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Abstract: We prove global stability of Minkowski space for the Einstein vacuum equa-
tions in harmonic (wave) coordinate gauge for the set of restricted data coinciding with
the Schwarzschild solution in the neighborhood of space-like infinity. The result con-
tradicts previous beliefs that wave coordinates are “unstable in the large” and provides
an alternative approach to the stability problem originally solved ( for unrestricted data,
in a different gauge and with a precise description of the asymptotic behavior at null
infinity) by D. Christodoulou and S. Klainerman.

Using the wave coordinate gauge we recast the Einstein equations as a system of
quasilinear wave equations and, in absence of the classical null condition, establish a
small data global existence result. In our previous work we introduced the notion of
a weak null condition and showed that the Einstein equations in harmonic coordinates
satisfy this condition.The result of this paper relies on this observation and combines it
with the vector field method based on the symmetries of the standard Minkowski space.

In a forthcoming paper we will address the question of stability of Minkowski space
for the Einstein vacuum equations in wave coordinates for all “small” asymptotically
flat data and the case of the Einstein equations coupled to a scalar field.

1. Introduction

The focus of this paper is the question of global existence and stability for the Einstein
vacuum equations in “harmonic” (wave coordinate) gauge. The Einstein equations deter-
mine a 4-d manifold M with a Lorentzian metric g with vanishing Ricci curvature

Ry =0.
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We consider the initial value problem: for a given a 3-d manifold ¥, with a Riemannian
metric gg, and a symmetric two-tensor kg, we want to find a 4-d manifold M, with a
Lorentzian metric g satisfying the Einstein equations, and an imbedding ¥ C M such
that go is the restriction of g to ¥ and ko is the second fundamental form of X in M.
The initial value problem is overdetermined which imposes compatibility conditions on
the initial data: the constraint equations

Ry — ko's ko! +koj ko =0, Vikojj — Vikel =0,  Vi=1,..3.

Here Ry is the scalar curvature of gp and V is covariant differentiation with respect
to go. The Einstein equations are invariant under diffeomorphisms. To have a working
formulation one needs to eliminate this freedom by fixing a gauge condition or a system
of coordinates.

While the Einstein equations are independent of the choice of a coordinate system, the
existence of a special or preferred system of coordinates has been a subject of debate [Fo].
Historically, the first special coordinates were the harmonic coordinates (also referred
to as wave coordinates in current terminology). These obey the equation [, x# = 0,
nw=0,1,2,3, where [, = V, V¥ is the geometric wave operator. Relative to the wave

coordinates a Lorentzian metric g satisfies the wave coordinate condition if:!

1
8" dpga = Eg“ﬂaugaﬁ, Viu=0,.,3. (1.1)

In this system of coordinates, the vacuum Einstein equations take the form of a system
of quasilinear wave equations

8P 3,08 guv = Ny (g, 39), VYu,v=0,.,3 (1.2)

with a nonlinearity A («, v) depending quadratically on v. In this particular gauge
Choquet-Bruhat [CB1] was able to establish the existence of a globally hyperbolic
development? of the Einstein vacuum equations starting with an arbitrary set of initial
data prescribed on a 3-d space-like hypersurface and satisfying the constraint equations.
While the result of Choquet-Bruhat and a later result of Choquet-Bruhat and Geroch
[CB-G], establishing the existence of a maximal Cauchy development, constructs solu-
tions for any given initial data set, it does not provide any information about the geodesic
completeness of the obtained solution. In the language of the evolution equations these
results only show the existence of “local in time” solutions.

The global results have proved to be by far more resistant. The outstanding global
problem, which for a long time remained open, and was finally ingeniously solved by
Christodoulou and Klainerman [C-K], was that of the stability of Minkowski space. In
simplified language, it is the problem of constructing a global solution to the Einstein
vacuum equations from the initial data, which is close to the Minkowski metric 71,
and asymptotically approaching the Minkowski space. The initial data (X, go, ko) for the
problem of stability of Minkowski space is asymptotically flat, i.e., the complement of a
compact set in ¥ is diffeomorphic to the complement of a ball in R?, and there exists a

system of coordinates (x1, X2, x3) withr =, /xl2 + x% + x32 such that for all sufficiently
large r the metric® go; ;= (L +2M/r)s;j + o(r~179), and the second fundamental

I We shall use below the standard convention of summing over repeated indices and the notation
0y = 3/0x%.

2 For the definitions of global hyperbolicity and maximal Cauchy development see [H-E, Wa].

3 The stability result of [C-K] was proved for strongly asymptotically flat data go;; = (1+2M/r)s;; +
()(r73/2), ko = 0(r75/2).
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form ko = o(r~2~7) for some o > 0. Here M is the mass, which by the positive mass
theorem is positive unless the data is flat, see Schoen and Yau [S-Y] and Witten [Wi].
In addition, the data is required to satisfy a global smallness assumption, which makes
sure that it is sufficiently close to the data (R, 8, 0) for the Minkowski space.

To understand some of the difficulties of the problem we recall that a generic system
of quasilinear equations

O¢; = Z A{’Iéﬁa"‘(ﬁjaﬁ(bk + cubic terms (1.3)
la|<|B1<2

allows solutions with smooth arbitrarily small initial data which blow up in finite
time*. The key to global existence for such equations was the null condition found
by Klainerman, [K2]. The small data global existence result for the equations satisfying
the null condition was established in [C1, K2]. The null condition manifests itself in
special algebraic cancellations in the coefficients A{y’éﬂ of the quadratic terms of the

equation.® It can be shown however, that the Einstein vacuum equations in wave coor-
dinates do not satisfy the null condition. Moreover, Choquet-Bruhat [CB3] showed that
even without imposing a specific gauge the Einstein equations violate the null condition.

These considerations led to the suggestion that the wave coordinates are not suitable
for proving stability of Minkowski space. In fact, considering a second iterate of Eq.
(1.2), Choquet-Bruhat [CB2] argued that the Einstein vacuum equations are not stable
in wave coordinates near the Minkowski solution. All these resulted in the belief that the
wave coordinates are unstable in the large in the sense that a possible finite time blow
up of solutions of Eq. (1.2) is due to a coordinate singularity.

The global stability of Minkowski space had been proved by Christodoulou and
Klainerman [C-K] who avoided the use of a preferred system of coordinates and instead
relied on the invariant formulation of the Einstein equations with the choice of maximal
time foliation (or the double null foliation in the new proof of Klainerman and Nicolo
[K-N1]) and utilizing Bianchi identities for the curvature. The special structure of the
quadratic terms plays a crucial part in the generalized energy estimates which form the
backbone of the proof but the null condition can not be pointed out precisely.

A semiglobal stability result was also obtained in the work of Friedrich [Fr]. He used
the conformal method to reduce the global problem to a local one. The approach is
invariant and the special structure is again exploited implicitly.

In this paper we revisit the problem of global stability of Minkowski space in wave
coordinates. More precisely, we consider the data® (R3, 20, ko) with the metric gq coin-
ciding with the spatial part of the Schwarzschild metric gg = (1 + M/r)*dx? in the
region r > 1 >> M, vanishing second fundamental form ko for r > 1, and sat-
isfying a global smallness assumption on R3. We prove that for this initial data the
wave coordinate gauge is stable in the large: the reduced Einstein equations (1.2) has
a global solution g defining a future causally geodesically complete space-time, [H-E].
The metric g in wave coordinates x“, a = 0, .., 3 approaches the Minkowski metric m:
sup, g3 |g(t, x) —m| — Oast — oo.

The intuition behind this result is based on the observation that the Einstein vacuum
equations in wave coordinates (1.2) satisfy the weak null condition. This notion was

4 This is in particular true for a semilinear equation (¢ = (8,¢)2, [J1].
5 E.g.O¢ = (8t¢)2 — |Vx¢\2 satisfies the null-condition.
© The existence of such data is guaranteed by the results of Corvino and Chrusciel-Delay, [Co, C-D].
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introduced in [L-R] for general quasilinear systems (1.3) and requires that the corre-
sponding effective asymptotic system

O+ 0@ — )P =r"" Y AKX (@ —0)"®s B —0)" Pk,  Pr~rey
n<m<2

(1.4)
has global solutions for all small initial data.” Here,

Al @ = > AR, bo=(-10), veS.

I,nm
la|=n,|Bl=m

The classical null condition states that AJ K (@) = 0 and thus implies the weak null
condition. The asymptotic system (1.4) arlses as an approximation of (1.3) when one
neglects the derivatives tangential to the outgoing Minkowski light cones, known to have
faster decay. The asymptotic equation was introduced in [H1] to predict the time of a
blow-up for scalar wave equations known to blow up in finite time, and was used in [L2]
to find some other scalar wave equations for which the known blow-up mechanism was
not present. Asymptotic systems played an important role in the analysis of the blow-up
mechanisms in [A1].

In [L-R] we have shown that the asymptotic system generated by the Einstein equa-
tions in wave coordinates (1.2) has global solutions for all data. In this paper we consider
the full nonlinear system (1.2). We should note that although the asymptotic system pro-
vides useful heuristics about the behavior of solutions, in particular the L*° decay of
the first derivatives of various components of the metric g, it is barely used in our proof
of the small data global existence result for the full nonlinear equation (1.2). While it
is tempting to put forward a conjecture that, parallel to the result for the classical null
condition [C1, K2], the weak null condition guarantees the global existence result for
small initial data, we can only argue that all known examples seem to confirm it. A
simple example of an equation satisfying the weak null condition, violating the standard
null condition and yet possessing global solutions for all data is given by the system

O¢p = w-3%p + ay - 0, Oy =0, Ow = 0. (1.5)

Another example is provided by the equation [l¢p = ¢ A¢. The proof of a small data
global existence result for this equation is quite involved, [L2] (radial case), [A3]. As
we show in this paper the Einstein equations (1.2) is yet another example. Interestingly
enough, at the level of an effective asymptotic system the Einstein equations can be
modelled by the system (1.5).

The asymptotic behavior of null components of the Riemann curvature tensor Rygy s
of metric g- the so-called “peeling estimates”- was discussed in the works of Bondi,
Sachs and Penrose and becomes important in the framework of asymptotically simple
space-times (roughly speaking, space-times which can be conformally compactified), see
also the paper of Christodoulou [C2] for further discussion of such space-times. Global
solutions obtained in the work [C-K] were accompanied by very precise analysis of its
asymptotic behavior although not entirely consistent with peeling estimates. However,
global solutions obtained by Klainerman-Nicolo [K-N1] in the exterior® stability of Min-
kowski space were shown to possess peeling estimates for special initial data, [K-N2].

7 For the precise definition see Sect. 6.
8 Qutside of the domain of dependence of a compact set.
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Our work is less precise about the asymptotic behavior and is focused more on
developing a technically relatively simple approach allowing us to prove stability of
Minkowski space in a physically interesting wave coordinate gauge In particular, we
rely only on the standard Killing and conformal Killing vector fields of Minkowski
space and do not construct almost Killing and conformal Killing vector fields adapted
to the geometry of null cones of the solution g.

Our proof is based on generalized energy estimates combined with decay estimates.
The generalized energy estimates are used with Minkowski vector fields {3y, Qg =
X0 — X80y, S = x%dy}. For the equations satisfying the standard null condition
uniform in time bounds on the generalized energies, combined with global Sobolev
(Klainerman-Sobolev) inequalities, are sufficient to infer small data global existence. In
our case however the generalized energies slowly grow in time (at the rate of t¢) and need
to be complemented by independent, not following from the global Sobolev inequali-
ties, decay estimates. We derive the latter by direct integration of the equation along the
characteristics. It is at this point that the intuition from the effective asymptotic system
is most useful. We show that all components of the metric with exception of one decay
at the rate of ~!. The remaining component however decays only as t~!*¢. Somewhat
surprisingly, the glue that holds together such weak decay estimates and the generalized
energy estimates is the wave coordinate condition (1.1).

In this paper we only prove the result for a restricted set of data coinciding with the
Schwarzschild data outside of the ball of radius one.’ This allows us to somewhat side-
step the problem of a long range effect of a gravitational field. Due to the inward bending
of the light rays, a solution arising from initial data coinciding with the Schwarzschild
data outside of the ball of radius one will be equal to the Schwarzschild solution in the
exterior of the Minkowski cone r =t + 1.

In our subsequent work we hope to be able to prove the stability of Minkowski space
in wave coordinates for general data. In addition we hope to show that our method can
be also used to treat the problem of small data global existence for the Einstein equations
coupled to a scalar field.

2. The Main Results and the Strategy of the Proof

We now formulate the main results of our paper. Our first result is global existence for
the Einstein vacuum equations in wave coordinates.

Theorem 2.1. Consider the reduced Einstein vacuum equations '°

Oehuy = 8P 023h s = Fuo (W)@, dh), Y, v =0, ..., 3, 2.1)

where g, = my, + hy, and the nonlinear term F is as in Lemma 3.2. We assume that
the initial data (g, 3:g)|:=0 = (8o, g1) are smooth, the Lorentzian metric is of the form

g0 = —a’dt* + gOijd)Cidxj
and

9 Since the initial metric is always of the form g;; = (1 +4M/r)é;; + o(rfl) with M > 0, data
coinciding with the Schwarzschild outside of a compact set is the closest analogue of compactly sup-
ported or rapidly decaying data usually considered in small data global existence results for nonlinear
wave equations.

10" 1n what follows we shall introduce the reduced wave operator ﬁg = g‘)‘ﬂ 32,3 and note that in wave

coordinates Ijg = [y, where gp = |g|*]/28a (g"‘ﬂ |g\l/2 85¢) is the geometric wave operator.
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1) obey the wave coordinate condition
/ 1 /
8 8oy = Eg‘m u8ua’s Yu=0,..,3, 2.2)

2) satisfy the constraint equations
Ro — lkol* + (trko)* =0, V'ko;; — Vitrkg =0, Vi=1,..,3,

where Ry is the scalar curvature of the metric go;;, and the second fundamental form
(ko)ij = —1/261_1811']‘-

3) We assume that the metric (go);; coincides with the spatial part of the Schwarzschild
metric gg (in wave coordinates):

2M
(80)ij = red ey (r +2M)*(d6? +sin>0d¢>), r>1
r—2M
and g1 = 0 for r > 1. Moreover, we assume that the lapse function a*(r) = (r —

2M)/(r +2M) forr > land a(r) =1 forr < 1/2.
4) The data (hgo, h1) = (go — m, g1) verify the smallness condition

e=+vVENQO)+ M < g, (2.3)
where N > 10 and
En@ = sup Y [0Z"h(z. )7 2.4)
0=T= 112N

Here Z! is a product of |1| vector fields of the form 9;, x;0; — x;0;, td; + x;0; and
t3; + x'9;. Then there exists a unique global smooth solution g with the property that
for some constant Cy,

En(1) < 166%(1 +1)*N?, 25)
8w () — mpllzee < Cye(l 4 1)~ 1HEVE,

Remark 2.2. The existence of data satisfying the assumptions of the theorem follows
from the work of [Co, C-D], as argued in Sect. 4.

A corollary of the above result is the global stability of Minkowski space for a
restricted set of initial data.

Theorem 2.3. Let (R3, go, ko) be the initial data set for the Einstein vacuum equations
R,,» = 0. Assume that relative to some system of coordinates (x1, X2, X3) the metric g
coincides with the spatial part of the Schwarzschild metric gs outside the ball of radius
one,

M
g0 = (1+—)dx? r>1,
r

while the second fundamental form ko vanishes for r > 1. In addition, we assume that
relative to that system of coordinates go, M and kg satisfy the smallness condition

Yo 10l o= dllemy+ D I3lkollas, + M <e.
0<|I|<N 0<|I|<N-1
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Then there exists a future causally geodesically complete'! solution g together with
a global system of wave coordinates with the property that the curvature tensor of g
relative to these coordinates decays to zero along any future directed causal geodesic.

We now outline the strategy of the proof.

Remark 2.4. Throughout the paper we shall use the notation A < B for the inequality
A < CB with some large universal constant C. In our estimates we will make no dis-
tinction between the tensors hgs = gap — Map and Hop = myempg (%P —m®#), since
H = —h + O(h?) and the terms quadratic in h are lower order.

The continuity argument. For the proof we let § be any fixed number 0 < § < 1/2. Let
g be a local smooth solution of the reduced Einstein equations (2.1). We start with the
weak estimate

En(t) < 6482(1 + ). (2.6)

By assumptions of the theorem the estimate (2.6) holds for t = 0. Let [0, T'] be the
largest time interval on which (2.6) still holds. We shall show that if ¢ > 0 is sufficiently
small then on the interval [0, T'] the inequality (2.6) implies the same inequality with the
constant 64 replaced by 16. It will then follow that the solution and the energy estimate
(2.6) can be extended to a larger time interval [0, T’] (such an extension is standard for
quasilinear wave equations) thus contradicting the maximality of 7. This will imply that
T = oo and the solution is global. We will in fact prove that for a sufficiently small ¢
the stronger estimate (2.5) holds true on the interval [0, T].

The global Sobolev inequality of Proposition 9.2 and the weak energy estimate (2.6)
imply the pointwise decay estimates:

8
> 10z, < ceC+y Cor=kl @D
P T A4r+rA+ |t —rhl/?

From the assumption that the constant § < 1/2 we derive the following weak decay
estimates

0Z @, x)| < Ce(l+t+r)V7YA+ 1t —r)~ V277, I|<N—-2 (2.8)

with some fixed constant y > 0. The weak decay estimates (2.8) will lead to much
stronger decay estimates in Theorem 14.1. In turn, using the stronger decay estimates in
Theorem 14.1 we will be able to obtain stronger energy estimates in Theorem 15.1, i.e.
(2.5). These in particular will enable us to show that the estimate (2.6) holds globally in
time and conclude the proof. We remark that in the course of the proof all constants will
be independent of ¢ > 0 but they will depend on a lower bound for y > 0 (and hence
on an upper bound for § < 1/2).

