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Abstract: In this paper, we study the moduli spaces Mδ,c2 of stable rank-2 vector bun-
dles on non-Kähler elliptic surfaces, thus giving a classification of these bundles; in
the case of Hopf and Kodaira surfaces, these moduli spaces admit the structure of an
algebraically completely integrable Hamiltonian system.

1. Introduction

Vector bundles on elliptic fibrations have been extensively studied over the past fifteen
years; in fact, there is by now a well-understood theory for projective elliptic surfaces
(see, for example, [D, F1, FMW]). However, not very much is known about the non-
Kähler case. In this article, we partly remedy this problem by examining the stabil-
ity properties of holomorphic rank-2 vector bundles on non-Kähler elliptic surfaces;
their existence and classification are investigated in [BrMo1, BrMo2]. One of the moti-
vations for the study of bundles on non-Kähler elliptic fibrations comes from recent
developments in superstring theory, where six-dimensional non-Kähler manifolds occur
in the context of N = 1 supersymmetric heterotic and type II string compactifica-
tions with non-vanishing background H-field; in particular, all the non-Kähler examples
appearing in the physics literature so far are non-Kähler principal elliptic fibrations (see
[BBDG, CCFLMZ, GP] and the references therein). The techniques developed here and
in [BrMo1, BrMo2] can also be used to study holomorphic vector bundles of arbitrary
rank on higher dimensional non-Kähler elliptic and torus fibrations.

A minimal non-Kähler elliptic surfaceX is a Hopf-like surface that admits a holomor-
phic fibration π : X → B, over a smooth connected compact curve B, whose smooth
fibres are isomorphic to a fixed smooth elliptic curve T ; the fibration π can have at most
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a finite number of singular fibres, in which case, they are isogeneous to multiples of T .
More precisely, if the surface X does not have multiple fibres, then it is the quotient
of a complex surface by an infinite cyclic group (see Example 3.1); multiple fibres can
then be introduced by performing a finite number of logarithmic transformations on its
relative Jacobian J (X). To study bundles on X, a natural operation is restriction to the
smooth fibres of π ; this gives rise to an important invariant, called the spectral curve or
cover, which is an effective divisor on J (X) that encodes the holomorphic type of the
bundle over each smooth fibre of π .

Consider the moduli space Mδ,c2 of stable holomorphic rank-2 vector bundles onX
with fixed determinant δ and second Chern class c2. This moduli space can be identified,
via the Kobayashi-Hitchin correspondence, with the moduli space of gauge-equivalence
classes of Hermitian-Einstein connections in the fixed differentiable rank-2 vector bun-
dle determined by δ and c2 (see, for example, [Bh, LT]). In particular, if the determinant δ
is the trivial line bundle OX, then there is a one-to-one correspondence between MOX,c2
and the moduli space of SU(2)-instantons, that is, antiselfdual connections. Note that
the determinant line bundle δ induces an involution iδ of the relative Jacobian J (X);
furthermore, the spectral cover of any bundle in Mδ,c2 is invariant with respect to this
involution, thus descending to an effective divisor on the ruled surface Fδ := J (X)/iδ
called the graph of the bundle. We can then define a map

G : Mδ,c2 → Div(Fδ)

that associates to each stable vector bundle its graph in Div(Fδ), called the graph map.
In [BH, Mo], the stability properties of vector bundles on Hopf surfaces were studied
by analysing the image and the fibres of this map; in particular, it was shown [Mo] that
the moduli spaces admit a natural Poisson structure with respect to which the graph map
is a Lagrangian fibration whose generic fibre is an abelian variety: the map G admits
an algebraically completely integrable system structure. In this paper, we adopt this
approach to study stable vector bundles on arbitrary non-Kähler surfaces.

The article is organised as follows. We begin with a brief review of some existence
and classification results for holomorphic vector bundles on non-Kähler elliptic surfaces
that were proven in [BrMo1, BrMo2]. In the third section, we obtain explicit conditions
for the stability of rank-2 vector bundles: we show that unfiltrable bundles are always
stable and then classify the destabilising bundles of filtrable bundles. The moduli spaces
Mδ,c2 are studied in the last section. We first prove that these spaces are smooth on
an open dense subset consisting of vector bundles that are regular on every fibre of π
(on a smooth elliptic curve, a bundle of degree zero is said to be regular if its group of
automorphisms is of the smallest possible dimension). However, for Hopf and Kodaira
surfaces, the moduli spaces are also smooth at points that are not regular; in this case, the
moduli are smooth complex manifolds of dimension 4c2 − c2

1(δ). Then, we determine
the image of the graph map; for simplicity, we focus our presentation on non-Kähler
elliptic surfaces without multiple fibres, but similar results hold in the multiple fibre
case. Furthermore, we give an explicit description of the fibres of the graph map, which
follows immediately from the classification results of [BrMo2, Mo] and the stability
conditions of the third section; in particular, the generic fibre at a graph G ∈ Div(Fδ) is
isomorphic to a finite number of copies of a Prym variety associated to G. We conclude
by noting that for Kodaira surfaces the graph map is also an algebraically completely
integrable Hamiltonian system, with respect to a given symplectic structure on Mδ,c2 .



Stable Bundles on Non-Kähler Elliptic Surfaces 567

2. Holomorphic Vector Bundles

Let X
π→ B be a minimal non-Kähler elliptic surface, with B a smooth compact con-

nected curve; it is well-known that X
π→ B is a quasi-bundle over B, that is, all the

smooth fibres are pairwise isomorphic and the singular fibres are multiples of elliptic
curves [K, Br]. Let T be the general fibre of π , which is an elliptic curve, and denote its
dual T ∗ (we fix a non-canonical identification T ∗ := Pic0(T )); in this case, the relative
Jacobian of X

π→ B is simply

J (X) = B × T ∗ p1→ B

(see, for example, [K, BPV, Br]) and X is obtained from J (X) by a finite number of
logarithmic transformations [K, BPV, BrU]. In addition, if the fibration π has multiple
fibres, then one can associate to X a principal T -bundle π ′ : X′ → B ′ over an m-cyclic
covering ε : B ′ → B, where the integer m depends on the multiplicities of the singu-
lar fibres; note that the map ε induces natural m-cyclic coverings J (X′) → J (X) and
ψ : X′ → X.

