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Abstract: The Ashkin–Teller (AT) model is a generalization of Ising 2–d to a four
states spin model; it can be written in the form of two Ising layers (in general with
different couplings) interacting via a four–spin interaction. It was conjectured long ago
(by Kadanoff and Wegner, Wu and Lin, Baxter and others) that AT has in general two
critical points, and that universality holds, in the sense that the critical exponents are the
same as in the Ising model, except when the couplings of the two Ising layers are equal
(isotropic case). We obtain an explicit expression for the specific heat from which we
prove this conjecture in the weakly interacting case and we locate precisely the critical
points. We find the somewhat unexpected feature that, despite universality, holds for the
specific heat, nevertheless nonuniversal critical indexes appear: for instance the distance
between the critical points rescale with an anomalous exponent as we let the couplings
of the two Ising layers coincide (isotropic limit); and so does the constant in front of the
logarithm in the specific heat. Our result also explains how the crossover from universal
to nonuniversal behaviour is realized.

1. Introduction

1.1. Historical introduction. Ashkin and Teller [AT] introduced their model as a gener-
alization of the Ising model to a four component system; in each site of a bidimensional
lattice there is a spin which can take four values, and only nearest neighbor spins interact.
The model can be also considered a generalization of the four state Potts model to which
it reduces for a suitable choice of the parameters.

A very convenient representation of the Ashkin Teller model is in terms of Ising spins
[F]; one associates with each site of the square lattice two spin variables, σ (1)x and σ (2)x ;
the partition function is given by �AT�M =

∑
σ (1),σ (2) e

−H�M , where
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H�M(σ
(1), σ (2)) = J (1)HI (σ (1))+ J (2)HI (σ (2))+ λV (σ (1), σ (2)) =

∑

x∈�M
HAT

x ,

HI (σ
(j)) = −

∑

x∈�M
[σ (j)x σ

(j)

x+ê1
+ σ (j)x σ

(j)

x+ê0
] ,

V (σ (1), σ (2)) = −
∑

x∈�M
[σ (2)x σ

(2)
x+ê0

σ (1)x σ
(1)
x+ê0
+ σ (2)x σ

(2)
x+ê1

σ (1)x σ
(1)
x+ê1

] , (1.1)

where HI is the Ising model hamiltonian, ê1, ê0 are the unit vectors ê1 = (1, 0), ê0 =
(0, 1) and �M is a square subset of Z

2 of side M . The free energy and the specific heat
are given by

f = lim
M→∞

1

M2 log�AT�M , Cv = lim
M→∞

1

M2

∑

x,y∈�M
< HAT

x HAT
y >�M,T , (1.2)

where < · >�M,T denotes the truncated expectation w.r.t. the Gibbs distribution with
the Hamiltonian (1.1). The case J (1) = J (2) is called isotropic. For λ = 0 the model
reduces to two independent Ising models and it has two critical points if J (1) �= J (2); it
was conjectured by Kadanoff and Wegner [K, KW] and later on by Wu and Lin [WL]
that the AT model has in general two critical points also when λ �= 0, except when the
model is isotropic.

The isotropic case was studied by Kadanoff [K] who, by scaling theory, conjectured
a relation between the critical exponents of isotropic AT and those of the Eight vertex
model, which had been solved by Baxter and has nonuniversal indexes. Further evidence
for the validity of Kadanoff’s prediction was given by [PB] (using second order renor-
malization group arguments) and by [LP, N] (by a heuristic mapping of both models
into the massive Luttinger model describing one dimensional interacting fermions in the
continuum). Indeed nonuniversal critical behaviour in the specific heat in the isotropic
AT model, for small λ, has been rigorously established in [M1].

The anisotropic case is much less understood. As we said, it is believed that there are
two critical points, contrary to what happens in the isotropic case. Baxter [Ba] conjec-
tured that "presumably" universality holds at the critical points for J (1) �= J (2) (i.e. the
critical indices are the same as in the Ising model), except when J (1) = J (2) when
the two critical points coincide and nonuniversal behaviour is found. Since the 1970’s,
the anisotropic AT model was studied by various approximate or numerical methods:
Migdal–Kadanoff Renormalization Group [DR], Monte Carlo Renormalization group
[Be], finite size scaling [Bad]; such results give evidence of the fact that, far away from
the isotropic point, AT has two critical points and belongs to the same universality class
of Ising; however they do not give information about the precise relative location of the
critical points and the critical behaviour of the specific heat when J (1) is close to J (2).
The problem of how the crossover from universal to nonuniversal behaviour is realized
in the isotropic limit remained for years completely unsolved, even at a heuristic level.