As described above, the proof is a direct consequence of three results. The first is
the global Sobolev inequality of Proposition 9.2, introduced by S. Klainerman [K1],
giving decay estimates in terms of energy estimates for the generators of the Lorentz
group. The second ingredient is the improved decay estimates in Theorem 14.1. The
final component is the energy estimates in Theorem 15.1 which rely on the improved
decay estimates.

11" For the definition see [H-E] and Sect. 16 of this paper.
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Weak decay estimates. As pointed out above we may start by assuming the weak decay
estimate (2.8). Furthermore, since the solution g = m + h coincides with the Schwarzs-
child solution of mass M < ¢ in the region r > ¢ + 1, we have

1Z'h@t, )| <e(l+r+0)7", when |x|=17+1. (2.9)
Hence integrating (2.8) from the light cone, where (2.9) holds, we get
1ZTht, ) <e(l+r+0" V2V A 40 —rl/27. (2.10)

Since the vector fields span the tangent space of the outgoing light cones r — t = g we
infer, with 0 denoting the derivatives tangential to the cones, that

10Z'h < e +r+0327A + 1t — V27, (2.11)

This means that, close to the light cone + = r, derivatives tangential to the forward
light cones decay quite a bit better than the expected decay rate from (2.8) for a generic
derivative.

Wave coordinate condition. As we shall see below certain components of the tensor i
decay faster than others. This can be seen upon introduction of a null frame of vector
fields L = 9; + 9, L = 9, — 9; and S7, S2: two orthonormal vectors tangential to the
sphere of radius r in R3. The first improved estimates come from the wave coordinate
condition (2.2). Writing g = map + heg, we obtain from (2.2) that

m® duhgy = 3,m*Phap + O(h dh).

In particular, contracting with a vector field T € 7 = {L, Sy, S»} and using that for
any symmetric 2-tensor k, m*? kog = —kpp +96 ABf 45, implies that we can express the
transversal derivative 9, of certain components of 4 in terms of the tangential derivatives
that decay better and a quadratic term

(@R 7| <|0h|+|h|18R] Se( 4+t +r) 72 Jhpr| Se(+ e —rDA +147)71

Even though the estimate above does not give a better decay rate for all components
of h it gives the decay exactly for those components which, as it turns out, control the
geometry, i.e., they lead to stronger energy and decay estimates.

The above estimates will be sufficient to obtain improved estimates for the lowest
order energy of h. However, in order to get estimates for the energy of Z/h we commute
the vector fields Z through the equation for 4. This generates additional commutator
terms. The main commutator terms are controlled with the help of the following addi-
tional estimate from the wave coordinate condition:

|(ah)LT| + |(aZh)LL| <e(l +[+r)*172y,
lhrr| + (Zh)LL| 58(1+|t—r|)(1+t+r)—1 2.12)

We now describe derivation of the stronger decay and energy estimates.

Stronger decay estimates. We rely on the following decay estimate for the wave equation
on a curved background:!?

12 Recall that the reduced wave operator 8 g = op 855.
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t ~
1414139, Y < cfo (1 + 0T, (x. o de

t
+C sup Y 12z, -)||Loo+Cf0 YU+ Nz, e dr.

0=r=tf)<1 <2

(2.13)

The estimate (2.13) will be applied to the components of the tensor /. The term Z4 on
the right-hand side of the estimate will be controlled with the help of the weak decay
estimates, and thus the decay rate of & will be determined in terms of decay of Lgh. The
L% — L* estimate (2.13) does not rely on the fundamental solution as does the more
standard L' — L™ type estimate. This estimate was used [L1] in the constant coefficient
case and here we establish it in the variable coefficient case only under the assumption
of the weak decay of all of the components of the metric g and the stronger decay of the
components of g controlled by the wave coordinate condition. This analysis is by itself
very interesting but we will not go into it here and just refer the reader to the following
sections.

We now analyze the inhomogeneous term in the equation for & ,,. The tensor ;, =
8uv — my, verifies the reduced Einstein equations of the form:

Oghuy = Fuy(h)(dh, dh),
Fuv(h)(0h, dh) = P(dyh, dvh) + Quv(0h, dh) + G (h)(3h, 0h),  (2.14)
1 1
P(3yh, dh) = 0ytrh dytrh — Eauhaﬂavhaﬁ. (2.15)
Here Q. are linear combinations of the standard null-forms and G, (h)(9h, 9h) is a

quadratic form in 04 with coefficients as smooth functions of / vanishing at 4 = 0. The
weak decay estimates imply that the last two terms decay fast

1Q v (3R, 31)| + |G i (h) (DR, 3| < (3R] 3R]+ |h||dh|?
SE(U4r +0" 7 A+t —r) 2. (2.16)

The problematic term is P (9,/, d,h) since a priori the weak decay estimates only give
the decay rate of e2(1+r+1) "' =2V (14|t —r|)~' =27, which is not sufficient in the wave
zone ¢t ~ r. The crucial improvement comes as a result of a decomposition of the tensor
P(9,h, d,h) with respect to a null frame {L, L, S1, S$2}. Let T € 7 = {L, S1, S2} be
any of the vectors generating the tangent space to the forward Minkowski light cones and
Ueld={L,L,S, Sz} denote any of the null frame vectors. Define, for an arbitrary
symmetric two tensor k, [k|7y = Y re7 ey = |T*U"kyol. Tt then follows that

[Pk, 0h) |7y < [0h]10h] < e*A4+r+0) 22 A+ |t —r])~ 2. (2.17)

On the other hand, the absolute value of the tensor P (dk, dh) obeys the estimate
|P(0h, dh)| §|8h|27U+|8h|LL|8h|. (2.18)

We now decompose the system of equations for 2 with respect to the null-frame

Oehlry S A +r 4+ A+t —r)~2, (2.19)
Tehluas S 10h13, + 20 +r +07 22 A4 0 —r)7%, (2.20)
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where in the last inequality we also used the improved decay estimate for 9/ 1, obtained
from the waye coordinate condition. The result is a system of equations where the
components Lgh7y have very good decay properties, while Ughyy for the remaining
non-tangential component depends, to the highest order, only on the components iy
satisfying a better equation. An additional subtlety in the above analysis is the fact that
contraction with the null frame does not commute with [, (or even with [J). However,
the decay estimate (2.13) for the wave equation only uses the principal radial part of
: 8,2 — r_28,2 —2r~19,, which respects the null frame. This analysis results in the
improved decay estimates

10hlry < Ce(1+0)7Y, 9] < Ce(1+ 1) In2 +1). 2.21)

The energy estimates. We rely on the following energy estimate for the wave equation,
which holds under the assumption that the above decay estimates hold for the background
metric g: for any y > 0,

ol T o
or+ [ o s worce [0 75
/27|¢| o (1+|l—r|)l+z)’S 20|¢| e o Jx, 1+1

—|—16/ / [ERIER (2.22)
0 X

This implies that the energy of a solution of the homogeneous wave equation 0 =0
grows but at the rate of at most (1 + £)€?. The presence of an additional space-time
integral containing tangential derivatives on the right and side of (2.22) is crucial for
our analysis. This type of estimate in the constant coefficient case basically follows by
averaging of the energy estimates on light cones used e.g. in [S1]. We also note that the
energy estimates with space-time quantities involving special derivatives of a solution
were also considered and used in the work of Alinhac, see e.g. [A2, A3]). In our work we
use the space-time integral with derivatives spanning the tangent space to outgoing light
cones and weights dependent on the distance to the Minkowski light cone » = ¢ + 1.
We emphasize that the energy estimate (2.22) is proved only under the assumption of
the weak decay of all components of the background metric g together with the strong
decay of the components controlled from the wave coordinate condition.

It is worth noting that a combination of the energy estimates of the type (2.22) and
Klainerman-Sobolev inequalities would also yield a very simple proof of the small data
global existence result for semilinear equations O¢ = Q(d¢, d¢) obeying the standard
null condition. This fact appears to be previously unknown.

The energy estimate (2.22) will be applied simultaneously to all components of the
tensor /2. As in Egs. (2.19), (2.20) the inhomogeneous term obeys the following estimate:

Tehl S e +r+0)7277 A+ |t —r)V>77 (3R] + e(1 + 1)~ |3h),

where in the last inequality we used the improved decay estimate for the |0/ |77 com-
ponents. The energy estimate (11.3) will then imply that

Eo(t) < 16821 4+ 1)¢°.
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Higher order energy estimates. In addition to the energy estimates for the components
of the tensor 1 we need estimates for the higher vector field derivatives of h: Z/h with
Minkowski vector fields Z = {0y, Q4p, S}. To obtain these estimates we apply Z I'to
the equation Iﬁgh wv = Iy, for h. Applying vector fields to the nonlinear terms F,,
yields similar nonlinear terms for higher derivatives and these can be dealt with using
the estimates already described above. We must note however that this is where the
additional space-time integral involving the tangential derivatives on the left-hand side
of the energy estimate (11.3) becomes crucial. Consider for example the term 84 - 3 Z'h
generated by one of the null forms in F),,,. We estimate its contribution, with the help of
the weak decay estimates, to the energy estimate as follows:

_ Celd, Z'h| 10Z7h|
oh|10Z h||3, 2" h| <
[0h] | [10; | < (l+t)1/2+y (1_|_|t_r|)1/2+y
_ CelaZhp? Celdz'h?

T A+ A4t

The integral of the first term is easily controlled by the energy on time slices times an
integrable factor in time. The space time integral of the second term is in fact part of
the energy (2.22), and if we choose ¢ sufficiently small this term can be absorbed by the
space time integral on the left. The idea with the space-time integral is that one can use
the extra decay in |t — r| when one does not have full decay in ¢.

The more serious problem in higher order energy estlmates lies however in the com-
mutators between Z/ and the principal part O, =g* P 3 dg.

The commutators. Writing g®f = m*f + H*P with H*f = _maa’mﬁﬂ/ha/ﬂ/ + 0 (h?),
we show the following commutator estimate!3

~ |H|+ |ZH| IZHILL+|H|LT
7.00,16| < c( ) 97!
12.0e10] = (5 T |I§|<j1| 9|
< § az! 2.23
_1+t+ \1|<1| @l (2.23)

by the weak decay assumptions (2.10) and the improved decay from the wave coordinate
condition (2.12). We should note that for a generic quasilinear wave equation commuta-
tors with Minkowski vector fields Z give rise to uncontrollable error terms. In the special
case of the equation Ul¢p = ¢ A¢ this problem can be overcome by modifying the vec-
tor fields Z, [A3]. In our case it is the wave coordinate gauge that provides additional
cancellations.

This commutator estimate applied to ¢ = hqg together with the analysis in the pre-
vious section now gives estimates for the energy E; as well as for the stronger decay
estimates for the second derivatives of h (2 26) with |J| = 1. This commutator will also
show up as a top order term [Z, O ol _1ha,3 in the energy estimate for Z/h and the
resulting term can be dealt with in the same way.

13 This commutator estimate applies to the vector fields Z = {9y, Q2¢}. For the scaling vector field
Z = § = x“dy the commutator expression should have the form (g § — (S 4 2)0, .
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The other top order term generated by the commutators [Z/, ﬁg]¢ is of the form
(Z'H*P)d, dg. We first apply the pointwise estimate

|Z'H| |ZTH|LL
7! H)3,9 <C( ) Y 1azk
I( )04059| < 1+t+r+1+|t— |K‘<1| ?|.

To deal with its contribution to the energy estimate we use the Poincaré estimate with
a boundary term

|Z'H3, dx J
/(1+|r—r|)2+2° = / 2 H 1L dS
S(+1)
10, ZTH|3, dx
m, U>—1/2, O';ﬁl/z (224)
R3

together with the fact that & is Schwarzschild outside the cone » = ¢ + 1, because of the
inward bending of the Schwarzschild light cones, and hence there |Z/h| < Ce/(1 +1).
The way coordinate condition implies that [0 Z I'H|; 1 can be estimated by |0Z!' H| and
lower order terms. The term involving |dZ! H| is then controlled by the space-time
integral on the left-hand side.

One can use a similar but more trivial argument for decay estimates, i.e.

1Z'H|pp < |1Z"Hppl—opy + (L4 1t — D18 Z Hyp | oo

The lower order terms. So far we have only discussed the top order terms, but there
will also be several lower order terms (relative to || = k + 1) to deal with. These are
typically of the form

1Z7h|

0z’ nl0z%n  or  |Z'h19?°25h) < c———
I+t —r|

10Z% h| (2.25)

with |J|, |K| < |I| = k + 1. The lower order terms are dealt with using induction. We
describe the induction argument for the decay estimates. From this it will be clear how
it also proceeds for the energy estimates. We will inductively assume that we have the
bounds:

0Z | +1Z7h|(L+ |t — )" < Cpe ™16k, |J| <k. (2.26)

The terms in (2.25) can then be estimated by C,?azt_z"’zck‘g. Including the top order

terms using (2.23) applied to ¢ = Z!~!1, and using (2.13) applied to ﬁgzlh we get an
inequality of the form

' Ce M(s) Cs?
M(t) < d 227
()_/0 Ty +(1+s)1,cg s, (2.27)

where M (1) = (1 +1)||dZ h(t, -)||=. The Gronwall’s inequality then gives the bound
M(t) < C(1+1)%¢¢
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3. The Einstein Equations in Wave Coordinates

For a Lorentzian metric g, where u, v =0, ..., 3 we denote
r* — L s 5 3 3 31
wov = Eg ( 85y + 0vg8su — Bguv)a (3.1

the Christoffel symbols of g and

R}y =0sT), =0T, s +T, 0, =T T (3.2)

its Riemann curvature tensor with R, = R, the Ricci tensor.
We consider the metric g satisfying the Einstein vacuum equations

Ryy = 0. (3.3)
We impose the wave coordinate condition:
M= g 1,2, =0. (34)

It follows that assuming (3.4) we have that the reduced wave operator 0 o = 8P,

~ 1
O, =0, = ﬁaag“f‘t/|g|a,3. 3.5)

The following lemma provides the description of the Einstein vacuum equations in wave
coordinates as a system of quasilinear wave equations for g, .

Lemma 3.1. Let metric g satisfy the Einstein vacuum equations (3.3) together with
the wave coordinate condition (3.4). Then g, solves the following system of reduced
Einstein equations:

Oeguv = P(3ug, 808) + 0,0 (38, 92), (3.6)
where
| oo B ! BB’
P(aug» g = _g 8;Lgaoc’ 3vgﬁﬁ’ - Eg g 8#8(1/3 auga/ﬁ’» (3.7
0,00 (08, 8) = dugpy &% 8™ dwgp — 8% ¢ (9ugpu 0p/8arv — Op 8pu OuBarv)

+go¢o{ BB’ (3,ugoc’ﬂ’8agﬂv — 8aga/ﬂ/augﬂu)
+8° 8P (9080 D8 — e Dv )

/3/3(

1
+2g g aﬁ’gaa’augﬂu - augaa’aﬁ’gﬂv)

1
+58° 87 (0p: 8o D811 — B8t I 81 (38)
Furthermore, the wave coordinate condition (3.4) reads

1
g“ﬁa ap 0 8aps or 0,8%" = —gaﬁguﬂaug“ﬁ. (3.9)

1
a8Bu = Eg )
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Proof. The proof of (3.9) is immediate.
We now observe that

a8 = Tappu + Lapps where Cuav = gakFM)‘v.

It follows that gaka}gI‘ﬂ)‘v = 08 v — Lgar + Fﬁka)ru/\u so also using that I8 =
I"gia We obtain

Ruavg = 8ar R, g = 0T piav — 00T pap + Toaa T g — TarpT - (3.10)

It follows from (3.9) that

1 1
gozﬂ (8u8agﬁv - Eauavgaﬁ) = _3'uga/3 (aagﬁv - Eavgaﬁ>

/ / 1
_ g gt Buga/ﬂ/(aagﬂv _ zavgaﬂ), G.11)

and hence
8 il
g~ (3aruﬂv - avruﬂ“) - T(aaaﬂgﬂv + 9 dvgpyu — 8“8/3&“’)
g
—T(avaﬂgﬂa + 8vaolg/3ﬂ - 8uaﬂg/wz)
of apf

_%aaaﬂg/w + gT(aaa/Lgﬂv + avaf}gua - avaugﬂoz)

aa’gﬂﬂ’

1 1
_5 gaﬁaaaﬁguu + Eg
X (8 8o a8p + D8 B8 — Ov8u'p Iu8ap)-

(3.12)

Here by (3.9) we can write

pe auga’ﬁ/aotgﬁv

pp aaga’ﬁ’augﬁv + gaa 8

8% g
=g""g
1

= zg(w gﬂﬂ aﬂ/ga/aaugﬁv + g‘m gﬂﬁ (auga/ﬂ/aagﬁv - aaga’ﬂ/augﬁv)

pB (auga’ﬁ’aagﬂv - 8aga’/3’augﬂv)

1 / ’
= 58" & Ouguadp gpv
|
—l—gw gﬁﬂ (z(8ﬁ’ga’aaugﬁv_8Mga’a8ﬂ’gﬁv)+(8uga’/3’3agﬂv - 8aga’ﬁ’augﬂu))
1

= 78" 7P 8,800 dvgpp

/ vt
+g‘w gﬁﬂ (5(aﬂ’ga/aall.gﬁv_auga/aaﬂ’gﬁv)+(8ugcc’ﬂ’8ozgﬂu_aaga’ﬂ/augﬂu))-
3.13)



Global Existence for the Einstein Vacuum Equations in Wave Coordinates 57

Hence by (3.13) and (3.13) with u and v interchanged we get

L g g8 (5 o o + oo 8 — oo
28 8 nw8a’'p 98By v8a/p 98B v8a’p Ou8apf

/ /1 1
= gaoz gﬁﬂ (Zauga’aavgﬁﬁ’ - zavga’ﬁ’augo{ﬂ)

1 ’ !
+58% g ((%&v’ﬁ/ dagpv—da8a'p Bu8pv) +(d8arp dugpn — aaga’ﬁ/avgﬂu))

1 / /
Zgoza gﬁﬁ ((aﬂ’ga’a 8;Lg/3v - 8;Lgoz’oz aﬂ’gﬂu) + (aﬂ’gaﬂa 3vg/3p, — W8 8ﬁ’gﬂu))~
(3.14)
On the other hand

