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Abstract: We develop a categorical approach to the dynamical Yang-Baxter equation
(DYBE) for arbitrary Hopf algebras. In particular, we introduce the notion of a dynami-
cal extension of a monoidal category, which provides a natural environment for quantum
dynamical R-matrices, dynamical twists, etc. In this context, we define dynamical asso-
ciative algebras and show that such algebras give quantizations of vector bundles on
coadjoint orbits. We build a dynamical twist for any pair of a reductive Lie algebra and
its Levi subalgebra. Using this twist, we obtain an equivariant star product quantization
of vector bundles on semisimple coadjoint orbits of reductive Lie groups.
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1. Introduction

The quantum dynamical Yang-Baxter equation (DYBE) appeared in the mathematical
physics literature, [GN, AF, Fad, F, ABB], in connection with integrable models of con-
formal field theories. The classical DYBE was first considered in [BDFh], rediscovered
in [F], and systematically studied by Etingof, Schiffmann, and Varchenko in [EV1, ES2,
S]. For a guide in the DYBE theory and an extended bibliography the reader is referred
to the lecture course [ES1].

The theory of the DYBE over the Cartan subalgebra in a simple Lie algebra has been
developed in detail. Classical dynamical r-matrices were classified in [EV1] and their
explicit quantization built in [EV2, EV3, ESS]. Concerning the classical DYBE over an
arbitrary (non-commutative) base, much is known about classification of its solutions
and there are numerous explicit examples, [AM, ES2, Fh, S, Xu2]. At the same time,
there is no generally accepted definition of quantum DYBE over a non-commutative Lie
algebra or, say, over an arbitrary Hopf algebra. A generalization of the quantum DYBE
for several particular cases was proposed in [Xu2] and [EE1]. Such a generalization was
motivated by a relation between DYBE and the star product, [Xu1, Xu2]. An open ques-
tion is an interpretation of the quantum DYBE of [Xu2] and [EE1] from a categorical
point of view.
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Another interesting question is a relation of DYBE to the equivariant quantization. It
was observed by Lu, [Lu1], that the list of classical r-matrices over the Cartan subalgebra
of a simple Lie algebra is in intriguing correspondence with the list of Poisson-Lie struc-
tures on its maximal coadjoint orbits. However, the precise relation between quantum
dynamical R-matrices and the equivariant quantization has not been established.

The purpose of the present paper is to develop a theory of DYBE over an arbitrary
Hopf algebra and relate it to equivariant quantization of vector bundles. Firstly, we gen-
eralize the classical dynamical Yang-Baxter equation for any Lie bialgebra h extending
the concept of base manifold, which is the dual space h∗ in the standard approach.
Secondly, we build dynamical extensions of monoidal categories and define the quan-
tum dynamical R-matrix over an arbitrary base. Our third result is a construction of
dynamical twist for Levi subalgebras in a reductive Lie algebra. Finally, we introduce a
notion of dynamical associative algebras as algebras in dynamical categories and relate
them to equivariant quantization of vector bundles. As an application, we construct an
equivariant star product quantization of vector bundles (including function algebras) on
semisimple coadjoint orbits of reductive Lie groups.

It turns out that there is a general procedure of “dynamical extension”, Ō, of every
monoidal category O over a base B, which is an O-module category. This new category
has the same objects as O but more morphisms. The objects are considered as functors
from B to B by the tensor product action. Morphisms in Ō are natural transformations
between these functors. This category admits a tensor product making it a monoidal
category with O being a subcategory. One can consider the standard notions as alge-
bras, twists, and R-matrices relative to Ō. In terms of the original category O, they
satisfy “shifted” axioms, like shifted associativity, shifted cocycle condition, shifted or
dynamical Yang-Baxter equation.

The construction of dynamical extension admits various formulations. One of them
uses the so-called base algebras, which are commutative algebras in the Yetter-Drinfeld
categories. From the algebraic point of view, a Yetter-Drinfeld category is a category of
modules over the double D(H) of a Hopf algebra H. In the quasi-classical limit, the
base algebras are function algebras on the so-called Poisson base manifolds. A Poisson
base manifoldL is endowed with an action of the doubleD(h) of the Lie bialgebra h, the
classical analog of H. The Poisson structure on L is induced by the canonical r-matrix
of the double.

The category of H-modules can be dynamically extended over the dual Hopf alge-
bra H∗. This approach is convenient for definition of dynamical associative algebras. A
dynamical associative algebra is equipped with an equivariant family of binary opera-
tions (multiplications) depending on elements of H∗. This family satisfies a “shifted”
associativity condition. We show that the dynamical associative algebras give vector
bundles on quantum spaces.

In this paper we consider vector bundles on coadjoint orbits. In the classical situation,
the function algebra on a homogeneous space is a subalgebra in the function algebra on
the group. In general, the quantized function algebra on a homogeneous space cannot
be realized as a subalgebra in a quantized function algebra on the group. For example,
in the case of semisimple coadjoint orbits, such a realization exists only for symmet-
ric or bisymmetric orbits, [DGS1, DM1]. Nevertheless, a quantization of the function
algebra on the group as a dynamical associative algebra contains quantum orbits as
(associative) subalgebras. Moreover, a dynamical quantization on the group quantizes
the algebra of sections of homogeneous vector bundles on orbits. Such quantizations are
parameterized by group-like elements of H∗.
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A way of constructing (quantum) dynamical R-matrices and dynamical associative
algebras is by twists in dynamical categories. We build such twists for Levi subalgebras
in simple Lie algebras, using generalized Verma modules. This gives a construction of
star product on the semisimple orbits.

The paper is organized as follows. In Sect. 2 we recall basic definitions concerning
DYBE and the compatible star product of [Xu2].

Section 3 presents generalizations of DYBE using the concepts of base algebras and
base manifolds.

Section 4 is devoted to various formulations of dynamical categories; therein we
study dynamical associative algebras.

In Sect. 5 we study objects that are interesting for applications: dynamical twists
and dynamical R-matrices. We consider various types of dynamical categories and give
expressions of dynamical twists and R-matrices in terms of the original category.

In Sect. 6 we suggest a method of constructing dynamical twists. The method is based
on a notion of dynamical adjoint functors. We build such functors using generalized Ver-
ma modules corresponding to Levi subalgebras in the (quantum) universal enveloping
algebra of simple Lie algebras.

In Sect. 7 we study relations between quantization of vector bundles and dynamical
associative algebras in a purely algebraic setting.

In Sect. 8 we give a detailed consideration to the dynamical associative algebra which
is a quantized function algebra on a simple Lie groupG.We relate this algebra to quantum
vector bundles on coadjoint semisimple orbits of G.

Note that the equivariant star product on function algebras on coadjoint orbits was
also constructed in the papers [AL] and [KMST] which appeared after the first version
of this article. Our method of building dynamical twists is developed for a more general
case in [EE2].

2. Dynamical r-Matrix and Compatible Star Product

2.1. Classical dynamical Yang-Baxter equation. In this section we recall basic defini-
tions concerning the dynamical Yang-Baxter equation. Let g be a Lie algebra and h its
Lie subalgebra. The dual space h∗ is considered as an h-module with respect to the
coadjoint action. Let {hi} ⊂ h be a basis and {λi} ⊂ h∗ its dual.

Definition 2.1 ([F, EV1]). A classical dynamical r-matrix over the base h is an h-equiva-
riant meromorphic function r : h∗ → g ⊗ g satisfying

1. the normal condition: the sum r(λ)+ r21(λ) is g-invariant,
2. the classical dynamical Yang-Baxter equation (DYBE):

∑

i

∂r23

∂λi
h
(1)
i − ∂r13

∂λi
h
(2)
i + ∂r12

∂λi
h
(3)
i = [r12, r13] + [r13, r23] + [r12, r23]. (1)

A constant dynamical r-matrix is a solution to the ordinary Yang-Baxter equation. It
follows that the sum r(λ)+ r21(λ) does not depend on λ, [ES2]. If it is identically zero,
the r-matrix is called triangular.
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2.2. Quantum dynamical Yang-Baxter equation over an abelian base. Suppose that h
is a commutative Lie algebra and V is a semisimple h-module. Given a family �(λ),
λ ∈ h∗, of linear operators on V⊗3, let us denote by�(λ+ th(1)) the family of operators
on V⊗3 acting by v1 ⊗ v2 ⊗ v3 �→ �(λ+ t wt(v1))(v1 ⊗ v2 ⊗ v3), where wt(v) stands
for the weight of v ∈ V with respect to h and t is a formal parameter. The operators
�(λ+ th(i)), i = 2, 3, are defined similarly.

Definition 2.2. Let h be a commutative Lie subalgebra of a Lie algebra g. Let R(λ)
be an h-equivariant meromorphic function h∗ → U(g)⊗2 (we consider h∗ equipped
with the coadjoint and U(g) with adjoint action of h). Then R(λ) is called (universal)
quantum dynamical R-matrix if it satisfies the quantum dynamicalYang-Baxter equation
(QDYBE)

R12(λ)R13(λ+ th(2))R23(λ) = R23(λ+ th(1))R13(λ)R12(λ+ th(3)). (2)

Assuming R(λ) = 1 ⊗ 1 + t r(λ) + O(t2), the element r(λ) satisfies Eq. (1), i.e.
Eq. (1) is the quasi-classical limit of Eq. (2). In this case R(λ) is called quantization
of r(λ). The problem of quantizing classical DYBE has been solved for g a complex
semisimple Lie algebra and h its reductive commutative subalgebra, [ESS]. As to the
case of general h, there is no generally accepted concept of what should be taken as the
quantum DYBE. In the next subsection we render a construction of [Xu2] suggesting a
version of quantum DYBE as a quantization ansatz for triangular dynamical r-matrices.
This will be the starting point for our study.

2.3. Compatible star product. Let g be a complex Lie algebra andG the corresponding
connected Lie group. Let h be a Lie subalgebra in g. Denote by 	ξ the left invariant vector
field onG induced by ξ ∈ g via the right regular action. Let πh∗ denote the Poisson-Lie
bracket on h∗.

Theorem 2.3 ([Xu2]). A smooth function r : h∗ → ∧2g is a triangular dynamical
r-matrix if and only if the bivector field

πh∗ +
∑

i

∂

∂λi
∧ 	hi + 	r(λ) (3)

is a Poisson structure on h∗ ×G.

Thus, the bivector field 	r(λ) on G is a “part” of a special Poisson bracket on a big-
ger space, h∗ × G. Xu proposed to look at a star product on h∗ × G of special form,
as a quantization of (3). Let ht := h[[t]] be the Lie algebra over C[[t]] with the Lie
bracket [x, y]t := t[x, y] for x, y ∈ h. The universal enveloping algebra U(ht ) can be
considered as a deformation quantization of the polynomial algebra onh∗. It is known that
this quantization can be presented as a star product on h∗ by the PBW map S(h)[[t]] →
U(ht ), where elements of the symmetric algebra S(h) are identified with polynomial
functions on h∗. We call this star product the PBW star product.

Definition 2.4 ([Xu2]). A star product ∗t on h∗ ×G is called compatible if

1. when restricted to C∞(h∗), it coincides with the PBW star product;



724 J. Donin, A. Mudrov

2. for f ∈ C∞(G) and g ∈ C∞(h∗),

(f ∗t g)(λ, x) := f (x)g(λ), (g ∗t f )(λ, x)

:=
∞∑

k=0

tk

k!

∂kg(λ)

∂λi1 . . . ∂λik
	hi1 . . . 	hikf (x); (4)

3. for f, g ∈ C∞(G),

(f ∗t g)(λ, x) := 	F(λ)(f, g)(x), (5)

where F(λ) is a smooth function F : h∗ → U(g)⊗U(g)[[h]] such that F = 1 ⊗ 1 +
t
2 r(λ)+O(t2).

For this star product to be associative, F should satisfy a certain condition called
the shifted cocycle condition.

Also, Xu proposed a generalization of the quantum DYBE (2) for an arbitrary Lie algebra
h in the form

R12(λ) ∗t R13
(
λ+ th(2)

) ∗t R23(λ)=R23
(
λ+th(1)) ∗t R13 ∗t R12

(
λ+th(3)), (6)

where R is an equivariant function h∗ → U(g) ⊗ U(g), and the subscripts mark the
tensor components in U⊗3(g). Notation f (λ+ th) for f ∈ C∞(h∗) means

f (λ+ th) :=
∞∑

k=0

tk

k!

∂kf (λ)

∂λi1 . . . ∂λik
hi1 . . . hik . (7)

Here {hi} ⊂ h and {λi} ⊂ h∗ are dual bases; the superscript of h(i), i = 1, 2, 3, in (6)
means that h is embedded in the ith component of U⊗3(g).

The compatible star product of [Xu2] is defined on smooth functions on h∗ × G.
When restricted to polynomial functions on h∗, it gives the multiplication in the universal
enveloping algebra U(h). Formula (4) expresses the product of elements from U(h) and
C∞(G) through the comultiplication in U(h) and the action of U(h) on C∞(G). It
seems natural to replace U(h) with an arbitrary Hopf algebra H and C∞(G) with a left
H-module A. However, the bidifferential operator F(λ) in (5) may be a meromorphic
or even a formal function in λ ∈ h∗. This requires to consider appropriate extensions
of U(h), which may no longer be Hopf algebras. On the other hand, there is a class of
admissible algebras which are close, in a sense, to the Hopf ones. Those are commuta-
tive algebras in the so-called Yetter-Drinfeld category of H-modules and H-comodules,
which are, roughly speaking, modules over the double of H. We will define a dynamical
extension of the monoidal category of H-modules over an admissible algebra, where
the notions of compatible star products, dynamical Yang-Baxter equations, etc., acquire
a natural algebraic formulation. Depending on a particular choice of admissible alge-
bra, we come to different quasi-classical limits of quantum dynamical objects. Also,
it appears useful (and often technically simpler) to consider a “dual” version of the
dynamical extension, for example, a dynamical extension of the monoidal category of
H∗-comodules. In this way we obtain a “linearization” of the theory; in particular, smooth
or meromorphic functions on h∗ become linear functions on U(h)∗. Moreover, it will be
useful to introduce the notion of dynamical extension of an arbitrary monoidal category,
defined without involving any Hopf algebra. Below we present all the formulations.
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3. Generalizations of Dynamical Yang-Baxter Equations

3.1. Base algebras. In this subsection we define two objects of our primary concern: a
base algebra L and a dynamical associative algebra over L.

By k we mean a commutative ring over a field of zero characteristic. The reader may
think of it as C or C[[t]], the ring of formal series in t . Given a Hopf algebra H over
k we denote the multiplication, comultiplication, counit, and antipode by m, �, ε, and
γ . We use the standard Sweedler notation for the comultiplication in Hopf algebras:
�(x) = x(1) ⊗ x(2). In the same fashion we denote the H-coaction on a right comodule
A: δ(a) = a[0] ⊗ a(1), where the square brackets label the A-component and the paren-
theses mark that belonging to H. The Hopf algebra with the opposite multiplication will
be denoted by Hop while with the opposite comultiplication by Hop.

The Hopf algebra H is considered as a left module over itself with respect to the
adjoint action

x ⊗ a �→ x(1)aγ (x(2)); (8)

then the multiplication in H is equivariant. It is a standard fact that for any left H-module
A the map H ⊗ A → A⊗ H, h⊗ a �→ h(1) � a ⊗ h(2), is H-equivariant.