To study bundles on X, one of our main tools is restriction to the smooth fibres of
the fibration π : X → B. It is important to point out that since X is non-Kähler, the
restriction of any vector bundle onX to a smooth fibre of π always has trivial first Chern
class [BrMo1]. Therefore, a vector bundle E on X is semistable on the generic fibre
of π ; in fact, its restriction to a fibre π−1(b) is unstable on at most an isolated set of
points b ∈ B; these isolated points are called the jumps of the bundle. Furthermore,
there exists a divisor SE in the relative Jacobian of X, called the spectral curve or cover
of the bundle, that encodes the isomorphism class of the bundle E over each smooth
fibre of π ; for a detailed description of this divisor, we refer the reader to [BrMo1]. We
should note that, if the fibration π has multiple fibres, then the spectral cover SE of E is
actually defined as the projection in J (X) of the spectral cover Sψ∗E ⊂ J (X′) of ψ∗E,
where ψ : X′ → X is the m-cyclic covering defined above.

2.1. Line bundles. The spectral cover of a line bundle L on X is a section � of J (X)
such that the restriction of L to any smooth fibre π−1(b) of π is isomorphic to the line
bundle �b of degree zero on T ∼= π−1(b). Conversely, given any section � of J (X),
there exists at least one line bundle onX with spectral cover� [BrMo1]. Before giving a
classification of line bundles on X, we fix some notation. Suppose that π has a multiple
fibre mF over the point b in B; the line bundle associated to the divisor F of X is
then such that (OX(F ))

m = OX(mF) = π∗OB(b). Let P2 be the subgroup of Pic(X)
generated by π∗Pic(B) and the OX(Ti)

′, where m1T1, . . . , mrTr are the multiple fibres
(if any) of X; we then have [BrMo1]:

Proposition 2.1. Let� be a section of J (X). Then, the set of all line bundles onX with
spectral cover � is a principal homogeneous space over P2.

2.2. Rank-2 vector bundles. Consider a rank-2 vector bundle E on X; its discriminant
is then defined as

�(E) := 1

2

(
c2(E)− c1(E)

2

4

)
.
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In this case, the spectral curve of E is a divisor SE in J (X) of the form

SE :=
(

k∑
i=1

{xi} × T ∗
)

+ C,

where C is a bisection of J (X) and x1, · · · , xk are points in B that correspond to the
jumps of E. Let δ be the determinant line bundle of E. It then defines the following
involution on the relative Jacobian J (X) = B × T ∗ of X:

iδ : J (X) → J (X),

(b, λ) �→ (b, δb ⊗ λ−1),

where δb denotes the restriction of δ to the fibre Tb = π−1(b). By construction, the
spectral curve SE of E is invariant with respect to this involution; in particular, the pair
of points lying on the bisection C over b is of the form {λb, δb ⊗ λ−1

b }, where λb and
δb ⊗ λ−1

b are the subline bundles of E|π−1(b). Finally, note that the quotient of J (X) by
the involution iδ is a ruled surface Fδ := J (X)/iδ over B; let η : J (X) → Fδ be the
canonical map. The spectral cover SE of E then descends to a divisor on Fδ of the form

GE :=
k∑
i=1

fi + A,

where fi is the fibre of the ruled surface Fδ over the point xi and A is a section of the
ruling such that η∗A = C.

2.2.1. Bundles without jumps We begin with some properties of filtrable bundles with-
out jumps. Let E be a rank-2 vector bundle onX with determinant δ, and spectral cover
(�1 +�2), where �1 and �2 are sections of J (X); there exists a line bundle D on X
associated to �1 such that E is given by an extension

0 → D → E → D−1 ⊗ δ → 0. (2.1)

Consequently,

�(E) = −1

8
(c1(δ)− 2c1(D))2 . (2.2)

Given the above considerations, we have the following results.

Lemma 2.2. If�1 = �2, then�(E) = 0. Furthermore, the extension (2.1) either splits
on every fibre of π or else it splits on at most a finite number of fibres.

Proof. Note that c1(D) = c1(D−1 ⊗ δ) because �1 = �2; referring to (2.2), we then
have �(E) = 0. Suppose that there exists at least one fibre Tb0 of π over which the
extension is non-trivial; therefore, h1(Tb0 ,D−1 ⊗ E) = 1. But if the extension splits
over the fibre Tb, then h1(Tb,D−1 ⊗ E) = 2. The upper semi-continuity of the map
b �→ h1(Tb,D−1 ⊗ E) thus implies that h1(Tb,D−1 ⊗ E) = 1 for generic b. 	

Lemma 2.3. If �1 �= �2, then |�1 ∩ �2| = 4�(E). In addition, the extension (2.1)
splits globally whenever �(E) = 0.
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Proof. Since�1 �= �2, the sheaf π∗(D−2 ⊗ δ) vanishes and the first direct image sheaf
R1π∗(D−2 ⊗ δ) is a skyscraper sheaf supported on the points of �1 ∩ �2. Therefore,
c1(R

1π∗(D−2 ⊗ δ)) = |�1 ∩�2| and by Grothendieck-Riemann-Roch,

|�1 ∩�2| = −1

2
(c1(δ)− 2c1(D))2 ,

which is equal to 4�(E) by (2.2). Consequently, if �(E) = 0, then �1 ∩ �2 = ∅;
in this case, the extension (2.1) splits on every fibre of π and R1π∗(D2 ⊗ δ−1) = 0.
Hence, the Leray spectral sequence givesH 1(X,D2 ⊗δ−1) = 0 and the extension splits
globally. 	


We have seen that we can associate to any rank-2 vector bundle on X a bisection in
J (X). Conversely, given any bisection of J (X), there exists at least one rank-2 vector
bundle on X associated to it; if the bisection is smooth, the bundles that correspond to
it are classified as follows (see [BrMo2] for precise statements).