We will study the anisotropic Ashkin–Teller model by writing the partition function
and the specific heat as Grassmann integrals corresponding to a d = 1 + 1 interacting
fermionic theory; this is possible because the Ising model can be reformulated as a free
fermions model (see [SML, H, S or ID]). One can then take advantage from the the-
ory of Grassmann integrals for weakly interacting d = 1 + 1 fermions, which is quite
well developed, starting from [BG1] (see also [BG, GM or BM] for extensive reviews).
Fermionic RG methods for classical spin models have been already applied in [PS] to
the Ising model perturbed by a four spin interaction, proving a universality result for the
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specific heat; and in [M1] to prove a nonuniversality result for the 8 vertex or the isotro-
pic AT model. By such techniques one can develop a perturbative expansion, convergent
up to the critical points, uniformly in the parameters.

1.2. Main results. We find it convenient to introduce the variables t (j) = tanh J (j),
j = 1, 2 and

t = t (1) + t (2)
2

, u = t (1) − t (2)
2

. (1.3)

The parameter umeasures the anisotropy of the system. We consider then the free energy
or the specific heat as functions of t, u, λ.

If λ = 0, AT is exactly solvable, because the Hamiltonian (1.1) is the sum of two
independent Ising model Hamiltonians. From the Ising model exact solution [O, SML,
MW] one finds that f is analytic for all t, u except for

t = t±c =
√

2− 1± |u|, (1.4)

and for t close to t±c the specific heatCv has a logarithmic divergence:Cv � −C log |t−
t±c |, where C > 0 and � means that the ratio of both sides tends to 1 as t → t±c .

We consider the case in which λ is small with respect to
√

2− 1 and we distinguish
two regimes.

1) If u is much bigger than λ (so that the unperturbed critical points are well sep-
arated) we find that the presence of λ just changes by a small amount the loca-
tion of the critical points, i.e. we find that the critical points have the form t±c =√

2 − 1 + O(λ) ± |u|(1 + O(λ)); moreover the asymptotic behaviour of Cv at
criticality remains essentially unchanged: Cv � −C log |t − t±c |.

2) When u is small compared to λ the interaction has a more dramatic effect. We find
that the system has still only two critical points t±c (λ, u); their center (t+c + t−c )/2
is just shifted byO(λ) from

√
2− 1, as in item (1); however their relative location

scales, as u→ 0, with an “anomalous critical exponent” η(λ), continuously vary-
ing with λ: more precisely we find that t+c − t−c = O(|u|1+η), where η is analytic
in λ near λ = 0 and η = −bλ+O(λ2

)
, b > 0. In particular the relative location

of the critical points as a function of the anisotropy parameter u with λ fixed and
small has a different qualitative behaviour, depending on the sign of λ, see Fig 1.

For t → t±c (λ, u) the specific heat Cv still has a logarithmic divergence but, for all
u �= 0, the constant in front of the log is O(|u|ηc ), where ηc is analytic in λ for small λ
and ηc = aλ+O

(
λ2
)
, a �= 0. The logarithmic behaviour is found only in an extremely

small region around the critical points; outside this region, Cv varies as t → t±c (λ, u)
according to a power law behaviour with nonuniversal exponent. The conclusion is that,
for all u �= 0, there is universality for the specific heat (which diverges with the same
exponent as in the Ising model); nevertheless nonuniversal critical indexes appear in the
theory, in the difference between the critical points and in the constant in front of the
logarithm in the specific heat. One can speak of anomalous universality as the specific
heat diverges at criticality as in Ising, but the isotropic limit u → 0 is reached with
nonuniversal critical indices.