Recall that an algebra and H-module A is called a module algebra if the multiplica-
tion in A is H-equivariant. An algebra and H-comodule A is called a comodule algebra
if the coaction A → H ⊗ A is a homomorphism of algebras.

Definition 3.1 (Base algebras). A left H-module and left H-comodule algebra L is
called base algebra over H if the coaction δ : L → H ⊗ L satisfies the condition

{
x(1) � �}(1)x(2) ⊗ {

x(1) � �}[2] = x(1)�(1) ⊗ x(2) � �[2] (9)

for all x ∈ H and � ∈ L, and the condition

�1�2 = (
�
(1)
1 � �2

)
�

[2]
1 , (10)

for all �1, �2 ∈ L.

The coaction δ defines a permutation τA : L ⊗A → A⊗ L with every H-module A:

τA(�⊗ a) := �(1) � a ⊗ �[2], �⊗ a ∈ L ⊗ A. (11)

Condition (9) ensures that this permutation is H-equivariant. Condition (10) means that
the multiplication in L is τL-commutative.

Remark 3.2. A base algebra is a commutative algebra in the braided category of
Yetter-Drinfeld modules. From the purely algebraic point of view, Yetter-Drinfeld mod-
ules are modules over the double Hopf algebra D(H). The left H-coaction induces a
left H∗

op-action. Together with the H-action, the H∗
op-action gives aD(H)-action. In our

theory, an H-base algebra plays the same role as the U(h)-module algebra of functions
on h∗ in the theory of DYBE over a commutative base.

One can also introduce the dual notion of a base coalgebra as a comodule overD(H).
We will use H∗, a dual to the Hopf algebra H, as an example of such a base coalgebra.

Example 3.3. The algebra H itself is a base algebra over H with respect to the left adjoint
action and the coproduct � considered as the left regular H-coaction. Conditions (9)
and (10) are checked directly.
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Example 3.4. Suppose that H is the tensor product of two Hopf algebras, H = H0 ⊗H1.
Then both H0 and H1 are natural base algebras over H. The H-action on Hi is the adjoint
action restricted to Hi . The H-coaction on Hi is the coproduct coaction considered as
a map with values in Hi ⊗ Hi ⊂ H ⊗ Hi .

Example 3.5 (PBW star product). Consider the algebraC∞(h∗)[[t]] from Definition 2.4
equipped with the PBW star product. It is obviously a left U(h)-module algebra, and
formula (7) defines a coaction C∞(h∗)[[t]] → U(h)⊗C∞(h∗)[[t]] (the completed ten-
sor product). It is straightforward to check that C∞(h∗)[[t]] is a base algebra over U(h).
The algebra C∞(h∗)[[t]] is an extension of U(ht ), which is realized as the subalgebra
in U(h)[[t]] generated by th. The algebra U(ht ) is a Hopf one, hence it is a base algebra
over itself. At the same time, it is a base algebra over U(h)[[t]]. Indeed, it is invariant
under the adjoint U(h)-action, and it is a left U(h)-comodule under the map (ϕt⊗id)◦�,
where � is the coproduct in U(ht ) and ϕt the natural embedding of U(ht ) in U(h)[[t]].
Proposition 3.6. Suppose that H is a quasitriangular Hopf algebra, with the universal
R-matrixR. LetLbe a quasi-commutativeH-module algebra, i.e. obeying (R2��2)(R1�
�1) = �1 ⊗ �2 for all �1, �2 ∈ L. Then L is an H-base algebra, with the left H-coaction

δ(�) := R2 ⊗ R1 � �, � ∈ L. (12)

Proof. The condition (10) is satisfied by construction. The equality (� ⊗ id)(R) =
R13R23 implies that the map (12) is an algebra homomorphism. The map (12) makes
L a left H-comodule, because of (id ⊗�)(R) = R13R12. The condition (9) holds by
virtue of R�(h) = �op(h)R for every h ∈ H. �
Corollary 3.7. Within the hypothesis of Proposition 3.6, suppose that R ∈ H ⊗ K ⊂
H ⊗ H, where K is a Hopf subalgebra in H. Then L is endowed with a structure of the
K-base algebra, with the K-coaction (12).

Proof. The H-coaction (12) is, in fact, an K-coaction. Now the statement immediately
follows from Proposition 3.6. �

Remark that an R-commutative algebra L is commutative with respect to the ele-
ment R−1

21 , which is also a universal R-matrix for H. Thus L has two H-base algebra
structures, and they are different in general. In particular, an H-base algebra has two
different D(H)-base algebra structures.

Example 3.8 (The FRT algebras). The FRT-dual Hopf algebra H∗, [FRT], of a quasitri-
angular Hopf algebra H is a quasi-commutative H ⊗ Hop-algebra. Therefore it has two
structures of H ⊗ Hop-base algebras.

Example 3.9 (Reflection equation algebras). Recall that a twist of a Hopf algebra H
is a Hopf algebra with the same multiplication and the new comultiplication �̃(x) :=
F−1�(x)F ; the element F called a twisting cocycle satisfies certain conditions, see
[Dr3]. For every quasitriangular Hopf algebra H with the R-matrix R, there is a twist,

H R⊗ H, of its tensor square, [RS]. It is obtained by applying the twisting cocycle R23 ∈
(H⊗H)⊗(H⊗H) to the comultiplication in H ⊗ H. The twisted tensor square is a
quasitriangular Hopf algebra with the R-matrix

R′ := R−
14R−

13R+
24R+

23 ∈ (H R⊗ H)⊗ (H R⊗ H), (13)
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where R+ := R and R− := R−1
21 . Recall that H is a Hopf subalgebra in H R⊗ H through

the embedding � : H → H ⊗ H. Observe that the R-matrix (13) can be presented as
R′ = (R−

1 ⊗R+
1 )⊗�(R−

2 )�(R+
2 ). In other words, its right tensor component belongs

to�(H) ⊂ H R⊗ H. Applying the argument from Corollary 3.7 to K = �(H), we come

to the following proposition.

Proposition 3.10. A quasi-commutative H R⊗ H-module algebra is a base algebra over

H.

The reflection equation algebra associated with a finite dimensional representation

of H, [KSkl, KS], is a quasi-commutative H R⊗ H-algebra, [DM3]. As a corollary of

Proposition 3.10, we obtain that the reflection equation algebra is an H-base algebra.
More examples of base algebras are obtained by quantizing Poisson base algebras

(see Subsect. 3.2.2), according to Theorem 3.23.

3.2. Dynamical associative algebras. Let L be a base algebra over a Hopf algebra H.

Definition 3.11. A left H-module A is called a dynamical associative algebra over the
base algebra L if it is equipped with an H-equivariant bilinear map � : A⊗A → A⊗L
such that the following diagram is commutative:

A ⊗ L ⊗ A A ⊗ A ⊗ L A ⊗ L ⊗ L A ⊗ L

A ⊗ A ⊗ A A ⊗ A ⊗ L A ⊗ L ⊗ L A ⊗ L

�id⊗τA ��⊗id �id⊗m

‖
�id⊗�

��⊗id

��⊗id �id⊗m

(14)

Here m stands for the multiplication in L and the permutation τA is defined by (11).

An example of dynamical associative algebra is the function algebra on a group G
twisted by the dynamical twist from [Xu2]. It defines the compatible star product in the
sense of Definition 2.4; it turns out that the multiplication � in a dynamical associative
algebra over an arbitrary base can be extended to an ordinary associative multiplication
in a bigger algebra, according to the following proposition.

Proposition 3.12. Let A be a left H-module equipped with an equivariant map � : A⊗
A → A ⊗ L. Then A is a dynamical associative algebra with respect to � if and only
if the operation

(A ⊗ L)⊗ (A ⊗ L) τA−→ A ⊗ A ⊗ L ⊗ L �⊗m−→ A ⊗ L ⊗ L m−→ A ⊗ L

makes A ⊗ L an associative H-module algebra, denoted further by A � L.

Proof. The proof can be conducted by a straightforward verification. Below we give
another proof using our categorical approach to dynamical associative algebras, see
Example 4.21. �
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3.3 Infinitesimal analogs of base algebras and dynamical associative algebras. In the
present subsection, we introduce quasi-classical analogs of base algebras and dynamical
associative algebras.

3.2.1. Poisson-Lie manifolds. Let us recall some basic facts about Poisson-Lie manifolds.
Throughout the text an g-manifold means a manifold equipped with a left g-action on

functions. This corresponds to a right action on the manifold of a Lie group G relative
to g.

Let g be a Lie bialgebra, i.e. a Lie algebra equipped with a cobracket map µ : g →
∧2g. The cobracket defines on the dual space g∗ a Lie algebra structure compatible with
the Lie algebra structure on g in the sense of [Dr1]. Recall from [Dr2] that µ induces a
Poisson structure on the Lie group G such that the multiplication map G×G → G is
a Poisson map (the manifold G×G is equipped with the standard Poisson structure of
Cartesian product of two Poisson manifolds). A rightG-manifold P is called a Poisson-
Lie manifold if the action P ×G → P is Poisson. The right G-action on P induces a
left action of the universal enveloping algebra U(g) on the function algebra A(P ). For
an element x ∈ U(g), let 	xP (or simply 	x, if P is clear from the context) denote the
corresponding differential operator on P . For the bidifferential operator on P generated
by a bivector field π , we use the notation π(a, b) := (m ◦ π)(a ⊗ b), a, b ∈ A(P ),
where m is the multiplication in A(P ).

The following fact is well known and can be checked directly.

Proposition 3.13. Let g be a Lie bialgebra with cobracket µ,G the corresponding con-
nected simply connected Poisson-Lie group, and P a rightG-manifold equipped with a
Poisson bracket π . Then P is a Poisson-LieG-manifold if and only if for any x ∈ g and
a, b ∈ A(P )

	xπ(a, b)− π(	xa, b)− π(a, 	xb) = −−→
µ(x)(a, b). (15)

Any Lie bialgebra structure on g can be quantized to a C[[t]]-Hopf algebra Ut (g) (quan-
tum group), see [EK]. If At (P ) is a Ut (g)-equivariant quantization of A(P ), then the
quasi-classical limit of At (P ) gives a Poisson-Lie bracket on P .

An important particular case of Lie bialgebras is a coboundary one, with the cobracket
µ(x) := [x ⊗ 1 + 1 ⊗ x, r], where the element r ∈ ∧2g satisfies the modified classical
Yang-Baxter equation

[[r, r]] := [r12, r13] + [r13, r23] + [r12, r23] = ϕ ∈ ∧3(g)g. (16)

Formula (15) then reads

[	x ⊗ 1 + 1 ⊗ 	x, π − 	r] = 0. (17)

In other words, a Poisson-Lie bracket differs from 	r by an invariant bivector f := π − 	r
such that [[f, f ]] is equal to −	ϕ from (16). Here the operation f �→ [[f, f ]] is defined by
(16) for the Lie algebra of vector fields; this operation is proportional to the Schouten
bracket. Note that the Poisson-Lie bracket on a Poisson-Lie g-manifold P is the infini-
tesimal object for the Ut (g)-equivariant quantization of the function algebra onP , where
Ut (g) is the corresponding quantum group. Such brackets are classified in [DGS1, Kar,
D2, DO] for homogeneous manifolds G/H , where G is a simple Lie group and H its
reductive Lie subgroup of maximal rank.
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3.2.2. Poisson base algebras and Poisson base manifolds. Let D(h) denote the double
of a Lie bialgebra h, [Dr1]. As a linear space, D(h) is the direct sum h + h∗

op, where h∗
is the dual Lie algebra. The double D(h) is endowed with a non-degenerate symmet-
ric bilinear form induced by the natural pairing between h and h∗

op. There is a unique
extension of the Lie algebra structure from h and h∗

op to a Lie algebra onD(h) such that
this form is ad-invariant. The double is a coboundary Lie bialgebra with the r-matrix
r := ∑

i η
i ∧ hi = 1

2

∑
i (η

i ⊗ hi − hi ⊗ ηi), where {hi} is a basis in h and {ηi} is the
dual basis in h∗

op. The canonical element θ := 1
2

∑
i (η

i ⊗ hi + hi ⊗ ηi) is ad-invariant.
The pair (r, θ) makes D(h) a quasitriangular Lie bialgebra.

Definition 3.14. A commutativeD(h)-algebra L0 is called a Poisson base algebra over
h, or simply an h-base algebra, if θ induces the zero bidifferential operator on L0.

When a Poisson base algebra L0 over h appears as the function algebra on a mani-
fold L, i.e. L0 := A(L), we call L a Poisson base manifold over h, or simply an h-base
manifold.

Proposition 3.15. An h-base manifold L is a Poisson-Lie D(h)-manifold with respect
to the bracket

� :=
∑

i

	ηi ∧ 	hi, (18)

which is automatically equal to the bivector field
∑
i

	ηi ⊗ 	hi .
Proof. The element

∑
i η
i ∧ hi ∈ ∧2D(h) satisfies the modified Yang-Baxter equation

(16) withϕ := [θ12, θ23]. Since θ yields the zero bivector field onL, the three-vector field
induced by [θ12, θ23] is zero, too. This implies the following two assertions. Firstly, the
bivector � defines a Poisson structure on L. Secondly, for any D(h)-invariant Poisson
bracket f the bracket f +� hence � , is automatically a Poisson-Lie one. �

The following are examples of Poisson base manifolds. According to Theorem 3.23
below, they can be quantized to Ut (h)-base algebras, where Ut (h) is the quantized uni-
versal enveloping algebra of h.

Example 3.16 (Group spacesH ∗ andH ). LetH be the Lie subgroup in the doubleD(H)
corresponding to the Lie subalgebra h ⊂ D(h). We will show that the left coset space
H\D(H) is an h-base manifold. Note that the manifoldH\D(H) is locally isomorphic
to the Lie group H ∗ corresponding to the Lie algebra h∗. The algebra of functions on
H\D(H) is realized as a subalgebra of functions f ∈ A(

D(H)
)

obeying f (hx) = f (x)

for h ∈ H . This subalgebra is invariant under the right regular action ofD(H) on itself.
The element θ isD(h)-invariant, hence the bivector θ l,l−θr,r , where the superscripts l, r
denote the left- and right-invariant field extensions, gives the zero operator on A(

D(H)
)
.

Therefore the bivector θ l,l gives the zero operator on the leftH -invariant functions, where
it equals θ l,l − θr,r . Thus, H\D(H) and therefore H ∗ are Poisson h-base manifolds.
In this example, the Poisson bracket on H ∗ is the Drinfeld-Sklyanin bracket on D(H)
projected to H ∗.

Similarly toH\D(H), one can consider the coset spaceH ∗\D(H), which is locally
isomorphic to the group space H . So H is a Poisson h-base manifold as well.

