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Abstract: We show that, unlike in the 2-dimensional case [LL], the Hausdorff dimen-
sion of a measure invariant under the geodesic flow is not necessarily preserved under
the projection from the unit tangent bundle onto the base manifold if the base manifold
is at least 3-dimensional. In the 2-dimensional case we reprove the preservation theorem
due to Ledrappier and Lindenstrauss [LL] using the general projection formalism of
Peres and Schlag [PS]. The novelty of our proof is that it illustrates the reason behind
the failure of the preservation in the higher dimensional case. Finally, we show that the
projected measure has fractional derivatives of order γ for all γ < (α − 2)/2 provided
that the invariant measure has finite α-energy for some α > 2 and the base manifold has
dimension 2.

1. Introduction

Several indications have been brought for and against the importance and relevance of
fractality for different observed phenomena. In this context, there are two important
aspects related to physical experiments. First of all, the number of degrees of freedom in
realistic systems is usually huge, that is, the phase space is high dimensional. On the other
hand, the number of measurements which can be reasonably taken in one experiment
is relatively small. As a result, one obtains sharp information only on a few variables
whilst the remaining ones must be treated in some averaging or effective manner. This
may be interpreted by saying that a measurement is a projection which leads to the need
to understand the mathematical theory of projections. Indeed, fractal features of pro-
jections have recently been the subject of intensive study. These include, for example,
projections of SRB-measures of coupled map lattices [BKL, JJ] and those of measures
invariant under the geodesic flow [LL].

In the theory of coupled map lattices projections play a crucial rôle in the very defi-
nition of SRB-measures (see [BS, BK1, BK2]). It has turned out that the projectional
� MJ and ML acknowledge the support of the Academy of Finland, project #48557.
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properties of dimensions imply that the natural definition of the SRB-measure given by
Bunimovich and Sinai [BS] and Bricmont and Kupiainen [BK1, BK2] has to be modified
in order to obtain a physically acceptable concept (see [JJ, J]).

Dimensional properties of projections of sets and measures have been investigated
for decades. The study of the behaviour of Hausdorff dimension under projection-type
mappings dates back to the 1950’s when Marstrand [Mar] proved a well-known theorem
according to which the Hausdorff dimension of a planar set is preserved under typical
orthogonal projections. In [K] Kaufman verified the same result using potential theoret-
ical methods, and in [Mat1] Mattila generalized it to higher dimensions. For measures
the analogous principle, discovered by Kaufman [K], Mattila [Mat2], Hu and Taylor
[HT], and Falconer and Mattila [FM], can be stated in the following form: Let m and
n be integers such that 0 < m < n and let µV be the image of a compactly supported
Radon measure µ on R

n under the orthogonal projection onto an m-plane V . Then for
almost all m-planes V we have

dimH µV = dimH µ provided that dimH µ ≤ m. (1.1)

On the other hand, for almost all m-planes V ,

µV � Lm provided that dimH µ > m. (1.2)

(Above dimH is the Hausdorff dimension, Lm is the m-dimensional Lebesgue measure,
and the symbol � denotes the absolute continuity.) In the case thatµ has finitem-energy
a substantially stronger form of (1.2) holds: we have for all typical m-planes that

µV � Lm with Radon–Nikodym derivative in L2. (1.3)

Analogies of these results have been investigated for typical smooth mappings in
the sense of prevalence and for infinite dimensional spaces in [SY, HK1, and HK2]. In
[PS] Peres and Schlag extended (1.1), (1.2), and (1.3) to Sobolev dimensions of mea-
sures on compact metric spaces and parametrized families of transversal mappings in
an elegant way. Their formalism has turned out to be a powerful tool when considering
the uniqueness of SRB-measures of coupled map lattices [JJ]. For the purposes of the
present paper, a significant difference between the earlier results and those of [PS] is that
Peres and Schlag generalized (1.3) in terms of fractional derivatives by showing that if
the original measure has finite (m+ ε)-energy, then densities of typical projections onto
m-dimensional spaces have fractional derivatives of order ε/2 in L2. For more detailed
information about a variety of related contributions, see [Mat4] and [PS].

In this paper we address the question of studying measures on Riemannian manifolds
which are invariant under the geodesic flow. Although they are measures on the unit tan-
gent bundle of the manifold, that is, on (a subset of) the phase space of the system,
from the physical point of view it is important to try to describe their properties on the
configuration space. After all, in many situations one is interested only in the positions
of the particles and not their velocities. This leads to the study of the natural projection
from the unit tangent bundle onto the base manifold. (For a discussion of connections to
the Besicovitch-Kakeya problem, see [LL].) Even though the above mentioned results
(1.1), (1.2), and (1.3) are genuinely “almost all”-results, meaning that they do not pro-
vide information about any specified projection, similar methods work for the natural
projection from the unit tangent bundle onto the Riemannian surface. This interesting
feature was discovered quite recently by Ledrappier and Lindenstrauss in [LL].
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Theorem 1.1 (Ledrappier, Lindenstrauss). LetM be a compact Riemannian surface, let
µ be a Radon probability measure on the unit tangent bundle SM , and let� : SM → M

be the natural projection. Assuming that µ is invariant under the geodesic flow, the fol-
lowing properties hold for the image �∗µ of µ under �:

1. If dimH µ ≤ 2, then dimH �∗µ = dimH µ.
2. If dimH µ > 2, then �∗µ � L2.

Analogously to (1.3), Ledrappier and Lindenstrauss proved that if µ has finite α-
energy for α > 2, then the Radon–Nikodym derivative is a L2-function. They also
addressed the question of whether this could be further generalized in terms of frac-
tional derivatives. In addition to giving a positive answer to this question by employing
the techniques from [PS], we consider another issue brought up in [LL] which is the
validity of Theorem 1.1 for higher dimensional base manifolds. Quite surprisingly, it
appears that the Hausdorff dimension is not necessarily preserved. Recalling the case
of (1.1), (1.2), and (1.3), one might first think that the generalization from dimension 2
to higher dimensions is a question of finding correct methods. However, in Sect. 4 we
give a new proof for Theorem 1.1 which explains why the preservation fails in higher
dimensions.

This paper is organized as follows: In Sect. 2 we discuss the general projection for-
malism of Peres and Schlag [PS] which plays an important rôle in this work, whereas
in Sect. 3 we recall the basic assumptions from [LL] and introduce our setting. The
main part of Sect. 4 is devoted to proving that the parametrized family of mappings
we are working with is transversal (Proposition 4.1). Then we apply the machinery of
[PS] and a result from [JJL] to reprove Theorem 1.1, and explain why this does not
work for higher dimensional base manifolds (Remark 4.6). The question concerning the
fractional derivatives of the density of the projected measure will be dealt with in Sect.
5. We prove that if the α-energy of µ is finite for some α > 2, then �∗µ has fractional
derivatives of order γ in L2 for all γ < (α − 2)/2 (Theorem 5.1). Finally, in the last
section we give examples of higher dimensional manifolds and invariant measures on
the unit tangent bundles whose Hausdorff dimensions decrease when projected onto the
base manifolds. Remark 4.6 gives a base for constructing such examples.