Theorem 2.4. Fix a line bundle δ on X and its associated involution iδ of J (X). Let C
be a smooth bisection of J (X) that is invariant with respect to this involution; it is then
a double cover ofB of genus 4�(2, c1, c2)+2g−1. The set of all rank-2 vector bundles
on X with spectral cover C and determinant δ is then parametrised by a finite number
of copies of the Prym variety Prym(C/B) associated to the double cover C → B.

2.2.2. Bundles with jumps. Consider a rank-2 vector bundleE onX with determinant δ
that has a jump of multiplicityµ over the smooth fibre T = π−1(x0). The restriction ofE
to the fibre T is then of the formλ⊕(λ∗⊗δx0), for someλ ∈ Pic−h(T ),h > 0; the integer
h is called the height of the jump at T . Moreover, up to a multiple of the identity, there is a
unique surjectionE|T → λ, which defines a canonical elementary modification ofE that
we denote Ē; this elementary modification is called allowable [F2]. Therefore, we can
associate toE a finite sequence {Ē1, Ē2, . . . , Ēl} of allowable elementary modifications
such that Ēl is the only element of the sequence that does not have a jump at T .

Let us now assume that π has a multiple fibre m0T0. One can then associate to X
an elliptic quasi-bundle π ′ : X′ → B ′, over an m0-cyclic covering ε : B ′ → B, such
that T ′

0 := ψ−1(T0) ⊂ X′ is a smooth fibre of π ′, where ψ : X′ → X is the m0-cyclic
covering induced by ε. Given this, we say that E has a jump over T0 if and only if the
restriction of ψ∗E to the fibre T ′

0 is unstable. Naturally, the height and multiplicity of
the jump of E over T0 are defined as the height and multiplicity of the jump of ψ∗E
over T ′

0. We can now define the following important invariants.

Definition 2.5. Let T be a smooth fibre of π . Suppose that the vector bundle E has a
jump over T and consider the corresponding sequence of allowable elementary modifi-
cations {Ē1, Ē2, . . . , Ēl}. The integer l is called the length of the jump at T . The jumping
sequence of T is defined as the set of integers {h0, h1, . . . , hl−1}, where h0 = h is the
height of E and hi is the height of Ēi , for 0 < i ≤ l − 1.

If the vector bundle E has a jump over a multiple fibre m0T0 of π , we define the
length and jumping sequence of T0 to be the length and jumping sequence of the jump
of ψ∗E over the smooth fibre T ′

0 = ψ−1(T0) of ψ , where ψ : X′ → X is the m0-cyclic
covering defined above.

Note that if a vector bundle E jumps over a smooth fibre T of π , with multiplicity µ
and jumping sequence {h0, . . . , hl−1}, then µ = ∑l−1

i=1 hi . For a detailed description of
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jumps, we refer the reader to [Mo, BrMo2]; moreover, the basic properties of elementary
modifications can be found, for example, in [F2]. We finish this section by stating the
following existence result [BrMo2]: ifX does not have multiple fibres and S is a spectral
cover in J (X) (that may have vertical components), then one can associate to S at least
one rank-2 vector bundle on X.

3. Stable Rank Two Bundles

3.1. Degree and stability. The degree of a vector bundle can be defined on any compact
complex manifold M . Let d = dimCM . A theorem of Gauduchon’s [G] states that any
hermitian metric onM is conformally equivalent to a metric, called a Gauduchon metric,
whose associated (1,1) form ω satisfies ∂∂̄ωd−1 = 0. Suppose that M is endowed with
such a metric and letL be a holomorphic line bundle onM . The degree ofLwith respect
to ω is defined [Bh], up to a constant factor, by

degL :=
∫
M

F ∧ ωd−1,

where F is the curvature of a hermitian connection on L, compatible with ∂̄L. Any two
such forms F differ by a ∂∂̄-exact form. Since ∂∂̄ωd−1 = 0, the degree is independent
of the choice of connection and is therefore well defined. This notion of degree is an
extension of the Kähler case. IfM is Kähler, we get the usual topological degree defined
on Kähler manifolds; but in general, this degree is not a topological invariant, for it can
take values in a continuum (see below).

Having defined the degree of holomorphic line bundles, we define the degree of a
torsion-free coherent sheaf E on M by

deg(E) := deg(det E),
where det E is the determinant line bundle of E , and the slope of E by

µ(E) := deg(E)/rk(E).
The notion of stability then exists for any compact complex manifold:

A torsion-free coherent sheaf E on M is stable if and only if for every coherent
subsheaf S ⊂ E with 0 < rk(S) < rk(E), we have µ(S) < µ(E).
Remark. With this definition of stability, many of the properties from the Kähler case
hold. In particular, all line bundles are stable; for rank two vector bundles on a surface,
it is sufficient to verify stability with respect to line bundles. Finally, if a vector bundle
E is stable, then H 0(M,End(E)) = C.

Example 3.1. Let X
π→ B be a non-Kähler principal elliptic bundle over a curve B of

genus g and with fibre T . The surface X is then isomorphic to a quotient of the form

X = �∗/〈τ 〉,
where� is a line bundle on B with positive Chern class d,�∗ is the complement of the
zero section in the total space of�, and 〈τ 〉 is the multiplicative cyclic group generated
by a fixed complex number τ ∈ C, with |τ | > 1. In this case, the degree of torsion line
bundles can be computed explicitly (for details, see [T]). Every line bundleL ∈ Picτ (X)
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decomposes uniquely as L = H ⊗ Lα , for H ∈ ∪d−1
i=0 Pic(B) and α ∈ C

∗. Taking into
account this decomposition, the degree of L is given by

degL = c1(H)− d

ln |τ | ln |α|.

In particular, deg(π∗H) = degH , for all H ∈ Pic(B).
We end this example by observing that if X has a multiple fibre m0T0, then we have

deg(OX(T0)) = 1/m0.