By the function algebra A(P ) we understand, depending on a particular type of the manifold P , the
algebra of polynomial, analytical, meromorphic, or smooth functions.
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Example 3.17 (Coset spaces K\H ). Let us generalize Example 3.16. Suppose that k is
a Lie sub-bialgebra in h. Then the linear sum k + h∗

op is a Lie sub-bialgebra in D(h).
Let K be the Lie subgroup in H corresponding to k. Using the same arguments as in
Example 3.16, one can prove that the coset space K\H is a Poisson h-base manifold.
Indeed, letK ·H ∗ denote the connected subgroup in D(H)whose Lie algebra is k+h∗

op.
The coset space (K · H ∗)\D(H) is locally isomorphic to K\H as a smooth manifold.
Consider the functions on the group D(H) that are invariant under K ·H ∗ as functions
on (K ·H ∗)\D(H). The rest of the construction is exactly the same as in the previous
example. Namely, one can check that the projection of the Drinfeld-Sklyanin bracket
from D(H) makes K\H a Poisson h-base manifold.

It follows that the quotient spaces of the standard Drinfeld-Jimbo simple Poisson-Lie
group H by the Levi and parabolic subgroups are Poisson h-base manifolds.

Obviously, the same construction works for the dual Lie bialgebra h∗
op and its sub-

bialgebras; the corresponding coset spaces will be h-base manifolds.

Example 3.18 (Group H , the quasitriangular case). Suppose that h is a quasi-
triangular Lie bialgebra, i.e. h is endowed with an r-matrix r and a symmetric invariant
elementω ∈ h⊗h such that r satisfies (16) with ϕ := [ω12, ω23]. We can treat r andω as
linear maps from h∗

op to h via pairing with the first tensor factor. Consider the Lie group
H corresponding to h as a right H -manifold via the action x �→ y−1xy, x, y ∈ H .
This action generates the action of h on the function algebra A(H) by vector fields
	h := hl − hr , h ∈ h. Here the superscripts l, r stand for the left- and right- H -invariant
vector fields generated, respectively, by the right and the left regular actions of H on
itself. The group H is also a right h∗

op-manifold. Namely, the element η ∈ h∗
op acts on

functions from A(H) by the vector field 	η := r(η)l − r(η)r +ω(η)l +ω(η)r . We have

2	θ = (rl,l − rr,l − rl,r + rr,r )+ (ωl,l − ωr,l + ωl,r − ωr,r )

−(rl,l − rl,r − rr,l + rr,r )+ (ωl,l − ωl,r + ωr,l − ωr,r )

= 2(ωl,l − ωr,r ), (19)

which vanishes on functions, becauseω is invariant. These actions of h and h∗
op define an

action of the doubleD(h), thus the group spaceH is an h-base manifold. In this example,
� is the reflection equation Poisson bracket, [Sem]. Quantization of this bracket is an
RE algebra, cf. Example 3.9.

3.2.3. Poisson dynamical algebras. In this subsection, we define a Poisson dynamical
bracket as an infinitesimal object for the deformation quantization of a commutative
algebra A to a dynamical associative algebra, in the sense of Definition 3.11. We assume
A := A(P ), a function algebra on a manifold P .

Given a linear space X, by Alt we denote a linear endomorphism of X⊗3 acting by

Alt : x1 ⊗ x2 ⊗ x3 �→ x1 ⊗ x2 ⊗ x3 − x2 ⊗ x1 ⊗ x3 + x2 ⊗ x3 ⊗ x1, xi ∈ X.

Definition 3.19. Let h be a Lie bialgebra with the cobracketµ,Lan h-base manifold, and
P an h-manifold. Let T (P ) denote the tangent bundle toP . A functionπ : L → ∧2T (P )

is called a Poisson dynamical bracket on P (or on A(P )) over the base manifold L
(or over the Poisson h-base algebra A(L)) if
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1. for any h ∈ h and a, b ∈ A(P )

	hLπ(λ)(a, b)+ 	hP
(
π(λ)(a, b)

) − π(λ)(	hP a, b)− π(λ)(a, 	hP b)
= −−→
µ(h)P (a, b), (20)

2. π satisfies the equation

∑

i

Alt
( 	hiP ⊗ 	ηiLπ(λ)

) = [[π(λ), π(λ)]]. (21)

In this definition the expression π(a, b) is a function on P × L. The vector fields 	hL
and 	hP are generated by the actions of h on L and P , respectively;

−−→
µ(h)P is a bivector

field induced on P by the Lie cobracket µ(h) ∈ ∧2h. The vector field 	ηiL is induced by
the actions of h∗

op on L (recall that L is a D(h)-manifold).
WhenP is endowed with a Poisson dynamical bracket over a baseL, we say that A(P )

is a Poisson dynamical algebra. While a Poisson base manifold is a classical analog of a
base algebra, a Poisson dynamical algebra is a classical analog of dynamical associative
algebra. The Poisson dynamical bracket may be viewed as a map π : A(P )∧ A(P ) →
A(P )⊗ A(L).

The following proposition is a generalization of Theorem 2.3.

Proposition 3.20. Let h be a Lie bialgebra with cobracket µ, L an h-base and P an
h-manifold. A function π : L → ∧2T (P ) is a Poisson dynamical bracket on P over the
base L if and only if the bivector

∑

i

	ηiL ∧ 	hiL + 2
∑

i

	ηiL ∧ 	hiP + π (22)

is a Poisson-Lie bracket on the h-manifold P × L.

Proof. This statement is proven by a direct computation. It can be considered as an
infinitesimal analog of Theorem 3.12. �

If the base manifold L has h-stable points, then a Poisson dynamical bracket on P
can be restricted to the coset space P/H , where it becomes an ordinary Poisson bracket.
This is formalized by the following proposition.

Proposition 3.21. Let λ0 ∈ L be a stable point under the action of h. Then π(λ0)

restricts to a Poisson bracket on the subalgebra of h-invariants in A(P ).

Proof. By the equivariance condition (20), the function π(λ0)(f, g) is h-invariant when
f, g ∈ A(P ) are h-invariant. The Schouten bracket of π(λ0) with itself vanishes on
h-invariant elements from A(P ), as follows from (21). �

Proposition 3.21 gives rise to a quantization method for the class of Poisson structures
coming from Poisson dynamical structures. This method is developed in Sect. 7 and uses
dynamical associative algebras, which are quantizations of Poisson dynamical algebras.
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3.4. Quantization of Poisson base algebras and Poisson dynamical algebras. Let h be a
Lie bialgebra and Ut (h) the corresponding quantization of U(h). Suppose L0 is a Poisson
h-base algebra. By Proposition 3.15, L0 is endowed with a Poisson bracket induced by
the tensor

∑
i η
i ⊗ hi ∈ D(h)⊗2, where {hi} ⊂ h and {ηi} ⊂ h∗

op are dual bases.

Definition 3.22. A quantization of the Poisson h-base algebra L0 is a base algebra Lt
over Ut (h) that is a Ut (h)-equivariant deformation quantization of L0 with the multipli-
cation

a ∗t b = ab +O(t), a ∗t b − b ∗t a = t
∑

i

(	ηia)(	hib)+O(t2) (23)

and the coaction δ : Lt → Ut (h)⊗ Lt ,

δ(a) = 1 ⊗ a + t
∑

i

hi ⊗ (	ηia)+O(t2), (24)

where a, b ∈ Lt .
When L0 = A(L), the function algebra on an h-base manifold, one may require in

the definition that Lt is a star product. Then D(h) acts on L0 by vector fields.

Theorem 3.23. Any Poisson base algebra can be quantized.

Proof. Let θ = 1
2

∑
i (h

i ⊗ ηi + ηi ⊗ hi) ∈ D(h)⊗D(h) be the canonical symmetric
invariant of the double Lie algebraD(h). Consider the quasi-Hopf algebra U(

D(h)
)
[[t]]

with the R-matrix etθ and the associator �t , which is expressed through tθ12 and tθ23,
[Dr3]. Since θ vanishes on L0, so do etθ and �t . Therefore L0[[t]] is a commutative
algebra not only in the classical monoidal category of U(

D(h)
)
[[t]]-modules, but also

in the category with the associator �t , i.e. L0 is etθ -commutative and �t -associative.
According to [EK], there exists a twist Jt converting the quasi-Hopf algebra

U(
D(h)

)
[[t]] into a Hopf one, Ut

(
D(h)

)
. This Hopf algebra contains the quantized

enveloping algebras Ut (h) and Ut (h∗
op) as Hopf subalgebras. The Hopf algebra Ut

(
D(h)

)

is quasitriangular, with the universal R-matrix Rt = (Jt )
−1
21 e

tθJt lying in Ut (h∗
op) ⊗

Ut (h) ⊂ Ut
(
D(h)

) ⊗ Ut
(
D(h)

)
.

Applying the twist Jt to the algebra L0[[t]], we obtain a quasi-commutative alge-
bra Lt in the category of Ut

(
D(h)

)
-modules. We introduce on Lt a structure of the

Ut (h)-comodule algebra by setting

δ(�) := (Rt )2 ⊗ (Rt )1 � �, � ∈ Lt . (25)

Together with the Ut (h)-action restricted from Ut
(
D(h)

)
, the coaction (25) makes Lt

a Ut (h)-base algebra. This follows from Corollary 3.7, where one should set H =
Ut

(
D(h)

)
and K = Ut (h). �

Definition 3.24. Let L be an h-base manifold. Let P be an h-manifold and π a Pois-
son dynamical bracket on P over L. A quantization of Poisson dynamical h-algebra
A(P ) is a pair

(Lt ,At (P )
)
, where a) Lt is a quantization of the Poisson base alge-

bra A(L) in the sense of Definition 3.22 and b) At (P ) is a flat C[[t]]-module and a
dynamical associative Ut (h)-algebra over Lt such that At (P )/tAt (P ) = A(P ) and
a � b − b � a = tπ(a, b)+O(t2).
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Conjecture 3.25. Any Poisson dynamical algebra can be quantized.

In Subsect. 7.2, we develop a method of quantizing vector bundles on the coset space
P/H , using dynamical associative algebras. By duality, the construction of Sect. 7.2
can be formulated in terms of base algebras rather than coalgebras. Namely, let A be
a dynamical associative algebra over an H-base algebra L and let χ be an H-invari-

ant character of L. Then the composition map A ⊗ A �−→ A ⊗ L id⊗χ−→ A yields an
associative multiplication on the subspace of H-invariant elements of A. Thus invari-
ant characters of base algebras are important for our approach to quantization (see also
[DM1]).

In the deformation situation, the infinitesimal analogs of Ut (h)-invariant characters of
the base algebra Lt are h-stable points on the h-base manifold L. By Proposition 3.21,
each h-stable point defines a Poisson structure on P/H . It is natural to quantize this
Poisson structure by the corresponding invariant character applying it to the dynamical
associative quantization of A(P ). The question is whether every h-stable point can be
quantized to a Ut (h)-invariant character of Lt . The answer to this question is affirmative.

Proposition 3.26. Let Lt be the quantization of the function algebra on a base manifold
L built in Theorem 3.23. Then every h-stable point λ0 on L defines an Ut (h)-invariant
character of Lt by χλ0(f ) = f (λ0) for f ∈ Lt .

Proof. As follows from the explicit form of the twist Jt constructed in [EK], it reduces
to 1 ⊗ 1 at every h-stable point λ0 ∈ L. It follows from the proof of Theorem 3.23 that
the star product in Lt satisfies (f ∗ g)(λ0) = (fg)(λ0) = f (λ0)g(λ0) for any pair of
functions f, g ∈ A(L). �

3.5. Dynamical Yang-Baxter equations. In this subsection we give definitions of the
classical and quantum dynamical Yang-Baxter equations over an arbitrary base algebra.

Definition 3.27. Let g be a Lie bialgebra and h ⊂ g its sub-bialgebra; let µ denote the
Lie cobracket on h. Let L be a Poisson h-base manifold. A function r̄ : L → g ⊗ g is
called a classical dynamical r-matrix over base L if

1. for any h ∈ h

	hLr̄(λ)+ [h⊗ 1 + 1 ⊗ h, r̄(λ)] = µ(h), (26)

2. the sum r̄(λ)+ r̄21(λ) is g-invariant,
3. r̄ satisfies the equation

∑

i

Alt
(
hi ⊗ 	ηiLr̄(λ)

) = [[r̄(λ), r̄(λ)]]. (27)

We call (27) the classical dynamical Yang-Baxter equation over the base L. The skew
part of r̄ satisfies the “modified” version of the dynamical Yang-Baxter equation with
non-zero right-hand side being an invariant element from ∧3g. We call it skew dynamical
r-matrix. Condition (26) means quasi-equivariance of r̄(λ) with respect to the action of
h. In fact, the symmetric part ω̄ = 1

2 (r̄ + r̄21) is constant on every D(h)-orbit in L, i.e.
	xLω̄ = 0 for any x ∈ D(h).
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Consider the opposite Lie bialgebra hop equipped with the opposite bracket and the
same cobracket. Endowed with the opposite bracket, the manifold L becomes a Poisson
base manifold for hop. The Cartesian product L × L is a Poisson base manifold with
respect to the Lie bialgebra h ⊕ hop. Let G be the Lie group corresponding to g. The
following proposition characterizes the dynamical r-matrices.

Proposition 3.28. A function r̄ : L → g∧ g is a skew dynamical r-matrix over the Pois-
son h-base manifold L if and only if M := G × L × L is equipped with the h ⊕ hop-
Poisson Lie structure such that the projection M → L× L is a Poisson map and

{f, a} :=
∑

i

(	ηiLf )
(
hi l + hi r

)
(a), (28)

{a, b} := (
r̄ l,l(λ′)− r̄ r,r (λ′′)

)
(a, b) (29)

for f ∈ A(L× L), a, b ∈ A(G), and (λ′, λ′′) ∈ L× L.

Proof. Straightforward. �
Suppose that g is a quasitriangular Lie bialgebra with an r-matrix rg ∈ g ⊗ g. Let

ωg = 1
2 (rg + r21

g ) denote the symmetric part of rg. Assume that L is D(h)-transitive,
i.e. D(h)-invariants in A(L) are scalars.

Proposition 3.29. A function r̄ : L → g ⊗ g subject to 1
2 (r̄ + r̄) = ωg ∈ g ⊗ g is a

dynamical r-matrix if and only ifM := L×G is equipped with anH -invariant Poisson
structure, such that the projection M → L is a Poisson map, and

{f, a} :=
∑

i

(	ηiLf )
(
hi la

)
, {a, b} := (r̄ l,l − rr,rg )(a, b) (30)

for f ∈ A(L), a, b ∈ A(G),
Proof. Straightforward. �
Proposition 3.28 implies that the bivector field r̄ l,l(λ′)− r̄ r,r (λ′′)makes A(G) a Poisson
dynamical algebra over the h ⊕ hop-base manifold L × L. By Proposition 3.29, the
bivector field r̄ l,l(λ) − r

r,r
g makes A(G) a Poisson dynamical algebra over the h-base

manifold L.

Proposition 3.30. Let r̄ : L → g ⊗ g be a classical dynamical r-matrix on an h-base
manifold L. Let rg ∈ g ⊗ g be a constant r-matrix whose symmetric part coincides with
the symmetric part of r̄ . Suppose that λ0 ∈ L is an h-stable point. Then the bivector field
r̄ l,l(λ0)− r

r,r
g yields a g-Poisson-Lie structure on the coset space G/H .