1 i 4
F“aﬁruaﬁ - Z(a“gﬁa + 9p8av — aagﬂV)gaa ghP (3M8ﬂ/oﬂ + 0p'8an — aa/gﬂ’u)

l ! ! l ’ ! 1 ’ ’

= 70v8apg™ §"P B, 80p + 5 i 8 PP oy gp — 5 8 8 L T
war 5 (1 1 1

=8 8 (Zavgotﬁ augo/ﬁ/ + Eaagﬁu ao/gﬂ/v - Eaﬂ/gﬁu aaga’v)

1 ’ !
_Egl)la gﬁﬁ (aagﬂ'u aﬂ/ga/u — 8ﬁ’g,3/j. aaga/v)
/ vl 1 1
= g‘w gﬂﬁ (Zavgotﬁ 3;Lga’ﬁ’ - gaugﬁﬂ’ 0v8aa’ + zaagﬁu 801’8/.‘3’\1)
1 aa/ ﬂﬂ/

—Eg g <8agﬁu 0p'8a’v — 08881 8ag,1/v), (3.15)

where the last inequality follows from (3.9).
Taking the trace of (3.10) and using (3.12), (3.4) we obtain

1
Ry = _Egaﬂaaaﬂguv + Fvaﬁruaﬁ

1 ’ /
“FEgOW gﬂﬂ (auga’ﬂ/ Oxgpv + 8vga’ﬁ/ Ougpu — avgo/ﬂ/ augaﬂ) (3.16)

Using (3.15) and (3.14) we get

1 / / 1 1
Ru_v = —Egaﬂaaaﬁg/w + g‘w gﬁﬁ (— Zavgaﬂ 8Mga¢’ﬁ’ + gaugﬁ/s’ avgaot’)

l / / 1 !/ /
+§g‘w gﬁﬁ al)tgﬂﬂ 3a’gﬂ’y - Egaa gﬁﬁ (aozgﬁu aﬁ’ga’v - aﬁ’gﬂ,u Bago/v)
1 ! anl
+§gaa gﬂﬂ ((aﬂga/ﬁ’ aagﬂu — Baga/ﬁ/ aﬂgﬁv) + (avga/ﬁ/ 3a8ﬁu — aaga/ﬂ/ a,,g,g#))
1 ! / . .
Zgaa gﬁﬂ ((aﬂ/ga/a aﬂgﬁv - dﬂga/a aﬂ/gﬂv) + (aﬂ/ga/a 8vgﬁp_ — W8y/a dﬁ/gﬁﬂ))'

(3.17)

The result now follows. 0O
Let m denote the standard Minkowski metric

moo = —1, mi;=1, if i=1,.,3, and my, =0, if pu#v.
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Define a 2-tensor £ from the decomposition
Guv =My + hyy.
Let m*¥ be the inverse of m,,,. Then for small 2
H" = gV —mM"Y = —pH*¥ + Ol‘u(hz), where A"’ = m”“,m””/hwvr

and 0"V (h?) vanishes to second order at & = 0.
As a consequence of Lemma 3.1 we get:

Lemma 3.2. If the Einstein equations (3.3) and the wave coordinate condition (3.4)
hold then

Oghyy = Fuw(h)(h, 8h), (3.18)

where Fy,,(h)(0h, 0h) is a quadratic form in 0h with coefficients that are smooth func-
tions of h. More precisely,

Fuy(h)(3h, dh) = P(3,h, 3,h) + Q0 (3h, dh) + G 1, (h)(dh, 3h), (3.19)
where
1 / ’ 1 ’ ’
P(,h, dyh) = Zm““ duhae mPP d,hgs — Em“"‘ mPP 3, hap duharp (3.20)
and
Quv(@h, 3h) = dahpum® mP? 3, hg, — m* mPP (8uhp.dphary — dphpudahar)
+m““’mﬁﬂ/(auha/ﬁ/ Oahgy — Ouhgpr Buhﬂv)
+m““’mﬁﬂ/(avha/ﬂ/ O0ughpy — duharp 8\)/’1/3“)
1 / /
+5m mPP (g hae duhpy — duhaa dphpy)
U o pp
o m*m (3 haa Bohpu — dvhaw dphpy)

is a null form and G, (h)(dh, 0h) is a quadratic form in dh with coefficients smoothly
dependent on h and vanishing when h vanishes: G ,,(0)(dh, 0h) = 0.
Furthermore

1 1
m* dyhg, = Emaﬁauhaﬂ +Gu)(@h), or B H™ = S gup (m"* + H"")3, H",
(3.21)

where G (h)(0h) is a linear function of 0h with coefficients that are smooth functions
of h and that vanishes when h vanishes: G, (0)(3h) = 0.

Observe that the terms in (3.20) do not satisfy the classical null condition. However the
trace m""h,, satisfies a nonlinear wave equation with semilinear terms obeying the null
condition:

8P 0,0pm" h,, = Q(3h, Oh) + G(h)(Dh, Bh).



Global Existence for the Einstein Vacuum Equations in Wave Coordinates 59

4. The Initial Data

In this section we discuss the initial data for which the results of our paper apply. We
shall consider the asymptotically flat data, satisfying a global smallness condition, with
the property that it coincides with the Schwarzschild data outside the ball of radius one.

We start by showing the existence of such data. Let (go, ko) be asymptotically flat
initial data for the Einstein equations consisting of the Riemannian metric gg and a sec-
ond fundamental form k. The initial data for the vacuum Einstein satisfy the constraint
equations

Ro — (trko)? + |ko|*> = 0, @.1)
V/ko;j — Vitrkg = 0. 4.2)

We restrict our attention to the time-symmetric case Ry = ko = 0. Then, if (go, ko) is
sufficiently close to the Minkowski data and gq satisfies the parity condition go(x) =
go(—x), by the results of Corvino [Co] and Chrusciel-Delay [C-D] one can construct a
new set of initial data (g, k) with the properties that

e The initial data (g, k) coincides with (go, ko) on the ball of radius 1/2.
e (g, k) is exactly the Schwarzschild data (g)S“, 0) of mass M outside Bj, the ball of
radius one.

At this point we specify the smallness conditions:

M <e, > (||a;<g—8>||Lz<Bl>+ > ||ax’k||Lz<Bl>)se (4.3)
0<|I|<N 0<|J|<N-1

for some sufficiently large integer N. Here 8/ denotes the derivative 8){} . 3){2, where
(Iy, ..., I,) is an arbitrary multi-index with the property that I} 4 --- + I,, = |I].

We have two expressions for the Schwarzschild metric in isotropic and wave coordi-

nates:
(1—M/r)? , My 5

=———dt 1+ —)%dx~, 4.4

8s = (g et AT (4.4)

r—2M a2 r+2M

r+2M r—2M

gs = dr’ + (r + 2M)?*(d6? +sin’ 0d¢?).  (4.5)

The expressions g and gy will denote the spatial parts the Schwarzschild metric in
respective coordinates. Observe that

4M 2 2 -2
g =m+ == (@ +dx*) + 0G ). (4.6)

We now find the coordinate change transforming the metric gg into g;. Set

2
t=r, r=p+—. 4.7)
P

In the coordinates t, p the metric g takes the form gg. This change of coordinates is
one-to-one for the values p > M. Since the mass M << 1 we can define the change of
coordinates r = ®(p), where ® coincides with the map (4.7) for p > 1 and the identity
transformation for p < 1/2. Thus we have constructed the initial data (g, k) such that
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e The initial data (g, k) coincides (in new coordinates) with (go, ko) on the ball of
radius 1/2.

e (g, k) is exactly the Schwarzschild data (g7, 0) outside the ball of radius one.

e Moreover, the new data still obeys the smallness condition (4.3).

The constructed metric is already in wave coordinates on its Schwarzschild part. We now
describe the procedure which produces the initial data (g, d9;g) associated with (g, k)
and satisfying the wave coordinate condition.

Recall that a priori we are only given the spatial part of the metric g;; together with
a second fundamental form k;;. We now define the full space-time metric gq,g on the
Cauchy hypersurface X as follows:

goi =0, goo = —a(r), (4.8)
where the function
r—2M
a(r) = , forr > 1,
r—+2M

1
=1, f < -.
a(r) orr_2

Thus defined metric coincides with the full Schwarzschild metric g; for r > 1. We
further define

atgij = —Zakij. (49)

It remains to determine 9; go,. We find it by satisfying the wave coordinate condition

1
gﬁ'uaugaﬂ = Egﬂv O g puv-

Setting @« = 0 we obtain

1 . -
Egooazgoo = —g" 9505 + 58 g

This defines 9;ggo. On the other hand setting « = i we obtain

. 1
%050 = —% 8 8ip + 58" %iguv-

This determines 9, gp; . Observe that since the metric g coincides with the Schwarzschild
metric g, already satisfying the wave coordinate condition, outside the ball of radius
one, we have that on that set the initial data takes the form (gs, 0). Hence we constructed
the initial data (g, d;g) with the properties that

The initial data (g, d;g) corresponds to the initial data (g, k) prescribed originally.
(g, 0;g) is exactly the Schwarzschild data (g, 0) outside the ball of radius one.
The initial data verifies the wave coordinate condition.

The initial data satisfies the smallness condition

> (@ —mlee) + D 108lem) e @10
0<|/|=N 0<|J|=N-1
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Now with the initial data (g, d;g) we solve the reduced Einstein equations (3.6). It fol-
lows from the proof of Lemma 3.1 that, in the notation r* = g"‘ﬂ Féﬁ, the reduced
Einstein equations can be written in the form:

1
Rup — 5(DaTp + Dpla) = ToNgg(g, 08) = 0. (4.11)

Here D denotes a covariant derivative with respect to the space-time metric g and N,
are some given functions depending on g and dg. Observe that the initial data (g, 0;g)
were chosen in such a way that the wave coordinate condition I'* = 0 is satisfied on the
initial hypersurface . We now argue that this condition is propagated, i.e, the solution
of the reduced Einstein equations (4.11) obeys I'* = 0 on any hypersuface ;. We would
have thus shown that a solution of the reduced Einstein equations is, in fact, a solution
of the vacuum Einstein equations.

To prove that I'* = 0 we differentiate (4.11) and use the contracted Bianchi identity
DPRup = 1 DR,

1
0 =2(DPRyp — 5 DuR) = DPDyTs 4+ DPDgT,
—DyDPTg — 2DP (T4 Ngy) — Do(ToN5")
= DP DTy + Ray IV — 2(DpT5) N5
—(DaTo)NG" = 2T (DgNGP) — Ty (DuN3P).

Therefore, I'* satisfies a covariant wave equation, on the background determined by
the constructed metric g, with the initial condition I A = 0. It remains to show that
D,T* = 0 on X and the conclusion that I'* = 0 will follows by the uniqueness result
for the wave equation.

We recall that the initial data (g, k) verifies the constraint equations (4.1), (4.2), which
imply that on X,

1
Rrr + ER =0, R7; =0,

where T = —(goo)_18, is the unit future oriented normal to Xg. Therefore returning to
(4.11) we obtain that

1 .
0=Rp+ =R = —(goo) ' D;To+ D'},

2
1 1
0=Ry = EDIF,' + ED[FO.

This finishes the proof that I'* = 0.

We also know that the time-independent Schwarzschild metric gs is a solution of the
Einstein vacuum equation Ryg = 0. Moreover, since g, satisfies the wave coordinate
condition it also verifies the reduced Einstein equations (4.11). Since the initial data
(g, 0:g) = (g5, 0) outside the ball of radius two, the constructed solution will coincide
with the Schwarzschild solution in the exterior of the null cone developed from the
sphere of radius one in X.

We end the discussion of the initial data by comparing the light cones of Minkowski
and Schwarzschild spaces in the wave coordinates of the Schwarzschild space.
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Lemma 4.1. For an arbitrary R > 2M the forward null cone of the metric gs, inter-
secting the time slice t = 0 along the sphere of radius R, is contained in the interior of
the Minkowski conet —r = R.

Proof. The null cone intersecting the time slice # = 0 along the sphere of radius R can
be realized as the level hypersurface u = 0 of the optical function u solving the eikonal
equation

8% dou dpu =0
with the initial condition that u = 0 on the sphere of radius R at time r = 0. Because

of the spherical symmetry of the Schwarzschild metric g; and the initial condition we
look for a spherically symmetric solution # = u(¢, r). The eikonal equation then reads

Let t = y(r) be a null geodesic, originating from some point on the sphere of radius R
att = 0, such that u(y (r), r) = 0. Then

oruy(r) 4+ oru = 0.

Substituting this into the eikonal equation we obtain that

(2 < e

Taking the square root and integrating we obtain that

r—ZM)

y(r):y(R):I:(r—R+4Mlnm .

Thus the null geodesics are described by the curves

t i( R+4MI1 —r_zM)
==4(r - n .
R—_2M

In particular, the forward null cone is contained in the interior of the setz > r — R. O

5. The Null-Frame and Null-Forms

Below we introduce a standard Minkowski null-frame used throughout the paper. At
each point (¢, x) we introduce a pair of null vectors (L, L),

L°=1, Li=x"/|x|, i=1,2,3, and L°=1, L' =—x'/|x|, i=1,23.

Adding two orthonormal tangent to the sphere S? vectors Sy, S» which are orthogonal
to w defines a null frame (L, L, S1, $7).



Global Existence for the Einstein Vacuum Equations in Wave Coordinates 63

Remark 5.1. Since S% does not admit a global orthonormal frame Sy, S> we could alter-
natively introduce a global frame induced by the projections of the coordinate vector
fields e;.

Let P be the orthogonal projection of a vector field in R? along @ = x/|x| onto the
tangent space of the sphere; PV =V — (V, w)w. For i =1, 2, 3 denote the projection
of 9; by

D= A9, =0 —wwd;, where Al =(Pe)) =8/ —wi!, i=1,2,3,
(5.1)

where ¢; is the usual orthonormal basis in R3, and the sums are over j =1,2,3 only.
Let 9p=L%0y and 0; = d;, fori = 1,2, 3. Then a linear combination of the derivatives
{90, . .., 03} spans the tangent space of the forward light cone.

In what follows A, B will denote any of the vectorfields Sy, S>. We will use the
summation conventions

XAA* = XPS158% + XP 2588,  Xa¥a=X"YPS1,S15+ X VPS5, 825

Obvious generalizations of the above conventions will be used for higher order tensors.

We record the following null frame decomposition of a vector field X = X%0,:
X% = XLLY 4 XLL* + XA A%, Relative to a null frame the Minkowski metric m has
the following form:

mpp=mpp =mpa=mpa =0, mpp =mpy = —2, map = 848,

ie. megX® Y8 = —2(XLyL 4 xLyly 4 XAYA. Recall that we raise and lower indi-
ces of any tensor relative to the Minkowski metric m, i.e., Xo = mggX B. We define
Xy = megX®YP = X, Y% Then Xy = XLY, + XLy, + XAY4. It is useful to
remember the following rule:

Then

mbl = mEL — A = A =0, mbl = Ll =-1/2, mAB = §48

)

i.e. maﬂXaYg = —%(XLYL—FXLYL) + XaYa.

Definition 5.2. Denote ¢ =r — t and s = t + r the null coordinates of the Minkowski
metric m and 9, = %(ar —0;) and 0y = %(3, + 0,), the corresponding null vector fields.

Let kxy = kqpX*Y”. Then

1 _
tr k =m*Phop = =5 (koL +kee) + 1k, (5.2)

where

i

trk=38"%kyp =5k, and 5’ =6V —wal (5.3)

where the sumis overi, j = 1,2, 3 only.
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If k and p are symmetric it follows that

paﬁkaﬂ — maa’mﬁﬁ/paﬁka,ﬂ,
1
= Z(PLLkg + preker +2prikir)

—848 (parksL + paLksr) +84884F

paakpp

1
= Z(PLLk@ + pLrkir +2priker)

i (p,'ijL + p,'ijL) +§U§l J pi,-fkjjf. 5.4)
Lemma 5.3. With P(p, k) given by (3.20) we have for symmetric 2-tensors p and k:
1 1 / ’
P(p, k) = Z”l’laﬂpaﬁmaﬂkaﬂ _ Emaa mbP paﬂka’ﬁ/

1 1 ' ot
= _g(PLLkg + prikrr) — ZSAB3A B <2PAA’kBB/ - I’ABkA/B’)

1
+ZSAB(2PALkBL +2parkpr — pakir — prikag). (5.5)

i.e. at least one of the factors contains only tangential components.

Furthermore
1 1
P00 = por + pHPoL + pMos = —2p, L — S ploL + p*oa.

We introduce the following notation. Let 7 = {L, Sy, S}, U = {L, L, Sy, S2},
L ={L}and § = {81, $>2}. For any two of these families }V and WV and an arbitrary
two-tensor p we denote

Phw =Y.  lppVPW7|, (5.6)
VeV, WeW,
lophyw = > 1@pag, U VWY, (5.7)
UelU, VeV, WeW,
Pplyw= " Y. 1@Pupy T* VW], (5.8)

TeT, VeV, WeW,
Let Q denote a null form, i.e. Qup(0¢p, 0V) = 0y 0V — g oV if o # B and
Q0(3¢, 0Y) = m*F oy 0pr.