2. General Projection Formalism of Peres and Schlag

In this section we recall the notation and results we need from [PS]. Given γ ≥ 0, let
‖ν‖2,γ be the Sobolev norm of a finite Borel measure ν on R

n, that is,

‖ν‖2,γ =
( ∫

|ν̂(ξ)|2|ξ |2γ dLn(ξ)
)1/2

,

where

ν̂(ξ) =
∫
e−iξ ·xdν(x)

is the Fourier transform of ν. The Sobolev dimension of ν is

dimS ν = sup
{
α ∈ R |

∫
|ν̂(ξ)|2(1 + |ξ |)α−n dLd(ξ) < ∞}

.

Given α ≥ 0, the α-energy of a finite Borel measure ν on a compact metric space (Y, d)
is denoted by Iα(ν), that is,
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Iα(ν) =
∫

Y

∫

Y

d(x, y)−αdν(x)dν(y).

For the rest of this section, we restrict our consideration to the one dimensional
parameter space.

Basic assumptions. Let (Y, d) be a compact metric space, let J ⊂ R be an open interval,
and let P : J × Y → R be a continuous function. Assume that for any l = 0, 1, . . .
there is a constant C̃l ≥ 1 such that

|∂lt P (t, y)| ≤ C̃l (2.1)

for all t ∈ J and y ∈ Y . Here ∂lt is the lth partial derivative with respect to t .
For all t ∈ J and x, y ∈ Y with x 
= y, define

Tt (x, y) = P(t, x)− P(t, y)

d(x, y)
. (2.2)

We assume that the following form of transversality holds: there is a constant CT such
that for all t ∈ J and for all x, y ∈ Y with x 
= y the condition |Tt (x, y)| ≤ CT implies
that

|∂tTt (x, y)| ≥ CT . (2.3)

In addition, the function Tt is assumed to be regular in the following sense: for all
l = 0, 1, . . . there exists a constant Cl such that

|∂lt Tt (x, y)| ≤ Cl (2.4)

for all t ∈ J and x, y ∈ Y with x 
= y.
In the following theorem from [PS], which serves as a significant tool in Proposition

4.3, we use the notation Pt(·) = P(t, ·). Moreover, we denote by f∗µ the image of a
measure µ on X under a mapping f : X → Z defined as f∗µ(A) = µ(f−1(A)) for all
A ⊂ Z.

Theorem 2.1. Suppose that the assumptions (2.1), (2.3), and (2.4) are satisfied. Let
α > 0 and let ν be a finite Borel measure on Y such that Iα(ν) < ∞. Then there is a
constant Cγ such that

∫

J

‖(Pt )∗ν‖2
2,γ dL1(t) ≤ Cγ Iα(ν) (2.5)

provided that 0 < 1 + 2γ ≤ α. Moreover, for any σ ∈ (0,min{α, 1}] we have

dimH{t ∈ J | dimS(Pt )∗ν ≤ σ } ≤ 1 + σ − α. (2.6)

Proof. See [PS, Theorem 2.8]. ��
We complete this section by stating a technical lemma which plays an important rôle

in relating our setting to that of [PS].
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Lemma 2.2. For all t ∈ (0, 1), let νt be a compactly supported Radon measure on R.
Suppose that µ is a Radon measure on R × (0, 1) such that for all Borel functions
g : R × (0, 1) → R,∫

g(x, t) dµ(x, t) =
∫∫

g(x, t) dνt (x) dL1(t). (2.7)

Assume that there is α > 0 such that dimH νt ≥ α for L1-almost all t ∈ (0, 1). Then
dimH µ ≥ 1 + α.

Proof. The proof of [JJL, Lemma 3.4] goes through in our setting. One simply needs to
replace in the proof of [JJL, Lemma 3.4] the assumption according to which Iα(νt ) < ∞
for all t by the weaker one of Lemma 2.2. ��

3. Notation

In this section, we define a transversal mapping appropriate to the setting of Sect. 2. Our
notation is similar to that in [LL]. Assume that M is a smooth compact 2-dimensional
Riemannian manifold. Denoting by SM the unit tangent bundle, letµ be a Radon proba-
bility measure on SM which is invariant under the geodesic flow, and let� : SM → M

be the natural projection.
Since, in general, the measure µ is too complicated to handle, we have to divide it

into small pieces. The fact thatµ is invariant under the geodesic flow implies that locally
a suitable restriction of µ is roughly of the form ν × L1, where ν is a measure on a two
dimensional square. We will proceed by showing that the projection of this restriction of
µ is in a certain sense of the form νt ×L1 (see Lemma 3.2) where νt is a projection of ν
onto one dimensional space. In this way one obtains a family of projections parametrized
by t and this family will turn out to be transversal (see Proposition 4.1). We continue by
formalizing this idea.

Taking p1, p2 ∈ M sufficiently close to each other, we denote by γp1,p2 the unique
shortest geodesic, parametrized by the Riemannian arc length, which connects p1 and
p2, that is,

γp1,p2(0) = p1 and γp1,p2(dM(p1, p2)) = p2. (3.1)

Here dM is the distance induced by the Riemannian metric.

Basic assumptions. Let I = [0, 1]. We choose an open set U ⊂ M and a chart 
 :
U → R

2 with the following properties:

(1) I 2 ⊂ 
(U).
(2) Defining

C1 = 
−1(I × {0}) and C2 = 
−1(I × {1})
and picking any c1 ∈ C1 and c2 ∈ C2, there exists a unique geodesic γc1,c2 con-
necting c1 and c2 such that its image 
(γc1,c2(t)) = (x1(t), x2(t)) satisfies

|x′
1(t)| ≤ C|x′

2(t)|
for some C > 0 for all t ∈ [0, dM(c1, c2)]. Thus the tangents of the (images
of) geodesics are uniformly bounded away from being horizontal. Further, U is
assumed to be so small that geodesics are close to straight lines. (We use scaled
normal coordinates around a fixed point m ∈ U with 
(m) = (1/2, 1/2).)
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(3) Denoting by �1 : [0, t1] → M and �2 : [0, t2] → M the unique geodesics con-
necting the left-hand side end points of C1 and C2, and their right-hand side end
points, respectively, we assume that 
(�1) ⊂ 
(U) and 
(�2) ⊂ 
(U).

As in [LL], we define a smooth map � : I 2 × R → SM as follows:

�(y1, y2, t) = (γp1,p2(t), γ
′
p1,p2

(t)), (3.2)

where p1 = 
−1(y1, 0) and p2 = 
−1(y2, 1) (see Fig. 1). Set

D = {(y1, y2, t) | (y1, y2) ∈ I 2, 0 ≤ t ≤ dM(p1, p2)}.