Proof. Applying Proposition 3.21 to the Poisson dynamical bracket r̄ l,l(λ)− rr,rg onG,
we obtain a Poisson structure on the subalgebra in A(G) that consists of invariants under
the action of h by the left-invariant vector fields. This algebra is canonically identified
with the algebra of functions on the coset spaceG/H . Obviously, this Poisson structure
is a Poisson-Lie one, with respect to the right g-action on A(G/H) induced by the left
G-action on G/H . �
Remark 3.31. Let h = g be quasitriangular, with the classical r-matrix rg whose sym-
metric part is equal to the symmetric part of r̄ . Then r̄(λ)− rg is the dynamical r-matrix
of [FhMrsh].
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We complete this subsection with a definition of the quantum dynamical Yang-Bax-
ter equation over an arbitrary base algebra. This definition naturally follows from our
categorical point of view presented in Sect. 5.

The quantum DYBE will be defined for any triple (U,H,L), where H is a Hopf
subalgebra in a Hopf algebra U and L is an H-base algebra.

Definition 3.32. An element R̄ = R̄1 ⊗ R̄2 ⊗ R̄3 ∈ U ⊗ U ⊗ L is called a universal
quantum dynamical R-matrix of U over the H-base algebra L if it satisfies the equi-
variance condition

h(2)R̄1 ⊗ h(1)R̄2 ⊗ h(3) � R̄3 = R̄1h
(1) ⊗ R̄2h

(2) ⊗ R̄3, h ∈ H, (31)

and the quantum dynamical Yang-Baxter equation

R̄12
(2)R̄13 R̄23 = (1)R̄23 R̄13

(3)R̄12, (32)

in U ⊗ U ⊗ U ⊗ L.

Here the notation (i)R̄ means the following. Applying the coaction to the L-compo-
nent of R, we get the element (3)R̄ := R̄1 ⊗ R̄2 ⊗ R̄(1)

3 ⊗ R̄[2]
3 . The other two are

obtained from this by permutations, namely (2)R̄ := R̄1 ⊗ R̄(1)
3 ⊗ R̄2 ⊗ R̄[2]

3 and
(1)R̄ := R̄(1)

3 ⊗ R̄1 ⊗ R̄2 ⊗ R̄[2]
3 .

Equation (32) specializes to (6) for H = U(h), U = U(g), and L being the extension
of U(ht ) to the PBW star product on functions on h∗, cf. Example 3.5. Also, Eq. (32)
coincides with the conventional dynamicalYang-Baxter equation (2) for h a commutative
Lie subalgebra in g and L being the algebra of functions on h∗, [EV2].

Suppose that U and H are quantizations of the universal enveloping algebras U(g)
and U(h) and L is a quantization of the function algebra on a Poisson h-base manifoldL.
Suppose that the universal dynamical R-matrix has the form R = 1⊗1⊗1+ t r̄+O(t2).
Then r̄ is a function on L with values in g ⊗ g. It satisfies Eq. (26) and (27), which are
the consequences of Eqs. (31) and (32).

Remark 3.33. The definitions of the classical and quantum dynamical R-matrix given
above admit further generalization. The reader is referred to [DM5], where the classi-
cal dynamical r-matrices are studied in connection with Lie bialgebroids. The present
definitions are conditioned by our specific approach confined to the strict monoidal cat-
egories (i.e. with trivial associator). If one considers general monoidal categories, as in
Example 5.5, Eq. (32) would involve an associator. In the quasi-classical limit, it will
give the dynamical r-matrix of the Alekseev-Meinrenken type, [AM].

4. Dynamical Categories

4.1. Base algebra in a monoidal category. A dynamical associative algebra A from
Definition 3.11 may serve as a model for further generalizations. It turns out that there is
a monoidal category where A is an associative algebra. Such categories can be built for all
Hopf algebras and they include dynamical categories of Etingof-Varchenko introduced
for commutative cocommutative Hopf algebras in [EV3]. Such notions as dynamical
twist and the dynamical Yang-Baxter equation can be naturally formulated and general-
ized within the dynamical categories, which are the subject of our further study.
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Let (Ô,⊗) be a monoidal category. We will work, for simplicity, with only strict
monoidal categories, i.e. having the trivial associator; all the constructions can be car-
ried over to the general case in a straightforward way. Let Z(Ô) be the center of Ô, see
[Kas]. The center is a braided monoidal category consisting of pairs (A, τ), where A is
an object of Ô and τ the collection of permutations τX : A ⊗ X → X ⊗ A, satisfying
natural conditions.

Definition 4.1. A base algebra in the category Ô is commutative algebra from a Z(Ô).
In other words, a base algebra is an algebra in Ô and a collection of morphisms

τA ∈ HomÔ(L ⊗ A,A ⊗ L) and A ∈ Ob Ô, such that the following diagrams are
commutative:

L ⊗ B B ⊗ L

L ⊗ A A⊗ L

�τB

�
idL⊗ψ

�
ψ⊗idL

�τA
(33)

L ⊗ A⊗ B A⊗ B ⊗ L

A⊗ L ⊗ B

�τA⊗B

����τA

���� τB
(34)

L ⊗ L ⊗ A L ⊗ A⊗ L A⊗ L ⊗ L

L ⊗ A A⊗ L

�τA

�
mL

�τA

�
mL

�τA

(35)

L ⊗ L L ⊗ L

L

�τL

�
�	mL




� mL

(36)

for all A,B ∈ Ob Ô, ψ ∈ HomÔ(B,A).

Example 4.2. The unit object 1Ô is the simplest example of a base algebra. The algebra
structure and permutation are defined by the canonical isomorphisms 1Ô ⊗ A � A �
A⊗ 1Ô for all A ∈ Ob Ô.

Example 4.3. When the category Ô is braided with braiding σ , any commutative algebra
L in this category has two natural base algebra structures, with respect to the τ = σ and
τ = σ−1.

Example 4.4. Let H be a Hopf algebra and Ô the monoidal category of left H-modules.
Any H-base algebra in the sense of Definition 3.1 is a base algebra in the category Ô.
Indeed, for a left H-module A we define the permutation τA : L ⊗ A → A⊗ L by

�⊗ a → �(1) � a ⊗ �[2], a ∈ A, � ∈ L. (37)
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The permutation (37) is H-equivariant, as follows from (9), hence the condition (33) is
satisfied. Conditions (34) and (35) hold because L is an H-comodule algebra. Equation
(36) follows from (10).

Example 4.5. Let Ô be the category of semisimple modules over a commutative finite
dimensional Lie algebra h. Take L to be the algebra of functions on h∗, which is a trivial
h-module. Let A be a semisimple h-module. The permutation τA between L and A is
defined by f (x)⊗ a �→ a⊗ f

(
x + α(a)

)
, where f ∈ L, a ∈ A, and α(a) is the weight

of a.

4.2. Dynamical categories over base algebras. Let (Ô,⊗) be a monoidal category and
O be a monoidal subcategory in Ô. Given a base algebra (L, τ ) in Ô, let us construct a
new monoidal category ŌL. Objects in ŌL are the same as in O. For two objects A and
B in ŌL, morphisms HomŌL(A,B) are Ô-morphisms HomÔ(A,B ⊗ L). Since the
algebra L is unital, every morphism φ ∈ HomO(A,B) naturally becomes a morphism

from HomŌL(A,B) through the composition A
φ−→ B ⊗ 1Ô → B ⊗ L.

The composition of two morphisms A
φ−→ B and B

ψ−→ C in ŌL is defined as the
composition

A
φ−→ B ⊗ L ψ−→ C ⊗ L ⊗ L mL−→ C ⊗ L, (38)

in Ô, where the rightmost arrow is the multiplication in L. It is easy to see that the com-
position is associative. The identity morphism idA for A ∈ Ob OL is the composition
A → A ⊗ 1Ô → A ⊗ L, where the first arrow is the canonical isomorphism and the
second one is the natural inclusion 1Ô → L via the unit of L. Thus ŌL is a category.

Let us introduce a monoidal structure ⊗̄ in ŌL setting it on objects as in O; on the
morphisms it is defined by the composition

A⊗ C
φ⊗ψ−→ B ⊗ L ⊗D ⊗ L τD−→ B ⊗D ⊗ L ⊗ L mL−→ B ⊗D ⊗ L, (39)

for φ ∈ HomŌL(A,B) and ψ ∈ HomŌL(C,D).

Proposition 4.6. The tensor product ⊗̄ defined by (39) makes ŌL a monoidal category.

Proof. The unit object 1O is obviously the neutral element for ⊗̄. Let us prove associa-
tivity of ⊗̄. Using compatibility (35) of τ with the multiplication mL and associativity
(34) we find that the diagram

L ⊗ A⊗ L ⊗ B A⊗ L ⊗ L ⊗ B A⊗ L ⊗ B

L ⊗ A⊗ B ⊗ L A⊗ B ⊗ L ⊗ L A⊗ B ⊗ L
�

τB

�τA �mL

�
τB

�τA⊗B �mL

is commutative for all A,B ∈ Ob O. From this one can readily deduce associativity of
⊗̄.
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Now we will prove functoriality of ⊗̄. It is equivalent to the four conditions:

(id⊗̄φ)◦̄(id⊗̄ψ) = id⊗̄(φ◦̄ψ), (40)

(φ⊗̄id)◦̄(id⊗̄ψ) = φ⊗̄ψ, (41)

(φ⊗̄id)◦̄(ψ⊗̄id) = (φ◦̄ψ)⊗̄id, (42)

(id⊗̄ψ)◦̄(φ⊗̄id) = φ⊗̄ψ (43)

for any pair of morphisms φ, ψ . Observe that φ⊗̄idB = (idA′ ⊗ τB) ◦ (φ ⊗ idB) and

idB⊗̄φ = idB ⊗ φ for any morphism A
φ−→ A′ and any object B. This immediately

leads to (40) and (41). Condition (42) follows from (35). Let us prove condition (43)
assuming φ ∈ HomŌL(A,A

′) and ψ ∈ HomŌL(B, B
′). It suffices to show that the

following diagram is commutative (the identity maps are suppressed):

A⊗ B A′ ⊗ L ⊗ B A′ ⊗ B ⊗ L

A′ ⊗ L ⊗ B ′ ⊗ L A′ ⊗ B ′ ⊗ L ⊗ L

A′ ⊗ B ′ ⊗ L ⊗ L

A′ ⊗ B′ ⊗ L

�φ

������φ⊗ψ �
ψ

�τB

�
ψ

������τB′

�τB′⊗L

�

mL
������τL

������mL

(44)

Commutativity of the rectangle follows from (33); the two lower triangles are commu-
tative by virtue of (34 ) and (36). �
The category ŌL naturally includes O as a monoidal subcategory. We call ŌL the
dynamical extension of O over the base algebra L.

Example 4.7. The simplest example is L = 1Ô and O = Ô; then the category ŌL is
canonically isomorphic to O.

Example 4.8. Let H be a Hopf algebra and Ô the category of left H-modules. As was
mentioned in Example 4.4, any H-base algebra, including H itself, is a base algebra in
Ô. Let MH be the subcategory of locally finite H-modules (a module is called locally
finite if every one of its elements lies in a finite dimensional submodule). Its dynamical
extension over a base algebra L is denoted further by M̄H;L, or simply M̄H for L = H.

4.3. Morphisms of base algebras. By a morphism of base algebras (L1, τ
1) → (L2, τ

2)

in a category Ô we mean a morphism of Ô-algebras L1
f−→ L2 such that the diagram

L1 ⊗ A A⊗ L1

L2 ⊗ A A⊗ L2

�τ
1
A

�
f⊗idA

�
idA⊗f

�τ
2
A

is commutative for all A ∈ Ob Ô.
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Example 4.9. Let H be a Hopf algebra and Ô the category of left H-modules. A homo-
morphism of two H-base algebras can be defined as a homomorphism of H-algebras
and H-comodules. Then it is a morphism of base algebras in Ô, cf. Example 4.4.

Example 4.10. Any invariant character χ of L defines a homomorphism of base algebras
L → H by the formula � �→ �(1)χ

(
�[2]

)
. Indeed, this is an algebra and comodule map

because L is an H-comodule algebra. This map is equivariant for invariant χ , by virtue
of (9).

Recall that a functor from one monoidal category to another is called strong monoidal
if it is unital (relates the units) and commutes with tensor products. We conclude this
subsection with an obvious proposition.

Proposition 4.11. A morphism of base algebras (L1, τ
1) → (L2, τ

2) induces a strong
monoidal functor ŌL1 → ŌL2 .

4.4. Category M̄H∗
. The dynamical extension of a monoidal category can be defined

using a notion of base coalgebra instead of base algebra. We will present such a formu-
lation for the case when the monoidal category Ô is a category of H-modules and the
base coalgebra is a restricted dual to H.

Let H∗ denote the Hopf algebra formed by matrix elements of finite dimensional rep-
resentations of H (we assume that the supply of such elements is big enough to induce
a non-degenerate pairing between H∗ and H). We equip H∗ with the structure of a left
H-module with respect to the action

x ⊗ λ �→ x(2) � λ � γ (x(1)), x ∈ H, λ ∈ H∗, (45)

expressed through the coregular left and right actions, � and �, of H on H∗.
Let Ô be the category of left H-modules. We can consider the category of locally

finite right H∗-comodules as a subcategory in Ô, since every right H∗-comodule is a
natural left H-module. We denote this category by MH∗

.
The following statement introduces a permutation between H∗ and other

H∗-comodules.

Proposition 4.12. For any A ∈ Ob MH∗
the map τA : H∗ ⊗ A → A⊗ H∗ defined as

τA(λ⊗ a) := a[0] ⊗ λa(1) (46)

is an isomorphism of H-modules.

Proof. First of all observe that τA is invertible and its inverse is

(τA)−1(a ⊗ λ) = λγ−1(a(1))⊗ a[0], λ ∈ H∗, a ∈ A.
Further, for all x, y ∈ H we have

〈τA(
x � (λ⊗ a)

)
, id ⊗ y〉 = 〈τA(

x(1) � λ⊗ a[0]), id ⊗ y〉〈a(1), x(2)〉
= a[0] ⊗ 〈(x(1) � λ)a(1), y〉〈a(2), x(2)〉
= a[0] ⊗ 〈x(1) � λ, y(1)〉〈a(1), y(2)x(2)〉. (47)
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On the other hand,

〈x � τA(λ⊗ a), id ⊗ y〉 = a[0] ⊗ 〈a(1), x(1)〉〈λa(2), γ (x(2))yx(3)〉
= a[0] ⊗ 〈a(1), x(1)〉〈λ, γ (x(3))y(1)x(4)〉〈a(2), γ (x(2))y(2)x(5)〉
= a[0] ⊗ 〈a(1), y(2)x(3)〉〈λ, γ (x(1))y(1)x(2)〉 (48)

for all x, y ∈ H, λ ∈ H∗, and a ∈ A. The resulting expression in (48) is easily brought
to (47). �

Let us define the dynamical extension, M̄H∗
, of the category MH∗

. The objects in
M̄H∗

are locally finite right H∗- comodules. The set of morphisms HomM̄H∗ (A,B)
consists of H-equivariant maps from H∗ ⊗A toB. The composition φ◦̄ψ of morphisms
φ ∈ Hom(A,A′) and φ ∈ Hom(A′, A′′) is defined as the composition map

H∗ ⊗ A H∗ ⊗ H∗ ⊗ A H∗ ⊗ A′
A′′��⊗idA �idH∗⊗ψ �φ

(49)

This operation is apparently associative and ε⊗ idA is the identity in HomM̄H∗ (A,A);
here ε is the counit in H∗.