With the notations introduced above and callingD a sufficiently smallO(1) interval
(i.e. with amplitude independent of λ) centered around

√
2−1, we can express our main

result as follows.
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Fig. 1. The qualitative behavIour of t+c (λ, u)− t−c (λ, u) as a function of u for two different values of λ
(in arbitrary units). The graphs are (qualitative) plots of 2|u|1+η , with η � −bλ, b > 0

Main Theorem. There exists ε1 such that, for t ± u ∈ D, j = 1, 2, and |λ| ≤ ε1, one
can define two functions t±c (λ, u) with the following properties:

t±c (λ, u) =
√

2− 1+ ν∗(λ)± |u|1+η(1+ F±(λ, u)) , (1.5)

where |ν∗(λ)| ≤ c|λ|, |F±(λ, u)| ≤ c|λ|, for some positive constant c and η = η(λ) is
an analytic function of λ s.t. η(λ) = −bλ+O(λ2), b > 0, and:

1) the free energy f (t, u, λ) and the specific heat Cv(t, u, λ) in (1.2) are analytic in
the region t ± u ∈ D, |λ| ≤ ε1 and t �= t±c (λ, u);

2) in the same region of parameters, the specific heat can be written as:

Cv = −C1	
2ηc log

∣
∣t − t−c

∣
∣
∣
∣t − t+c

∣
∣

	2 + C2
1−	2ηc

ηc
+ C3, (1.6)

where 	2 def= (t − tc)2 + (u2)1+η and tc
def= (t+c + t−c )/2; the exponent ηc = ηc(λ) =

aλ + O(λ2), a �= 0, is analytic in λ; the functions Cj = Cj (λ, t, u), j = 1, 2, 3, are
bounded above and below by O(1) constants; finally C1 − C2 vanishes for λ = u = 0.

Remarks. 1) The key hypothesis for the validity of the Main Theorem is the smallness
ofλ.Whenλ = 0 the critical points correspond to t±u = √2−1: hence for simplic-
ity we restrict t±u in a sufficiently smallO(1) interval around

√
2−1. A possible

explicit choice forD, convenient for our proof, could beD = [ 3(
√

2−1)
4 ,

5(
√

2−1)
4 ].

Our technique would allow us to prove the above theorem, at the cost of a length-
ier discussion, for any t (1), t (2) > 0: of course in that case we should distinguish
different regions of parameters and treat in a different way the cases of low or
high temperature or the case of big anisotropy (i.e. the cases t <<

√
2 − 1 or

t >>
√

2− 1 or |u| >> 1).
2) Equation (1.6) shows how the crossover from universal to nonuniversal behaviour

is realized. When u �= 0 only the first term in (1.6) can be singular in correspon-
dence to the two critical points; it has a logarithmic singularity (as in the Ising
model) with a constantO(	2ηc ) in front. However the logarithmic term dominates
the second one only if t varies inside an extremely small regionO(|u|1+ηe−a/|λ|),
a > 0, around the critical points. Outside such a region the power law behaviour
corresponding to the second addend in (1.6) dominates. When u→ 0 one recovers
the power law decay found in [M1] for the isotropic case. See Fig 2.
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Fig. 2. The qualitative behaviour ofCv as a function of t − tc , where tc = (t+c + t−c )/2. The three graphs
are plots of (1.6), with C1 = C2 = 1, C3 = 0, u = 0.01, η = ηc = 0.1, 0,−0.1 respectively; the central
curve corresponds to λ = 0, the upper one to λ > 0 and the lower to λ < 0

3) By the result of item (1) of the Main Theorem, Cv is analytic in λ, t, u outside
the critical line. This is not apparent from (1.6), because 	 is non-analytic in u at
u = 0 (of course the bounded functions Cj are non-analytic in u also, in a suit-
able way compensating the non analyticity of 	). We get to (1.6) by interpolating
two different asymptotic behaviours of Cv in the regions |t − tc| < 2|u|1+η and
|t − tc| ≥ 2|u|1+η and the non analyticity of 	 is introduced “by hand” by our
estimates and it is not intrinsic for Cv . Equation (1.6) is simply a convenient way
to describe the crossover between different critical behaviours of Cv .