Then � : D → �(D) is a diffeomorphism by the uniqueness of geodesics (see (2)).
Next we analyze how the preimages of the projection� behave on I 2 ⊂ 
(U) keep-

ing in mind that we will project the restriction of µ. Any (x1, x2) ∈ I 2 is a projection of
some v ∈ SM if there is (an image under 
 of ) a geodesic starting from a ∈ I × {0},
ending at b ∈ I × {1}, and going through (x1, x2). Note that by the uniqueness of geo-
desics, for each a = (a1, 0) the corresponding b = (b1, 1) is unique (if it exists). Thus a
pair of points (a1, b1) defines uniquely a point v ∈ SM which is projected onto (x1, x2).
Since the pair (a1, b1) contains also the information about the distance dM(a, x), we
may suppress the “time” coordinate and define a function a1 �→ b1 such that all points
on the graph of this function are mapped onto (x1, x2) under the projection� (see Figs. 2
and 3). Letting x1 vary and keeping x2 fixed, we obtain a family of graphs filling I 2

(see Fig. 4). The fact that all points in the same graph are mapped onto the same point
under � implies that these graphs define a projection Px2 : I 2 → R associated with
�. Note that x2 will play the rôle of the parameter and x1 determines the domain of the
associated projection.

C1

C2

γ ′
p1,p2

(t)

γp1,p2 (t)

p1

p2

Fig. 1. The value of ψ(y1, y2, t) for some point (y1, y2, t) ≈ ( 1
2 ,

1
2 ,

1
2 )
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[0, 1] × {0}

[0, 1] × {1}

(x1, x2)

Mx1,x2 (y1, 0)

(Fx1,x2 (y1), 1)

Fig. 2. Definitions of the domain Mx1,x2 and the function Fx1,x2

1

1
2

G(Fx1,x2 )

0 x1

x2

Fig. 3. The graph of Fx1,x2 in the situation of Fig. 2

For the purpose of making the above idea rigorous, denote by E the subset of R
2

restricted by the curves I ×{0}, I ×{1},
(�1), and
(�2). Given any (x1, x2) ∈ E, let

Mx1,x2 = {y1 ∈ I | there is y2 ∈ I such that the geodesic

γ
−1(y1,0),
−1(y2,1) goes through 
−1(x1, x2)}. (3.3)
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Note that, by (2), for all y1 ∈ Mx1,x2 the point y2 ∈ I in (3.3) is unique (provided
x2 > 0). Moreover, Mx1,x2 
= ∅ for all (x1, x2) ∈ E. For all (x1, x2) ∈ E, we define
a function Fx1,x2 : Mx1,x2 → I by Fx1,x2(y1) = y2 where y2 is as in (3.3) (see Fig. 2
and 3). (If x2 = 0, we consider the vertical line segment I above y1 recalling that the
important object is the graph of Fx1,x2 .)

Lemma 3.1. The mapping Fx1,x2 has the following properties:

1. If (x1, x2), (x̃1, x2) ∈ E such that x̃1 > x1, we have Fx̃1,x2(y1) > Fx1,x2(y1) for all
y1 ∈ Mx1,x2 ∩Mx̃1,x2 .

2. Given (x1, x2), (x̃1, x2) ∈ E with x̃1 → x1, we have Fx̃1,x2(y1) → Fx1,x2(y1) for all
y1 ∈ Mx1,x2 ∩Mx̃1,x2 .

3. For all y1, y2 ∈ I and x2 ∈ I there exists x1 such that (x1, x2) ∈ E and Fx1,x2(y1) =
y2.

Proof. The claims follow directly from the definitions by (2). ��
Now we are ready to define the family of projections associated with�. All the points

belonging to the same graph G(Fx1,x2) should be mapped onto the same point. To choose
this point, we fix a line Lx2 which is roughly perpendicular to the graphs and define the
image of the points in G(Fx1,x2) to be the intersection point of this graph and the line
Lx2 . Since near the corners of I 2 there is no intersection point (see Fig. 4) we have to
replace I 2 by a smaller square Ĩ 2 with the same centre as I 2.

To be more precise, given t ∈ I , letLt be the line in R
2 which goes through (1/2, 1/2)

and is orthogonal to the line segment going through the points in ∂(I 2)∩ G(F1/2,t ) (see
Fig. 4). (Here the boundary of a setA is denoted by ∂A.) Note that our assumptions guar-
antee that {(1/2, t) | t ∈ I } ⊂ E, and furthermore, the set ∂(I 2) ∩ G(F1/2,t ) contains

y

pt,y

Lt

I2

Fig. 4. The foliation of I2 and the value of Pt for some t ≈ 1
3
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exactly two points. We may choose Ĩ 2 ⊂ I 2 such that for all t ∈ I and (y1, y2) ∈ Ĩ 2 the
intersection Lt ∩ G(Fx,t ) is a singleton for x ∈ I with Fx,t (y1) = y2 (see Lemma 3.1
(3)). This enables us to define a function P : I × Ĩ 2 → R by

P(t, y) = pt,y, (3.4)

where y = (y1, y2) ∈ Ĩ 2, pt,y is the unique point in Lt ∩ G(Fx,t ), and the point x is
determined by Fx,t (y1) = y2. Here Lt is identified with R such that the origin is at
(1/2, 1/2). Later we will use the abbreviation Pt(·) for the map P(t, ·).

Invariant measure under geodesic flow. Similarly as in [LL], we restrict our consid-
eration to the normalized restriction measure µ̃ = µ(Ũ)−1µ|Ũ , where Ũ = �(D̃)

and

D̃ = {(y1, y2, t) | (y1, y2) ∈ Ĩ 2, 0 ≤ t ≤ dM(

−1(y1, 0),
−1(y2, 1))}.

(Here µ|Ũ (A) = µ(Ũ ∩ A) for all A ⊂ SM .) Since µ is invariant under the geodesic
flow, there is a measure ν on Ĩ 2 such that �∗(ν × L1) = µ̃. We call a measure locally
invariant if it is of this form for some ν.

Next we will represent the measure�∗µ̃ in a form which allows us to apply the gen-
eral projection formalism of Sect. 2. Observe that the preimage of a point (x1, x2) ∈ E
under
◦�◦� is a curve on D̃ whose projection onto Ĩ 2 is G(Fx1,x2). Since the distance
from (y1, 0) to (x1, x2) depends on y1, the “time” coordinate of this preimage on D̃ is not
constant. Hence we have to first rescale “time” and then use the map P . For this purpose,
letV = 
◦�(Ũ). We define, for given t ∈ I andω ∈ (
◦�◦�)−1{(x, t) | (x, t) ∈ V },

B1(ω1, ω2, ω3) = (ω1, ω2, t). (3.5)

Now B1 : D̃ → Ĩ 2 × I is a diffeomorphism since geodesics are not horizontal. Setting
P̃ (ω1, ω2, t) = (Pt (ω1, ω2), t) for all (ω1, ω2, t) ∈ Ĩ 2 × I , we find for all (x, t) ∈ V a
unique point x̃ ∈ R such that P̃ ◦ B1((
 ◦� ◦�)−1{(x, t)}) = (x̃, t). Defining

B2(x, t) = (x̃, t) (3.6)

and using the fact that

B1((
 ◦� ◦�)−1{(x, t)}) = {(y1, y2, t) | y2 = Fx,t (y1)},

we get a diffeomorphism B2 : V → B2(V ).