Now we introduce a monoidal structure on M̄H∗
. We put the tensor product of

objects from M̄H∗
as in MH∗

. The tensor product φ⊗̄ψ of φ ∈ HomM̄H∗ (A,A′) and
ψ ∈ HomM̄H∗ (B, B ′) is defined as the composition

H∗ ⊗ A⊗ B
�−→ H∗ ⊗ H∗ ⊗ A⊗ B

τA−→ H∗ ⊗ A⊗ H∗ ⊗ B
φ⊗ψ−→ A′ ⊗ B ′. (50)

One can check that, indeed, the operation ⊗̄ makes M̄H∗
a monodial category.

4.5. Comparison of categories M̄H∗
and M̄H∗

H . Since MH∗
is a subcategory in the

category of H-modules, it can be extended to the dynamical category M̄H∗
H over the base

algebra L = H along the lines of Subsect. 4.2. Our next goal is to compare the categories
M̄H∗

H and M̄H∗
. Since they have the same supply of objects, we will study relations

between their morphisms.
Introduce a pairing between H∗ and H by the formula

(h, x) := 〈γ−1(h), x〉, (51)

where 〈., .〉 is the canonical Hopf pairing H∗ ⊗ H → k. It is H-invariant, since H is
considered as the adjoint H-module (8) and H∗ is an H-module by (45).

Lemma 4.13. For any right H∗-comodule A ∈ MH∗
the diagram

H∗ ⊗ A⊗ H A⊗ H∗ ⊗ H

H∗ ⊗ H ⊗ A A

�τA

�
τ−1
A

�
(.,.)

�(.,.)

(52)

is commutative.

Proof. Straightforward. �
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To any equivariant map φ : A → B⊗H we put into correspondence an equivariant map
φ′ : H∗ ⊗ A → B being the composition

H∗ ⊗ A
φ−→ H∗ ⊗ B ⊗ H τB−→ B ⊗ H∗ ⊗ H (.,.)−→ B. (53)

Clearly, this correspondence induces a natural embedding Hom M̄H∗
H → Hom M̄H∗

.
Note that this embedding is not an isomorphism, in general.

Proposition 4.14. The correspondence Hom M̄H∗
H → Hom M̄H∗

, φ �→ φ′, given by

(53), induces a strong monoidal functor M̄H∗
H → M̄H∗

.

The proof of this proposition uses the diagram technique, the properties of permutations
{τA} and {τA}, and relies on Lemma 4.13. The details are left to the reader.

4.6. Dynamical extension of a monoidal category over a module category. Let O be
a monoidal category and B its left module category, see [O]. For example, B is a mo-
noidal category and O its monoidal subcategory. We denote the tensor product in O
and action of O on B by the same symbol ⊗. For simplicity, all monoidal categories
are assumed to be strict (with trivial associativity); the same is assumed for actions on
module categories.

Let us define a dynamical extension, Ō�B, of O over B in the following way. The
collection of objects in Ō�B coincides with that of O. An object A of Ō�B is treated as

a functor from B to B, namely X
A−→ A ⊗ X for all X ∈ Ob B. Morphisms of Ō�B

are natural transformations of the functors. Namely, φ ∈ HomŌ�B (A,B) is a collection
{φX} of morphisms φX ∈ HomB(A⊗X,B ⊗X} such that

φX ◦ (idA ⊗ ξ) = (idB ⊗ ξ) ◦ φX′ (54)

for any ξ ∈ HomB(X′, X). The composition of morphisms in Ō�B is “pointwise”,
(φ◦̄ψ)X = φX ◦ψX. Obviously, the condition (54) holds for ◦̄. Clearly, Ō�B defined in
this way is a category. It includes O as a subcategory. Indeed, any morphism φ from O
gives rise to the family {φ ⊗ idX}, which is a morphism in Ō�B.

Proposition 4.15. Ō�B is a monoidal category with respect to the tensor product on the
objects as in Ob O and defined on the morphisms by

(φ⊗̄ψ)X := (idC ⊗ ψX) ◦ (φB⊗X) = (φD⊗X) ◦ (idA ⊗ ψX), (55)

for φ ∈ HomŌ�B (A,C), and ψ ∈ HomŌ�B (B,D).

Proof. Let us check that the family {(φ⊗̄ψ)X} defines a morphism of functors,A⊗B →
C ⊗D. First of all, observe that condition (54) is satisfied. We will show that operation
(55) is functorial. Take {αX} ∈ HomŌ�B (A

′, A) and {βX} ∈ HomŌ�B (B
′, B). We have

for (φ◦̄α)⊗̄(ψ ◦̄β):
(
idC ⊗ (ψX ◦ βX)

) ◦ (φB ′⊗X ◦ αB ′⊗X) = (idC ⊗ ψX) ◦ (idC ⊗ βX) ◦ φB ′⊗X ◦ αB ′⊗X
= (idC ⊗ ψX) ◦ φB⊗X ◦ (idC ⊗ βX) ◦ αB ′⊗X
= (φ⊗̄ψ)X ◦ (α⊗̄β)X

for all X ∈ Ob B. In transition to the middle line we used the condition (54), in
order to permute the morphisms idC ⊗ βX and φB ′⊗X. To prove associativity, we
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take ζ ∈ HomŌ�B (A,U), φ ∈ HomŌ�B (B, V ), ψ ∈ HomŌ�B (C,W) and find that(
ζ ⊗̄(φ⊗̄ψ))

X
and

(
(ζ ⊗̄φ)⊗̄ψ)

X
are equal to the same composition map

A⊗B ⊗C⊗X
ζB⊗C⊗X−→ U ⊗B ⊗C⊗X

φC⊗X−→ U ⊗V ⊗C⊗X
ψX−→ U ⊗V ⊗W ⊗X.

This completes the proof. �
Note that O is a monoidal subcategory in Ō�B.

Definition 4.16. The category Ō�B is called a dynamical extension of O over B.

Remark 4.17. Similarly to Ō�B, one can define a dynamical extension, B�Ō, of a monoi-
dal category O over its right module category B. Thus, the set HomB�Ō(A,B) is formed
by families {Xψ} from HomB(X ⊗ A → X ⊗ B) subject to the natural condition anal-
ogous to (54). The composition ◦̄ is defined as the composition of functor morphisms,
similarly to the Ō�B case. Formula (55) for tensor products of morphisms is changed to

X(φ⊗̄ψ) := (Xφ ⊗ idD) ◦ X⊗Aψ, φ ∈ HomB�Ō(A,C), ψ ∈ HomB�Ō(B,D). (56)

4.7. Comparison of categories Ō�B and B�Ō with M̄H;L and M̄H∗
. Let L be a base

algebra over a Hopf algebra H. Let B be the category of left L-modules, and O the
category MH of locally finite left H-modules. Then B is a left O-module category. The
tensor product of A ∈ Ob O and X ∈ Ob B is an L-module by

�� (a ⊗ x) = �(1) � a ⊗ �[2]� x, � ∈ L, a ∈ A, x ∈ X, (57)

where � denotes the action of L and � the action of H.
Consider the dynamical extension M̄H;L of MH over the base algebra L as in

Example 4.8. Let ψ be a morphism from HomM̄H;L(A,B). Consider the family of
maps ψX : A⊗X → B ⊗X, X ∈ B, defined by the composition

A⊗X
ψ⊗idX−→ B ⊗ L ⊗X

idB⊗�−→ B ⊗X. (58)

The maps ψX defined by (58) are L-equivariant, due to quasi-commutativity of L. The
following proposition is immediate.

Proposition 4.18. The correspondence of morphisms ψ �→ {ψX} induces a strong
monoidal functor M̄H;L → Ō�B identical on objects.

Now take O to be the category MH∗
of right locally finite H∗-comodules also con-

sidered as left H-modules. Put B the category of locally finite H-modules.

Proposition 4.19. There exists a strong monoidal functor M̄H∗ → B�Ō.

Proof. We will give a sketch of the proof. Categories B�Ō and M̄H∗
have the same

collection of objects, and the functor in question is set to be identical on objects. Let
us define it on morphisms. Let f : H∗ ⊗ A → B be a morphism in M̄H∗

. For every
finite dimensional H-module X there is a natural map X∗ ⊗ X → H∗, where X∗ ⊗ X

is considered as the (left) dual module to the space of right endomorphisms (over k) of
X. Hence, f defines a collection of H-equivariant maps X∗ ⊗X⊗A → B, or, equiva-
lently, a collection {fX} of H-equivariant maps X ⊗A → X ⊗ B. This family extends
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to all locally finite H-modules X. Thus we have built an embedding of morphisms
Hom M̄H∗ → Hom B�Ō, f �→ {fX}. It remains to check that the above correspon-
dence is functorial and respects the composition and the tensor product of morphisms.
We leave the details to the reader. �
Remark 4.20. The functor from Proposition 4.19 is an isomorphism when H∗ decom-
poses into the direct sum of X∗ ⊗X, where X runs over simple H-modules.

4.8. Dynamical associative algebras. Dynamical associative algebra as an algebra in a
monoidal (dynamical) category is defined in the standard way. Below we give examples
of dynamical associative algebras in the categories M̄H∗

and M̄H;L.

Example 4.21 (Dynamical algebras in M̄H;L). Let us consider the dynamical exten-
sion M̄H;L of the category MH over a H-base algebra L. An algebra A in M̄H;L is
an object equipped with a morphism A ⊗ A → A obeying the associativity axiom. In
terms of MH, this is equivalent to Definition 3.11. Namely, the multiplication in A is
an H-equivariant map � : A ⊗ A → A ⊗ L, which is shifted associative in the sense
of (14).

Now let us prove Proposition 3.12. This is a corollary of the following general fact. Let
(C,⊗, 1C) be a monoidal category whose objects are vector spaces over k and morphisms
are linear maps. Suppose there is an object A ∈ Ob C, a morphism ι : 1C → A, and an

operation HomC(X,A) ⊗k HomC(Y,A) �−→ HomC(X ⊗ Y,A) for all X, Y ∈ Ob C.
We say that � is a) natural if (φ ◦ α)� (ψ ◦ β) = (φ � ψ) ◦ (α ⊗ β), b) associative if
(φ�ψ)�ϑ = φ�(ψ�ϑ), and c) unital if φ�(ι◦χ) = φ⊗χ , (ι◦χ)�φ = χ⊗φ for
all morphisms χ with target in 1C . The multiplication m in A and the operation � are
related by m = idA � idA, φ �ψ = m ◦ (φ ⊗ψ). Now let A be an algebra in M̄H;L.
The unit morphism ι : k → A in M̄H;L gives the unit map k → A ⊗ L in MH. The
multiplication � in A defines a natural associative unital operation on morphisms from
Hom M̄H;L with target in A. Hence it defines a natural associative unital operation on
morphisms from Hom MH with target in A ⊗ L.

Example 4.22 (Dynamical algebras in M̄H∗
). Let us describe dynamical associative

algebras in the category M̄H∗
. The multiplication in an algebra A ∈ Ob M̄H∗

is an H-
equivariant map� : H∗ ⊗ A ⊗ A → A. Associativity, in terms of MH∗

, is formalized
by the following commutative diagram:

H∗ ⊗ A ⊗ A ⊗ A �−→ H∗ ⊗ H∗ ⊗ A ⊗ A ⊗ A �−→ H∗ ⊗ A ⊗ A �−→ A
τA ↓ ‖

H∗ ⊗ A ⊗ H∗ ⊗ A ⊗ A �−→ H∗ ⊗ A ⊗ A �−→ A
. (59)

This diagram is a “partial dualization” of the diagram (14). The algebra A is unital if
there is an element 1 ∈ A such that �(λ, 1, a) = �(λ, a, 1) = ε(λ)a, for all a ∈ A,
λ ∈ H∗.

The map� defines a family of bilinear operations
λ∗ depending on elements λ ∈ H∗.

In terms of
λ∗ , the “shifted” associativity (59) reads (summation implicit)

(a
λ(2)∗ b)

λ(1)∗ c = a[0] λ
(1)∗ (b

λ(2)a(1)∗ c). (60)
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I. Kantor proposed to consider the multiplication map H∗ ⊗ A ⊗ A �−→ A as a ternary
operation λ⊗ a ⊗ b �→ (λab) which is associative in the sense

(
λ(1)(λ(2)ab)c

) = (
λ(1)a′(λ(2)

′′
bc)

)
.

Here a′ ⊗ λ′′ = τA(λ⊗ a), the permutation (46).

5. Categorical Approach to Quantum DYBE

5.1. Dynamical twisting cocycles. In this subsection we study transformations of dynam-

ical categories. Recall that a functor C̃ ϒ−→ C between two monoidal categories is called
monoidal if there is a functor isomorphism F between ϒ(A) ⊗ ϒ(B) and ϒ(A⊗̃B).
This implies a family of isomorphisms,

ϒ(A)⊗ ϒ(B)
FA,B−→ ϒ(A⊗̃B)

fulfilling the cocycle conditions (for simplicity, we assume the trivial associator)

FA⊗̃B,C ◦ (
FA,B ⊗ idC

) = FA,B⊗̃C ◦ (
idA ⊗ FB,C

)
, (61)

FA,1 = idA = F1,A, (62)

where 1 is the unit of C. We are mostly interested in the situation when Ob C̃ = Ob C
and ϒ is identical on objects.

Suppose that F is a cocycle in C, i.e. a family of invertible morphisms FA,B ∈
AutC(A⊗ B) fulfilling the conditions (61) and (62). Then it is possible to define a new
monoidal structure on C. It is the same on objects and defined by

φ⊗̃ψ := F ◦ (φ ⊗ ψ) ◦ F−1 (63)

on morphisms. This new monoidal category C̃ coincides with the old one if F respects
morphisms of C, i.e.

φ ⊗ ψ = F ◦ (φ ⊗ ψ) ◦ F−1 (64)

for all f, g ∈ Hom C.

Remark 5.1. One can define the category C̃ using an arbitrary familyFA,B ∈ AutC(A,B)
of morphisms, which is not necessarily a cocycle. Then C̃ will not be strictly monoidal,
but rather with the associator �A,B,C = FA,BCFB,CF

−1
A,BF

−1
AB,C , which satisfies the

pentagon identity in C̃. The identity functor C̃ → C yields an isomorphism of monoidal
categories.

Definition 5.2 (Dynamical twist). Let Ō be a dynamical extension of a monoidal cate-
gory O. Dynamical twist is a cocycle in Ō that respects morphisms from O.

A dynamical twist is identical on O, therefore O remains a subcategory in the twisted

category ˜̄O.
One of the applications of twist is transformation of algebras. Any cocycle F in a

category C makes a C-algebra with the multiplication m into a C̃-algebra, with the mul-
tiplication m ◦ F−1. Let us apply this to the specific situation of dynamical twist and
build an Ō-algebra out of O-algebra.