4) We do not study the free energy directly at t = t±c (λ, u), therefore in order to show
that t = t±c (λ, u) is a critical point we must study some thermodynamic property
like the specific heat by evaluating it at t �= t±c (λ, u) and M = ∞ and then verify
that it has a singular behavior as t → t±c . The case t precisely equal to t±c cannot
be discussed at the moment with our techniques, in spite of the uniformity of our
bounds as t → t±c . The reason is that we write the AT partition function as a sum
of 16 different partition functions, differing for boundary terms. Our estimates on
each single term are uniform up to the critical point; however, in order to show that
the free energy computed with one of the 16 terms is the same as the complete free
energy, we need to stay at t �= t±c : in this case boundary terms are suppressed as
∼ e−κM|t−t±c |, κ > 0, as M →∞. If we stay exactly at the critical point, cancel-
lations between the 16 terms can be present (as it is well known already from the
Ising model exact solution [MW]) and we do not have control on the behaviour of
the free energy, as the infinite volume limit is approached.

1.3. Strategy of the proof. It is well known that the free energy and the specific heat of
the Ising model can be expressed as a sum of Pfaffians [MW] which can be equivalently
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written, see [ID, S], as Grassmann functional integrals, see for instance App A of [M1]
or §4 of [GM] for the basic definitions of Grassmann variables and Grassmann integra-
tion. The formal action of the Ising model in terms of Grassmann variables ψ,ψ has the
form

∑

x

t

4

[
ψx(∂1 − i∂0)ψx + ψx(∂1 + i∂0)ψx − 2iψx(∂1 + ∂0)ψx

]

+i(
√

2− 1− t)ψxψx , (1.7)

where ∂j are discrete derivatives. ψ and ψ are called Majorana fields, see [ID], because
of an analogy with relativistic Majorana fermions. They are massive, because of the pres-
ence of the last term in (1.7); criticality corresponds to the massless case (t = √2− 1).
If λ = 0 the free energy and specific heat can be written as the sum of Grassmann
integrals describing two kinds of Majorana fields, with massesm(1) = t (1)−√2+1 and
m(2) = t (2)−√2+ 1. The critical points are obtained by choosing one of the two fields
massless (in the isotropic case t (1) = t (2) and the two fields become massless together).

If λ �= 0 again the free energy and the specific heat can be written as Grassmann inte-
grals, but the Majorana fields are interacting with a short range potential. By performing
a suitable change of variables, the partition function can be written, see §2 and §3, as a
sum of terms �γ1,γ2

AT (γ1, γ2 label different boundary conditions) of the form

�
γ1,γ2
AT =

∫

P(dψ)e−V(1)(
√
Z1ψ) , P (dψ) = Dψ e−Z1(ψ

+,Aψ) , (1.8)

whereψ = {ψ+ω,x, ψ−ω,x}ω=±1 are elements of a Grassmann algebra; Dψ is a symbol for
the Grassmann integration; V(1) is a short range interaction, sum of monomials in ψ of
any degree, whose quartic term is weighted by a constant λ1 = O(λ); and Z1(ψ

+, Aψ)
has the form:

Z1

∑

x,ω

ψ+ω,x(∂1 − iω∂0)ψ
−
ω,x − iωσ1ψ

+
ω,xψ

−
−ω,x

+iωµ1ψ
α
ω,xψ

α
−ω,−x − β1ψ

α
ω,x(∂1 − iω∂0)ψ

α
ω,x (1.9)

with σ1 = O(t −
√

2 + 1) + O(λ), µ1, β1 = O(u) (in particular in the isotropic case
the terms proportional to µ1 and β1 are absent). If λ = 0, σ1 = (m(1) + m(2))/2 and
µ1 = (m(2) − m(1))/2. ψ± are called Dirac fields, because of an analogy with rel-

ativistic Dirac fermions; they are combinations of the Majorana variables ψ(j), ψ
(j)

,
j = 1, 2, associated with the two Ising layers in (1.1): hence the description in terms of
Dirac variables mixes intrinsically the two Ising models and will be useful in a range of
momentum scale in which the two layers appear to be essentially equal.

One can compute �γ1,γ2
AT by expanding e−V(1)(

√
Z1ψ) in Taylor series and integrat-

ing term by term the Grassmann monomials; since the propagators of P(dψ) (i.e. the
elements of A−1, see (1.8), (1.9)) diverge for k = 0 and σ1 ± µ1 = 0 in the infinite
volume limitM →∞, the series can converge uniformly inM only in a region outside
|σ1±µ1| ≤ c, for some c, i.e. in the thermodynamic limit it can converge only far from
the critical points.