Lemma 3.2. The following properties hold:

(1) (
 ◦�)∗µ̃ = (B−1
2 ◦ P̃ ◦ B1)∗(ν × L1).

(2) For all non-negative Borel functions f : R
2 → R,

∫
f (x, t)d(P̃∗(ν × L1))(x, t) =

∫∫
f (x, t)d((Pt )∗ν)(x) dL1(t).
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(3) For all non-negative Borel functions g : R
3 → R,

∫
g d((B1)∗(ν × L1)) =

∫
g| detDB−1

1 | d(ν × L1),

where detDB−1
1 is the determinant of the derivative of B−1

1 . Furthermore, there is
a constant C > 0 such that

C−1 ≤ | detDB−1
1 | ≤ C.

(4) There exists a constant C > 0 such that for all Borel sets A ⊂ R
2,

1

C
P̃∗(ν × L1)(A) ≤ (P̃ ◦ B1)∗(ν × L1)(A) ≤ CP̃∗(ν × L1)(A).

(5) There is a constant C > 0 such that

C−1 ≤ | detDB−1
2 | ≤ C.

Proof. Clearly, (1) follows from the definitions, and (2) is a straightforward conse-
quence of Fubini’s theorem. Noting that B1 can be written in the form B1(x1, x2, t) =
(x1, x2, b(x1, x2, t)), Fubini’s theorem gives the equality in (3). Our basic assumption
(2) guarantees the existence of a constant C such that C−1 ≤ | detD(B−1

1 )| ≤ C con-
cluding the proof of (3). Finally, applying (3) gives (4), and (5) follows similarly as
(3). ��

4. Transversality and Preservation of Hausdorff Dimension in Two Dimensional
Manifolds

In this section we discuss connections between [LL] and [PS]. In particular, we give
a new proof of Theorem 1.1 which explains why the corresponding result fails if the
dimension of the base manifold is more than 2 (see Remark 4.6). The machinery devel-
oped in this section leads us to prove in Sect. 5 that the Radon–Nikodym derivative
d�∗µ
dL2 has fractional derivatives in the Sobolev sense. An essential step is to prove that

the function Tt , defined as in (2.2) in terms of the function P given in (3.4), has the
crucial property of being transversal.

Proposition 4.1. Let P be as in (3.4). Then (2.1) is satisfied. Furthermore, defining for
all t ∈ I and x 
= y ∈ Ĩ 2,

Tt (x, y) = P(t, x)− P(t, y)

|x − y| ,

properties (2.3) and (2.4) hold.

Proof. Observing that (2.1) and (2.4) follow directly from the definitions, it suffices to
prove that the transversality condition (2.3) is satisfied.

The idea of the proof of transversality is most easily explained if we assume that the
manifold is a flat torus. Then the geodesics are straight lines and the graphs G(Fx,t ) are
parallel straight lines with slopes given by the equation tan α = (1 − t)/t (see Fig. 5
and (4.1) where now a = b). Moreover, P(t, ·) is an orthogonal projection and Tt (x, y)
reduces to P(t, v), where v = (x − y)/|x − y|. By (4.2), the change of the parameter
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y2

a

(x, t)

b

y1

Fig. 5. The notation for determining the slope of the graph Fx,t at a point (y1, y2)

t means a comparable change of the slope of Lt . Therefore the proof of transversality
reduces to the case where Lt is spanned by (cos t, sin t), v = (0, 1), and t = 0. Then
∂tP (t, v)|t=0 = ∂t sin t |t=0 = 1. To check that this simple idea works also in the general
case involves several careful estimates which we make below.

Given (x, t), let α be the slope of the graph of Fx,t at a point (y1, y2). Using the
notation introduced in Fig. 5, one may deduce the formula

tan α = (1 − t) sin2 b(x, t)

t sin2 a(x, t)
(4.1)

from elementary geometrical arguments. Note that the basic assumption (2) in Sect. 3
guarantees that both the angles a and b are bounded away from 0 and π and are close
to each other. Combining this with Eq. (4.1), in turn, implies the existence of a positive
constant C1 such that

∣∣∣dα
dt

∣∣∣ ≥ C1 (4.2)

for all t .
Letting ε > 0, consider x 
= y such that

|P(t, x)− P(t, y)| ≤ ε|x − y|. (4.3)

We will show that, choosing ε small enough, we have for all small h,

|P(t + h, x)− P(t + h, y)− (P (t, x)− P(t, y))| ≥ ε|x − y|h. (4.4)

This clearly gives the transversality condition (2.3).
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Note that our assumptions guarantee the existence of a constant CF (independent of
x, y, and t) such that

max
K‖Lt

{|z1 − z2| | z1 ∈ G(Fx,t ) ∩K, z2 ∈ G(Fy,t ) ∩K}
≤ CF min

K‖Lt
{|z1 − z2| | z1 ∈ G(Fx,t ) ∩K, z2 ∈ G(Fy,t ) ∩K}, (4.5)

where both the maximum and the minimum are taken over all lines K that are parallel
to Lt (denoted by the symbol K ‖ Lt ). Using the notation shown in Fig. 6, we have

|x − a| ≤ εCF |x − y|,
|a − b| ≥ C2|x − y|h,∣∣|c − d| − |e − f |∣∣ ≤ C3ε|x − y|h,

(4.6)

where both C2 and C3 are constants that do not depend on x, y, and t . In fact, the first
inequality in (4.6) is a consequence of (4.5) and (4.3). Choosing ε < 1/(2CF ), the sec-
ond inequality follows from the first one and the fact that there is a constant C such that
|a − b| ≥ C|a − y|h (see (4.2)). For the last one, observe first that, since the geodesics
are close to lines in V and depend smoothly on the initial data, there is a constant C
(independent of x, y, and t) such that

∣∣|c − d| − |e − f |∣∣ ≤ C
∣∣|w1 − w2| − |w3 − w4|

∣∣, (4.7)

c
e

d

Lt Lt+h

Kt

g

f

a

b

x
y

Fig. 6. Above the line Kt goes through x and is parallel line to Lt , {a} = Kt ∩ G(F·,t ), {b} = Kt ∩
G(F·,t+h), c = P(t, x), d = P(t, y), e = P(t + h, x), f = P(t + h, a), and g = P(t + h, y)
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where w1, w2, w3, and w4 are as in Fig. 7. Using the fact that the closer to each other
the geodesics are, the more they look like parallel curves in V , we get

∣∣|w1 − w2| − |w3 − w4|
∣∣ ≤ C̃|w1 − w2|h ≤ Ĉ|x − a|h.