3.2. Stable vector bundles. Let X
π→ B be a non-Kähler elliptic surface with multiple

fibres m1T1, . . . , mrTr (if any); the canonical bundle of X is then KX = π∗KB ⊗
OX

(∑r
i=1(mi − 1)Ti

)
, giving ωX/B = OX

(∑r
i=1(mi − 1)Ti

)
as the dualising sheaf

of π . Note that degωX/B = r −∑r
i=1 1/mi ≥ 0 (see Example 3.1). Fix a rank-2 vector

bundleE onX and let δ be its determinant line bundle; there exists a sufficient condition
on the spectral cover of E that ensures its stability:

Proposition 3.2. Suppose that the spectral cover of E includes an irreducible bisection
C of J (X). Then E is stable.

Proof. Suppose that there exists a line bundle D on X that maps into E. After possibly
tensoring D by the pullback of a suitable line bundle on B, the rank-2 bundle E is then
given as an extension

0 → D → E → D−1 ⊗ δ ⊗ IZ → 0, (3.1)

where Z ⊂ X is a locally complete intersection of codimension 2. In fact, Z is the set
of points {x1, . . . , xk} corresponding to the fibres π−1(xi) over which E is unstable.
Let �1 and �2 be the sections of J (X) determined by the line bundles D and D−1 ⊗ δ,
respectively. The extension (3.1) then implies C = �1 +�2. 	


Consequently, the spectral covers of unstable bundles include bisections of the form
C = (�1 +�2), where �1 and �2 are sections of the Jacobian surface.

Proposition 3.3. Suppose that the spectral cover of E is given by

(
k∑
i=1

{xi} × T ∗
)

+ (�1 +�2) .

Then, there exist line bundles K1 and K2 on X (corresponding to the sections �1 and
�2, respectively) such that the set of all line bundles that map non-trivially toE is given
by

{
Kj ⊗ π∗H ⊗ OX

(
r∑
i=1

aiTi

)
: H ∈ Pic≤0(B) and ai ≤ 0

}
.

Also, E is stable if and only if degK1 and degK2 are both smaller than deg δ/2. Note
that if �1 = �2, then K1 = K2.

The line bundles K1 and K2 are called the destabilising line bundles of E.
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Proof. Let D be a line bundle that corresponds to the section �1 and suppose that
there exists a non-trivial map D → E. We begin by assuming that E is regular on the
generic fibre of π . In this case, the direct image sheaf π∗(D−1 ⊗ E) is a line bundle
on B, say L, of positive degree. Set K = D ⊗ (π∗L−1)−1; then, K restricts to �1b
over the smooth fibres π−1(b) of π and π∗(K−1 ⊗ E) ∼= OB . However, any line bun-
dle D′ on X corresponding to �1 can be written as K ⊗ π∗H ⊗ OX

(∑r
i=1 aiTi

)
, for

some H ∈ Pic(B) and integers 0 ≤ ai ≤ mi − 1. Moreover, one can easily show that
π∗
(F ⊗ OX

(∑r
i=1 aiTi

)) = π∗(F), for any locally free sheaf F on X. Consequently,

if D′ also maps into E, then the line bundle π∗(D′−1 ⊗ E) ∼= H−1 has a non-trivial
section, implying thatH ∈ Pic≤0(B). Note thatπ∗(K ′−1⊗E) ∼= OB for any line bundle
K ′ of the form K ⊗ OX

(∑r
i=1 biTi

)
, where 0 ≤ bi ≤ mi − 1. But, the destabilising

bundle K1 is the line bundle associated to �1 of maximal degree that maps into E; we
therefore set K1 = K ⊗ OX

(∑r
i=1(mi − 1)Ti

) = K ⊗ ωX/B . Clearly, any line bundle
corresponding to �1 that maps into E can be written asK1 ⊗ π∗H ⊗ OX

(∑r
i=1 aiTi

)
,

for H ∈ Pic≤0(B) and integers ai ≤ 0.
We now assume that E is not regular on the generic fibre of π . The direct image

sheaf π∗(D−1 ⊗ E) is then a rank-2 vector bundle on B, say F ; it must have a subline
bundle L such that F/L is torsion free. If we set K1 = D ⊗ (π∗L−1)−1 ⊗ ωX/B , then
π∗(K1

−1 ⊗E) has a nowhere vanishing section and, as above, any line bundle induced
by �1 that maps into E is of the required form. 	


In fact, the destabilising line bundles of filtrable bundles without jumps can be de-
scribed explicitly as follows:

Proposition 3.4. Let E be a holomorphic rank-2 vector bundle on X with invariants
det(E) = δ, c2(E) = c2, and spectral cover (�1 +�2), where �1 and �2 are sections
of J (X). LetK1 be the destabilising line bundle ofE induced by�1; there is an extension

0 → K1 → E → K1
−1 ⊗ δ → 0. (3.2)

(i) If �1 = �2 and the extension is trivial on every fibre of π , then there exists a line
bundle H− on B of non-positive degree d0 such that K1

2 = δ ⊗ π∗(H−)⊗ ωX/B .
(ii) If �1 = �2 and the extension splits only on a finite number n ≥ 0 of fibres of π ,

thenK1
2 = δ⊗ π∗(H+)⊗ωX/B , whereH+ is a line bundle of degree n on B that

is trivial whenever n = 0.
(iii) If�1 �= �2 and the extension is non-trivial on a finite number n ≤ 4�(E) of fibres,

then the second destabilising bundle of E is K2 = K1
−1 ⊗ δ ⊗ π∗(H−)⊗ ωX/B ,

whereH− is a line bundle of non-positive degree −n on B that is trivial for n = 0.

Proof. Let us first assume that the extension (3.2) splits on every fibre of π ; note that if
�1 �= �2, then the extension in fact splits globally. If the extension splits globally, then
π∗(K1 ⊗ δ−1 ⊗ E) has a nowhere vanishing global section, implying that the second
destabilising bundle ofE isK2 = K1

−1 ⊗δ⊗ωX/B . Otherwise, every subline bundle of
π∗(K1 ⊗ δ−1 ⊗E) has negative degree; letH− be its subline bundle of maximal degree
d0 < 0. Then, K1

−1 ⊗ δ ⊗ π∗H− ⊗ ωX/B is the destabilising line bundle of E so that
it is isomorphic to K1. This proves (i) and (iii) for n = 0.