Since we are interested in the critical behaviour of the system, we set up a more com-
plicated procedure to evaluate the partition function, based on the (Wilsonian) Renormal-
ization Group (RG). The first step is to decompose the integration P(dψ) as a product
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of independent integrations: P(dψ) =∏1
h=−∞ P(dψ(h)), where the momentum space

propagator corresponding to P(dψ(h)) is not singular, but O(γ−h), for M → ∞, γ
being a fixed scaling parameter larger than 1. This decomposition is realized by slic-
ing in a smooth way the momentum space, so that ψ(h), if h ≤ 0, depends only on
the momenta between γ h−1 and γ h+1. We compute the Grassmann integrals defining
the partition function by iteratively integrating the fields ψ(1), ψ(0), . . . , see §4. After
each integration step we rewrite the partition function in a way similar to (1.8), with the
quadratic form Z1(ψ

+, Aψ) replaced by Zh(ψ+, A(h)ψ), which has the same structure
of (1.9), with Zh, σh, µh replacing Z1, σ1, µ1; the structure of Zh(ψ+, A(h)ψ) is pre-
served because of symmetry properties, guaranteeing that many other possible quadratic
“local” terms are indeed vanishing, or irrelevant in a RG sense. The interaction V(1) is
replaced by an effective action V(h), h ≤ 0, given by a sum of monomials of ψ of arbi-
trary order, with kernels decaying in real space on scale γ−h; in particular the quartic
term is weighted by a coupling constant λh and the kernels of V(h) are analytic functions
of {λh, . . . , λ1}, if λk are small enough, k ≥ h, and |σk|γ−k, |µk|γ−k ≤ 1 (say – the
constant 1 could be replaced by any other constant O(1)).

In this way the problem of finding good bounds for log�AT�M is reformulated into
the problem of controlling the size of λh, σh, µh, h ≤ 0, under the RG iterations. We
use a crucial property, called vanishing of Beta function, to prove that actually, if λ
is small enough, |λh| ≤ 2|λ1| (recall that λ1 = O(λ)). The possibility of controlling
the flow of λh is the main reason for describing the system in terms of Dirac vari-
ables. For σh, µh, Zh, we find that, under RG iterations, they evolve as: σh � σ1γ

b2λh,
µh � µ1γ

−b2λh, Zh � γ−b1λ
2h. Note in particular that Zh grows exponentially with an

exponentO(λ2); this is connected with the presence of “critical indexes” in the correla-
tion functions, which means that their long distance behaviour is qualitatively changed
by the interaction.

We perform the iterative integration described above up to a scaleh∗1 such that (|σh∗1 |+
|µh∗1 |)γ−h

∗
1 = O(1), in such a way that (|σh| + |µh|)γ−h ≤ O(1), for all h ≥ h∗1 and

convergence of the kernels of the effective potential can be guaranteed by our estimates.
In the range of scales h ≥ h∗1 the flow of the effective coupling constant λh is essentially
the same as for the isotropic AT model [M1] (since |µh|γ−h is small, the iteration “does
not see” the anisotropy and the system seems to behave as if there was just one critical
point) and nonuniversal critical indexes are generated (they appear in the flows of σh, µh
and Zh), following the same mechanism of the isotropic case.

We note that after the integration of ψ(1), . . . , ψ(h
∗
1+1), we can still reformulate

the problem in terms of the original Majorana fermions ψ(1,≤h∗1), ψ(2,≤h∗1) associated
with the two Ising models in (1.1). On scale h∗1 their masses are deeply changed w.r.t.

t (1) −√2 + 1 and t (2) −√2 + 1: they are given by m(1)
h∗1
= |σh∗1 | + |µh∗1 | and m(2)

h∗1
=

|σh∗1 | − |µh∗1 |. Note that the condition |σh∗1 | + |µh∗1 | = O(γ h
∗
1 ) implies that the field