Lemma 5.4. If P is as in Lemma 5.3 then

|P(p, )| S Ip lzulklzy + 1p ookl + 1p | Ikl (5.9)
If Q(0¢, 0v) is a null form then
1009, 09)| < 100119¢] + 100113 |. (5.10)
Furthermore
k3 3p0p] < (IkILL1dd|* + |k| [3l106]), (5.11)
\Lak®P3pp| < (IkILL1d9] + Ik| 1301), (5.12)

1(3ak“P)dp¢| < (10kILL + [3KI) 36| + 3K |3¢]. (5.13)



Global Existence for the Einstein Vacuum Equations in Wave Coordinates 65

Proof. The proof of (5.10) for the null form Qg follows directly from (5.2). To prove
the claim for the null forms Qg use that

B =Li(@+d)+&, i=123 3 =Lo@d — . (5.14)
Therefore,
|Qap (39, 9Y)| = |9apdpy — Jpddur| < Clad| 18V | + Clag] [3Y.
The estimates (5.11)—(5.13) follow from (5.4). 0O
Lemma 5.5. If k*f is a symmetric tensor and ¢ a function then
kP 0,9p0] < (1kILL10%] + k| [B3g1). (5.15)
Also, with trk = 848ksp = (8 — o' @/ )k;; we have
|k“P 8, 0pp — kpLOGd — 2kpL050g¢p — ™' Tk Oy
< IklL7180¢] + k| (18%¢] +r~"1591). (5.16)
Proof. The estimate (5.15) follow from (5.4). We have
diw;j =r_l(8ij —wwj) =r_1§ij. 5.17)

Furthermore 9; = 9; + w; 9y, where 3, = w’ dj so [0;, 8,] = (8;%)0y and

%d; = (3 + @ 9,)(; + ;)
= E_),'Z_Jj + w; wk Z_)J-Bk + a)ja)k 3; Ok + w;w;od; + (51@,)3, + a)j(E_)ia)k)Bk
= 3;0; +w; 3,0, + wj 80 + wiw;* +r 7188, —r ' w;d;. (5.18)
Furthermore
900; = 8;(8; + w;d,) = 3;0; + w; 3;0r. (5.19)
Hence

kP g 05 = k%87 + 2k% w; 8,8, + k' wiw;9? + r 1k,
kT3 — r Uk w;d; +2k% 5,8, 4 2k ;39 (5.20)
If we substitute 9; = 95 — 94, 9, = 95 + 9, and identify
krp = K0 — 2k0iw,~ + kija),‘a)j,
kLL = k% +kijwiwj,
kpr = k% 4 2k% w; + kY w0, (5.21)
and
kY ki =k + kot =k K k= k! ko = k)
(5.22)
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we get

k“ﬂaaaﬁ = kLLB(f + 2k 1 0504 +k4332 +r_1t_rk 0y +kijéi5j +r_1t_rk Os

—r K w;dj +2k,7 89, + 2k, 30, (5.23)

Finally, we can also write
2,780, = k78 (@ ox — 0;) = k] B0k — k' 30, +r "k, 5, (5.24)
since (E_Jja)k)é)k = r_l(’_ij. The inequality (5.16) now follows. O

Corollary 5.6. Let ¢ be a solution of the reduced wave equation 0 ¢ = F with a metric
g such that H*P = g*f — m®P satisfies the condition that |H"L| < }—‘. Then

Hpp trH+ Hpp rF
‘(48S - 2gLL™d T gLL )8q(r¢>) + 2gLL‘

Srlbodl + | Hl T r100¢] + [H| (1 18%¢] + 3] +r ' el),  (5.25)
where Ay = A = Bi-iéié_)j.
Proof. Define the new metric
g“f

gaf _
= _szL,

8

The equation g%, 0g¢ = F then takes the form

B _
870,050 = T"LL

which can also be written as

O + (3% — m*P)d, 050 =

_szL'
Let k*f be the tensor k*# = (§*f — m*P). Observe that
kB — (_ZgLL)fl(gaﬁ + zmaﬂgLL) _ (_ZgLL)fl(Haﬂ + m*P2gtL + 1)
= (=2¢"5~ N (H + 2m*P H'L).
Thus,

kpp =0, kit = (—2¢"~VH, 1, trk = (—2¢"5y""(wr H + HyL).
(5.26)

Moreover, |k| < |H|, since gtL = HLE — % and by the assumptions of the corollary
|HML| < 1.

Now using (5.16) of Lemma 5.5, with the condition that k; ;, = 0, together with the
decomposition

1 4
O¢ = —07¢ + A¢ = ;(az +0,)0r —)ré + Lot = ;3s3qr¢ + Aug,

we find that the identity Clgp + k*# 3, g = (—2g~L)~1F leads to the inequality
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|40,0r¢p + rkLLOy ¢ + Tk Oy + (28"L) ' r F|
Srloedl + ikl 7130] + (k| (r [8%¢] + 134]).
Finally, identity (5.26) and a crude estimate |k| < |H| yield the desired result. |

6. The Weak Null Condition and Asymptotic Expansion of Einstein’s Equations
in Wave Coordinates

Let us now first describe the weak null condition. The results of this section appear in
[L-R]. Consider the Cauchy problem for a system of nonlinear wave equations in three
space dimensions:

—Ouw =Fu,u,u"), i=1,.,N, u=@ui..uy), (6.1)
where -0 = —32 + Z?:] 83 ;- We assume that F' is a function of u and its derivatives
of the form

Fi(uu',u") = alig0%u; 0P up + Giu, u' u"), (6.2)

where G;(u, u’, u”) vanishes to third order as (u,u’,u”) — 0 and aijf[ﬂ = 0 unless
|| <|B| < 2and | 8] > 1. Here we used the summation convention over repeated indices.
We assume that the initial data

u(0,x) = eug(x) € C*°,  u,(0,x) =cui(x) e C® (6.3)

is small and decays fast as |x| — oo. We are going to determine conditions on the non-
linearity such that Eq. (6.1) is compatible with the asymptotic expansion as |x| — oo
and |x| ~ ¢,

u(t,x) ~eU(q,s,w)/|x|, whereq =|x|—1t, s=¢eln|x|, o =x/|x|, (6.4)

for all sufficiently small € > 0. The linear and some nonlinear wave equations allow for
such an expansion with U independent of s and the next term decaying like £/|x|?, see
[H1, H2]. Substituting (6.4) into (6.1) and equating powers of order &2 /1x |2 we see that

ik

2040,U; = A{mn (@)(0,'U;j)(0,Uy), U‘S:O = Fo, (6.5)

where
Al @)=Y al{’;ﬂ@%ﬂ, where ® = (=1, ) and & = Qy,...00, .
|la|=m,|B|=n
(6.6)

In fact, Ou = —e~ o g (ru) + angular derivatives and 9, = ®,0, + tangential
derivatives.

One can show that (6.1)—(6.3) has a solution as long as ¢ log ¢ is bounded, provided
that ¢ > 0 is sufficiently small and the solution of (6.5) exists up to that time, [J-K, HI,
H2, L1, L2]. The only exception is the case AIJ(I){O # 0, which has shorter life span. In
cases where the solution of (6.5) blows up it has been shown that solutions of (6.1)—(6.3)
also break down in some finite time T, < eC/e, [J1, H1, A1]. John’s example was

Ou = u; Au (6.7)
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for which (6.5) is the Burger’s equation (205 — U, d,)U; = 0, which is known to blow
up. The equation

Ou = u? (6.8)

is another example where solutions blow up, for which (6.5) is d;U; = qu, that also
blows up.
The null condition of [K2] is equivalent to
A% () =0 forall (i, j, k,m,n), weS2 (6.9)

rmn

The results of [C1, K2] assert that (6.1)-(6.3) has global solutions for all sufficiently
small initial data, provided that the null condition is satisfied. In this case the asymptotic
equation (6.5) trivially can be solved globally. Moreover, similar to the linear case, its
solutions approach a limit as s — oo and the solutions of (6.1)—(6.3) decay like solutions
of linear equations. A typical example of an equation satisfying the null condition is

Ou = u? — |Vyul? (6.10)

There is however a more general class of nonlinearities for which solutions of (6.5) do
not blow up:

We say that a system (6.1) satisfies the weak null condition if the solutions of the
corresponding asymptotic system (6.5) exist for all s and if the solutions together with
its derivatives grow at most exponentially in s for all initial data decaying sufficiently
fastin q.

Under the weak null condition assumption solutions of (6.5) satisfy Eq. (6.1) up to
terms of order £%/|x|>~€¢ but need only decay like £/|x|!~€¢ An example of the equation
satisfying the weak null condition is given by

Uu = ulu. (6.11)

In [L2] it was proven that (6.11) have small global solutions in the spherically symmetric
case and recently [A3] established this result without the symmetry assumption. Equa-
tion (6.11) appears to be similar to (6.7) but a closer look shows that the corresponding
asymptotic equation:

(20 = Udy)Uy; =0 (6.12)
has global solutions growing exponentially in s, see [L2]. The system
Ou =2, Ov=0 (6.13)

is another example that satisfies the weak null condition. Equation (6.13) appears to
resemble (6.8). The system however decouples: v satisfies a linear homogeneous equa-
tion and given v we have a linear inhomogeneous equation for u, and global existence
follows. The corresponding asymptotic system is

359,U = (3, V)2, 358,V = 0. (6.14)

The solution of the second equation in (6.14) is independent of s: V, = V, (g, w) and
substituting this into the first equation we see that U, (s, g, ) = sV, (q, w)? so du only
decays like |x|~!1n |x|.

We show below that the Einstein vacuum equations in wave coordinates satisfy the
weak null condition, i.e. that the corresponding asymptotic system (6.5) admits global
solutions. In fact, each of the quadratic nonlinear terms in the Einstein equations is either
of the type appearing in (6.10), (6.11) or (6.13).
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Theorem 6.1. Let h be a symmetric 2-tensor and let

hyo(t,x) ~ €Uy (s, q,w)/|x|, where gq=|x|—t, s=e¢eln|x|, w=x/|x|
(6.15)

is an asymptotic ansatz. Then the asymptotic system for the Einstein equations in wave
coordinates (3.18), obtained by formally equating the terms with the coefficients €|x| 2,
takes the following form:

(205 — UL10q)0gUyuy = L, Ly P(3,U, 8,U),  Vu,v=0,...,3, (6.16)

whereUpp, = m® mPP' Uy g Lo Lgand P(3,U, 3,U) = Y3,1rU d,1rU—19,Uyp 3,UP.
The asymptotic form of the wave coordinate condition (3.21) is

20,Up, =Ly, d,tU,  ¥u=0,...,3, 6.17)

where Uy, = me Uy Lo andtrU = mP Uqp. The solution of the system (6.16)-(6.17)
exists globally and, thus, the Einstein vacuum equations (3.18) in wave coordinates sat-
isfies the weak null condition. Moreover, the component 3,Ur 1 grows at most as s while
the remaining components are uniformly bounded.

The asymptotic form (6.16) follows by a direct calculation from (3.18). Observe that
the null form Q,, (9h, dh) disappears after passage to the asymptotic system.

Next we note that (6.17) is preserved under the flow of (6.16). Contracting (6.16)
with L* LY we obtain

(205 — ULLaq)aqULL =0,

which can be solved globally. More generally, contracting (6.16) with the vector fields
{L, S, S»} we obtain

20y = ULL9y)0,Ury =0, ifT €{L,S$1,8} and U €{L,L, S, S}, (6.18)

which can be solved globally now that Uy, has been determined. Note that the compo-
nents d, Ury are constant along the integral curves of the vector field 29; — Urr ;. The
remaining unknown component Uy, can be determined by contracting Eq. (6.16) with
the vector field L,

(205 — Up1.9g)0, UL = 4P (0,U, 0,U). (6.19)

By Lemma 5.3 the quantity P (9, U, d,U) does not contain the term (3, U1 ). Thus, Eq.
(6.19) can be solved globally and produces solutions growing exponentially in s. A more
precise information can be obtained from the asymptotic form of the wave coordinate
condition (6.17). For contracting it with the null frame {L, S1, S>} we obtain 9, U7 = 0,
if T € {L, S, S2}. Therefore,

_ _l ABA'B’ _
P(3gU, 33U) = =64 584 (20, Una 94U — 0y Uan 9 Un'sy
1
—EaABaq Uap 9UrL. (6.20)

It follows from (6.18) that P is already determined and is, in fact, constant along the
characteristics of the field 20; — U 1 . Therefore, integrating (6.19) we infer that 9, U,
grows at most like s.
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7. Vector Fields and Commutators
Let Z € Z be any of the vector fields
Qaﬂ =—xa8,3 —i—xgaa, S =10; +ro,, Oy »

where xo = —tand x; = xi fori > 1.Let] = (t1, ..., tx), where |t;| = 1, be an ordered
multiindex of length |I| = k and let Z/ = Z'1 ... Z% denote a product of |I| such deriv-
atives. With a slight abuse of notation we will also identify the index set with vector
fields, so I = Z means the index I corresponding to the vector field Z. Furthermore, by
a sum over /1 + I = I we mean a sum over all possible order preserving partitions of

the ordered multiindex I into two ordered multiindices I} and I, i.e.if I = (¢1, ..., tg),
then I1 = (4, ..., t,) and I = (4, ..., ti), Where iy, ..., iy is any reordering of
the integers 1, ,ksuchthatiy < ... <iyandiy4; < ... < i and iy, ..., ;. With

this conventlon Lelbmz rule becomes Z! (fg) = le+12 I(le D) (leg) We denote

by 9 the tangential derivatives, i.e., 9 = {80, 91, 9o, d3} and note that the span of the
tangential derivatives {80, 31, 0s, 83} coincides with the linear span of the vectorfields
{3s, 351 ’ 852}'

Lemma 7.1. We have the following expressions for the coordinate vector fields:

1S — x'Qo;
=5 (7.1)
i twiQo,' —-rS
8r = 8i = 1‘2_—7-2’ (72)
—ij,'j +1Q0; — x; S xS x,'ijoj Qo;
9 = = — — 7.3
' 2 —r2 PER R v el S 7-3)
In particular,
1 S + o' Qo; . Qi —wiw! Q; + Qo
d==(0+0)=—7"-—, 3 =0 —wd = = .
s 2( P + r) 20 +7r) i i — WiOor , :
(7.4)
Lemma 7.2. For any function f we have the estimate
A+1+1ghlafI+ (A +lghlafI S C Y 12" £, 10f1 S 181+ 184 f1,
|1=1
(7.5)
where |0 f|> = |30 f|> + |01 f|> + |32 f|> + |33 f|> and 8y = 8. Furthermore
= C \Z! |
07 f1S =) ——— (7.6)
ras trtlgl

32 £12 35 2
where |07 f|= =3, 50123 10a0p f "
Moreover, if k*F is a symmetric tensor then

|k| |k|LL ) J
k%P 9,0 <c< 0z 7.7
kP9, 8p¢| < 1+t+|q| 1] IE<1| }|. (1.7)
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Proof. First we note that if  +¢ < 1 then (7.5) holds since the usual derivatives 9, are
included in the sum on the right. The inequality for |3 f| in (7.5) follows directly from
(7.4); one has to divide into two cases r < ¢ and r > t and use two different expressions
depending on the relative size of r and ¢. The inequality for |df| in (7.5) follows from
(7.1) and the first identity in (7.3).

If t +r < 1 then (7.6) follows from (7.4), since |d;w;| < Cr~ " and the sum on the
right of (7.6) contains the usual derivatives. Since |2;jwi| < C and Q;;r = Q;;t =0,
for 1 <i, j < 3 it follows, by applying 8; = r '/ ; ; to the expressions in (7.4), that

03 f1 < Cr=ta+r)7" Y 12" £ (7.8)
11]1=2
Once again we distinguish the cases r < t and r > t and use different expressions for
d;. With the notation 9y = 29, (7.8) holds also for « = 0. Since [9;, 9;] = 0 it only
remains to prove (7.6) for 32. Since Sw’/ = 0, |Qpiw/| < Ctr=!, St +r) = 2(t +7)
and |Q0; (t + r)| < C(t 4+ r), (7.6) follows also for 8‘3.
The inequality (7.7) follows from Lemma 5.5, (7.5) and the commutator identity
[Z,01=ald;. O

Lemma 7.3. Suppose ﬁg¢ = F. Then

H trH +H
‘(43s— LL LL

rF
2gLL™ - 2gLL y )Bq(r¢) + 2gLL

r|H
< (1 AL |H|)r—1 31zl (7.9)
L+ lal 11=2

Proof. By Corollary 5.6,

Hpp trtH +Hip rF
‘(485 - 2gLLTd T pglLy >8q(r¢) + 2gLL‘

SrlAwdl +rIHILT1980] + [H| (r 13%¢] + 13| +r~"19]),

where A, = §79;9 ;. Here all the derivatives can be reexpressed in terms of the vector
fields Z and 9, using 7.2, yielding the expression (7.9). Note that

Y1 1209 < X< 1027 9| < Y= 1Z'¢l

100¢| < S S .
14+t |q] 14+t |q] (I+1ghd+1t+ g

O
Lemma 7.4. Let Z = Z"9,, be any of the vector fields above and let ck be defined by
[0, Z1 = c, Oy, ¢t = 0uZ".
Then ck are constants and
cLL = L = .
Furthermore

[Z,U] = —cz0,

where cyz is either O or 2.
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In addition, if Q is a null form, then
ZQ3¢, 0y) = Q, 0Zy) + Q(0Ze, 0Y) + 03¢, IV) (7.10)
for some null form Q on the right hand-side.
Proof. Since Z = Z% 9, is a Killing or conformally Killing vector field we have
0uZp + 08Zy = [fmgg, (7.11)

where Z, = mgg 7B In fact, for the vector fields above, f =O0unless Z = S in which
case f = 2. In particular,

LYLP3y2Z5 = 0.
If ¢/ is as defined above and Cap = c'm up = 0y Zg the above simply means that
crr = cEL = 0, which proves the first part of the lemma. To verify (7.10) we first

consider the null form Q = Qyg. We have
ZQap(0¢,0Y) = Qap(dZ, 0V) + Qup(d9, IZY)
+[Z, 0 1p0py — pPLZ, 01 + [Z, 3p1pday — P Z, gl
= Qup(3Zp, 0Y) + Qup(d¢, dZY) — cky (3, pdpyr — dpPd )
—Cly 0V — Da by V)
= Qup(0Z¢, V) + Qup(3¢, 0ZY) — ¢ Qup(09, IY)
_CgQ;wt(a‘P, o).
The calculation for the null form Qo (3¢, 9y) = m*# 0y 9y proceeds as follows:

ZQo@¢, 3Y) = Qo(IZ¢, dy) + Qo(d, IZY) +m*P[Z, d,1p0p ¥
+m*P 3o 1 Z, 3p10r
= Q0(dZ$, IY)+Qo(d¢, IZY) + m*Pcld,pdpyr + m*Pc) dud
= Q0(0Z¢., 3y) + Qo(3¢. IZY) + fm™Pd,pdps
= Q0(3Z¢, %) + Qo(d¢, IZY) + f Qo(d¢, dv),

where f is a constant associated with a Killing (conf. Killing) vector field Z via arelation
P 4P = fmeP. o

Lemma 7.5. If k%f is a symmetric tensor then

k“ﬁ[aaﬁﬁ, Z] = k%ﬁaaBﬂ, where k‘éﬂ = k“”c},ﬁ + kyﬁcya, ¢t =0, Z".