Proposition 5.3. Let F be a dynamical twist in Ō. Let A be an algebra in O with mul-
tiplication m. Then the multiplication m ◦F makes A a dynamical associative algebra,
i.e. an algebra in Ō.
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Proof. It follows from (63) that dynamical twist preserves O as a monoidal subcategory

in ˜̄O. Therefore A turns out to be an algebra in ˜̄O as well. The family {F−1
A,B} is a cocycle

in ˜̄O; the corresponding twist of ˜̄O gives Ō. Applying this inverse twist to the algebra
A we obtain an Ō-algebra with the multiplication m ◦ F . �

Below we specialize the cocycle equations (61) and (62) for various types of dynam-
ical categories.

Example 5.4 (Dynamical twist in O�B). Let us express a cocycle in dynamical category
Ō�B in terms of O and B. A cocycle in Ō�B is a collection (FV,W )X from AutB(V ⊗
W ⊗X), V,W ∈ Ob O, X ∈ Ob B, satisfying conditions

(FV⊗W,U )X ◦ (FV,W )U⊗X = (FV,W⊗U)X ◦ (FW,U ), (65)

(FV,1Ō )X = idV⊗X = (F1Ō,V )X. (66)

Example 5.5 (Drinfeld associator as a twist in O�O). Let g be a complex simple Lie
algebra. In [EE1], Enriquez and Etingof proposed a quantization of the Alekseev-Mein-
renken dynamical r-matrix [AM] using the Drinfeld associator � ∈ U⊗3(g)[[t]]. This
quantization can be interpreted as a twist in the category O�Ō, where O is the cat-
egory of free C[[t]]-modules of finite rank with U(g)[[t]]-action. Indeed, let us put
X(FA,B) := �X,A,B . Then the pentagon identity on � takes the form

�A,B,C ◦ X(FA⊗B,C) ◦ X(FA,B) = X(FA,B⊗C) ◦ X⊗A(FB,C).

The twisted dynamical category is not strictly monoidal, cf. Remark 5.1. It is equipped
with the associator {�A,B,C}.
Example 5.6 (Dynamical twist in ŌL). Consider a cocycle in ŌL, the dynamical exten-
sion of a category O over a base algebra (L, τ ). In terms of O, condition (61) reads

mL⊗L ◦ FV⊗W,U ◦ (idV⊗W ⊗ τU ) ◦ FV,W = mL⊗L ◦ FV,W⊗U ◦ FW,U , (67)

where FV,W ∈ HomO(V ⊗W,V ⊗W ⊗ L) (the id-automorphisms are dropped from
the formulas).

Example 5.7 (Dynamical twist in M̄H∗
). Let us specialize the notion of cocycle for the

category M̄H∗
. A morphism H∗ ⊗A

f→ B in the category MH∗
can be thought of as a

family of maps f λ : A → B parameterized by elements λ ∈ H∗. Let �λ be a family of
linear operators on the tensor product ⊗m

l=1Vl of H∗-comodules Vl , l = 1, . . . , m. By
Vi�λ, or simply by i�λ, we denote the family of linear operators on ⊗m

l=1Vl defined by

i�λ(v1 ⊗ . . .⊗ vm) := �λv
(1)
i (v1 ⊗ . . .⊗ v

[0]
i ⊗ . . .⊗ vm),

where v[0]
i ⊗ v

(1)
i denotes the right H∗-coaction δ(vi) (as always, the summation is

implicit). The collection of morphisms FλV,W ∈ HomMH∗ (H∗ ⊗ V ⊗ W,V ⊗ W)

satisfies condition (61) and (62) in M̄H∗
if and only if

Fλ
(1)

V⊗W,UF
λ(2)

V ,W = Fλ
(1)

V ,W⊗U
VFλ

(2)

W,U , (68)

FλV,k = idV = Fλk,V . (69)

Here λ(1) ⊗ λ(2) stands for �H∗(λ).
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Example 5.8 (Universal cocycle). Assume that H is a Hopf subalgebra of another Hopf
algebra, U . Consider the category MU as a subcategory of the category MH. Let L be
a base algebra over H. Suppose there is an invertible element F̄ = F̄1 ⊗ F̄2 ⊗ F̄3 ∈
U ⊗ U ⊗ L that satisfies the condition

h(1)F̄1 ⊗ h(2)F̄2 ⊗ h(3) � F̄3 = F̄1h
(1) ⊗ F̄2h

(2) ⊗ F̄3 (70)

for all h ∈ H, and the conditions

(�⊗ id)(F̄) (3)F̄12 = (id ⊗�)(F̄)(F̄23), (71)

(ε ⊗ id ⊗ id)(F̄) = 1 ⊗ 1 ⊗ 1 = (id ⊗ ε ⊗ id)(F̄), (72)

where Equation (71) is in U ⊗ U ⊗ U ⊗ L. Here the notation (3)F̄ means δ(F̄), where
δ is the coaction L → H ⊗ L; the H-component is embedded to the third tensor fac-
tor in U ⊗ U ⊗ U ⊗ L. The element F̄ defines a cocycle in M̄U;L, namely FV,W :=
ρV (F̄1) ⊗ ρW(F̄2) ⊗ F̄3 for U-modules V and W . This cocycle clearly respects mor-
phisms in MU , hence it is a dynamical twist. The element F̄ may be called a universal
dynamical twist, by the analogy with the universal R-matrix. Equation (71) leads to the
shifted cocycle condition of [Xu2] for H being a universal enveloping algebra.

5.2. Quantum dynamical R-matrix.

5.2.1. Dynamical Yang-Baxter equation. Let us consider the Yang-Baxter equation in
dynamical categories. Let C be a braided monoidal category with braiding σ . The braid-

ing is a collection, {σA,B}, of morphisms A⊗ B
σA,B−→ B ⊗ A for A,B ∈ Ob C obeying

conditions

σA,B ◦ σA,C ◦ σB,C = σB,C ◦ σA,C ◦ σA,B, (73)

σA⊗B,C = σA,C ◦ σB,C, σC,A⊗B = σC,B ◦ σC,A (74)

and respecting morphisms, i.e. (f ⊗ g) ◦ σ = σ ◦ (g⊗ f ) for all f, g ∈ Hom C (in fact,
(73) follows from (74) and functoriality of σ ). Condition (73) is called the Yang-Baxter
equation, conditions (74) are, in fact, the hexagon identities. If σ fulfills (73) and (74)
but is not functorial (does not respect morphisms), we call it pre-braiding. This is the
case when σ is a braiding in a subcategory C′ of C such that Ob C′ = Ob C, e.g., when
C is a dynamical extension of a C′. Then C has more morphisms than C′, and they are
not respected by σ , in general.

Given a pre-braiding σ in C, it is possible to restrict it to a braiding in a subcategory
Cσ defined as follows. The objects in Cσ are those of C. A morphism f ∈ HomC(A,B)
is a morphism in HomCσ (A,B) if and only if

σB,C ◦ (f ⊗ idC)=(idC ⊗ f ) ◦ σA,C, (f ⊗ idC) ◦ σC,A=σC,B ◦ (idC ⊗ f ) (75)

for all C ∈ Ob C.

Proposition 5.9. Cσ is a braided category with braiding σ .

For instance, the dynamical extension ŌL of a braided category (O, σ ) over a commutative algebra
L in O (cf. Example 4.3) is braided if and only if σA,L ◦ σL,A = idL⊗A for all A ∈ Ob O, e.g. when
O is a symmetric category.
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Proof. It follows from (73) and (74) that σ lies in Cσ . Condition (74) guarantees that Cσ
is a monoidal category. Therefore, σ is a pre-braiding in Cσ and respects morphisms in
it by construction; hence σ is a braiding in Cσ . �

Proposition 5.10. Let σ be a pre-braiding in C and let F be a cocycle in C respecting
morphisms from Cσ . Then the family

σ̄A,B := F−1
B,A ◦ σA,B ◦ FA,B (76)

satisfies the Yang-Baxter equation (73).

Proof. Define �A,B,C := FA⊗B,C ◦ (FA,B ⊗ idC) = FA,B⊗C ◦ (idA ⊗ FB,C) for all
A,B,C ∈ ObC. Since F respects morphisms from Cσ , we have�−1

A,C,B ◦(idA⊗σB,C)◦
�A,B,C = idA⊗σ̄B,C and�−1

B,A,C ◦(σA,B⊗idC)◦�A,B,C = σ̄A,B⊗idC for allA,B,C.

Multiplying Eq. (73) by �−1
C,B,A from the left and by �A,B,C from the right, we prove

the statement. �

Applied to dynamical twists, Proposition 5.10 yields the following corollary.

Corollary 5.11. Let O be a braided category with the braiding σ . Let Ō be a dynamical
extension of O and F a dynamical twist in Ō. The collection of morphisms (76) for
A,B ∈ Ō satisfies the Yang-Baxter equation in Ō.

In general, a twist destroys the hexagon identities in the twisted category C̃. However,
it yields a pre-braiding in an equivalent category to C̃, which is constructed in Subsect.
5.2.2. There is another way to fix the situation when C = M̄H,L, the dynamical exten-
sion of the category of H-modules over a base algebra L. There exists a realization
of M̄H,L as a category of modules over a certain bialgebroid, [DM5]. A dynamical
twist gives rise to a bialgebroid twist, which transforms the braiding in the category of
modules over the bialgebroid.

We call a solution of (73) in a dynamical category a dynamical R-matrix.
Below we specialize this definition of dynamical R-matrix to various types of dynam-

ical categories.

Example 5.12 (Dynamical R-matrix in Ō�B). The dynamical R-matrix in the category
Ō�B is defined by

(σA,B)X ◦ (σA,C)B⊗X ◦ (σB,C)X = (σB,C)A⊗X ◦ (σA,C)X ◦ (σA,B)C⊗X, (77)

where σ is a collection of invertible morphisms (σA,B)X ∈ AutB(A⊗ B ⊗X).

Example 5.13 (Dynamical R-matrix in ŌL). Consider the category ŌL, a dynamical
extension of a monoidal category O over a base algebra (L, τ ), cf. Subsect. 4.2. Let m
be the multiplication in the algebra L and m3 denote the three-fold product m◦(m⊗idL).
In terms of O and (L, τ ), Eq. (73) reads

m3 ◦ σA,B ◦ τB ◦ σA,C ◦ σB,C = m3 ◦ τA ◦ σB,C ◦ σA,C ◦ τC ◦ σA,B, (78)

where σA,B ∈ HomÔ(A⊗ B,A⊗ B ⊗ L).
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Example 5.14 (Dynamical R-matrix in M̄H∗
). We use the notation of Example 5.7. A

collection of morphisms {σλA,B} from Hom MH∗
fulfills Eq. (73) in M̄H∗

if and only if

Aσλ
(1)

B,C σλ
(2)

A,C
Cσλ

(3)

A,B = σλ
(1)

A,B
Bσλ

(2)

A,C σλ
(3)

B,C. (79)

Example 5.15 (Universal dynamical R-matrix). Consider the situation of Example 5.8
assuming that H is a Hopf subalgebra in another Hopf algebra, U , and L is a H-base alge-
bra. Definition 3.32 of Subsect. 3.5 introduces a universal quantum dynamical R-matrix
of U over the base L. For any pair V and W of U-modules considered as modules over
H, it gives σV,W := PV,WRV,W , where P is the usual flip and RV,W = (ρV ⊗ ρW)(R̄)

is the image of R̄ in End(V )⊗ End(W)⊗ L.

Proposition 5.16. Suppose the Hopf algebra U is quasitriangular and let R be its uni-
versal R-matrix. Let L be a base algebra over H ⊂ U and F̄ ∈ U ⊗ U ⊗ L a universal
dynamical twist. Then the element R̄ := F̄−1

21 RF̄ is a universal dynamical R-matrix.

Proof. This statement can be checked directly. Another way to verify it is to consider
representations of U . Then the statement follows from Proposition (76). �

5.2.2. Dynamical (pre-) braiding. Let C be a monoidal category. Let F be a cocycle in
C and C̃ be the twisted category defined in Subsect. 5.1. Suppose σ is a pre-braiding
in C. As was mentioned above, the hexagon identities (74) are destroyed in C̃. We are
going to construct an equivalent monoidal category F(C) where the twist of σ will be a
pre-braiding.

We consider formal sequences (words) A := (A1, A2, . . . , An), n > 0, of objects
from C. For two words A and B, let A • B denote the concatenation
(A1, A2, . . . , An, B1, B2, . . . , Bm).

Let α(A) denote the tensor productA1 ⊗ . . .⊗An ∈ Ob C. By induction on the length
of words, let us introduce an isomorphism �A of α(A) ∈ Ob C setting �A := idA for
A = A ∈ Ob C and

�A•B := Fα(A),α(B)(�A ⊗�B). (80)

One can check, using the cocycle condition (61), that �A does not depend on a par-
ticular partition of A into two concatenated words. Using the family {�A}, define a

transformation F(f ) of morphisms α(A)
f→ α(B) in C setting

F(f ) := �Bf�A
−1. (81)

Let us construct the category F(C). The objects of F(C) are finite formal sequences
of objects from C. The set of morphisms HomF(C)(A,B) consists of F(f ), where f is
a morphism from HomC

(
α(A), α(B)

)
.

We define the tensor product of objects A and B of F(C) as the concatenation A • B.
The empty word plays the role of the unit object.

Let us define the tensor product of morphisms in F(C). Let F(f ) : A → A′ and
F(g) : B → B′ be two morphisms. Then we put

F(f ) • F(g) := F(f ⊗ g) : A • B → A′ • B′. (82)

The category F(C) is equivalent to C. Indeed, the correspondence A �→ α(A), F(f ) �→
f gives a strong monoidal functor α : F(C) → C. Consider also the functor β : C →
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F(C) defined on objects by β(A) = A, the word of length n = 1, and on morphisms
by β(f ) = f . This functor is monoidal. Indeed, one can interpret �A as a morphism in
F(C), namely,

�−1
A = F(idA1 ⊗ . . .⊗ idAn) ∈ HomF(C)(A1 • . . . • An,A1 ⊗ . . .⊗ An).

So we obtain the transformation of the tensor products β(A) • β(B)
�−1
(A,B)−→ β(A⊗ B).

The functors α and β give the equivalence of categories C and F(C).
Proposition 5.17. Let σ be a pre-braiding in C. Then the collection
σA,B := F(σα(A),α(B)) is a pre-braiding in F(C).
Proof. Apply F to Eq. (73) and (74) and use the definition (82). �
For example, let us specialize σA,B for A = A and B = B. In this case, we have
�A,B = FA,B . Applying formula (82), we obtain σA,B = FB,AσA,BF

−1
A,B for A = A

and B = B.

6. A Construction of Dynamical Twisting Cocycles

6.1. Associative operations on morphisms and twists. Let C be a monoidal category
and C′ a subcategory in C. We are going to show that cocycles in C′ (see Subsect. 5.1)
are in one-to-one correspondence with natural associative operations on morphisms
HomC(A, V ), where A ∈ Ob C and V ∈ Ob C′. First of all observe that a cocycle F in
C′ defines such an operation by the formula φ � ψ := F ◦ (φ ⊗ ψ). The converse is
also true.