Next, we suppose that �1 = �2 and that the extension is non-trivial on the generic
fibre of π . Note that the restriction ofK1

2 ⊗ δ−1 is trivial on every fibre of π , implying
that K1

2 ⊗ δ−1 = π∗(H+)⊗ OX

(∑r
i=1 aiTi

)
for a line bundle H+ on B and integers
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0 ≤ ai ≤ mi − 1; tensoring the exact sequence (3.2) by K1
−1 and pushing down to B,

we obtain a new exact sequence:

0 → H+−1 → OB → R1π∗(K1
−1 ⊗ E) → H+−1 → 0. (3.3)

Suppose that the extension (3.2) splits over n fibres of π (counting multiplicity). Refer-
ring to (3.3), the first direct image sheafR1π∗(K1

−1 ⊗E) is then given by the extension

0 → S → R1π∗(K1
−1 ⊗ E) → H+−1 → 0,

where S is a skyscraper sheaf supported on the n points (counting multiplicity) corre-
sponding to these fibres. By Grothendieck-Riemann-Roch,

deg(R1π∗(K1
−1 ⊗ E)) = −1

2
c2

1(K1
2 ⊗ δ−1) = −1

2
c2

1(π
∗(H+)) = 0.

The degree of the line bundle H+ is thus n; clearly, H+ = OB if n = 0. Note that by
construction,K−1

1 ⊗δ⊗π∗(H+)⊗OX

(∑r
i=1 aiTi

)
is the destabilising line bundle ofE;

however, π∗
(
K1 ⊗ δ−1 ⊗ π∗(H+)−1 ⊗ OX

(∑r
i=1 biTi

)⊗ E
) = OB , for all integers

0 ≤ bi ≤ mi − 1. Therefore, ai = mi − 1 for all i = 1, . . . , r , proving (ii).
Finally, let us assume that �1 �= �2. If the extension also splits over m ≤ 4�(E)

fibres of π (counting multiplicity) corresponding to points in �1 ∩�2, then the rank of
R1π∗(K1

−1 ⊗ E) jumps at these m points; in fact, the first direct image sheaf is given
by the extension

0 → OB → R1π∗(K1
−1 ⊗ E) → R1π∗(K1

−2 ⊗ δ) → 0.

Dualising, we get R1π∗(K1
−1 ⊗ E)∗ = H−, for H− ∈ Pic(B). Let n := 4�(E) − m;

since the skyscraper sheafR1π∗(K1
−2 ⊗δ) is supported on 4�(E) points (see the proof

of Lemma 2.3), the line bundleH− has degree −n. Furthermore, by relative Serre dual-
ity, π∗(K1 ⊗ δ−1 ⊗E) = R1π∗(K1

−1 ⊗E)∗ = H−; therefore, the second destabilising
line bundle of E is K2 = K1

−1 ⊗ δ ⊗ π∗(H−)⊗ ωX/B and we are done. 	

Recall that, for surfaces X with multiple fibres, the spectral cover of a vector bundle

E onXwas defined in Sect. 2 in terms of the vector bundleψ∗E on anm-cyclic covering
ψ : X′ → X, where X′ is an elliptic fibre bundle over an m-cyclic covering B ′ → B.
Keeping this in mind, we now state the main result of the section.

Theorem 3.5. Consider a filtrable rank-2 vector bundleE onX with determinant δ that
has k jumps of lengths l1, . . . , lk , respectively; furthermore, suppose that j of them occur
over multiple fibres mi1Ti1 , . . . , mij Tij , respectively, for some integer 0 ≤ j ≤ k. We
set

ν :=
j∑
s=1

ls/mis +
k∑

t=j+1

lt .

Let K be one of the destabilising bundles of E. There is an extension

0 → ψ∗K → ψ∗E → ψ∗(K ⊗ δ−1) → 0,

whereψ∗E denotes the vector bundle onX′ obtained by performing successive elemen-
tary modifications to eliminate the jumps of ψ∗E.
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(i) If �1 = �2 and the extension is trivial on every fibre of π ′, then E is stable if and
only if ν > d0 + degωX/B , where d0 is the integer of Proposition 3.4 (i).

(ii) Suppose that �1 = �2 and that the extension splits on only a finite number mn of
fibres, then E is stable if and only if ν > n+ degωX/B .

(iii) If �1 �= �2 and the extension is non-trivial on a finite number mn of fibres of π ′,
then E is stable if and only if degK ∈ (deg δ/2 − ν − n+ degωX/B, deg δ/2

)
.

Proof. Note that any elementary modification of ψ∗E has the same destabilising bun-
dles as ψ∗E (which are the pullbacks to X′ of the destabilising bundles of E). Fur-
thermore, the elementary modification ψ∗E has determinant ψ∗δ ⊗ OX′(−D), where
D := ∑j

s=1 lsTis + (
∑k
t=j+1 lt )T . Applying Proposition 3.4 to the bundle ψ∗E, we

obtain the theorem. 	


4. Moduli Spaces

Let X be a non-Kähler elliptic surface and consider a pair (c1, c2) in NS(X) × Z. For
a fixed line bundle δ on X with c1(δ) = c1, let Mδ,c2 be the moduli space of stable
holomorphic rank-2 vector bundles with invariants det(E) = δ and c2(E) = c2. We
define the following positive rational number:

m(2, c1) := −1

4
max

{
n∑
1

(c1

2
− µi

)2
, µ1, . . . , µr ∈ NS(X),

n∑
1

µi = c1

}
.

Note that, for any c1 ∈ NS(X), one can choose a line bundle δ on X such that

c1(δ) ∈ c1 + 2NS(X) and m(2, c1) = −1

2

(
c1(δ)

2

)2

; (4.1)

moreover, if there exist line bundles a and δ′ on X such that δ = a2δ′, then there
is a natural isomorphism between the moduli spaces Mδ,c2 and Mδ′,c2 , defined by
E �→ a⊗E. Therefore, if δ′ is any other line bundle with Chern class in c1 + 2NS(X),
it induces a moduli space that is isomorphic to Mδ,c2 . However, the advantage of using
such a δ is that its Chern class has maximal self-intersection −8m(2, c1). Hence, we
restrict our study to moduli spaces Mδ,c2 of stable bundles whose determinant δ satisfies
(4.1).