(7.12)
In particular k?ﬂ = 2k* and
lkzler < 2lklpT. (7.13)
In general
(k%P 3,05, 211 = > kPagopz”, (7.14)

L+h=I,|h|<|I|
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where
Kb = 3" b 7Kk = 27kt — 3" ZKk Y agih zK e
K=/ K+Z=J IK|<|J|-2
(7.15)
Jap

for some constants ¢y, v and dﬁfv. Here the sum (7.14) means the sum over all possible

order preserving partitions of the ordered multiindex I into two ordered multiindices I
and 1.

Proof. First observe that since the vector fields Z are linear in ¢ and x we have

[agﬂ, Z] = [0, Z13q + [3a, Z13p = cg By 3 + ¢,” 3, 0p,

which proves the first statement and the second follows since ¢ LL =0.
To prove (7.14) we first write

Z'(kPo,0p0) = Y (ZXKk*F)Z7 (340p).
K+J=I
Then we observe that

Zjaa35¢ — Z [Z‘”, I:leZ’ |:’ [Ztln L[z 8aﬂ]] ]]]ZJZ(P,

Jit+h=J, Ji=(11,.5tn)
(7.16)

where the sum is over all order preserving partitions of the ordered multiindex J =
(t1, ..., tg) into two ordered multiindices J; = (t11, ..., t1n) and Jo = (121, ..., o). It
therefore follows that

kJocﬂZ_ Z (ZKkaﬂ) [Z“,[le [ [thl [Z”vaaﬁ]] ]]]

K+L=J, L=(t1,....,t1)
The desired representation follows after taking into account that
(ZXKkP)(Z, 824) = —(ZX kS )ou0p.
O
Corollary 7.6. Let (), = O+ H*3,05. Then with 2 = Z + ¢,
O,Z¢ — 20,0 = —(ZH + HS )o,056. (7.17)

As a consequence, we have

~ A ZH H ZH H
’DgZ¢—ZDg¢|§<| |+ H| | oL + | |LT>Z|821¢|' (7.18)
14+t +|ql I+ |q] =1
In general
O,z —2'0,0=— Y. A"Po,02"9, (7.19)

h+h=I,|h|<|I|
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where
APP= 3" ey 2M g =2 g~ N 2Mu N ay 2M e,
\M|<]J]| M+z=J \M|<|J|-2
(7.20)
We have
~ . 1
0.2'¢1 < 12'0,01 + TFiT > > VAR IREVAR

IK|=], [J1+(K|-D =[]

1 /
B @ 2

K< [JI+(K]|-D4=|1] 4K =D <|1]-1

+ > |zf”H|)|azK¢|, (7.21)
(K 1)<l -2

where (K| — 1) = |K| — 1if|K| > 1and (K| — 1)3 =0 if |K| = 0.
Proof. First observe that
2846 = (Z+ c2)0¢ + (Z + c) HP 029
= 0Z¢ + H02,2¢ + (ZH*)o240 + (H + czH®)oky0
= 0,20 + (ZH"")02p + (HY' + czH)02 5.

Recall now that the constant cz is different from 0 only in the case of the scaling vector
field S. Moreover, in that case

HY + csHY = 0.

The inequality (7.18) now follows from (7.17), (7.13) and the estimate (7.7). The general
commutation formula (7.19) follows from the following calculation, similar to the one
in Lemma 7.5. We have

20,0 =2"0¢+2"HP92p =020+ Y 2 HPZ50%¢.
J+K=I

If we now use (7.16) we get (7.19) as in the proof of Lemma 7.5. The inequality (7.21)
now follows from (7.19), (7.13) and the estimate (7.7). 0O

8. Basic Energy Identities
We now establish basic energy identities for solutions of the equation

Og¢ = F. 8.1

We denote by %; the hypersurfaces ¢+ =const, by C ,[12 (g) the forward light cones with a
vertex at (¢, 0) and truncated at times ¢, . We also denote by K ;12 (g) the interior of the
light cone C,tl2 (g) and by B; , the ball of radius r centered at (¢, 0).
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Lemma 8.1. Let ¢ be a solution of (8.1). Then for any t1 < t, and an arbitrary q < t,

f (—g°°|at¢|2+g"fai¢a,~¢)=/ (—&%0,01> + & 3:00;9)

[ Ztl

15 l
2 [ [ (035000 506" dustys + F9). 82)
1 po

and

J

(- g°°|at¢|2+gifai¢a,~¢)+/,2 )|5¢>|2=f3 (— g%10:0 1> + g7 0:99;9)
n

t—q C ( 1—q

1
w2 [ (sug o000 - 08 aupp0 + Foro)
Kt12(q) 2
2 /C w (2" = m“") Ladpddrp + (8 — m*)0appp). (8.3)
l

Proof. We multiply Eq. (8.1) by 9,¢ and integrate over the space-time slab between the
hyper-surfaces %;, and %;,. We have

1% t
_A /EI gaﬁ8§ﬂ¢8t¢ = /tl /EI (g“ﬂ3,3¢3z3a¢ + 3ag“ﬁ85¢8,¢)

—~ / g opp0i0 + / g% 9pp0;¢

2 Zy

N =

/ (— £%19:91* + g 0:99;9)

2,2

1 .

2 /E (8™l + 7 0ipd;¢)
1

%) 1
+ / / (s 9315 — 5308 2ud93).
131 po

and the desired identity (8.2) follows. Similarly, integrating over the region K tt|2 (q) we
obtain

/ (— 8109 1* + " 0ip39) — f (28" Ladppdig + g dupdp )

By €@
= / (— g%10,01* + 8" 900, 9)
B~
off 1 af
2| (98950016 — S8 00050 + Firg).
K7 (q)

n

Subtracting the Minkowski part from the metric g in the C,tl2 (g) integral leads to the
identity (8.3). O
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Corollary 8.2. Let ¢ be a solution of Eq. (8.1) with a metric g satisfying the condition
that

1
Hl <. H? =g - 8.4)

Then forany 0 <y <1,

5 y 0¢|? / > 2
/2 (191> + |Vo|?) / /2 Ty =4 s (19:01> + |VepI*)

1

48 / / 1905 900, — Eatg“ﬁmaﬂqs + Fog)
1 pos

5]
+2/ /): W (8" = m“")o,pdpp +2(%F — mt")appd¢|.
. (8.5)

Proof. First we note that (8.4) implies that

3

J(001 +1Vegl?) < =%l + g1 0,6 < 3 (|at¢>|2 +1Vegl?).  (8.6)
The inequalities (8.3) and (8.2) imply that

faz( 199" sf (= 81001 + 8" 8ipd ;) (8.7)

EZ
1
42 [ aug 000~ 385" 0,090 + Foo
Kzlz(q)
42 [, 2 - L0 + @ - g ©8)
Cll (@)
5/ (g™l + g %ipd; )
<,
15 1
+2/ / ‘%g“ﬂaﬁ(b@td) _ Ea,g“ﬂama,gcp n F3t¢‘
131 p»

+2/,2 ’2(g°“3 — m*)Lodppd,p+ (g% —m“ﬁ)ao,qsaw‘. (8.9)
Cr(q)

We multiply the above inequality by an integrable factor y (1 4 |¢|)~! =2 and integrate
with respect to ¢ in the interval (—oo, ;] to obtain:

)/|3¢|2 5/ ( 2 2
< 10:1° + | Vx9|°)
/ /2 A+1gn =4y,

1
+2 / / 908350019 — 30830050 + F 0|
1 o

n
Y 6 B
+2fn /2 T3 jqner |8 —m )3t

+2(gkf (8.10)
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where we also used (8.6). On the other hand using (8.6) and (8.2) yields

5
/Z(|a,¢| +|Veol?) < 3/ (13:81* + [Ve|?) (8.11)

8 2 1
+3 f / 90535006 — 3008 DB + Fagl.  (8.12)
151 pos

and the corollary follows. 0O

9. Poincaré and Klainerman-Sobolev Inequalities
We now state the following useful version of the Poincaré inequality.

Lemma 9.1. Let f be a smooth function. Then for any y > —1/2,y # 1/2 and any

positive t,
|f ()1 dx / 10, £ (x)[? dx
d _— 1
/<1+|r <€ | WPdSte | e T O
S@+1) R3

provided that the left-hand side is bounded. Here S 41y is the sphere of radius t + 1 and
r=|x|.

Proof. Using polar coordinates x = rw we write

t+1
If(r, o) = f(t+1,w)* = —2/ 3 f(p,w) - f(p,w)dp.
r
Hence
t+1
|f<r,w>|2r2§|f(r+1,w>|2<t+1>2+2/ 18- f (0, )| | f (o, @) p*dp, if r<t+]1.

Therefore multiplying by (1 + |t — r|)~2~2" and integrating with respect to r from 0
tor+ 1:

/f“ |f(r,®)?r?dr </'+‘|f(z+1 L o)|? (¢ + 1) dr
o (4]t —rp>2r ~ (1+ |t —r)2
/’“ /’“ 19, f (0, D) f (p, w)]
(1+ |t —r)2t2r
SIft+ 1Ll @+ 172

+/’+1 fp 16,/ (p. @)1 (p. )]
(L 10— r)?+r

p2 dopdr

dr ,02 dp

110, f (0, 0)If (p, )]
(I+1r = ph 2
19, f (. ) p?dpy 112

I+ 10— ph? )

<Ife+ Lol + 1>2+/ p* dp
0

Sife+tofe+ 17+ ([
0

><(/t+l |f(p, )| p*dp )1/2
o (41— ph*2 '
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where we first changed the order of integration and then used Cauchy-Schwarz inequal-
ity. It therefore follows that

1+1 2.2
Afro)lTridr , ) /
/o (14|t —r)>+2r S+ Lol ¢+ + i

and if we also integrate over the angular variables we get

| f(x)]>dx 5 18, £ ()| dx
/ (1 + |t — r|)2+2r S / /7S + / L+t —=rD2r’

[x|<(t+1) S+ [x|<(+1)

H1 18, f(p, 0)|? p*dp
1+t — ph?

)

On the other hand, if we instead integrate from ¢ 4 1 to 2(¢ 4+ 1) we similarly obtain
/2(t+1) |f(r, a))|2r2 dr - /-2(t+1) |f(t +1, a))|2 (t + 1)2 dr
1 ([ —rp2+r ™ (14|t —r))2+2r
/2<'+‘>/' 18, f (p, )| f (b, @)
w1 (L =rp2+2y
SIfe+1L o)l ¢ +1)?

,o2 dpdr

+/2(t+1) /2(t+l) 10, f (p, w)|| f(p, w)| r pz dp
1+1 p (14|t —rp>*2r
SIfe+ 1L o) @+ 1)
+/2(’+” 10- f (0, )| f(p, @) P2 dp
w1 (L= p1H2r ’
and as before it follows that
/ |/ (0)]* dx / FRds + / |8, f () > dx
(1 + 1t —r)2+2r s (1 + 1t —rp2’
(t+D=|x[=2(+1) S+1) T+ =<Ix|=2(+1)

Finally, in the region » > 2(¢ + 1) the estimate (9.1) would follow from the Hardy type
inequality:

2 2
/ lﬁifz)lzf_xf / WJNHI)_“ZV / If17dS,  (9.2)

[x|>(+1) |x|>(+1) Se+1)

that hold provided the left-hand side is bounded. One can for the proof assume that f
ha compact support since we can choose a sequence of compactly supported functions
converging to a given function f in the norm defined by the right hand side as long as
the norm in the left of f is bounded. Equation (9.2) for compactly supported smooth
functions can be easily seen from integrating the identity

2 (2 2 2
ref 2r r 2
0r (m)=mf'3rf+(1—27/)’mf , y #—1/2
fromr =t 4 1 to r = oo and using Cauchy-Schwarz as above. O

We now state the global Sobolev inequality, which is due to S. Klainerman [K1].
Proposition 9.2. The following inequality holds for an arbitrary smooth function ¢,

o I+t 41t —rDA+ 1t —rD? < C Y 12" )l 2.
I111=3
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10. Decay Estimates for the Wave Equation on a Curved Space Time

In this section we will derive some basic estimates for the scalar wave equation on a
curved background. The results will require some weak assumptions on the metric g,
which will be easily verified in the case of a metric satisfying the reduced Einstein
equations.

We consider the reduced scalar wave equation:

Be¢ = F. (10.1)

The following result is a generalization of the lemma in [L1] to the variable coefficient
case:

Lemma 10.1. Suppose that ¢ satisfies the reduced scalar wave equation (10.1) on a
curved background with a metric g. Suppose that H*# = g®f — m*P satisfies

1 1
. and |H|LT<—L (10.2)

|H| < <
4141+ |x]

N

whent/2 < |x| <2t and
o0 dt 1 3
I H(, lpwpy—— < =, where Dy ={x € R% 1/2 < |x| <21}. (10.3)
0 1+1¢ 4

Then for any t > 0 and x € R,

(41 + XD 1990 < C sup Y 1 Zg(x, )l

0§T§t|1|<1

t
+C fo (A +DIFE I mmy + Y A+ D712 6@ e, dr.
=2
(10.4)

Proof. Since by Lemma 7.2

A+t —rDIdgl+ A +1+md¢l <C Y |Z'¢l.  r=lxl, (10.5)
[]=1

the inequality (10.4) holds when r < ¢/2 4 1/2 or r > 2t — 1. Furthermore, since

(1 +1)94¢] = Clog(ré)| + Clo|, r=1 (10.6)
it follows that
(A +t+7)00pl <C Y 1Z'pl+ Clog(re). (10.7)
[11=1

Hence it suffices to prove that |d, (r¢)| is bounded by the right-hand side of (10.4) when
t/24+1/2 <r <2t — 1. By Lemma 7.3,

Hpp rHlcr 1 i
40, — 5700, 0)| S (1+ +IH)r Y 120l
| s szL q/%4 | 1+|q| |§<:2

+HH[r 3, (rd)| +r|F| (10.8)
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and using the decay assumptions (10.2) and (10.7) we get

Hip |H | Z'¢|
|49, — zg_LL8q>8q<r¢)| < 1—+t|a¢,<r¢)|+uz<2 o TCU+DIFL
when 1/2+1/2<r<2t—1. (10.9)

Along an integral curve (t, x(¢)) of the vector field 3; + HLE(2gLL)~19,, contained in
the region 7/2 + 1/2 < |x| < 2t — 1, we have the following equation for ¥ = 9, (r¢):

\%w) <Ayl + f, (10.10)

where i = C|H|/(14+t)and f = Ct|F|+C 2\1\52 |Z'¢|/(1+1). Hence multiplying
(10.10) with the integrating factor e , where H = f fz(s) ds we get

|2 (pe )| = e (10.11)

If we integrate backwards along an integral curve from any point (¢, x) in the set /2 +
1/2 < |x| < 2t — 1 until the first time the curve intersects the boundary of the set at
(r,y),|lyl=t/24+1/20r|y| =21t — 1, we obtain

t
w0l < e ([ 1.l o)y )

t t n
+ / exp f (@, e do )If (2l de,

where the L° norms are taken only over the setz/1+1/2 < |x| < 2¢ — 1. (Note that any
integral curve has to intersect either of the two boundaries r =¢/2+1/2orr =2t — 1
since the slope of the curve x (¢) has to be close to 1 when Hy p is small.) The lemma now
follows from taking the supremum over x in the set#/2+1/2 < |x| < 2t — 1, using that
on the cones |y| = 7/2 4+ 1/2 or |y| = 2t — 1 we have that || < Cr|9,¢| + Cl¢| <

C Y\ 71<1 1Z'¢l. by (10.5), and using that by (10.3) [y [lA(0. )|~ do < §. O
For second order derivatives we have an estimate which gives a slightly worse decay:

Lemma 10.2. Let ¢ be a solution of the reduced scalar wave equation on a curved
background with a metric g. Assume that H** = g — m®P satisfies

g lgl+1
4 1+1t+ x|

I
Y 1Z'HI <3 and Y |Z'Hlp + | HLT <
[]1=1 [1]=1

(10.12)

when t/2 < |x| <2t for some &€ < 1. Then, fort >0, x € R3, we have

(L+1+1x) Y 102'¢(t, 0)| < C sup (%)C D12 i)

1<l 0sv=t 1 11<2
/1 41\C¢
c <—) ( 1 Z'F(z, )l
+ /0 =) (012 FE)l=m,
[11<1
+ Y A+ N2 oy ) dr, (10.13)
[71=3

where D; = {x € R3; 1/2 < |x| < 2t).
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Proof. First when r < t/2 or r > t/2 the lemma trivially follows from (10.5) with ¢
replaced by Z¢ so it only remains to prove the lemma when #/2 < r < 2¢. We have

0,Z¢ = Fz = ZF 4+ (0,2¢ — 20,9), (10.14)

where by (7.18) the additional commutator term can be estimated by

B2 — 25,01 < (|ZH| +|H]| |ZH|LL+|H|LT) S 19zl
g g ~s

141+ |q| 1+ |q| =

<
1+t+ > 10z’ ¢l, (10.15)

171<1

where we used the decay assumption (10.12). Furthermore with the help of (10.7),
applied to Z’ ¢ in place of ¢, we obtain

~ o~ g I I
|0,Z¢ — ZOu9| < RETENPIE |q|)2(|§1 |0, (rZ"9)| +|”2<:2|Z ¢|). (10.16)