(Here C̃ and Ĉ are constants that are independent of x, y, and t .) This, in turn, combined
with (4.7) and the first inequality in (4.6), completes the proof of the last inequality of
(4.6).

Finally, after noting that for small h we have |f − g| ≥ (1/(2CF ))|a − b| by (4.5),
we deduce from (4.6)

∣∣|c − d| − |e − g|∣∣ = |f − g| − ∣∣|c − d| − |e − f |∣∣ ≥ C3ε|x − y|h
for ε < min{1/(2CF ), C2/(4CFC3)}. Hence (4.4) follows. ��

As a corollary of Proposition 4.1, one obtains quite easily a new proof for Theorem
1.1. This is achieved by means of Proposition 4.3. Recall that the Hausdorff dimension
of a finite Borel measure µ on a Riemannian manifold X is defined using lower local
dimensions, dimloc, as follows:

dimH µ = µ- ess inf
x∈X

dimloc µ(x),

where

dimloc µ(x) = lim inf
r→0

logµ(B(x, r))

log r
.

x2 a2 e2 c2 f2 d2

w3 w4

w1 w2

t + h

t

e1 c1 f1 d1 x1 a1

Fig. 7. The setting for the proof of the last inequality in (4.6). The notation corresponds to Fig. 6 in a
natural way
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Here B(x, r) is the open ball with centre at x and radius r > 0. The following equality
relates Hausdorff dimension of measures to that of sets:

dimH µ = inf{dimH A | A is a Borel set with µ(A) > 0}
(see [F, Proposition 10.2]).

Remark 4.2. It follows from [Mat4, Proposition 5.1] and [Mat3, Theorem 8.7] that
dimH µ ≥ dimS µ provided that dimS µ < dimX.

Proposition 4.3. With the notation introduced in Sect. 3, we have:

1. Assuming that dimH ν ≤ 1, we have dimH(Pt )∗ν = dimH ν for L1-almost all t ∈
(0, 1).

2. Assuming that dimH ν > 1, we have (Pt )∗ν � L1 for L1-almost all t ∈ (0, 1).

Proof. To verify (1), let β < dimH ν. Defining νi = ν|Ai for all i = 1, 2, . . . , where

Ai = {x ∈ R
2 | ν(B(x, r)) ≤ irβ for all r > 0},

one easily checks that Iα(νi) < ∞ for all α < β, and νi(B) → ν(B) for all B ⊂ R
2.

Given σ < α, we get from inequality (2.6) in Theorem 2.1 using Remark 4.2 that for
L1-almost all t ∈ (0, 1),

dimH(Pt )∗νi ≥ dimS(Pt )∗νi > σ (4.8)

for all i. This, in turn, implies that dimH(Pt )∗ν ≥ σ for L1-almost all t ∈ (0, 1). Finally,
taking a sequence σj → dimH ν, gives (1), since Pt does not increase dimension as a
Lipschitz function.

For (2), we consider 1 < β < dimH ν and proceed as above to find a sequence (νi)
of measures with Iβ(νi) < ∞ such that νi(B) → ν(B) for all B ⊂ R

2. Now inequality
(2.5) in Theorem 2.1 implies that for L1-almost all t ∈ (0, 1) one has ((Pt )∗νi)∧ ∈ L2

for all i, and therefore (Pt )∗νi � L1 for all i. This gives (2). ��
We continue by explaining how Theorem 1.1 follows from Proposition 4.3. For this

purpose we need two intermediate steps:

Corollary 4.4. Using the same notation as in Sect. 3, we have:

1. If dimH µ̃ ≤ 2, then dimH P̃∗(ν × L1) = dimH µ̃.
2. If dimH µ̃ > 2, then P̃∗(ν × L1) � L2.

Proof. Note that dimH µ̃ = dimH ν+1 (see [H] or [Mat3, Theorem 8.10]). To prove (1),
Proposition 4.3 (1) gives dimH(Pt )∗ν = dimH ν for L1-almost all t ∈ R. From Lemma
2.2 and Lemma 3.2 (2), we deduce that dimH P̃∗(ν×L1) ≥ dimH ν+ 1 = dimH µ̃. The
fact that P̃ is a Lipschitz mapping yields (1).

For (2), letA ⊂ R
2 be a Borel set with L2(A) = 0. SettingAt = {x ∈ R | (x, t) ∈ A}

for all t ∈ R, and using Fubini’s theorem and Proposition 4.3 (2), we get (Pt )∗ν(At ) = 0
for L1-almost all t ∈ R. Combining this with Lemma 3.2 (2) concludes the proof. ��
Corollary 4.5. Using the notation given in Sect. 3, we have:

1. If dimH µ̃ ≤ 2, then dimH(
 ◦�)∗µ̃ = dimH µ̃.
2. If dimH µ̃ > 2, then (
 ◦�)∗µ̃ � L2.



(Non)regularity of Projections of Measures 709

Proof. Corollary 4.4, Lemma 3.2 (4), and the fact thatB−1
2 is a bi-Lipschitz mapping (see

Lemma 3.2 (5)) combine to give the equality dimH(B
−1
2 ◦ P̃ ◦B1)∗(ν × L1) = dimH µ̃

provided that dimH µ̃ ≤ 2, and furthermore, (B−1
2 ◦ P̃ ◦B1)∗(ν × L1) � L2 under the

assumption dimH µ̃ > 2. This in turn gives the claim by Lemma 3.2 (1). ��
Since 
 is bi-Lipschitz mapping, Theorem 1.1 follows immediately from Corollary

4.5 by representing the original measure µ as a finite sum of measures µ̃i having the
same properties as the measure µ̃ above.

Remark 4.6. In Sect. 6 we construct examples which show that Theorem 1.1 fails for
higher dimensional base manifolds. The reason for the failure, which may be deduced
from the above methods, is as follows: The local invariance produces a parametrized
family of projections onto (n − 1)-dimensional planes in 2(n − 1)-dimensional space.
The parameter is given by the time coordinate, and therefore the family is one dimen-
sional. Since the dimension of the space of (n−1)-planes in 2(n−1) dimensional space
is greater than 1, if n ≥ 3, the transversality condition cannot hold.

5. Fractional Derivatives

In this section we answer the question concerning the fractional derivatives of the density
of the projected measure�∗µ addressed in [LL]. The main theorem of this section is as
follows:

Theorem 5.1. Let M be a compact smooth Riemannian surface and let � : SM → M

be the natural projection from the unit tangent bundle SM onto the base manifold M .
Assume that µ is a Radon probability measure on SM such that µ is invariant under the
geodesic flow and Iα(µ) < ∞ for some α > 2. Then for all γ < (α−2)/2 the projected
measure �∗µ has fractional derivatives of order γ in L2, that is, ‖�∗µ‖2,γ < ∞.