Lemma 6.1. Suppose there is an associative operation

HomC(A, V )⊗ HomC(B,W)
�−→ HomC(A⊗ B,V ⊗W)

for all A,B ∈ Ob C and V,W ∈ Ob C′ that is natural with respect to its C-arguments:

(φ ◦ α)� (ψ ◦ β) = (φ � ψ) ◦ (α ⊗ β), (83)

whenever φ ∈ HomC(A, V ), ψ ∈ HomC(B,W), α, β ∈ Hom C. Suppose it is unital,
i.e.

φ � χ = φ ⊗ χ, χ � φ = χ ⊗ φ

for any morphism φ and any χ ∈ HomC(B, 1C). Then the family

FV,W := idV � idW ∈ EndC(V ⊗W) (84)

is a cocycle in C′. This cocycle respects morphisms from a subcategory C′′ in C′ if and
only if the operation � is natural with respect to C′′-arguments, i.e.

(ζ ◦ φ)� (η ◦ ψ) = (ζ ⊗ η) ◦ (φ � ψ)

whenever φ ∈ HomC(A, V ), ψ ∈ HomC(B,W), ζ, η ∈ Hom C′′.

Proof. By the definition (84), the expression FU⊗V,W ◦ (FU,V ⊗ idW) is equal to
(
idU⊗V � idW

) ◦ (
(idU � idV )⊗ idW

) = idU � idV � idW . (85)

Here we have used condition (83). Similarly, the expression FU,V⊗W ◦ (idU ⊗FV,W ) is
brought to the right-hand side of (85). Thus FV,W satisfies the cocycle condition. �
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6.2. Dynamical adjoint functors. In this subsection we formulate the notion of dynam-
ical adjoint functor, which appears to be very useful in constructing dynamical twists.
Let O be a monoidal category and O′ its monoidal subcategory; the embedding functor
O′ → O is denoted by R. Let B and B′ be right module categories over O and O′,
respectively.

Definition 6.2. A functor B M−→ B′ is called dynamical adjoint to R if there is an
isomorphism of the following three-functors from B × B × O′ to the category of linear
spaces:

Y×X×V→HomB
(
Y,X⊗R(V )

)�Y×X×V→HomB′
(
M(Y ),M(X)⊗V )

. (86)

Given a pair of dynamical adjoint functors, we introduce an operation � on mor-
phisms from Ob B�Ō to its subcategory Ob B�Ō′ in the following way. A pair {Xφ} ∈
HomB�Ō

(
A,R(V )

)
and {Xψ} ∈ HomB�Ō

(
B,R(W)

)
defines a family of B′-morphisms

M(X ⊗ A⊗ B) → M(X)⊗ V ⊗W , for all X ∈ B, via the composition

M(X ⊗ A⊗ B)
(X⊗A)ψ̃−→ M(X ⊗ A)⊗W

Xφ̃⊗idW−→ M(X)⊗ V ⊗W. (87)

By the tilde we denote the image of a morphism from Hom B�Ō under the correspon-
dence (86). By condition (86), the composition (87) yields a morphism,

X ⊗ A⊗ B
X(φ�ψ)−→ X ⊗ R(V ⊗W), (88)

in the category B. Functoriality with respect to the first argument in (86) implies that
the family {X(φ �ψ)} is in fact an B�Ō-morphism. The associativity of the operation �
follows from the associativity of composition of morphisms in the category B′. Thus we
obtain the following result.

Proposition 6.3. A pair of dynamical adjoint functors defines, by formula (88), an asso-
ciative operation φ⊗ψ → φ�ψ that satisfies the conditions of Lemma 6.1 for C = B�Ō
and C′ = B�Ō′. It is O′-functorial and thus yields a dynamical twist of O′.

In the next subsection, using Lemma 6.1 and Proposition 6.3, we construct a dynamical
cocycle in the category of g-modules considered as a subcategory of l-modules, where
l is an arbitrary Levi subalgebra in g.

6.3. Generalized Verma modules. Let g be a complex reductive Lie algebra with the
Cartan subalgebra h and g = n− ⊕ h ⊕ n+ a polarization with respect to h.

We fix a Levi subalgebra l, which is, by definition, the centralizer of an element in h.
The algebra l is reductive, so it is decomposed into the direct sum of its center and the
semisimple part, l = c ⊕ l0, where l0 = [l, l]. Also, there exists a decomposition

g = n−
l ⊕ l ⊕ n+

l , (89)

where n±
l are subalgebras in n±. Let p± denote the parabolic subalgebras l ⊕ n±

l .
Let X be a finite dimensional semisimple representation of l. We consider X as a

left U(l)-module. Being extended by the trivial action of n+
l , this representation can be

considered as a left U(p+)-module. We denote by MX the generalized Verma module
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MX := U(g)⊗U(p+) X. It is a left U(g)-module, and the natural map U(n−
l )⊗C X →

U(g)⊗U(p+) X is an isomorphism of vector spaces.
Let us consider the dual representation X∗ as a left U(l)-module with the action

(uϕ)(x) = ϕ(γ (u)x), (90)

where ϕ ∈ X∗, x ∈ X, u ∈ l, and γ denotes the antipode in U(g). Analogously to MX,
we define the generalized Verma moduleM−

X∗ := U(g)⊗U(p−) X
∗ naturally isomorphic

as a vector space to U(n+
l )⊗C X

∗.
There exists the following equivariant pairing between M−

X∗ and MX. Let u1 ⊗ ϕ ∈
U(n+

l ) ⊗C X
∗, u2 ⊗ x ∈ U(n−

l ) ⊗C X. We put 〈u1 ⊗ ϕ, u2 ⊗ x〉 = ϕ
(
s(γ (u1)u2)x

)
,

where s is the projection U(g) → U(l) along the direct sum decomposition

U(g) = U(l)⊕ (n−
l U(g)+ U(g)n+

l ).

It is obvious that this pairing defines the U(g)-equivariant map

M−
X∗ → M∗

X, (91)

whereM∗
X denotes the restricted dual U(g)-module toMX, which is defined as follows.

It is clear that MX = ⊕µMX[µ], where MX[µ] is the finite dimensional subspace of
weight µ ∈ h∗. We put M∗

X := ⊕µ(MX[µ])∗ with the U(g)-action similar to (90). It is
known that map (91) is an isomorphism for representations X satisfying conditions of
Proposition 6.4 below.

Since U(l) = U(l0) ⊗ U(c), where l0 is the semisimple part of l and c its center, a
U(l)-module X is irreducible if and only if it can be presented as the tensor product of
two representations:

X = X0 ⊗ Cλ. (92)

HereX0 is an irreducible representation of l0, and Cλ is a one dimensional representation
of c defined by a character λ ∈ c∗; both X0 and Cλ are lifted to U(l)-modules in the
natural way. It is clear that representation (92) is unique. We call the element λ from
(92) the character of X.

Let αi , i = 1, . . . , dim c, be the simple roots with respect to h that are not roots of l,
and e±αi the corresponding root vectors such that (eαi , e−αi ) = 1 for the Killing form
(., .) in g. Put hi := [eαi , e−αi ], i = 1, . . . , dim c. Denote by Y the union of hyperplanes
in c∗ consisting of λ ∈ c∗ having at least one coordinate λ(hi) integer.

Proposition 6.4 ([J]). Let X be a semisimple representation of l. If the characters of its
irreducible components do not belong to Y , then the map (91) is an isomorphism.

We call an l-module X generic if it satisfies this proposition.

6.4. Dynamical twist via generalized Verma modules. In this subsection we construct
a dynamical cocycle for the case when the Hopf algebra H is a (quantum) universal
enveloping algebra of a Levi subalgebra l in a reductive Lie algebra g. Our method is
a generalization to noncommutative and non-cocommutative Hopf algebras of the con-
struction of Etingof and Varchenko, [EV3]. For simplicity we consider only classical
universal enveloping algebras U = U(g), H = U(l). The construction carries over to
the quantum groups in a straightforward way. Recall that MU(l) and MU(g) denote the
categories of locally finite semisimple modules over U(l) and U(g), respectively.
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Lemma 6.5. For all Y ∈ MU(l), V ∈ MU(g), and generic X ∈ MU(l),

Homg(MY ,MX ⊗ V ) � Homl(Y,X ⊗ V ). (93)

Proof. Since, by Proposition 6.4, the module M∗
X is isomorphic to M−

X∗ for generic X,
we have

Homg(MY ,MX ⊗ V ) � Homg(MY ⊗M∗
X, V ) � Homg(MY ⊗M−

X∗ , V ), (94)

whereM∗
X is the restricted dual toMX. SinceMY ⊗M−

X∗ � Indg
l (Y⊗X∗) as a g-module,

we can apply the Frobenius reciprocity and obtain

Homg(MY ⊗M−
X∗ , V ) � Homl(Y ⊗X∗, V ) � Homl(Y,X ⊗ V ). (95)

Combining (94) and (95) we prove the lemma. �
Set, in terms of Definition 6.2, O to be the full subcategory in MU(l) of modules whose
characters belong to the weight lattice of g relative to h. This category contains MU(g)
as a subcategory, which we put to be O′. Let B be the full subcategory in MU(l) of
modules whose characters do not belong to Y; it is a module category over O. Let B′ be
the category of all U(g)-modules. Put R : O′ → O to be the restriction functor making
an U(g)-module a module over U(l). We define the adjoint functor M as follows. For
X ∈ ObMU(l) we put M(X) = MX, the generalized Verma module corresponding to
X. It is clear that any morphism X → Y of U(l)-modules naturally corresponds to a
morphism MX → MY in the category B′.

Corollary 6.6. The functor X
M→ MX is dynamical adjoint to the restriction functor

MU(g)
R→ O.

Proof. All we have to check is that correspondence (93) is natural with respect to Y , V ,
and genericX. This holds because the Frobenius reciprocity gives a natural isomorphism
between adjoint functors for generic X. �

Let us consider the category MU∗(g) of locally finite semisimple right U∗(g)-com-
odules. Note that MU∗(g) is naturally isomorphic to the category MU(g) of locally finite
semisimple left U(g)-modules and hence to a subcategory of locally finite semisimple
left U(l)-modules. We call the dynamical extension of MU∗(g) within M̄U∗(l) the full
subcategory in M̄U∗(l) whose objects belong to MU∗(g).

Let us consider in more detail the structure of U∗(l). First of all, U∗(l) can be inter-
preted as the algebra of polynomial functions on the connected simply connected Lie
group Ĥ corresponding to the Lie algebra l. That is, U∗(l) is generated over C by matrix
elements of all finite dimensional semisimple representations of l. The group Ĥ is pre-
sented as the Cartesian product Ĥ0 × c of the semisimple subgroup Ĥ0 and c viewed as
an abelian group.

It is well known that U∗(l) = ⊕V End∗
C
(V ), where V runs over the irreducible U(l)-

modules. Each irreducible representation of l has the form V = V0 ⊗ Cµ, where V0 is a
module over the semisimple part l0 of l and Cµ is a one dimensional representation of
the center c. Let eµ : c → C

× be the matrix element of Cµ and eV0
ij the matrix elements

of V0. The elements {eV0
ij e

µ} form a basis in the vector space U∗(l). We call an element
λ ∈ U∗(l) generic if the decomposition of λ via this basis contains no eµ, for µ ∈ Y .
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Theorem 6.7. Let l be a Levi subalgebra in a reductive Lie algebra g, U(l) the corre-
sponding Hopf subalgebra in the universal enveloping algebra U(g). There exists an
U(l)-equivariant map

F̄ : U∗(l) → U(g)⊗ U(g)
such that for generic λ ∈ U∗(l) the family FλV,W := (ρV ⊗ ρW)

(F̄(λ)), V,W ∈
Ob MU∗(g), is a dynamical twist (68–69) in the dynamical extension of the category
MU∗(g) within M̄U∗(l).

Proof. By Corollary 6.6 and Proposition 6.3, there exists a dynamical twist in the cate-
gory B�Ō, which is a collection of morphismsX(FV,W ) ∈ Endl(X⊗V⊗W), whereV and
W are g-modules andX is a generic l-module. Using the natural filtration in generalized
Verma modules, one can prove that morphisms {X(FV,W )} are invertible in M̄U∗(l). The
morphisms X(FV,W ) define a collection of l-equivariant mapsX∗⊗X → Endk(V ⊗W),
which gives rise to a collection of maps X∗ ⊗ X → U(g)⊗ U(g) for generic X, since
the dynamical twist is natural with respect to the arguments V and W . This collec-
tion determines an l-equivariant map F̄ : U∗(l) → U(g)⊗ U(g) defined for generic of
elements U∗(l). Indeed, by Remark 4.20 the dynamical category B�Ō is isomorphic to
M̄U∗(l). Under this isomorphism, the dynamical twist {X(FV,W )} goes over to the map
λ �→ F̄(λ) for λ ∈ X∗⊗X andX generic, which reduces to the twisting cocycle (68–69)
in representations. �

7. Dynamical Associative Algebras and Quantum Vector Bundles

7.1. Classical vector bundles. Let H be a Lie group and P be a principal H -bun-
dle. Denote by A = A(P ) the algebra of functions on P . Let V be a finite dimen-
sional left H -module. An associated vector bundle V (M) on M = P/H with the
fiber V is defined as the coset space (P × V )/H by the action (p, v) �→ (ph, h−1v),
(p, v) ∈ (P × V ), h ∈ H . The global sections of V (M) are identified with the space(A(P )⊗ V

)H � HomH

(
V ∗,A(P )). Let us denote by AV the space of global sections

ofV (M). WhenV = k, the trivialH -module, the space Ak is canonically identified with
the subalgebra in A of H -invariant functions; in other words, Ak = A(M). The tensor
product of vector bundles corresponds to the tensor product of sections, which is induced
by multiplication in A: given sV ∈ AV and sW ∈ AW the section sW ⊗ sV ∈ AV⊗W is

(sW ⊗ sV )(w ⊗ v) := sW (w)sV (v), w ⊗ v ∈ W ∗ ⊗ V ∗ � (V ⊗W)∗.

In particular, the tensor product of sections makes the space AV a two-sided module
over Ak .

7.2. Quantum vector bundles. Fix a Hopf algebra H over the ground ring k and con-
sider a dynamical associative algebra A in the category M̄H∗

, cf. Example 4.22. We are
going to introduce associated vector bundles over the “non-commutative coset space”
corresponding to the action of H on A.

Definition 7.1. Let V be a right H-module. The associated vector bundle AV with
fiber V is the space of all H-equivariant maps (sections) sV : V ∗ → A.
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Observe that the restriction of the dynamical multiplication in A to a group-like ele-
ment λ of H∗ defines a bilinear operation

λ∗ : A ⊗ A → A, which is H-equivariant,
since group-like elements are invariant in H∗ under the coadjoint action (45). Now we
can define a product of sections. Let V and W be two H-modules. Take sV : V ∗ → A
and sW : W ∗ → A to be sections of AV and AW . Fix a group-like element λ ∈ H∗. The
map sW

λ∗ sV : (V ⊗W)∗ � W ∗ ⊗ V ∗ → A,

(sW
λ∗ sV )(w ⊗ v) := sW (w)

λ∗ sV (v), w ⊗ v ∈ W ∗ ⊗ V ∗, (96)

is a section of the bundle AV⊗W . The subspace of H-invariants Ak ⊂ A is obviously
closed under

λ∗ for every group-like element λ ∈ H∗.