Hence by (10.9) applied to (10.14) in place of (10.1) we get

1Z¢] +—5 > 10y (rZ" )| + t(ZF| + | F|)
1+¢ 141 4
[1]<3 [1]<1

43; = =~ LLa ) (rZ) < >

(10.17)
whent/2 + 1/2 <r <2t — 1. Therefore

fLLLLMZw rz ¢)|\_ s " 0,02 ‘oi+c )y S

11<1 <1 |1|<3
+Ct(|ZF| + |F)). (10.18)

1
(40, — 4 ¢|

The desired result follows multiplying (10.17) by the factor (1 4 £)~% and integrating
as in the proof of the previous lemma. Along an integral curve we have the equation

<(1+1"Cy, (10.19)

| (v +07)

where

A 4

_ I
V= 10,(Z'$)l, T

[11=<1 171<3

(10.20)

The lemma now follows as in the proof of Lemma 10.1. O
We observe that similar estimates hold for a system
Oguv = Fuv. (10.21)

In particular, in our case, certain components of F),, expressed in the null-frame will
decay better than others and for these components we will also get better estimates for
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¢uv- Since the vector fields L and L commute with contractions of any of the vector
fields {L, L, Sy, S»} proofs of the preceding lemmas imply the following result:
Corollary 10.3. Let ¢, be a solution of reduced wave equation system (10.21) on a
curved background with a metric g. Assume that H*F = g — m®P satisfies

g _E g+t
l%} 1z H| < ;- and l;} \Z'H|pL + |H| T < <7 THi (10.22)
when t/2 < |x| < 2t, for some &€ < 1 and
f S HE ) ey 2 < £ (10.23)
0 ! 14+¢t 4

where D; = {x € R3; t/2 < |x| < 2t}. Then forany U,V € {L, L, S, S>} and any
>0 xeR3:

(A +1+xDIdg . D)lluy < C sup Y 12 (z, )|

0515’\1\<1

t
+ch (A +DUIFluy @ m,)

+ Y +o Nz .)||LQO(DI)) dr, (10.24)
171=<2
(11 41x) 30 192'910.2)] = C sup (5)7 2wl
17]<1 =r=t 112
T 1+1\CE I
+C/0 (1) (%}1 IrOIZ! FICe, Y,
+ 21+ 0Z (@ ey ) dr. (10.25)

171<3

Proof. By Lemma 7.3 for each component we have the estimate

H;p EH +HLL
r|HlcT -1
(1+ e L1 Y 12 g, (10.26)

|1]<2

and since d; and 9, commute with contractions with the frame vectors L, L we get

H;p rH + HLL rFyy
)(433 C2gLL™ T 2glLy )3 (réuv) + 50 24LL
r|H
< (1 4 CHler | |H|)r*1 A (10.27)
I+lql |1]<2
As before it also follows that
(I+1+1000loy < Y 12161+ 18, d)luv. (10.28)

[71=<1

The lemma now follows as before. 0O
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11. Energy Estimates for the Wave Equation on a Curved Space Time

In this section we derive the energy estimate for a solution ¢ of the inhomogeneous wave
equation

Cepp = F (11.1)
under the following assumptions on the metric g = m*# + H*f:

(1+1gD~ " H|pL + 10H| L + [8H| < Ce(l +t>*1
(+ gD~ [H| +|0H| < Ce(1+0)72(1 + |g)) "2 7. (11.2)

Proposition 11.1. Let ¢ be a solution of the wave equation (11.1) with the metric g
verifying the assumptions (11.2). Then for any 0 < vy < 1/2, there is an & such that for

£ < &,
y 13> / 5 // |d¢p|?
0 <38 d + Ces _—
/ 9I? / /): (1+|61|)1+2V 20| ¢! o Jyx, 1+1
t
+16/ |F||3;]. (11.3)
0 %

Remark 11.2. Observe that by the Gronwall inequality the energy estimate of the above
proposition implies #¢ growth of the energy. For similar estimates, proved under different
assumptions, see also [S1, A2, A3].

Proof. The proof of the proposition relies on the energy estimate obtained in Corol-
lary 8.2,

y 139l ) o
/ (16 + Vo) f/z RSP 54/20 (102 + 1VoP)

+8/0 / |90 91 — Eatg“ﬁawa,g(p + Fd, 0|
X

t
14 LB Lp
+2/f —————|(¢* — m*P)3,pdpp +2(gXF — mEP)appd,e|.
L )y, g | )3 pdpe + 2(2 )0pp0,8|
We start by decomposing the terms on the right hand side with respect to the null frame.
10.8“P0ppdp| < (|H|10H| + [(9H) | + |0H|) |9¢|* + [0H||3¢] |9¢b].
Similarly,

10,80, 03p| < (g — ml 19| + 1(d) 2] + 19g]) 1961” + 10g] 14| |96

Therefore, using the assumptions (11.2) on the metric g, we obtain that

1 _
19287 3503, — Eatgaﬂaacbam <5 japP + 1912, (11.4)

&
141 (1 + |gt+2r

Decomposing the remaining terms we infer that

(8% — m*P)dupdpp| < |Hpo||3p|* + |H||dp]| 06|
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Similarly,
(8" = m“P)Lodppdrp| < |HiLl1001” + |H|136]130].
Once again, using the assumptions (11.2), we have
2(¢*" — m*P) Lo dpdd + (g“ﬂ — m*?) 3 p0p0|

P PP 13612, (11.5)

A (1+ | HZv
Thus

y 109
1007 +/ f A+ g0

|a¢>|2 |0¢|? /f/
4 9 C 8 F|10:¢|,
= />:o|¢| * 8/ /2 1+1 (1+|q|>1+2y)+ 0 zf' 113:9]

and the desired estimate follows if we take ¢ so small that Ce < /2. O

12. Estimates from the Wave Coordinate Condition

In previous sections we have shown that one only needs to control certain components
of the metric in order to establish decay estimates for solutions of the reduced wave
equation. In this section we will see that the wave coordinate condition allows one to
estimate precisely those components in terms of tangential derivatives or higher order
terms with better decay. Recall that the wave coordinate condition can be written in the
form

9, (gﬂvm) =0. (12.1)

We have the following decomposition:

W/l det gl = (m*" + H*)(1 — %trH + 0(HY)),

where H* = g% — m®  hap = gop — mep. Recall also that g is the inverse of gup
and H*? = —m**m"Ph w + O (h?). Therefore we obtain the following expression for
the wave coordinate condition:

9, (H‘” — %m“” tr H+ 0’“(H2)) —0. (12.2)
Using that we can express the divergence in terms of the null frame

" = Ly0gF" — L, 0;F" + AyoaF", (12.3)
we obtain:
Lemma 12.1. Assume that |H| < 1/4. Then

|0H |7 S10H| + |H||0H|, |9twH| S |0H |+ |H||9H)|. (12.4)
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Proof. Tt follows from (12.2) and (12.3) that

|LM8(H’“’—%m’”tr H)| < |0H| + |H||3H]|. (12.5)
Contracting with 7, and using that mr; = 0 gives the first inequality and contracting
with L, and using that mp;, = —2 gives the second since
Hip+tr H=1tH. (12.6)
]

We now compute the commutators of the wave coordinate condition with the vector
fields Z.

Lemma 12.2. Let Z be one of the Minkowski Killing or conformally Killing vector fields
and let tensor H satisfy the wave coordinate condition. Then the estimate

0H’|, 7 < Y 10Z/H|+ > \ZH| .. |zPH| |0z H|
J1=<H| L+ =1, k>2
holds true for the expression
~ I ~ ~ 1
Hlfu = ZJH,w +Z CJMVZJHVU, where Hy, = Hy,, — Em/w”’H (12.7)
1<
with some constant tensors ciw such that chL =0if|J|=1I]— 1
Proof. The wave coordinate condition (12.1) can be written in the form
BM(GW) =0, where G*¥ = (m" + H"")\/| det g|.

Let Z be one of the Minkowski Killing or conformally Killing vector fields. Then for
any vector field F we have that

20 = (2Pt Y ez ) =i X ef 2l E),
[J|<|I| /<]

where ¢ J“y are constants such that
ele—se if |Jy=I] and clE=0, if |J|=I—1
Jy =90y = JL =Y = :

The last identity is a consequence of the relation between CJI ay and the commutator con-
stants cqg = [dy, Z]g for which we have established that ¢, ; = 0. It therefore follows
that

o0u( Y ) Z'Gy) =0.
MEY

Decomposing relative to the null frame (L, L, Sy, S2) we obtain

(Y e B 216 =0 (Y o] 721G 0) - Auda( Y] ¢ 276 ).
1= 1=1 M
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We now contract the above identity with one of the tangential vector fields 77, T €
{L, S, S»} to obtain

I~ I Ly J a7l
L' T"9,2'Gyy+Y_ ¢, T 0,27Gy| S > |02'G|.
1<l1| 71=11]

We examine the expression
L' 1°2'9,G,, = LV T”BqZ1<(mw + Hy)/ detgl)

- Z L”T”8q<(Z11HyU)ZJZ\/|detg|>,

Ji+Jh=J

since mpr = LY TVm,,, = 0. The desired estimate now follows from the identity
Jldetg| = 1+ f(H), which holds with a smooth function f(H) such that f(H) =
—trH/2 + O(H%». 0

We now summarize the results of this section in the following

Lemma 12.3. For a tensor H obeying the wave coordinate condition

|0H LT S|0H| + |H|[9H], (12.8)
and
0ZH|L S10H| 7+ Y [0Z'H|+ > 1Z'H||9z” H). (12.9)
|71<1 11+J1<1
In general,
0Z'Hlpr S Y 10Z7HI+ ) (027 H]
VEN MBS
I I I
+ > |z™H|---1z"H|jaz" H], (12.10)
1 et | <111 m=2
and

0Z'Hiee < ) 10Z7HI+ ) 10Z’Hler+ ) 102 H|
[J1=I] J1=]-1 IK|=<|I]-2

+ Y |z™H|--1z"H||az" H]. (12.11)
|t I <11, w2

The same estimates also hold for H replaced by h.

Proof. This follows directly by the previous lemma with the help of the identitiesm 7 =
Oandc’ =0 o
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13. Estimates for the Inhomogeneous Terms

In this section we will show that the inhomogeneous terms of the reduced Einstein equa-
tions can be estimated in terms of tangential derivatives, for which we have better decay
estimates, or tangential components which in turn can be expressed, using the wave
coordinate condition, in terms of tangential derivatives and lower order terms. Recall
that according to Lemma 3.2 the symmetric two tensor A, = gu» — iy, verifies the
reduced Einstein equations of the form:

Oghyn = Fuuu(h) (3R, 3h),
Fyuy(h)(@h, dh) = P(@,h, 3,h) + Q. (0h, 3h) + Gy (h)(3h, 3R),  (13.1)

1 1
POk, dyp) = 30tk dytrp — Eaﬂk“ﬂav Pap- (13.2)
Here Qv are linear combinations of the null-forms and G, (h)(dh, dh) is a quadratic
form in 0k with coefficients that are smooth functions of /4 and vanishing at 4 = 0.

Lemma 13.1. The quadratic form P satisfies the following pointwise estimate:

|P(@p, 3k)| o7 S 10p | 13k] + 19p | |9k, (13.3)

|Pdp, 0k)| S 10p | 7|0kl et +10p |LL19k| + [0p [ 10k|L L. (13.4)

Proof. The first part of the statement follows trivially from (13.2). To prove (13.4) we
use (5.9) applied to R*9,, p in place of p and SVd,k in place of k, for any vector fields
T and S, to obtain

IT#S” POup, 0k S 1TH0up 714! S" 00kl T1A
HITH0,p |LL]S" k| +1TH9,p | 1S 0vklLL, (13.5)
which proves the lemma. O

Using the additional estimates on the /7 ; component, derived in Lemma 12.3 under
the assumption that the wave coordinate condition holds, we obtain the following:

Corollary 13.2. Under the additional assumption that h satisfies the wave coordinate
condition (3.4), the quadratic form P obeys the estimate

|P(@h, 9h) 7y < |9h] [9h], (13.6)

|P(3h, dh)| < |8h|3, + 19k |9h] + |k |3k, (13.7)
Moreover,
|ZIP@h, dh)| < Z (1027 hl7 10Z% 7y + 1827 n| 1025 1)

|TI+IK <]

+ > 10z hlr19Z%h)

[I+IK]<I7]-1

+ > 1az'njjazkn)

|1+ [<I1]-2

+ > VALY TERVAS VAR NIV A IR
i et <171, m=3
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Proof. The inequality (13.6) follows directly from (13.3). To prove (13.7) we use (13.4)
and that by the wave coordinate condition |0k|r; < |9h| + |k| |0k].

We now note that Z! P(3,,h, d,h) is a sum of terms of the form P(3,Z7h, d5Z% h)
for some o, 8 and |J| + |K| < I:

1Z'P@h,on) < C Y |P@Z'h.0Z5h)).
[JI+IKI=I]
It follows from Lemma 5.4 and Lemma 12.3 that

D IPOZ' R, 0Z5m S Y 1027 hlruldZF hlzey 4+ 1027 kL 1025 Al
[J1+IKI=IT] [JI+IK|=I]

S Y 1Z7RNZRR + 102 hiqy 1025 hiy

|JI+IK <]
+ ) ( S 10z her + 3 1927 h|

[ 1+K <0< [T ]-1 1771<1J1-2

+ Z |meh|-.-|z’2h||azflh|>|az’<h| (13.8)

i+ Al <I ], m=2
which proves the lemma. O

Proposition 13.3. Let F,, = F;;,,(h)(dh, 0h) be as in Lemma 3.2 and assume that the
wave coordinate condition holds. Then

|Fly < 10h]10h] + |k 19k (13.9)
and
|F| < 18h13, + 18k |3k + || |9k, (13.10)
\ZF| < (10h]710 + |0h] 4 || 10k])(10ZR| + |8R]) + (|0Zh| + | Zh| |0h])|9A],
(13.11)
1Z'F| < Z (1027 hlgu 1025 hl7 + 1027 ) 1025 h)
|1+ K] <|1]
+ Z 10Z7 h| 71025 h| + Z 1027 h|10Z% h)
|I+IK|<I7]-1 |JI+IK <1112
+ Z |Zmh|- 123K 10Z22h)|0Z 7 ). (13.12)

Vil ot I |, m=3
Proof. First

|Z!G 1, (h) (3R, dh)| < C Z VA AR VA AN EVA IREV A TR
I+ A I <] k=3

Since Z Q(du, dv) = Q(du, dZv)+ Q(dZu, dv) +a" Q;;(du, dv), and | 0., (3h, k)|
< |dh||0k| + |9k| [0k it follows that

1Z' Q@ 0 < C Y 1Quw@Zh0z8m <c Y 10z h|[8Z%h).
[JI+lkI<|1] [J|+Ik|<|1]

O
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14. The Decay Estimates for Einstein’s Equations

In this section we will establish the improved decay estimates for Einstein’s equations.
Our strategy is to use the weak decay estimates, obtained from the assumed energy
bounds, to prove sharper decay estimates and then to recover the energy bounds in the
next section.

Theorem 14.1. Suppose that for some 0 < y < 1/2,

10Z'h| < Ce(l+1+1g)™ V27U +1g)" V>, |11 < N/2+4, (14.1)
|1Z'h| < Ce(1 + )71, g=1, [I| <N/2+4 (14.2)

hold for 0 <t < T.Then for0 <t < T we have

1ZTh) < Ce(Q+1+ gD VYA +1gD" 7Y, Il <N/2+4, (143)
0Z'h| < Ce(Q+1+1g) 27U+ 1gDY?>Y, I <NJ/2+3. (14.4)

Assume also that h satisfies the wave coordinate condition. Then for0 <t < T we have

|0kl L7 4+ 10ZhlLL < Ce(14+0)7'"%,  and |kl 7 +|Zh|LL
<Ce(1+07'1+1q). (14.5)

Furthermore if in addition h satisfies Einstein’s equations then for ¢ sufficiently small
and 0 <t < T we also have

ohl7y < Ce(1+07",  |hlzy < Ce(l+07" 1+ g, (14.6)

|0k < Ce(1+1)""In@2 +1). (14.7)

In general, there are constants My, Cy and e > 0 such that if ¢ < ¢y, then for
[I|=k <N/2+2

10Z'h| < Cre(Q + )" Mee and 1 ZTh| < Cre(1 + )M (1 1 |g)).
(14.8)

Remark 14.2. We remind the reader that, as stated in Remark 2.4, our estimates make no
distinction between the tensors 2 and H = —h + O(hz). In particular, one can directly
verify that the conclusions of the theorem also hold for the tensor H.

First we note that all the estimates (14.3)—(14.8) trivially follow from the assumptions
(14.1)—(14.2) away from the light cone, thus the theorem is only useful in the region
t/2 < |x| < 2t. The estimate (14.3) follows from integrating (14.1) from ¢ = 1, where
(14.2) hold. Similarly the second parts of (14.5), (14.6) and (14.8) follow from integrat-
ing the first and using (14.2). It follows from (14.3) and Lemma 7.2 that we have the
better estimate (14.4) for the derivatives tangential to the outgoing Minkowski cones.
The inequalities (14.5)—(14.8) for tangential derivatives certainly follow from (14.4), so
it only remains to prove these estimates for a derivative transversal to the light cone.

The missing improved estimates for a (d; — 9,) derivative transversal to the light
cones will be obtained, in the case of (14.5), from the wave coordinate condition, see
Sect. 12, and for (14.6)-(14.8), from integrating the reduced Einstein wave equations,
see Sect. 10. The estimates from the wave coordinate condition are easily obtained. In
fact the first estimate in (14.5) follows directly from Lemma 12.1 using the estimates
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(14.1), (14.3) and (14.4) and the second estimate in (14.5) follows integrating the first
from g = 1, where (14.2) holds. However, the wave coordinate condition does not give
estimates for a transversal derivative of all components of the metric and the remaining
components have to be controlled by integrating the wave equation expressed in polar
coordinates. The estimates for the transversal derivative obtained from the wave coordi-
nate condition rely on a decomposition of the metric with respect to the null frame. On
the other hand, the estimates obtained from integrating the wave equation are based on a
decomposition of the wave operator in terms of tangential derivatives and a transversal
derivative.