Below the proof of Theorem 5.1 is divided into a sequence of lemmas. Observe that
Theorem 2.1 combined with Proposition 4.1 implies the existence of fractional deriva-
tives for almost all horizontal slices of �∗µ, which are, in fact, diffeomorphic images
of the measures (Pt )∗ν. However, since this approach does not give the desired result
for the measure �∗µ, we modify the methods of [PS] in a more effective way.

The idea of the proof is roughly as follows: In order to estimate Sobolev norms, we
will first use the Littlewood–Paley decomposition to separate different frequencies (see
Lemma 5.5). When estimating the Sobolev norm of the projection of µ with an appro-
priate energy of ν, one is essentially forced to deduce that the measure of parameters t
for which |Pt(q)− Pt(q

′)| is small is less than some power of |q − q ′| (see (5.5)). This
estimate will be divided into several steps (see Lemmas 5.3, 5.4, and 5.6), where we will
use effectively two properties of ψ given by the Littlewood–Paley decomposition. First
of all,ψ decays faster than any power guaranteeing the desired behaviour of the integral
over domains where the argument of ψ is not too small. Secondly, after using the first
property several times, we are reduced to a domain where the argument is small. Then
we will use the fact that ψ has vanishing moments of all orders, and so the integral over
this domain may be calculated over its complement. Finally, the fast decay of ψ will be
applied again.

Using the same notation as in the previous sections, we begin with a small technical
lemma.
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Lemma 5.2. Let α > 1. Assume that µ = F∗(ν × L1|K), where K ⊂ R is a compact
set and F is a diffeomorphism such that C−1 ≤ | detDF | ≤ C for some C > 0. Then

Iα(µ) < ∞ ⇐⇒ Iα−1(ν) < ∞.

Proof. The claim follows from straightforward calculations. ��
The next lemma shows that for fixed q 
= q ′ ∈ Ĩ 2 the mapping a �→ Ta(q, q

′) is
small only in neighbourhoods of finitely many zeroes.

Lemma 5.3. For any q 
= q ′ ∈ Ĩ 2 there exist a1, . . . , aN ∈ I such that

{a ∈ I | |Ta(q, q ′)| ≤ d} ⊂
N⋃
i=1

B(ai, C
−1
T d)

for all d < CT . Moreover, the mapping a �→ Ta(q, q
′) is a diffeomorphism on

B(ai, C
−1
1 CT ) for all i = 1, . . . , N , and N ≤ C1/CT + 2. (Here CT is as in (2.3)

and C1 as in (2.4).)

Proof. Let a1, . . . , aN−2 be the zeroes of the function a �→ Ta(q, q
′), and let aN−1 = 0

and aN = 1. Then all the claims follow from (2.3) and (2.4). ��
We continue by defining mappingsHq,q ′ and by studying their basic properties which

will be needed in the proof of Lemma 5.6.

Lemma 5.4. Given q 
= q ′ ∈ Ĩ 2, let r = |q − q ′|. Define Hq,q ′ : I 2 → R
2 by

Hq,q ′(a, b) = (Ta(q, q
′)+ r−1(Pa(q

′)− Pb(q
′)), r−1(a − b)).

Let a1, . . . , aN ∈ I be as in Lemma 5.3. For any i = 1, . . . , N , set

Oi = {(a, b) ∈(
B(ai, C

−1
1 CT ) ∩ (0, 1)

)×(0, 1) | |Ta(q, q ′)| < CT and
|a − b| < (2C̃2)

−1CT r},
where C̃2, CT , and C1 are as in (2.1), (2.3), and (2.4), respectively. Then the restric-
tion of Hq,q ′ to the set Oi is a diffeomorphism onto Hq,q ′(Oi). Furthermore, there are
constants c and c(l) for all l ∈ N which are independent of q and q ′ such that

‖DH−1
q,q ′ ‖ < c, |∂ηH−1

q,q ′ | < c(|η|), and |∂η detDH−1
q,q ′ | < c(|η|) (5.1)

for all indices η = (η1, η2) ∈ N
2. Here |η| = η1 + η2 and ∂η = ∂

η1
a ∂

η2
b .

Proof. By (2.1) and (2.3) we have for all (a, b) ∈ Oi ,
| detDHq,q ′(a, b)| = r−1|∂aTa(q, q ′)− r−1(∂bPb(q

′)− ∂aPa(q
′))|

≥ (2r)−1CT .
(5.2)

For the first claim it is therefore sufficient to show that the restriction of Hq,q ′ to Oi is
an injection. This, in turn, follows from two easy observations: If (a, b), (a′, b′) ∈ Oi
with a− b 
= a′ − b′, then clearlyHq,q ′(a, b) 
= Hq,q ′(a′, b′). On the other hand,Hq,q ′
is strictly monotone on the line segments {(a, b) ∈ Oi | b−a = d}, where d ∈ R, since

|∂aTa(q, q ′)− r−1(∂aPa+d(q ′)− ∂aPa(q
′))| ≥ 2−1CT .
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For (5.1) note that

DH−1
q,q ′(y) = (detDHq,q ′(H−1

q,q ′(y)))
−1

(−r−1 r−1∂bPb(q
′)

−r−1 ∂aTa(q, q
′)+ r−1∂aPa(q

′)

)

=: (detDHq,q ′(H−1
q,q ′(y)))

−1A,

where (a, b) = H−1
q,q ′(y). Combining this with inequality (5.2), (2.1), and (2.4), gives

‖DH−1
q,q ′ ‖ < c. Using similar arguments and the fact that for all l ∈ N there exists a

constant C(l) such that |∂ηAij | < r−1C(|η|) for all η and i, j , the second claim in (5.1)
follows by induction. Finally, the last estimate is a consequence of the previous one. ��

In the following lemma which is from [PS] we denote by S(Rn) the Schwartz space
of smooth functions such that all of their derivatives decay faster than any power.

Lemma 5.5. There existsψ ∈ S(Rn) such that ψ̂ > 0, spt ψ̂ ⊂ {ξ ∈ R
n | 1 ≤ |ξ | ≤ 4},

and
∑∞
j=−∞ ψ̂(2−j ξ) = 1 for all ξ 
= 0. Furthermore, for any finite Radon measure ν

on R
n and any γ ∈ R there exists a constant C such that

1

C
‖ν‖2

2,γ ≤
∞∑

j=−∞
22jγ

∫

Rn
(ψ2−j ∗ ν)(x)dν(x) ≤ C‖ν‖2

2,γ ,

where ψ2−j (x) = 2jnψ(2j x). (Above ∗ is the convolution.)