4.1. Existence and dimension. A necessary condition for the existence of holomorphic
rank-2 vector bundles is�(2, c1, c2) := 1/2

(
c2 − c2

1/4
) ≥ 0 [BaL, Br].Also, a theorem

of Bănică - Le Potier’s [BaL] states that there exists a filtrable holomorphic rank-2 vector
bundle with Chern classes c1 and c2 if and only if �(2, c1, c2) ≥ m(2, c1). Given our
choice of line bundle δ, any element E of Mδ,c2 has discriminant

�(E) = m(2, c1)+ 1

2
c2 ≥ 0.

Consequently, c2 ≥ −2m(2, c1); moreover, if c2 < 0, thenE unfiltrable. However, if the
vector bundleE is unfiltrable, then its spectral cover contains an irreducible bisection; it
is then stable by Proposition 3.2. Therefore, if a rank-2 vector bundle has second Chern
class −2m(2, c1) ≤ c2 < 0, then it is stable.
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Assume that the moduli space Mδ,c2 is non-empty. Consider one of its elements
E; there is a natural splitting of the endomorphism bundle End(E) = OX ⊕ ad(E),
where ad(E) is the kernel of the trace map. By deformation theory, the moduli space
has expected dimension h1(X; ad(E))− h2(X; ad(E)) at E. Since the vector bundle E
is assumed to be stable, we have h0(X; ad(E)) = 0 and the expected dimension of the
moduli space is equal to −χ(E) = 8�(2, c1, c2)− 3χ(OX) = 8�(2, c1, c2).

4.2. Smoothness. Let us first assume that X is an elliptic fibre bundle over a curve of
genus less than 2. Recall that a vector bundle E on a complex manifold X is said to be
good if and only if h2(X; ad(E)) = 0, or equivalently, if h0(X; ad(E)⊗KX) = 0 (by
Serre duality); furthermore, the moduli space Mδ,c2 is smooth at E if and only if the
vector bundle E is good. Given this, one easily proves the following:

Proposition 4.1. Let X be a non-Kähler elliptic fibre bundle over a curve B of genus
less than 2, that is,X is a Hopf surface or a primary Kodaira surface. The moduli spaces
Mδ,c2 are then smooth of dimension 8�(2, c1, c2).

Proof. It is sufficient to prove that every stable bundle on X with Chern classes c1 and
c2 is good. In this case, the canonical bundle of the surface is KX = π∗(KB). Since the
genus of B is ≤ 1, the canonical bundle is given by OX(−D), where D is an effective
divisor. There is an inclusion KX = OX(−D) ⊂ OX, which in turn induces an inclu-
sion on the space of global sections H 0(X; adE ⊗ KX) ⊂ H 0(X; ad(E)). However,
the stability of E implies that h0(X; ad(E)) = 0 and we are done. 	


For an arbitrary non-Kähler elliptic surfaceX
π→ B, we consider the elements of the

moduli space that are regular, that is, vector bundles that are regular on every fibre of π .
Note that for such a bundleE, the direct image sheaves π∗(End(E)) andR1π∗(End(E))
are dual locally free sheaves of rank two; therefore, by Grothendieck-Riemann-Roch,
we have c1(π∗(End(E))) = 2ch2(E). Given the natural splitting π∗(End(E)) = OB ⊕
π∗(ad(E)), we conclude that

deg(π∗(ad(E))) = 2ch2(E).

The Leray spectral sequence gives us h0(X; ad(E)⊗KX) = h0(B;π∗(ad(E))⊗KB);
hence, if the degree of π∗(ad(E))⊗KB is negative, we have h0(X; ad(E)⊗KX) = 0,
leading us to the following:

Proposition 4.2. LetX be a non-Kähler elliptic surface over a base curve B of genus g.
Then, if c2 − c2

1/2 > g− 1, the moduli space Mδ,c2 is smooth on the open dense subset
of regular bundles. 	

Remark. We can also give a sufficient condition for smoothness of the moduli space
at points that do not correspond to regular bundles. Consider a stable vector bundle E
that is not regular over the fibres of π lying over the points x1, . . . , xs in B. In this
case, π∗(End(E)) is again a rank-2 vector bundle, but R1π∗(End(E)) is the sum of a
rank 2 vector bundle with a skyscraper sheaf supported on the points x1, . . . , xs , with
multiplicities γ1, . . . , γs , respectively. Let γ = ∑

i γi . Then, one easily verifies that a
sufficient condition for smoothness of the moduli space Mδ,c2 at E is given by

c2 − c2
1

2
> g − 1 + γ

4
.

Note that γ depends not only on the spectral cover of E, but also on the geometry of its
jumps.
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4.3. The image of the graph map. Fix any pair (c1, c2) ∈ NS(X) × Z such that
�(2, c1, c2) ≥ 0 and let δ be a line bundle on X such that m(2, c1) = − 1

2 (c1(δ)/2)2.
Referring to Sect. 2.2, this line bundle determines an involution iδ of the Jacobian surface
and there is an associated ruled surface Fδ := J (X)/iδ; the quotient map is denoted
η : J (X) → Fδ . Furthermore, to any rank-2 vector bundle E on X with determinant δ
and second Chern class c2, there corresponds a graph in Fδ . It was shown in [BrMo1]
that these graphs are elements of linear systems in Fδ of the form |η∗(B0)+ bf |, where
B0 is the zero section of J (X), b is the pullback to X of a line bundle on B of degree
c2, and f is a fibre of the ruled surface.

Let Pδ,c2 be the set of divisors in Fδ of the form
∑k
i=1 fi+A, whereA is a section and

the fi’s are fibres of the ruled surface, that are numerically equivalent to η∗(B0)+ c2f .
We have a well-defined map

G : Mδ,c2 −→ Pδ,c2

that associates to each vector bundle its graph, called the graph map. Let us then describe
the image of this map; we begin by noting that it is surjective on the open dense subset
of graphs in Pδ,c2 that correspond to irreducible bisections in J (X). When considering
the remaining graphs, we restrict ourselves, for simplicity, to the case where X has no
multiple fibres; however, similar results hold if X does have multiple fibres.