14.1. Proof of (14.3) and (14.4). For a fixed angular variable @ we integrate in the
radial direction and use (14.1) and (14.2),

t+1
Z' 0t r )] < 1Z0hG 4 1, ) +/ 19,2t p, )] dp
r

o Ce +/’+1 Cedp
~Ml4+t o ), A+t+t—pDVEHEYA + |t — pl/2ty
C Ce(1+ |t —rp'/?ty
< P e(1+1]t—r) (14.9)

141t 1+t +nr)/7y

The estimate (14.3) now follows. By Lemma 7.2 and (14.3)

_ 1 1 /2=y
PP — o ATt L,
I+i+lal 570 (L+1+ g3ty

which proves (14.4).

14.2. Proof of (14.5). We now show that the wave coordinate condition allows one to
control certain components by lower order terms and terms with fast decay.

Lemma 14.3. Suppose that the estimates (14.1)— (14.4) hold and that h satisfies the
wave coordinate condition. Then

Y10z nie+ Y 10Z7hler S0 10Z8R + eI+ 14 1g) 7.
1<k [71<k-1 K|<k-2
(14.10)

Here the sum over k — 2 is absent if k < 1 and the sum over k — 1 is absent if k = 0.
Furthermore

1
1+ 1q]

(Z|Z1h|LL+ o o 1Zhier+ ) IZKh|>(t,x)
1<k [J|<k—1 |K|<k=2

S s > 10ZFRaL )+ ——. (14.11)
1/2<1yI<31/2 |k (22 I+
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Proof. We first prove (14.10). Using the estimates of Lemma 12.2 derived from the wave
coordinate condition followed by (14.1)- (14.4) we obtain

S 10z'Hi+ Y 10z Hir $ Y1820+ Y 192K n]
M | JI<k—1 |11k IKI<k-2

+ Y |Z"h|---1Z"h[10Z"h|

|11|+~~-+|Im‘§k;m22

< D ZFhI e +141g) " +e(l+1+1g) 7. (14.12)
K|<k—2

The proof of estimate (14.11) for |g| > ¢/2 follows directly from (14.3). Thus we may
assume that |g| < ¢/2. We now use the inequality

|H(t, ro)| < |H(t, (1 + Do)l + (A +1g))  sup [8,H(, (¢ +p)o)l,  (14.13)
lol=lgl+1

and the boundary condition (14.2) to conclude that

|Z'H|pL +1Z H| 7 +1Z5H]
S sw (12" Hlee+ 102" Hlr
1+ gl t/2<y|<2t

&
10,25 1) 0, 3) + ——

. 14.14
1+t ( )

The desired result now follows from (14.10). 0O

The first part of (14.5) now follows directly from the lemma with £ = 0, 1 and the
second part follows from integrating the first and using the boundary assumption (14.2)
as in the proof of (14.3).

14.3. Proof of (14.6)—(14.7). We will appeal to the L°° estimates of Sect. 10 for the
reduced wave equation

Behyn = Fuu,

where F),, is as in Lemma 3.2. We will now prove (14.6) and (14.7) assuming (14.1)—
(14.5).

Lemma 14.4. Suppose that the assumptions of Proposition 14.1 hold and let F,, =
Fiv(h)(0h, oh) be as in Lemma 3.2. Then

|Flry < Cet ™' =% |ah| (14.15)
and
|F| < Cet™" 727 |3h| + C|3h|3,. (14.16)
Proof. This follows from Lemma 13.3 using (14.1)—-(14.5). O

Using the first part of Corollary 10.3; (10.24), and (14.1)—(14.5) and the previous
lemma we get
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Lemma 14.5. With a constant depending on y > 0 we have

t
A+ 10hl7y (@, L~ = Ce + Ce/o (1+17)" [[oh(z, )l dr,

and

(14.17)

t
(1L+DlI9h(E, oo < Co + cfo (2 + 07 19h (.l + L+ D087 (7. ) ) d.

(14.18)

The estimates (14.6) and (14.7) now follow from the above lemma and the fol-
lowing technical result applied to ngo(t) = (1 + )| [0h|7y(2, )|L and no1 () =

I +Dl0h(, )l Loe:

Lemma 14.6. Suppose that nog > 0 and no; > 0 satisfy
t
noo(t) < Ce(/ (14 )" ngi(s) ds + 1),
0
t
no1(t) < C8</ (1+9)""npi(s) ds + 1)
0
t
+C/ (1 + )" noo(s)? ds
0

for some positive constants such that 0 < 16(C% + C)e < y < 1. Then
noo(t) < 2Ce, and  noi(1) <2Ce(1+yIn(1+1).

Proof. Let T be the largest time such that
t
No1(t) = f A +5)""no(s)ds+1<2, forr<T.
0

Then for t < T (14.21) holds and since

(14.19)

(14.20)

(14.21)

(14.22)

o0 o
/ (1+s)—1—V(1+y1n(1+s))ds=y—1f A+t e Tdr=2y""+1,
0 0

it follows that

Noi() <2Ce(2y ' +1)+1<3/2, fort<T.

Since Npi(¢) is continuous this contradicts that 7 is the maximal number such that

(14.22) holds. Thus T = oo and (14.21) holds forall r < co. O

This proves the first part of (14.6) and (14.7). The second part of (14.6) follows from
integrating the first using the boundary assumption (14.2) as in the proof of (14.3).
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14.4. Proof of (14.8) in case k = 1. We will now prove the first part of (14.8) for
|I| = 1, assuming (14.1)—(14.7).

Lemma 14.7. Suppose that the assumptions of Proposition 14.1 hold and let F,, =
Fivy(h)(0h, 0h) be as in Lemma 3.2. Then

|ZF| < Cet™"(|dZh| + |3h]). (14.23)
Proof. This follows from Lemma 13.3. O

Using the second part of Corollary 10.3; (10.25), and (14.1)—(14.5) and the previous
lemma we get

Lemma 14.8. If ¢ > 0 is sufficiently small then

t
(1+t)§ ||az’h(r,~)||LoosCe(1+t)08(1+/(1+r)—cf§ ||8Zlh(t,-)||Loodr).
0

171<1 171<1
(14.24)

The estimate (14.8) for |I| = 1 is now a consequence of the above lemma and the
following technical result applied to ny (t) = (1 +1)'=€¢ 3", _ 1027 h(z, ) || oo

Lemma 14.9. Suppose that n(t) > 0 satisfies

t
ni(t) < Ce(l +/ a +r)*‘n1(r)dr). (14.25)
0
Then
ni(t) < Ce(l +1)°e. (14.26)
Proof.
t
Ni (1) =1+/ A+ 'mi()de (14.27)
0

satisfies N1 (1) < Ce(l + v)~' Ny (r). Multiplying by the integrating factor (1 + ¢)~¢¢
and integrating we get N1(¢) < N1(0)(1 + 1)€¢ = (1 + 1) and the lemma follows.
m}

14.5. Proof of (14.8) in case k > 1. We will now use induction to prove the first part of
(14.8) for |I| = k + 1, assuming that (14.1)—(14.5), the first part of (14.6), (14.7) and
the first part of (14.8) for |I| < k hold.

Lemma 14.10. Suppose that the assumptions of Proposition 14.1 hold and let F,, =
Fuy(h)(0h, 0h) be as in Lemma 3.2. Then

|Z'F| < Cer™! Z 0z%n +C Z 10Z7h||0Zz%n|. (14.28)
IK|<I1] [ I+KI<IT] 1<K <]

Proof. This follows from Lemma 13.3 using (14.1)-(14.7). O
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By Corollary 7.6

Bez'n S1Z'FI+a+07" Y > 1z H)jpz5n)
IKI=<II], |JI+(K|-D+=|]

e+ Y (Y 12 H

IKI=HT  [JI+(K]I=D4=I]
+ Y 1ZHur+ Y 12 H)ezEn),
' 1+(K =D+ =[1]-1 7+(K =Dy =I1]-2
(14.29)
where (|[K| — 1)+ = |K| — 1,if |K| > 1, and 0, if | K| = 0. Using Lemma 14.3 we get

I+t > 1Z'H|L + 127 Hl 1
<k, | |<k=1, 10" |<k=2

4 C "
+Hz'H < ——+ 3 swp  pz7H@.y)l  (14.30)
L+t i =iz
‘We hence obtain
0,2"h) < Ce(1 +1)7! Z 10Z% h|+ Z sup |0ZH(t, )|10Z%n|.
K|<I1] J+IK|<|1|—11/2= D=2
(14.31)
Then we have proven that
Lemma 14.11. Let
ni(t) = (L+1) Y 102 h(t, )| L. (14.32)
<k
Then for |I| = k:
0,2 h1 < €1+ 072 (enk (1) + ng—1(1)?). (14.33)
By the first part of Corollary 10.3; (10.24), it therefore follows that:
Lemma 14.12.
t
ni(t) < Ce + c/ (1+ 07 (enk(r) + ng—1(v)?) dr. (14.34)
0

Our inductive hypothesis is nk—1()2 < Ce(1 + t)Ce so the bound n;(t) <Ce(1 +
1)2€¢ follows from:

Lemma 14.13. Suppose that
t
ni(t) < Ce(1+ 0 + Cs/ (1 + 1) 'ng(v) dr, (14.35)
0

then

ng(t) < Ce(l + 1)¢e. (14.36)
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Proof. Let Ne(t) = [y (1 + 1)~ 'ng(z) dr. Then [Nk (t)| < Ce(1 + )71 ((1 +1)C° +
Ni(1)). Multiplying by an integrating factor gives (Nj(r)(1 + n=2¢¢) < Cce(l +
1)717C% 5o Np(1)(1 + 1)~2¢% < C, and hence Ni(t) < C(1 + 1)2¢¢ and ni(r) <
2Ce(1 +1)%¢¢. O

This proves the first part of (14.8). The second part of (14.8) follows from integrating
the first and using the boundary assumption (14.2) as in the proof of (14.3).

15. Energy Estimates for Einstein’s Equations

Recall the definitions

En(t) = sup »_ |az’h|2, (15.1)
Ost=t 2y /%
y 10Z1h|?
SNy =) // T (15.2)
= (1+1g)+27

In this section we prove the following theorem.

Theorem 15.1. Assume that g = h + m satisfies both Einstein’s equations and the wave
coordinate condition for 0 <t < T. Suppose also that for some 0 < y < 1/2 we have
the following estimates for 0 <t < T:

1. For all multi-indices I, |I| < N/2 +4,

19Z R+ A+ 1gD " HZ R + A + (1 +1g) 71192 A
< Ce(1+0)7V27 (1419127, (15.3)

2. For all multi-indices I, |I| < N,

1ZTH(s,q, w)| < Ce(1+1)7", for g=1. (15.4)

10H 770+ (1 + gD Hlzy + (1L + 1g)) ' ZH oo < Ce(1+071 (15.5)
4. For all multi-indices I, 1| < N/2 + 2,

10Z )+ 1+ gD "1 Z k| < Ce(1 +1)~1HCE, (15.6)

En(0) < &2. (15.7)

Then there are positive constants Cy independent of T such that ife < C; 2 we have the
energy estimate

Ex(t) + S(t) < 1682(1 + 1), (15.8)

for0 <t <Tandforallk < N.
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Remark 15.2. Once again we recall that our estimates hold simultaneously for the tensors
hand H = —h + O (h?). We shall freely interchange & and H in the proof below.

Proof. Recall that the components of the tensor /1, = gy, — m,, satisfy the following
wave equations:

g8y dph 0 = Fuu,

Fuy = P(0yh, 3vh) + Quv(8h, 8h) + Gy (h) (3R, dh), (15.9)

where
1 / 1 / !’
P(d,h, d,h) = -m‘m dyhae mPP 3,hgs — Emw mPP 3, hag dvhyrg.  (15.10)
We prove the desired estimate by induction on k. We first establish the estimate

Eo(t) + So(t) < 86%(1 4 1)€0¢ (15.11)

for some constant C. After that we shall assume that the statement (15.8) fork < N’ —1
and prove the corresponding statement for k < N’ with some constant Cys. We shall
base our argument on the energy estimate (11.3) for the solution of the wave equation
Ug¢ = F proved in Proposition 11.1. Observe that the conditions of our proposition on
the tensor # = g — m imply the assumptions of Proposition 11.1 for the metric g,

y 10> ) trolag”
92 +// 58/ 9612 + Ce
% o (1 + [g)H+2r o o Jyg, 1+1

t
—1—16/ |F| 3¢ (15.12)
0 JI,

15.1. The case of N' = 0. In this section we prove the basic energy estimate for a
solution of Eq. (15.9),

ﬁgh,w = Fyuy 1= P@uh, 0vh) + Quv(dh, dh) + Gy (h)(0h, dh).
Recall that according to (13.10) of Lemma 13.3 we have a pointwise bound
|F| < 1813, + |8h113h| + h|dh|>.
Using the assumptions of the proposition we infer that

ah
|F| < 81|—+|t. (15.13)

Therefore, the energy estimate (15.12) with ¢ = h,,, implies that

dh|? ah|?
19h|* + // v |12 58/ 19h1% + Coe // ' '. (15.14)
5 s, (L4 1gh! 2 %o 5, 1

Using the smallness assumption on the initial data and the Gronwall inequality this, in
turn, leads to the desired estimate (15.11),

Eo(t) + So(t) < 8&%(1 + 1)C0%.
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15.2. The case of N’ = 1. To facilitate the exposition we first consider the case N’ = 1.
We start by noting that according to (7.18) of Corollary 7.6 we have that

DgZh//.u = ZF/LV + D/l,Ua
where the term D, = ﬁgZh,w — iﬁgh,w satisfies the estimate

|ZH|+ |H| |ZH|ce + |HlzT Z 0zl
141t 1+ |q] '

LI

=<1

Recall that the tensor H*# = —h®? 4+ O(h?). Thus using the assumptions on 4 of the
proposition we derive that

19Z1h|
IDISe ) :
= L

On the other hand, inequality (13.11) gives the estimate
|ZF| < (10hl7u + |0 + |hl |0h[)(10Zh| + |0h) + C|0h]| |dZh| + C|0h|* | Zh|.

Using the assumptions of the proposition we conclude that

. 9zn 9Zh
|ZF|:|<Z+cz>F|5sZ' e L
= Lt (1 +02(1+ g2t

Now using the energy estimate (15.12) with¢ = Zh,, and F' = 2F,w + D,,, we obtain

10Zh[? +f/ y 10Zhl°
5, 5, A+ g+

<8 0Zh C
< /| ? + 82// 1+t 5 51+ 1gDY

1I1<1

|az’h|2 102! h|?
58/ ISZhI—i—CsZ// T //z,(1+|q|)1+2y

[11<1

where we used the Cauchy-Schwarz inequality to pass to the last line. Combining this
with the energy inequality (15.14) we infer that if Ce < y /2 then

y 10Z1h|?
10z n)? + / /
2 /z 2 s, (L4 g2

|[71<1 |71<1

|aZ’h|2
<16 Y |az h)*>4+Cie Z rn (15.15)

1I1<1 1I<1

The desired estimate
E1(t) + S1(t) < 166*(1 + 1)€1¢

now follows from the Gronwall inequality and the smallness assumption on the initial
data.
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15.3. The case of N’ > 1. In what follows we assume that we have already shown that

Ex—1(5) + Sy—1(8) < 1687 (1 + H)v'=1°, (15.16)
and prove that there exists a constant Cy such that
Eni(t) + Syi(r) < 16e*(1 +1)EV'e. (15.17)

We start this section by writing the wave equation for the quantity Z/h wv With [I] =

D z! huy = z! Fuv + D;m
where
1 = ol 51
D, =UeZ hyy — Z'Ughyy.
We apply the energy estimate (15.12) with the functions ¢ = Z! hyy and F =

Z'Fu + D},

9Z'h|? ! 9Z'h|?
1021 h|? +// v 1+|z 58/ |8Z’h|2+C8// | |
5 5, (L+1gh+ = 7 J5, o Js, T+t

t
+16// (IZ'F| + D)8z n).
0 JZ%,
(15.18)

Note that we can estimate

t t
/ (IZ'F| +|D"() 192" h| dx dt 5/ & 9z nP dx di
0 0 1+¢

t
+/ /8_1(1 +0(1Z'FI* + D) dx dt.

0
(15.19)

Here the first term is of the type that appears already in the energy estimate (15.18).
Thus it remains to handle the second term.
According to (7.21) of Corollary 7.6 we have that

11

=> Df, (15.20)
D! = D' + D{* + D + D}*, (15.21)
Z'H
DS Y > % 102X |, (15.22)
KI=k  |JI+(KI- D2 =1] 4]
Z'H
IDIPIS Y > %mz’(m, (15.23)
Kizk 11+0K < LTI
Z'H
IDPIS Y 3 Hiwz’w, (15.24)
KIZk 114K Dy <t LT 1]
Z'H
DS Y > |1+| || 10z%n). (15.25)
q

IK|=k [J|+(K|-D4=[I]-2
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The estimates for D,ﬁ with k < N /2. We must now estimate

t
/ /8_1(1 +0)|D{ 1> dx dt. (15.26)
0

Since k = |K| < N/2in (15.22)—(15.25) it follows from the assumptions in the theorem
that we can estimate

~1 Kpi2 < o € €
e~ (1+019Z5n) Nmm<(1+r)l—ce’(1+|q|)1+2y)’ (15.27)

and it thus suffices to estimate

t
/ /8—1(1 +1)| D} dx dt

JH2
. |J§1|/ /(1+|q|)l+2y (1—||-t+||Q|)2 dxdt. (15.28)
ftfg_l(l+t)(|D/€3|2+|D,£4|2)dxdt
/ / Kokl dx dt, (15.29)
~ oS (1+t>1 —Ce (1 + Iq])?

t
/ /8*1(1 +1)|D}*1> dx dt

€ 1Z7H 1%,
dxd 15.30
<2 // T T (g e (1530

IJ1=I1]

Lemma 15.3. Let f be a smooth function satisfying the condition
IfISed+n7", forqg=1. (15.31)
Then

|f1? < re
/ f(l+|q|)1+2V (A +1+ g2 dxdt /0 (1+t)1+2)’_/|af| dxdt + ¢
(15.32)

LI </'; 2 / 2
//(1_,_;)1 Ce (1+|C]|)2 dxdt’s 0 (l+[)l_cg(8 + [ 19f] dx)dt.