Proof. See [PS, Lemma 4.1]. ��
Next we prove a lemma which is a modification of [PS, Lemma 7.10] tailored for our

purposes.

Lemma 5.6. Assume that ρ is a smooth non-negative real valued function which is sup-
ported inside the open unit square (0, 1)2. Let ψ be as in Lemma 5.5. Then for all
q, q ′ ∈ Ĩ 2 with q 
= q ′, j ∈ Z, and k ∈ N \ {0} we have

∣∣∣
∫

R

∫

R

ρ(a, b)ψ(2j (Pa(q)− Pb(q
′), a − b)) dL1(a) dL1(b)

∣∣∣
≤ Cmin{(1 + 2j |q − q ′|)−k, (1 + 2j )−1},

where the constant C does not depend on q, q ′, and j .

Proof. Observing that it is enough to study positive integers j , and using the fast decay
of ψ , we have

∣∣∣
∫

R

ρ(a, b)ψ(2j (Pa(q)− Pb(q
′)), 2j (a − b)) dL1(a)

∣∣∣

≤ c2−j + c′
∫

t>2−j
(2j t)−2 dL1(t) ≤ C(1 + 2j )−1.

As indicated by the above calculation, the difficult part to handle is the domain where
a is roughly equal to b and |Pa(q) − Pb(q

′)| is much smaller than |q − q ′|. We will
first estimate the “easy” parts using the fast decay of ψ , and finally, we will use the
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fact that ψ has vanishing moments of all orders to replace the “difficult” domain by its
complement.

For the other upper bound, fix k, j ∈ N such that k ≥ 1. Setting r = |q − q ′|, we
may assume that 2j r > 1. Let φ : R

2 → R be a smooth function such that 0 ≤ φ ≤ 1,
φ ≡ 1 on [−1, 1]2, and φ ≡ 0 on R

2 \ [−2, 2]2. Letting Hq,q ′ : I 2 → R
2 be as in

Lemma 5.4, one obtains
∫

R

∫

R

ρ(a, b)ψ(2j (Pa(q)− Pb(q
′), a − b)) dL1(a) dL1(b)

=
∫

R

∫

R

ρ(a, b)ψ(2j rHq,q ′(a, b))φ(C−1
T Hq,q ′(a, b)) dL1(a) dL1(b)

+
∫

R

∫

R

ρ(a, b)ψ(2j rHq,q ′(a, b))(1 − φ(C−1
T Hq,q ′(a, b))) dL1(a) dL1(b)

=: A1 + A2.

Since the integrand of A2 is non-zero only if |Hq,q ′ | > CT , the fact that the support
spt ρ of ρ is inside (0, 1)2 and ψ ∈ S(R2) implies

|A2| ≤
∫

R

∫

R

ρ(a, b)(CT 2j r)−k dL1(a) dL1(b) ≤ C(1 + 2j r)−k.

We continue by estimating A1. Picking a1, . . . , aN as in Lemma 5.3, we find d2,
d3 < min{CT ,C−1

1 CT } such that

{a ∈ (0, 1) | |Ta(q, q ′)| ≤ d3} ⊂
N⋃
i=1

B(ai, d2/2) (5.3)

and

N⋃
i=1

B(ai, d2) ∩ (0, 1) ⊂ {a ∈ (0, 1) | |Ta(q, q ′)| ≤ CT /4}. (5.4)

Let d1 < min{(2C̃2)
−1CT , (4C̃1)

−1CT }. For all i = 0, . . . , N , there exists a smooth
function χi : R → [0, 1] with the following properties:

(1) sptχ0 ⊂ B(0, d1).
(2) sptχi ⊂ B(ai, d2) for all i = 1, . . . , N .
(3) Letting Oi be as in Lemma 5.4, we have

χ0(r
−1(a − b))χi(a) = 0

for all i = 1, . . . , N and (a, b) ∈ (0, 1)2 \Oi .
(4) For all (a, b) ∈ spt ρ with |Ta(q, q ′)| ≤ d3 and r−1|a − b| ≤ (8C̃1)

−1d3 we have

N∑
i=1

χ0(r
−1(a − b))χi(a) = 1.

(5) For all l ∈ N there is a constant cl such that

sup
0≤i≤N

‖∂ lχi‖∞ ≤ cl.
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(Note that above property (3) follows from (1), (2), and (5.4), and (5.3) makes the choice
of property (4) possible.) Combining (2.1), (5.4), and properties (2) and (3) leads to

χ0(r
−1(a − b))χi(a) = χ0(r

−1(a − b))χi(a)φ(C
−1
T Hq,q ′(a, b))

for all (a, b) ∈ R
2 and i = 1, . . . , N . (This follows from the fact that

φ(C−1
T Hq,q ′(a, b)) = 1 if the left-hand side in the above equality is non-zero.) Therefore

A1 =
N∑
i=1

∫

R

∫

R

ρ(a, b)χ0(r
−1(a − b))χi(a)ψ(2

j rHq,q ′(a, b)) dL1(a)dL1(b)

+
∫

R

∫

R

ρ(a, b)
(

1 −
N∑
i=1

χ0(r
−1(a − b))χi(a)

)
ψ(2j rHq,q ′(a, b))

× φ(C−1
T Hq,q ′(a, b)) dL1(a) dL1(b) =:

N∑
i=1

Di +D.

From (4) we deduce that on the support of the integrand of D we have |Hq,q ′(a, b)| ≥
(8C̃1)

−1d3, and so, similarly as before, we get

|D| ≤ C(1 + 2j r)−k.

Since N ≤ C1/CT + 2 by Lemma 5.3, it suffices to show that each Di has an upper
bound of the desired form. Fixing 1 ≤ i ≤ N and applying (3) and Lemma 5.4 gives

Di =
∫

Oi

ρ(a, b)χ0(r
−1(a − b))χi(a)ψ(2

j rHq,q ′(a, b)) dL2(a, b)

=
∫

Hq,q′ (Oi)
ρ(H−1

q,q ′(u, v))χ0(v)χi((H
−1
q,q ′)1(u, v))ψ(2

j r(u, v))

× | det(DH−1
q,q ′(u, v))| dL2(u, v),

where (H−1
q,q ′)1(u, v) is the first coordinate of H−1

q,q ′(u, v). Since the integrand of Di is
zero outside Oi by (3), we may modify Hq,q ′ in such a way that it becomes a diffeo-
morphism on R

2, and all the bounds given in Lemma 5.4 remain unchanged. Defining
for all (u, v) ∈ R

2,

G(u, v) := ρ(H−1
q,q ′(u, v))χ0(v)χi((H

−1
q,q ′)1(u, v))| det(DH−1

q,q ′(u, v))|,
and choosing 0 < ε < 1 such that (k + 2)(1 − ε) > k, we rewrite Di as

Di =
∫

|y|<(2j r)ε−1
G(y)ψ(2j ry) dL2(y)+

∫

|y|>(2j r)ε−1
G(y)ψ(2j ry) dL2(y)

=: J1 + J2.