Theorem 7.2. For any group-like element λ ∈ H∗ and any finite dimensional H-mod-
ule V the multiplication

λ∗ provides Ak with the structure of an associative algebra,

Ak
λ, and makes the space AV a left Ak

λ-module. If V = kα , i.e. is the 1-dimensional
representation of H defined by the character α, then the line bundle AV is also a right
Ak
λα−1 -module with respect to

λ∗ . For any a ∈ Ak
λ, sV ∈ AV , and sW ∈ AW

a
λ∗ (sV λ∗ sW ) = (a

λ∗ sV ) λ∗ sW . (97)

Proof. Sections of the line bundle Akα may be treated as elements a ∈ A such that
h � a = α−1(h)a for all h ∈ H (the inverse is understood in the sense of the algebra
H∗). For a ∈ Akα and b, c ∈ A, the formula (60) turns into

(a
λ∗b) λ∗c = a

λ∗ (b λα−1∗ c) (98)

under the assumption that λ ∈ H∗ is group-like. Setting α = 1 (the unit of H∗) in
(98), we find that

λ∗ is associative when restricted to Ak and makes it an associative

algebra, Ak
λ. Also we see that A is a left Ak

λ-module. This induces the structure of a left
Ak
λ-module on AV for every H-module V , by formula (98). Assuming b, c ∈ Ak in (98)

we obtain a right Ak
λα−1 -module structure on the space Akα . �

8. Vector Bundles on Semisimple Coadjoint Orbits

The problem of equivariant quantization of function algebras on semisimple coadjoint
orbits of simple Lie groups was studied, e.g., in [DGS1, DolJ, DM1, DM2, DM4, DS].
Quantization of vector bundles on semisimple orbits as modules over the quantized func-
tion algebras was considered in [D1, GLS]. In this section we use dynamical associative
algebras for quantization of the entire “algebra” of sections of all vector bundles on
semisimple coadjoint orbits.

8.1. Dynamical quantization of the function algebra on a group. Let g be a simple
Lie algebra and G the corresponding connected Lie group. We will apply the previous
considerations to the problem of equivariant quantization of vector bundles on semisim-
ple orbits in g∗ with respect to the coadjoint action of G. Denote by A(G) the algebra
of polynomial functions on G. The group G acts on itself by the left and the right regu-
lar actions. These actions induce two left commuting actions of U(g) on A(G) via the
differential operators ρ1(x) and ρ2(x), x ∈ U(g), respectively. Here ρ1(x) (ρ2(x)) is the
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differential operator on G that is the right (left) invariant extension of γ (x) (x), where
γ denotes the antipode in U(g).

Given a representation π : G → End(V ) assign to each f ∈ End(V )∗ the function
f ◦ π on G. Identifying End(V )∗ with End(V ) = V ⊗ V ∗ via the trace pairing, these
assignments give the well known isomorphism

⊕EE ⊗ E∗ → A(G), (99)

whereE runs over all irreducible representations ofG. Then the ρ1-action can be treated
as an action on theE-factor while the ρ2-action – on theE∗-factor of each termE⊗E∗
in the direct sum (99).

As a manifold, a semisimple orbit is the quotient M = G/H , where H is a Levi
subgroup with the Lie algebra l ⊂ g. Recall the decomposition l = l0 ⊕ c, where l0 is the
semisimple part and c the center of l. The manifold G may be considered as a principal
H -bundle on M . Any equivariant vector bundle on M is associated to the bundle G via
a representation V ofH . We denote this vector bundle by V (M). It has the vector space
V as the fiber.

The global sections of the bundle V (M) are identified with the space
(A(G)⊗V )l =

Homl

(
V ∗,A(G)), where A(G) is considered as a U(g)-module with respect to the ρ2-

action. Since M is an affine variety, one can identify the vector bundle V (M) with its
global sections and consider it as a U(g)-module with respect to the ρ1-action. In partic-
ular, supposeV = Cλ is the one dimensional representation of l induced by the character
λ ∈ c∗. Let us considerλ as an element of h∗ via the embedding c∗ ⊂ h∗ along the decom-
position h = c⊕c⊥. Due to isomorphism (99), the assignment Homl

(
C

∗
λ,A(G)

) � ϕ �→
ϕ(1) ∈ A(G) gives a natural isomorphism of U(g)⊗ U(l)-modules

Homl

(
C

∗
λ,A(G)

) → A(G)[−λ], (100)

where A(G)[−λ] is a subspace of l0-invariant elements of A(G) of weight −λ with
respect to the ρ2-action. It is obvious that A(G)[−λ] is a U(g)-module with respect to
the ρ1-action and it is naturally isomorphic to ⊕EE ⊗E∗[−λ], where E∗[−λ] denotes
the subspace of l0-invariant elements of E∗ of weight −λ. It is clear that the isomor-
phism (100) is actually non-zero only if λ is an integer weight. In this case the map
(100) identifies A(G)[−λ] with the space of global sections of the line bundle Cλ(M).
In particular, the function algebra on M is naturally isomorphic to the U(g)-module
algebra ⊕EE ⊗ E∗[0] ⊂ A(G).

Applying the dynamical twist F̄ constructed in Theorem 6.7 to the U(g)-module alge-
bra A(G) with respect to the ρ2-action, we obtain a dynamical associative U(l)-algebra
in the category ŌU∗(l). This algebra is equal to A(G) as a U(g)-module (with respect to
ρ1-action) and has the family of multiplications parameterized by generic λ ∈ U∗(l) and
defined as m̄λ = m ◦ F̄λ, where m is the original multiplication in the algebra A(G).
Applying Theorem 7.2 to this dynamical associative algebra, we obtain a quantization
of vector bundles on G/H . Obviously, this quantization is equivariant with respect to
the ρ1-action of U(g).

Let us consider the dynamical twist F̄(λ) restricted to U∗(c). Applied to the subal-
gebra A(G)l0 ⊂ A(G) of l0-invariant functions onG with respect to the ρ2-action, this
restriction makes A(G)l0 a dynamical associative U(l)-algebra over the base U∗(c). As
a U(g)-module, it is formed by sections of all linear bundles on M . Let us describe this
dynamical algebra in more detail.
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LetMλ = U(g)⊗U(p+)Cλ be theVerma module corresponding to the one dimensional
representation of U(l) associated to λ ∈ c∗. Let Hom0(Mλ,Mµ) denote the subspace of
locally finite elements in HomC(Mλ,Mµ) with respect to the adjoint action of U(g). In
fact, Hom0(Mλ,Mµ) is not zero only when µ− λ is an integer weight. Recall that for
a U(g)-module E, we denote by E[λ], λ ∈ c∗, the subspace of l0-invariant elements of
weight λ.

Proposition 8.1. Let V be a finite dimensional representation of U(g). Then, there is a
natural morphism of U(g)-modules: V ⊗ V ∗[λ− µ] → Hom0(Mλ,Mµ), λ,µ ∈ c∗, µ
is generic. When V is irreducible, this morphism is embedding. These embeddings give
rise to the natural isomorphism

jλ,µ : ⊕EE ⊗ E∗[λ− µ] → Hom0(Mλ,Mµ) (101)

of U(g)-modules, where E runs over all finite dimensional irreducible representations
of U(g).

Proof. It is enough to prove the first part of the proposition and show that the multiplicity
of V in Hom0(Mλ,Mµ) is equal to dim V ∗[λ−µ]. Applying the Frobenius reciprocity,
one proves that for generic µ ∈ c∗ the space HomU(g)(Mλ,Mµ ⊗ V ∗) is naturally iso-
morphic toV ∗[λ−µ]; the proof is the same as in [ES1]. But HomU(g)(Mλ,Mµ⊗V ∗) ∼=
HomU(g)

(
V,Hom0(Mλ,Mµ)

)
, which proves the proposition. �

Compositions Mν → Mµ → Mλ generate the map
Hom0(Mµ,Mλ) ⊗ Hom0(Mν,Mµ) → Hom0

(
Mν,Mλ

)
, λ,µ, ν ∈ c∗. Due to isomor-

phisms (101) and (99), this map defines the morphism of U(g)⊗ U(l)-modules

A(G)[µ− λ] ⊗ A(G)[ν − µ] → A(G)[ν − λ]. (102)

Since A(G)[β] = 0 unless β is a positive integer weight, this morphism is defined for
generic λ ∈ c∗, i.e. for λ �∈ Y , where Y is from Proposition 6.4. Indeed, if λ �∈ Y , then
also µ, ν �∈ Y when the differences µ− λ and ν − µ are integer weights.

Fixing a generic λ in (102) and varying µ and ν, we obtain from (102) a morphism

A(G)l0 ⊗ A(G)l0 → A(G)l0 . (103)

These morphisms form a family of multiplications parameterized by elements eλ ∈ U∗(c)
(or λ ∈ c∗) for generic λ. Since the elements eλ form a basis of U∗(c) over C, this family
extends by linearity to all generic elements of U∗(c). One can check that this family
makes A(G)l0 a dynamical associative U(l)-algebra over the base U∗(c). Comparing
the construction of this multiplication and the construction of twist from Theorem 6.7,
we come to the following.

Proposition 8.2. For generic λ ∈ c∗, the dynamical associative multiplication (103)
has the form m̄λ = m ◦ F̄(λ), where F̄ is the dynamical twist over the base U∗(l) from
Theorem 6.7.
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8.2. Deformation quantization of the Kirillov brackets and vector bundles on coadjoint
orbits. Dynamical twist from Theorem 6.7 applied to A(G) gives a dynamical alge-
bra, which, by Theorem 7.2, defines quantization of vector bundles on M = G/H as
left modules over the quantized algebra of functions on M . This quantization of vector
bundles is obviously g-equivariant. Restricted to the function algebra on M , it gives
quantization of the Kirillov brackets in the following way.

Let t be an independent variable. Denote by gt the Lie algebra over C[[t]] with
bracket [x, y]t := t[x, y] for x, y ∈ g, where [., .] is the original bracket in g. Then
there is an algebra morphism ϕt : U(gt ) → U(g)[[t]] induced by the correspondence
x �→ tx for x ∈ g. As was shown in [DGS2], the equivariant quantization of the Kirillov
Poisson bracket corresponding to the semisimple orbit passing through λ ∈ c∗ ⊂ g∗
is identified with the image of U(gt ) by the composition map U(gt ) → U(g)[[t]] →
Hom0(Mλ/t ,Mλ/t ), where the first arrow is ϕt and the second one is the representaion
map.

Using this fact, one can show that the multiplication m̄λ,t := m̄λ/t from Proposi-
tion 8.2 being restricted to A(M) = A(G)[0] gives a U(g)-equivariant deformation
quantization of the Kirillov Poisson bracket on M realized as a coadjoint orbit pass-
ing through λ. Since the multiplication m̄λ,t depends, in fact, on λ/t , we do not need
λ to be generic in the deformation quantization. Note that also for any formal path
λ(t) = λ0 + tλ1 + . . . ∈ c∗[[t]] the multiplication m̄λ(t),t gives a U(g)-equivariant
deformation quantization on the orbit passing through λ0, with the appropriate Kirillov
bracket.

Remark 8.3. Any equivariant deformation quantization of the Kirillov bracket on the
orbit can be obtained in this way, and different paths in c∗ give non-equivalent quanti-
zations, [D1].

For λ ∈ c∗, consider m̄λ = m ◦ F̄(λ), where F̄ is the dynamical twist from Theorem
6.7 and m the classical multiplication, as a map A(G)⊗2 → A(G). Recall that c∗ can
be naturally identified with a subspace in g∗. Let us call an element λ0 ∈ c∗ regular if
its stabilizer in g (under the coadjoint action) is the Levi subalgebra l. In a similar way,
one can prove

Proposition 8.4. For any regular λ0 ∈ c∗ and for any formal path λ(t) = λ0 + tλ1 +
. . . ∈ c∗[[t]], the multiplication m̄λ(t),t := m̄λ(t)/t gives a U(g)⊗ U(l)-equivariant map
A(G)⊗2 → A(G)[[t]] that coincides modulo t with the original multiplication in A(G).

Now, we fix regular λ0 ∈ c∗ and consider M = G/H as the semisimple orbit pass-
ing through λ0. Recall that the space of global sections of the vector bundle V (M)

corresponding to an H -representation V is identified with the space
(A(G) ⊗ V

)l =
Homl

(
V ∗,A(G)). We identify V (M) with its global sections. Applying Theorem 7.2

to the dynamical algebra obtained from A(G) by the dynamical twist from Theorem 6.7
and using Proposition 8.4, we obtain

Theorem 8.5. Let λ0 be a regular element from c∗ and λ(t) = λ0 + tλ1 + . . . a for-
mal path in c∗. Then the dynamical multiplication m̄λ(t)/t defines a U(g)-equivariant

multiplication
λ∗ on the global sections of equivariant vector bundles on M . This mul-

tiplication is a deformation of the usual tensor product of the sections and satisfies the
following properties:

1) Restricted toA(M), the operation
λ(t)∗ defines a deformation quantizationAλ(t)(M)

of the function algebra A(M) corresponding to the Kirillov bracket on the orbit passing
through λ0;
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2) Let sV and sW be global section of vector bundles V (M) and W(M), and a is a
function on M . Then

a
λ∗ (sV λ∗ sW ) = (a

λ∗ sV ) λ∗ sW .
In particular, any vector bundle V (M) is a left Aλ(t)(M)-module with respect to the

action map a ⊗ s �→ a
λ(t)∗ s, where a ∈ Aλ(t)(M) and s ∈ V (M).

3) The line bundle Cα(M), where α ∈ c∗ is a positive integer weight, is also a right

module over the algebra Aλ(t)−tα(M) with respect to the action map s ⊗ b �→ s
λ(t)∗ b,

where s ∈ Cα(M), b ∈ Aλ(t)−tα(M).

8.3. The quantum group case. Let Uq(g) be the Drinfeld-Jimbo quantum group corre-
sponding to g and Uq(l) be considered as its quantum subgroup corresponding to the
Levi subalgebra l ⊂ g. Let Aq(G) denote the dual algebra to Uq(g) consisting of matrix
elements of finite dimensional representations of Uq(g). The algebra Aq(G) is a quanti-
zation of the classical algebra A(G), it is equivariant under the left and the right regular
actions of Uq(g), which we replace by two left actions, ρ1 and ρ2, as above.

Let F̄q be the dynamical twist constructed in Theorem 6.7 with the help of general-
ized Verma modules over Uq(g). Applying this twist to the algebra Aq(G), we obtain a

dynamical algebra
(A(G), m̄q,λ

)
in the category M̄U∗

q (l). This algebra is equal to Aq(G)

as a Uq(g)-module (with respect to ρ1-action) and has the family of multiplications m̄q,λ
parameterized by generic λ ∈ U∗

q (l). They are defined by m̄q,λ := mq ◦ F̄q,λ, wheremq
is the original multiplication in Aq(G). It is obvious that Aq,λ(G) is a Uq(g)-module
algebra with respect to the ρ1-action.

One can show that replacing simultaneously λ by λ/t and q by qt we obtain the
family of multiplications m̄qt ,λ,t := m̄qt ,λ/t that gives a Uqt (g)-equivariant deformation
quantization of A(M). Also, there exists a q-analog of Theorem 8.5 which reduces to
Theorem 8.5 when q = 1.
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