(15.33)

Furthermore,

tro £ & |f1?
//m‘“ <1+z>1—C8’(1+|q|)1+2y><1+|q|)2d“”

elo, /12 e
//(1+|q|)1+2y dxdt + ¢ /0 mdl‘ (1534)
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Proof. We shall repeatedly use the Poincaré inequality (9.1) of Lemma 9.1,

| f(x0)|* dx / 19, £ (x)|? dx
dS
Qe S | WPds+ | S

X S(e+1)

, (15.35)

which holds for any value of 0 > —1/2, 0 # 1/2. In particular, using (15.31), we
obtain that

2 2
/(1 fPdx o [ 1fPda (1536

St | L——.
+ lg)*2e (1 +Igl)*

t

The estimates (15.32) and (15.33) now follow from (15.36) witho = 0. 0O

We now note the following generalization of (15.35):

) P P | f(x)|?dx
/mm <<1 FolC (1 |q|>1+2y) 1+ 1q))?

P

19, f (x)|* dox

£
<__° s+ [ oSO ax
NS / 1 (1 + g2
Si+1) P

(15.37)

The proof of (15.37) can be reduced to (15.35) by subtracting a term which picks up the
boundary value. We define

f=f—7F where f(r,w) = f((t + 1), ) x(r/1). (15.38)
and x(s) = 1,when3/4 <s <3/2and x(s) =0whens < 1/2ors > 2. Then

f min( P P )|f(x)|2dx
J (L+01=Ce” (1 + g2 ) (1 + |q)?
. |f (o0 dx e | f(x)? dx
~E L U+ 1gh)3 T (1401 | (1 +1g)?

t Et

(15.39)

We now apply (15.35) to the function f, which vanishes at » = r + 1, and observe that

|0, f ()2 dx / 1 / )
RENPTIEY 1 —_— . 15.4
(I +lght*2r ™~ S0+ D.0) o SNEE Srt1 S 1340
On the other hand,
£ [fPPdx & / >
15.41
¢! +t)1—Ca /;:t (1+ |q|)2 ~ a +t)1—C8 Sur |f| ds, (15.41)

which proves (15.37).
Using the lemma above with f = Z TH, together with (15.28), (15.29) and the
assumption that En/_; < 16(1 + t)CN’—ls we see that we can estimate
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// A +0(IDIP + IDPF + IDH P dx at

&

t
—————En/(t)dt ——dt
/UHWV“)”Auwms

€
< e Env(t 2/ —dt
SeEN() +e AR

for all < N/2.

Thus the term (15.30) remains containing D,{z. We shall use the version of the
Poincaré inequality (15.34) to create the term 9, (Z TH )LL, Which can be then con-
verted to a tangential derivative of Z/ H via the wave coordinate condition. However, in
order to implement this strategy we modify the term Z”/ H; ; according to Lemma 12.2.
We recall the notation

J
Hl =2Z'Hy,, + Z cp z'H,,. (15.42)
[771<|J]
If |J| < N’ then the lower order terms in the right-hand side of (15.42) may be esti-

mated using (15.29) and (15.33) as before. According to Lemma 12.2 and the pointwise
estimates in (15.6) and (15.4),

0,H/ 1S Y 1027 H|+ > |ZInH |- | Z"H| |3z’ H|
1/<1J] 1+ [ <11, m=2
< S 9z"Hi+ Y 1Z'H|19z" 2 H
1/1<1J] [11+1 1< 1]
_ e(1+ |g)/* , e|Z! H|
< 02 H+——"" 1372’ H ,
~ Z | I+ (1+t)1/2+V | I+ (1+[)1/2+y(1+|q|)1/2+y

=171
(15.43)

Hence

eld, Hi, 12 J
f/wwww“
e|azf’H|2 eloz’ H|? e|Zz/ H|?
Z + + )dxdt.
(1 + gD A+ 0F2 1+ )2 (1 + |g))?

\J/|<|1\
(15.44)

If we use (15.33) with Ce¢ in the exponent replaced by 2y we see that the last term can
be estimated by the second term from the right plus a term from the boundary:

10 LL|2 dxdt
(T +1gh ¥

eloz! H|? eloz! H|? & 5
Z//aﬂwm+mwm+mwmﬂwﬁ

IJ (M
(15.45)
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As we argued, when estimating (15.30) we can replace |Z’ H| . by the left-hand side
of (15.42). After that we use the version of the Poincaré inequality (15.34) applied to
H LJ ;. and this together with (15.45) gives

t t
-1 122 2 €
/0 /8 (I +0)|D"|“dxdt S eSni(t) + eEn(t) + ¢ /0 A+niCe dt

(15.46)
Summarizing, we have proven that
' ~1 12 2 ! €
/0 /8 (1 +t)|Dk| dxdthSN/(l‘)—i-EEN/(l‘)—i-S /0 mdl‘, k< N/2
(15.47)

This concludes the estimates in the case k < N /2.

The commutator in case k > N /2. We isolate the case when |[K| = N’ = |I|. We can
estimate its contribution to the Dzlvf by the following expression:

)

H|+|ZH ZH H azkn
|D 1< Z |H| + | |+| lce + | |£T)|82Kh|§8 Z | |

141+ |q] 1+ |q| 141

[K|=|1] IK|=I1]

where to pass to the last line we used pointwise estimates from (15.5), (15.3), and (15.4).
In the case when N /2 < k < |I| we estimate the contribution of the corresponding term
in D!, with the help of (15.6) as follows:

ZH dZKn
DS Y. ) |+|||3 AR ﬁ
IK|<|I||JI=N/2 IK|<|I]

Therefore,

! VA K VAR

// e*l(1+t)|D,§|2dxdt§s// > 1' 1|2C8 + ) |1—|dxdt.

0 JE K=y T K= T
(15.48)

Using the inductive assumption (15.16) we can therefore estimate

t IE ,
/ f 8—1(1+t)|D,§|2dxdt§g/ v®
0 Js, o 1+7

5, ! edt ,
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The inhomogeneous term. By (13.12)

1Z'FIS > (1027 hlge 1025 hlge + 1027 h (025 1))

|JI+K1<I1]
+ Y 10z’ niraz8n+ Y 19z h119z%n)
[1+IK|<|7]-1 |1+ |<|1]-2

+ Z |Zmh|- - 1Z3h|10Z"2h||0Z7 k). (15.50)

[+t I <], m>3

The highest order terms with one of |J|, |K| or |I;| equal to N = || are bounded by

(10170 + 10| + |AI9R1) Y [0Z"h+ 10k Y |Z"h|+ 10k Y 102"k

[[|=N [[|=N |[|=N
T 2 oz e 31z
— 142 142
r e R RSz 7 =,
£ REZA (15.51)

172+ 172+
071+ ) et

The remaining lower order terms are of the form

Z 10Z7h| 1025 h| + Z 10Z7h|10Z5h||1Z% h)
|K|<N.|J|<N/2 IK|<N. |J].|LI<N/2
< Y jazFn+ - > 12"
— 1-C 142 1+2 :
(I+0)!=Ce 2= (LD (4 g+ =
(15.52)

It therefore follows that

. EVAYIN
f/ A+0IZ'FPdxdt S ) // o

|K|<I1]
|0Z%n|? |ZKh|?

(L+1gh™*2r — (1+0)H2r (1 +|q])?
! edt I.12

+/0 WMZNWZ h|? dxdt

|az’<h|2 [0ZKn?

Z // I+t (1+Iq|)1+2V

|K|<|I]

dxdt

edt

t
_— - 17,2
+(1+t)1+2y dde'fo (1+1)!-2Ce Y 102" dxdr. (15.53)

|I|<N

Here, to estimate the last term in the first row we used (15.33) with —Ce¢ in the exponent
replaced by 2y, which produced a term similar to the first term of the first line plus a
boundary term. Using the inductive assumption (15.16) we thus obtain
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t n tE , d t d
// 5—1(1+t)|z’F|2dxdt§e/ M-ﬁ-:‘)SN/(I)-FSZ/ 0 il
0 T 0

1+t o (14 7)l-Ce’
(15.54)

The conclusion of the proof in case N' > 1. The inequalities (15.18)—(15.19) and
(15.47), (15.49) and (15.54) imply that for some constant C:

Eni(t) + Sy (1) < 8EN/(0) + Ce(En (1) + Sy (1))
"Ey(t)dt » ! edt
ce | 22224 ¢ — . (1555
+ 8/0 T+ ¢ /0 d3or—ce (1559

If we now choose ¢ so small that Ce < 1/9 we can move the second term on the right
to the left and multiply by 9/8 to obtain for some new constants

E (t)+S (t) <9F (0)—I—C fl —N,( ) +C 2/t —8 (15 56)
’ ’ ’ & & . .
N N = N 0 1 T 0 (1 ‘L')l Ce

This can now be integrated using a Gronwall type of argument. If G(¢) denotes the
right-hand side then we have

G'(r) < G(1) + a
(1 t)l—Cs :
Multiplying with the integrating factor we get

Cs3
T 14+t

= (G(t)(l +07¢) =

and hence if we integrate and use that CeIn (1 + 1) < (1 4 7)€%, for r > 0 (as is seen
by differentiating both sides), and use that by assumption (15.7) G(0) < 9¢2, we obtain

Gt) < GO+ +CIn(1+1)(1+1)¢°
< 9e2(1 + 1) 4+ &2(1 +1)%C% < 10e%(1 + 1)*¢%.

Hence we have proven that
Eni(t) + Sy (1) < 10e%(1 + 1)%C¢.

This concludes the induction and the proof of the theorem. 0O

16. Geodesic Completeness

Having constructed a solution metric g = m + h of the Einstein equations we need to
verify that the resulting space-time (R*, g) is causally geodesically complete. Let

X (1) = (°(1), x(0) = (1(1), x(7) = (1 (2), roo (7))

be a causal geodesic parameterized by the affine parameter t. Such geodesics satisfy the
equations

X¥(t) +T§, (X(@)XPXV =0, (16.1)
X0 =Y, X0 =E¢,
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where Y is the point of the origin of the geodesic X (r) and & is the initial velocity
satisfying the condition

gup(NEEP = —A7 <0 (16.2)
for some constant A. Condition (16.2) is preserved in time, i.e.,

2ap(X (T)X*XP = — A2, (16.3)

In the following lemma we show that a vector n causal with respect to the metric g is
“almost” causal with respect to the Minkowski metric m.

Lemma 16.1. Let n be a causal 4-vector, i.e,
gapn®n’ < —A <0 (16.4)
for some non-negative constant A. Then
A+ <2°,  Vi=1,...,3. (16.5)
Proof. Expanding g = m + h we obtain from (16.4) that
3 3
=P I P < R AP+ D I,
i=1 i=1
and the desired estimate follows provided that || < 1/4. O

We choose a future oriented initial velocity &, i.e., 2%(0) > 0.

Proposition 16.2. Assume that h = g — m satisfies the estimates'*

\h||8h| + [8h|7y + ||y < et !,

10z, )| Set™t,  for|x| <1/2.

Let X (t) be afuture inextendible causal geodesic. Then the values of the affine parameter
T span the interval [0, 00).

Proof. We start by considering a time-like geodesic X (7). Reparameterizing, if neces-
sary, we can assume that the constant A = 1 in (16.3). Then Eq. (16.3) and inequality
(16.5) with A = 1 imply that for all T > 0,

A0y = % L. (16.6)

We removed the absolute value from x°(7), since x°(0) > 0. This is the only part of
the argument which uses the fact that X (7) is a time-like geodesic. The case of a null
geodesic will require an additional argument.

Assume that X (7) is a time-like geodesic of finite length t,. We first observe that

lim |X ()| = oo,
T—Ty

14 These assumptions are consistent with the decay estimates for h proved in Theorem 14.1.
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which means that X (7) escapes to infinity!> in finite proper time z,. This easily follows
from the standard ODE theory. The inequality (16.6) implies that x%(7) controls X (7).
Thus to obtain a contradiction it suffices to show that

lim x%(7) < c0.
T—>Ty

Throughout this section we will consistently use the notation x = ¢. We recall that
ng = g% (0ghyo + 0y hgs — dshpy).
Thus, expanding the metric g = m + h,
%0 — (28gho, — dohp,)iPxY =h-dh - |X|?
We further observe that
by d »
8,3h0yx X' = E(hoyx ) — h()yx . (16.7)
We now additionally recall that 9,/ is the only derivative of & that does not have the
decay rate of at least (x9~L. Thus
dohp, XPXY = 9,hp, XPXY + 0™ HX)? = 9,hpr|XEP? +e0((x) 71X %
The expression
i
. . : d
XE= XLy ="+ i = —Z (1 —r) = —4.
[x] dt
Moreover,
dghrr = 49ghoo +£0((x°) 7).
Furthermore, introduce g“(x0 /1), a cut-off function of the set r > x9 /2. Then
dghoo = (1 — £)dghoo + ¢dghoo = eO(t™") + 3, (L hoo) — (358 (x° /7)) hoo.
We compute
8¢ (x°/r) = 7+ 200y £ 07

since r > x9/2 on the support of ¢’(x°/r). Thus dqhoo can be replaced by 9, (¢ hoo) at
the expense of a term of order 0 ((x"~1). Therefore,

dghLr| X512 = 49,ho0lg|* = 43, (Choo)lg1* + 0 ((x") ™ HIg[?
d . . s
= 4E(Ch0061) —4¢hoog — 49 (S hoo) X~ X=
—430(Lhoo) X XL + 0 ((x%) 7).
Here,

h(X (7)) = h(q((7), v(7), @ (1)),

15 Viewed from the point of view of the global system of wave coordinates on R*.
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where g = X—rv=x4+r,andw = xr—' The advantage is that dghqg, 1 hoo already
decay faster than (x®)~! and dq¢(x°/r) = 0, while [3,¢(x%/r)| < (x®)~!. Thus

: d . ) _
dyhLr| XL = E(Uloofl) — Chood + 0 ().

It remains to analyze the term

i

d i .
0o_Z% 0 i g = 2 5. (16.8)
r

G= G- =) = 3

From the geodesic equation (16.1) we can estimate
€] < 9A1IX .

Additionally, since on the support of §(x0 /r), r > x9 /2, we have that the last term in
(16.8) multiplied by ¢hgo contributes at most'® £(x®)~!. Thus combining everything
together we have

d . . . i3
(30— 20,8 + choo §) = O THIXP

We integrate this identity between proper times 0 < 7. Observe that |X| < |4°| and that

d
7150 = — IO,
dt

Thus
T d
10(t) < 2%0) + Qhoyx¥ — chood)|§ + e/ - Inx%%%dz’.
0 T
It follows that
. IXO()[\e .
20 5 (Soo) O

1x0(0)|
Integrating one more time and assuming that x9(0) = £(0) = 1 we obtain that
@'t <1+ x:°%0)r.

From this we conclude that the time x° = ¢ remains finite with 7. This concludes the
proof for time-like geodesics. O

We now address the issue of null geodesics X (7),
g xexP =o.

Examining the proof above leads to the conclusion that is suffices to establish that the
condition x%(z) > 0 is preserved in time.

Lemma 16.3. For a future oriented inextendible null geodesic X (t) defined on the inter-
val [0, t,) we have )'co(t) > 0 forall T € [0, 7,).

16 This is the reason for introducing the cut-off function ¢.
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Proof. Let tg < 7, be the first time when fco(ro) = 0. Fix a sufficiently small constant c.
Then there exists a small interval of size § such that
0<x%) <e, vt € [0 — 8, 0]

and

(g —8) =c. (16.9)
We observe that (16.5) with A = 0 implies that |X(t)| < 2|x0(r)| and therefore,

X (7)] < 2c, V1 € [19 — 8, 0]

Integrating the geodesic equation (16.1) we obtain

70 )
1#0(10) — £z — 8)| s/ ITNIXP < e,

08
Thus, using (16.9),
i0(t0) = ¢ — ec?8 > 0.
Contradiction. O

This completes the proof of Proposition 16.2.

We have shown that all future inextendible causal geodesics X () exist for all val-
ues of the affine parameter t € [0, 0o). This means that the constructed space-time is
future causally geodesically complete. Next we establish that all future oriented causal
geodesics escape to infinity.

Proposition 16.4. Let X (t) be a future oriented causal geodesic. Then

lim |X(7)| = oo. (16.10)
T—>00

Proof. The inequality (16.6) immediately gives the desired result for time-like geode-
sics. Recall that by Lemma 16.3 we have that x°(z) > 0 and thus x°(¢) is monotonically
increasing in 7. We now argue by contradiction. Assume that for all T > 0,

IX(0)] = C
for some potentially large constant C. Then there exists a time #y such that
— 1 0
to = lim x" (7).
T—>00

Set 7o be the value of the proper time 7 for which ¢ (7g) = fy — § for some small constant
3. Integrating the geodesic equation we obtain that for t > 7o,

T t
xo(r)=x0(10)+/ |F||x0|2dt’§x0(ro)~|—£/ x0dt < xOo)+es sup x0(1).
70 ty—38 T0<t'<t

(16.11)

Thus for any 7 > 19,

0(r) < 2:%7). (16.12)
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Choosing a sequence of times 79 — oo such that x%(79) — 0 (such a sequence must
exist, otherwise x°(t) — 00) we infer from (16.12) that

)&O(t) -0

as T — 00. We can then choose a small constant ¢, § such that 7 (tg) = typ — § and
Pa)y=c, PO =c
for all T > 1. Returning to (16.11) we see that
1x0(7) — ¢| < ebe.

Thus

. c

XO(T) = 5

for all T > 7y and we obtained the contradiction. 0O
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