Proposition 4.3. Let X
π→ B be a non-Kähler elliptic fibre bundle. Choose an element

c1 ∈ NS(X) such that m(2, c1) = 0; in this case, Fδ = B × P
1 and the elements of

Pδ,c2 are of the form

k∑
i=1

({bi} × P
1)+Gr(F ),

where b1, . . . , bk are points inB andGr(F ) is the graph of a rational map F : B → P
1

of degree c2 − k. We then have the following.

(i) For c2 = 0, the moduli space Mδ,0 consists of isomorphism classes of bundles of
the form L⊗π∗E′, where L is a line bundle onX and E′ is a stable rank-2 vector
bundle on B.

(ii) Let S be the set of points λ0 in T ∗ such that the degree of any line bundle on X
corresponding to the section B × {λ0} in J (X) is congruent to deg δ/2 modulo Z.
If I is the projection of S onto P

1 = T ∗/iδ , then we denote B× I the set of graphs{
({b} × P

1)+ (B × {λ̄}) ∣∣ b ∈ B and λ̄ ∈ I
}
.

For c2 = 1, the image of the graph map G is Pδ,1\ (B × I ).
(iii) For c2 ≥ 2, the graph map is surjective.

Proof. Consider a graph G = ∑k
i=1({bi}×P

1)+Gr(F ), where b1, . . . , bk are points in
B andGr(F ) is the graph of a rational map F : B → P

1 of degree c2 − k; we denote C
the bisection of J (X) determined byGr(F ). Referring to Sect. 2, we can construct rank-
2 vector bundles onX with graph G; therefore, we only have to determine whether or not
at least one of them is stable. Let us fix a bundleE with graph G and discuss its stability.

Suppose that c2 = 0. Then, �(E) = 0 and the map F is constant; moreover, the
bisectionC is reducible andE is a filtrable bundle without jumps. SetC = (B×{λ1})+
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(B × {λ2}), with λ1, λ2 ⊂ Pic0(T ), and let K1 be the destabilising bundle correspond-
ing to λ1. Referring to Proposition 3.4, if λ1 �= λ2, then the second destabilising bundle
of E is K2 = K1

−1 ⊗ δ; therefore, degK1 + degK2 = deg δ and at least one of the
destabilising bundles has degree greater or equal to deg δ/2. Hence, every bundle with
λ1 �= λ2 is unstable. Similarly, if λ1 = λ2 and the bundleE is a split extension only on a
finite number of fibres of π , then degK1 ≥ deg δ/2 implying thatE is unstable. Finally,
if λ1 = λ2 and the bundle E splits on every fibre of π , then there exists a rank-2 vector
bundle E′ on B such that E = K1 ⊗ π∗E′; therefore, the bundle E is stable if and only
if E′ is stable, proving (i).

Now, assume that c2 ≥ 1. Recall that the vector bundle E may be unstable only
if the bisection C is reducible; therefore, suppose that C = �1 + �2 for some sec-
tions �1, �2 ⊂ J (X). If �1 = �2, then the bundle has at least one jump (otherwise,
�(E) = 0 (see Lemma 2.2), contradicting the fact that�(E) = c2 ≥ 1); in this case, E
is always stable by Theorem 3.5. If�1 �= �2, then a stable bundle E can be constructed
as follows. Choose a line bundleK corresponding to�1; after possibly tensoringK by an
element of P2, one can assume that degK ∈ (deg δ/2 − k − 2(c2 − k), deg δ/2), unless
c2 = 1 and the degree of K is congruent to deg δ/2 modulo Z. Then, consider a regular
extension of K−1 ⊗ δ(kT ) by K and perform k elementary modifications (using a line
bundle of degree 1 on T ) to introduce the jumps. Note thatK is one of the destabilising
bundles ofE; referring to Theorem 3.5,E is then stable. Finally, if c2 = 1 and�1 �= �2,
then a bundle with graph G is stable if and only if the degrees of its destabilising bundles
are in the interval (deg δ/2 − 1, deg δ/2); if all bundles corresponding to�1 have degree
congruent to deg δ/2 modulo Z, then this is never possible. 	


Proposition 4.4. Let X
π→ B be a non-Kähler elliptic fibre bundle. Choose an element

c1 ∈ NS(X) such that m(2, c1) > 0, so that we may have c2 < 0. Then, the graph map
is surjective whenever the moduli spaces are non-empty, except in the following case.
Suppose that c2 = 0 and m(2, c1) = 1/4. Furthermore, let J be the set of sections A in
Pδ,0 such that η∗A = �1 + �2 is a reducible bisection of J (X) and the degree of any
line bundle on X associated to �1 is congruent to deg δ/2 modulo Z. In this case, the
image of the graph map is Pδ,0\J .

Proof. Consider a graph G = ∑k
i=1 fi +A and set C = η∗A. We know that there exist

bundles corresponding to this graph; let us then discuss the stability of a bundle E that
has graph G. If c2 < 0, then �(E) < m(2, c1): the bisection C is irreducible and the
bundle is stable. If c2 = 0, then�(E) = m(2, c1) > 0. There are now two possibilities.
The first is k �= 0, implying that A2 < 4m(2, c1); therefore, the bisection C = η∗A is
irreducible and the bundle is stable. The second is k = 0 and the bisection is reducible;
suppose that C = �1 + �2, for some sections �1, �2 ⊂ J (X). Note that �1 �= �2;
otherwise, k = 0 would imply that �(E) = 0, which is a contradiction. The vector
bundle E is then an extension of K−1 ⊗ δ by K , where K is the destabilising bundle of
E corresponding to �1, that can be assumed to be regular on every fibre of π . Hence,
E is stable if and only if degK ∈ (deg δ/2 − 4m(2, c1), deg δ/2), as stated in Theorem
3.5. Clearly, ifm(2, c1) = 1/4 and the degree of every line bundle corresponding to �1
is congruent to deg δ/2 modulo Z, then E is unstable. Finally, by arguments similar to
those used to prove Proposition 4.3, the graph map is surjective whenever c2 ≥ 1. 	