From (5.1) we obtain that

|J2| ≤ c

∫

t>(2j r)ε−1
(2j rt)−

k
ε
−1t dL1(t) ≤ C(1 + 2j r)−k−1,

and therefore, it remains to estimate J1.
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Note that ψ has vanishing moments of all orders since ∂ηψ̂(0) = 0 for all η. Using
the Taylor expansion for the function G, we calculate

J1 = −
∑
|η|<k

∫

|y|>(2j r)ε−1
(η!)−1∂ηG(0)yηψ(2j ry) dL2(y)

+
∑
|η|=k

∫

|y|<(2j r)ε−1
(η!)−1∂ηG(t (y)y)ψ(2j ry)yη dL2(y)

=: −
∑
|η|<k

Kη +K.

Here yη = y
η1
1 y

η2
2 , η! = η1!η2!, and t (y) ∈ [0, 1]. Finally,

|K| ≤ c

∫

|y|<(2j r)ε−1
sup
|η|=k

‖∂ηG‖∞|y|k dL2(y)

≤ c sup
|η|=k

‖∂ηG‖∞(2j r)−(1−ε)(k+2) ≤ C sup
|η|=k

‖∂ηG‖∞(1 + 2j r)−k

and

|Kη| ≤ c‖∂ηG‖∞
∫

|y|>(2j r)ε−1
|y||η||2j ry|−|η|−1− k

ε dL2(y)

≤ C‖∂ηG‖∞(1 + 2j r)−k−1.

Thus the claim follows from Lemma 5.4. ��

As an immediate consequence of Lemma 5.6 we obtain the following result.

Corollary 5.7. Let ρ and ψ be as in Lemma 5.6, and let q, q ′ ∈ Ĩ 2 with q 
= q ′. Then
for any k, n ∈ N \ {0} we have

∣∣∣
∫

R

∫

R

ρ(a, b)ψ(2j (Pa(q)− Pb(q
′), a − b)) dL1(a) dL1(b)

∣∣∣
≤ C(1 + 2j |q − q ′|)− k

n (1 + 2j )−
n−1
n ,

where C does not depend on q, q ′ or j .

Proof of Theorem 5.1. Assume that µ is a Radon probability measure on SM such that
µ is invariant under the geodesic flow and Iα(µ) < ∞ for α > 2. Let γ < (α − 2)/2.

By Lemma 3.2 we may restrict our consideration to the measures µδ = P̃∗(ν×ρL1)

where δ > 0 and ρ is a smooth function such that spt ρ ⊂ (0, 1) and ρ(t) = 1 for all
δ < t < 1 − δ. Letting n, k ∈ N such that α > 2 + 2γ + 1/n and k > n(1 + 2γ + 1/n),
and using Lemma 5.5 and Corollary 5.7 for positive j , we have
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∫

R2
|µ̂δ(ξ)|2|ξ |2γ dL2(ξ) ≤ C

∞∑
j=−∞

22jγ
∫

R2
(ψ2−j ∗ µδ)(x) dµδ(x)

≤ C

∞∑
j=−∞

22jγ+2j
∣∣∣
∫

R2

∫

R2
ψ(2j (x − y))

× dP̃∗(ν × ρL1)(x)dP̃∗(ν × ρL1)(y)

∣∣∣

= C

∞∑
j=−∞

22jγ+2j
∣∣∣
∫

Ĩ 2×R

∫

Ĩ 2×R

ρ(a)ρ(b)ψ(2j (Pa(q)− Pb(q
′), a − b))

× dν(q)dL1(a)dν(q ′)dL1(b)

∣∣∣

≤ C

∫

Ĩ 2

∫

Ĩ 2

∞∑
j=−∞

22jγ+2j (1 + 2j )−
n−1
n (1 + 2j |q − q ′|)− k

n dν(q)dν(q ′)

≤ C

∫

Ĩ 2

∫

Ĩ 2
|q − q ′|−(1+2γ+1/n)dν(q)dν(q ′) = CI1+2γ+1/n(ν).

(5.5)

Here the last inequality follows by picking a positive integer j0 such that 2−j0−1 ≤ r <

2−j0 and by dividing the sum into 3 parts: j < 0, 0 ≤ j ≤ j0, and j > j0. Using the
choice of n and applying Lemma 5.2 gives the claim. ��

6. Non-Preservation of Hausdorff Dimension in Higher Dimensional Manifolds

In this section we construct examples of (locally) invariant measures whose Hausdorff
dimensions decrease under the projection onto the base manifold. Because of Remark
4.6 the following setting is natural for such examples.

Example 6.1. For any n ≥ 3 there exist an n-dimensional compact smooth Riemannian
manifold M and a measure µ on the unit tangent bundle SM such that it is locally
invariant and its Hausdorff dimension decreases under the projection � : SM → M .

In fact, let M be the flat n-dimensional torus [−1, 2]n and let In = [0, 1]n ⊂ M .
Using the notation of Sect. 3, we set

C1 = In−1 × {0} and C2 = In−1 × {1},
and define a diffeomorphism � : D → �(D) by

�(x, y, t) = (γp,q(t), γ
′
p,q(t)),

where p = (x1, . . . , xn−1, 0) ∈ C1, q = (y1, . . . , yn−1, 1) ∈ C2, γp,q is the unique
shortest geodesic parametrized by the Riemannian arc length which connects p and q,
and

D = {(x, y, t) | x, y ∈ In−1, 0 ≤ t ≤ dM(p, q)}.
Taking any measure ν such that

spt ν ⊂ {(x, y) ∈ In−1 × In−1 | xn−1 = yn−1 = 0}
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and defining µ = �∗(ν × L1), we have dimH �∗µ ≤ n − 1 since �∗µ is supported
by the (n − 1)-dimensional plane {(m1, . . . , mn) ∈ In | mn−1 = 0}. Furthermore, µ
is locally invariant, and dimH µ = dimH ν + 1. Choosing ν such that dimH ν > n − 2
gives dimH �∗µ < dimH µ.

Remark 6.2. (a) Example 6.1 is easily modified to verify the existence of a globally
invariant measure whose Hausdorff dimension is not preserved when projected onto the
base manifold. To see this, take ν = L2(n−2) and replace In byM in Example 6.1. Then
it is a straightforward calculation to show that dimH(� ◦ ψ)∗(L2(n−2) × L1) = n− 1.
Clearly, ψ∗(L2(n−2) × L1) = L2n−3 is globally invariant under the geodesic flow.

(b) In the case n = 3 Example 6.1 may be reduced to the 2-dimensional case. There-
fore we may apply the results of Sect. 4 to deduce that

dimH �∗µ =
{

dimH µ, if dimH ν ≤ 1
2, if dimH ν > 1.

Acknowledgement. We thank the referee for valuable comments clarifying the exposition.
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