ∈ [0, τ ].

Using Lemma 2 we always can continue the solution continuously in time on a time
interval of positive length. On this interval we can apply again the estimate |ω̂(·, t)|γ �
D(t). Iterating this procedure we obtain this estimate for all t ∈ R+. The theorem is
proved. ��
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Proof of Theorem 4. Consider the function

v̂(k, t) = ω̂(k, t)eα|k|.

It suffices to show that |v(·, t)|γ � D(t). To this end we rewrite (6) as

∂v̂(k, t)

∂t
= −ν|k|2v̂(k, t)

+ 1

2π

∫

R2

e−α(|l|+|k−l|−|k|)v̂(l, t)v̂(k − l, t)
〈k, l⊥〉

|l|2 dl + f̂ (k, t)e−α|k|.

Since |k| < |l| + |k − l|, we have e−α(|l|+|k−l|−|k|) < 1, and Theorem 4 may be
proved by the literal repetition of the proof of Theorem 3. ��
Proof of Theorem 5. Consider the function

v̂(k, t) = ω̂(k, t)etα|k|.

It suffices to show that |v(·, t)|γ � D(t). We rewrite (6) as

∂v̂(k, t)

∂t
= −ν|k|2v̂(k, t) + tα|k|v̂(k, t)

+ 1

2π

∫

R2

e−tα(|l|+|k−l|−|k|)v̂(l, t)v̂(k − l, t)
〈k, l⊥〉

|l|2 dl + f̂ (k, t)e−tα|k|.

Since e−tα(|l|+|k−l|−|k|) < 1 and for sufficiently small t the term tα|k|v̂(k, t) is small
compared to ν|k|2v̂(k, t) for |k| > K0 and sufficiently large K0, the proof of Theorem
5 may be obtained by an obvious modification of the proof of Theorem 3. ��
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