4.4. Fibre of the graph map. If we consider graphs without vertical components, the
description of most fibres of the graph map is then straightforward.
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Proposition 4.5. Let X be a non-Kähler elliptic surface over a curve B of genus g. Fix
a pair (c1, c2) in NS(X) × Z and let δ be a line bundle on X, with c1(δ) = c1, such
that Mδ,c2 is non-empty. Consider an element A of Pδ,c2 that does not contain vertical
components and let C = η∗A be the corresponding bisection in J (X).

(i) Suppose that C is a smooth bisection of J (X). The fibre of the graph mapG atA is
then isomorphic to a finite number of copies of the Prym variety Prym(C/B) (see
Theorem 2.4).

(ii) If the bisectionC = �1+�2 is reducible, then the components ofG−1(A) are para-
metrised by the set of line bundles onX associated to�1 that satisfy the conditions
of Theorem 3.5. In particular, the component given by the line bundle K consists
of extensions ofK−1 ⊗ δ byK that are regular on at least one fibre π−1(b), where
�1,b = �2,b, if degK is not congruent to deg δ/2 modulo Z, or that are regular on
at least two such fibres, otherwise. 	


For graphs with vertical components, the fibre of the graph map can be described by
examining how jumps can be added to vector bundles, that is, by classifying elementary
modifications. This is done in detail in [Mo] for vector bundles on Hopf surfaces. For
the sake of completion, we briefly state how this translates to bundles on an arbitrary
non-Kähler elliptic surface X.

Let E be a stable rank-2 vector bundle on X with detE = δ, c2(E) = c2, and a
jump of length l over the smooth fibre T = π−1(x0). This jump can be removed by
performing l successive allowable elementary modifications, thus obtaining a bundle
with determinant δ(−lT ); note that this procedure is canonical. But, adding a jump to
E implies several choices: a jumping sequence {h0, . . . , hl−1}, a line bundle N on T
for each distinct integer of the jumping sequence, and surjections to N that preserve
stability. These choices are parametrised by a fibration that we now describe. Let G be
a graph that contains a vertical component over x0 of multiplicity µ and {h0, . . . , hl−1}
be a jumping sequence such that

∑l−1
i=0 hi = µ. We set

EjJ c2,l
G,{h0,...,hl−1} =


E ∈ Mδ(jT ),c2

∣∣∣∣∣∣
G(E) = G and E has a jump

of length l at x0 with jumping
sequence {h0, . . . , hl−1}


 .

Associating to a bundle E its allowable elementary modification Ē therefore defines a
natural map

� : Ej+1J c2,l+1
G,{h0,h1,...,hl} −→ EjJ c2−h0,l

G(Ē),{h1,...,hl}
E �−→ Ē.

Proposition 4.6. The fibre of the natural projection � at W is given by:

(i) AutSL(2,C)(W |T ), if c2 > h0 and h0 = h1,
(ii) Pic−h0(T )× AutSL(2,C)(W |T ), if c2 > h0 = 1 and l = 0,

(iii) Pic−c2(T ), if c2 = h0 = 1 and l = 0. 	


4.5. Integrable systems. A Poisson structure on a surfaceX is given by a global section
of its anticanonical bundleK−1

X [Bo]. Suppose thatX
π→ B is a non-Kähler elliptic sur-

face that may have multiple fibres T1, . . . , Tr of multiplicitiesm1, . . . , mr , respectively.
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The anticanonical bundle of X is then π∗K−1
B ⊗ (⊗r

i=1 OX(1 −mi)
)
, implying that X

admits a Poisson structure if the genus of the base curve is smaller or equal to 1 and
if π does not have multiple fibres. From now on, we suppose that X is a non-Kähler
elliptic surface without multiple fibres over a curveB of genus g = 0 or 1, that is, a Hopf
surface or a primary Kodaira surface. Let us fix a Poisson structure s ∈ H 0(X,K−1

X ) on
X. A Poisson structure θ = θs ∈ H 0(M,⊗2TM) on the moduli space M := Mc2,δ

is then defined as follows: for any bundle E ∈ M, θ(E) : T ∗
EM × T ∗

EM −→ C is the
composition

θ(E) : H 1(X, ad(E)⊗KX)×H 1(X, ad(E)⊗KX)
◦−→

H 2(X,End(E)⊗K2
X)

s−→ H 2(X,End(E)⊗KX)
Tr−→ C,

where the first map is the cup-product of two cohomology classes, the second is multi-
plication by s, and the third is the trace map.

If the base curve B is elliptic, the canonical bundle of X is trivial and the Poisson
structure s is non-degenerate; in this case, θ has maximal rank everywhere, that is, θ is
symplectic. If the base curve is instead rational, the Poisson structure s is now degenerate;
we denote its divisor D := (s). Then, at any point E ∈ M,

rk θ(E) = 4 dimC M − dimH 0(D, ad(E|D)).
Suppose that the locally free sheaf OB(2) on B ∼= P

1 is given by the divisor x1 + x2,
for some points x1, x2 ∈ B; then, D = T1 + T2, where Ti = π−1(xi) for i = 1, 2. We
now see that the rank of the Poisson structure is generically 4 dimC M − 2 and “drops”
at the points of M corresponding to bundles that are not regular over the fibres T1 and
T2 (for details, see [Mo]).

Referring to Sects. 4.2 and 4.4, the moduli space M has dimension 8�(2, c1, c2)

and the generic fibres of the graph map G : M −→ Pδ,c2 consist of Prym varieties of
dimension 4�(2, c1, c2)+g−1 (see Proposition 4.5).Also, one can show as in [Mo] that
the component functionsH1, . . . , HN of the graph map are in involution with respect to
the Poisson structure, that is, {Hi,Hj } = 0 for all i, j . Consequently, the graph map G
is an algebraically completely integrable Hamiltonian system.
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