ψ(1,≤h∗1) is massive on scale h∗1 (so that the Ising layer with j = 1 is “far from criti-
cality” on the same scale). This implies that we can integrate (without any multiscale
decomposition) the massive Majorana field ψ(1,≤h∗1), obtaining an effective theory of a
single Majorana field with mass |σh∗1 | − |µh∗1 |, which can be arbitrarily small. The inte-
gration of the scales ≤ h∗1, see §6, is done again by a multiscale decomposition similar
to the one just described; an important feature is however that there are no more quartic
marginal terms, because the anticommutativity of Grassmann variables forbids local
quartic monomials of a single Majorana fermion. The problem is essentially equivalent
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to the study of a single perturbed Ising model with “upper” cutoff on momentum space
O(γ h

∗
1 ) and mass |σh∗1 | − |µh∗1 |. The flow of the effective mass and of Zh is non-

anomalous in this regime: in particular the mass of the Majorana field is just shifted by
O(λγ h

∗
1 ) from |σh∗1 | − |µh∗1 |. Criticality is found when the effective mass on scale −∞

is vanishing; the values of t, u for which this happens are found by solving a non-trivial
implicit function problem.

Finally, see §7, we define a similar expansion for the specific heat and we compute
its asymptotic behaviour arbitrarily near the critical points.

Technically it is an interesting feature of this problem that there are two regimes in
which the system must be described in terms of different fields: the first one in which the
natural variables are Dirac Grassmann variables, and the second one in which they are
Majorana; note that the scale separating the two regimes is dynamically generated by
the RG iterations (and of course its precise location is not crucial and h∗1 can be modified
in h∗1 + n, n ∈ Z, without qualitatively affecting the bounds).

2. Fermionic Representation

2.1. The partition function �(j)I =
∑
σ (j) exp{−J (j)HI (σ (j))} of the Ising model can

be written as a Grassmann integral; this is a classical result, mainly due to [LMS], [Ka,
H, MW, S]. In Appendix A1, starting from a formula obtained in [MW], we prove that

�
(j)
I = (−1)M

2 (2 cosh J (j))M
2

2

×
∑

ε,ε′=±

∫ ∏

x∈�M
dH

(j)
x dH

(j)

x dV
(j)
x dV

(j)

x (−1)δγ eS
(j)
γ (t(j)), (2.1)

where j = 1, 2 denotes the lattice, γ = (ε, ε′) and δγ is δ+,+ = 1, δ+,− = δ−,+ =
δ−,− = 2 and, if t (j) = tanh J (j),

S(j)γ (t(j)) = t (j)
∑

x∈�M

[
H
(j)

x H
(j)

x+ê1
+ V (j)x V

(j)

x+ê0

]

+
∑

x∈�M

[
H
(j)

x H
(j)
x + V (j)x V

(j)
x + V (j)x H

(j)

x

+V (j)x H
(j)

x +H(j)
x V

(j)

x + V (j)x H
(j)
x

]
, (2.2)

where H(j)
x , H

(j)

x , V
(j)
x , V

(j)

x are Grassmann variables verifying different boundary
conditions depending on the label γ = (ε, ε′)which is not affixed explicitly, to simplify
the notations, i.e.

H
(j)

x+Mê0
= εH(j)

x , H
(j)

x+Mê1
= ε′H(j)

x

H
(j)

x+Mê0
= εH(j)

x , H
(j)

x+ê1
= ε′H(j)

x , ε, ε′ = ± (2.3)

and identical definitions are set for the variables V (j), V
(j)

; we shall say that H
(j)

,

H(j), V
(j)
, V (j) satisfy ε–periodic (ε′–periodic) boundary conditions in the vertical

(horizontal) direction.
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2.2. By expanding in power series exp{−λV }, we see that the partition function of the
model (1.1) is

�AT�M =
∑

σ (1), σ (2)

e−J
(1)HI (σ

(1))e−J
(2)HI (σ

(2))e−λV (σ
(1), σ (2))

= (cosh λ)2M
2 ∑

σ (1), σ (2)

e−J
(1)HI (σ

(1))−J (2)HI (σ (2))

·
∏

x∈�M

(
1+ λ̂σ (1)x σ

(1)
x+ê1

σ (2)x σ
(2)
x+ê1

) (
1+ λ̂σ (1)x σ

(1)
x+ê0

σ (2)x σ
(2)
x+ê0

)
, (2.4)

where λ̂ = tanh λ. The r.h.s. of (2.4) can be rewritten as:

�AT�M =
[ ∏

x∈�M
i=0,1

(
1+ λ̂ ∂2

∂J
(1)
x,x+êi ∂J

(2)
x,x+êi

)]

�
(1)
I ({J (1)x,x′ })�(2)I ({J (2)x,x′ })

∣
∣
∣{J (j)

x,x′ }={J (j)}
,(2.5)

where �(j)I ({J (j)x,x′ }) is the partition function of an Ising model in which the couplings
are allowed to depend on the bonds (the coupling associated to the n.n. bond (x, x′)
on the lattice j is called J (j)x,x′ ). Using for �(1)I ({J (1)x,x′ }) an expression similar to (2.1),
we find that we can express �AT as a sum of sixteen partition functions labeled by
γ1, γ2 = (ε1, ε

′
1), (ε2, ε

′
2) (corresponding to choosing each εj and ε′j as ±):

�AT�M =
1

4
(cosh λ)2M

2 ∑

γ1,γ2

(−1)δγ1+δγ2�
γ1,γ2
AT , (2.6)

each of which is given by a functional integral

�
γ1,γ2
AT = [4(1+ λ̂t (1)t (2))]M2

2∏

j=1

(cosh J (j))M
2
(−1)M

2

·
∫ j=1,2∏

x∈�M
dH

(j)
x dH

(j)

x dV
(j)
x dV

(j)

x eS
(1)
γ1 (t

(1)
λ )+S(2)γ2 (t

(2)
λ )+Vλ , (2.7)

where, if we define

λ(j) = λ̂
[
t (1− t2 + u2)+ (−1)ju(1+ t2 − u2)

]

1+ λ̂(t2 − u2)
, (2.8)

we have that t (j)λ , j = 1, 2, is given by t (j)λ = t (j) + λ(j) and Vλ by:

Vλ =
∑

x∈�M
λ̃
(
H
(1)
x H

(1)
x+ê1

H
(2)
x H

(2)
x+ê1
+ V (1)x V

(1)
x+ê0

V
(2)
x V

(2)
x+ê0

)
,

λ̃ = λ(1)λ(2)

λ̂(t2 − u2)
. (2.9)
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2.3. From now on, we shall study in detail only the partition function �−AT
def=

�
(−,−),(−,−)
AT , i.e. the partition function in which all Grassmannian variables verify an-

tiperiodic boundary conditions (see (2.3)). We shall see in §5.5 below that, if (λ, t, u)
does not belong to the critical surface, which is a suitable 2–dimensional subset of
[−ε1, ε1] × D × [−|D|2 ,

|D|
2 ] which we will explicitly determine in §5.6, the partition

function �γ1,γ2
AT divided by �(1)γ1

I �
(2)γ2
I is exponentially insensitive to boundary condi-

tions as M →∞.
As in [M1] we find it convenient to perform the following change of variables,α = ±,

ω = ±1:

1√
2

∑

j=1,2

(−iα)j−1(H
(j)

x + iωH(j)
x
) = eiωπ/4(ψαω,x − χαω,x

)
,

1√
2

∑

j=1,2

(−iα)j−1(V
(j)

x + iωV (j)x
) = ψαω,x + χαω,x . (2.10)

Let k ∈ D−,−, where D−,− is the set of k’s such that k = 2π/M(n1 + 1/2) and
k0 = 2π/M(n0 + 1/2), where−[M/2] ≤ n0, n1 ≤ [(M − 1)/2], n0, n1 ∈ Z. The Fou-

rier transform of the Grassmannian fields φαω,x, φ = ψ, χ , is given by φ̂αω,k
def= ∑x∈�M

e−iαkxφαω,x.
With the above definitions, it is straightforward algebra to verify that the final expres-

sion is:

�−AT = e−EM
2
∫

P(dψ)P (dχ)eQ(ψ,χ)+V (ψ,χ) , (2.11)

where E is a suitable constant;Q(ψ, χ) collects the quadratic terms of the form ψ
α1
ω1,x1

χ
α2
ω2,x2 ; V (ψ, χ) is the quartic interaction (it is equal to Vλ, see (2.9), in terms of theψ±ω ,
χ±ω variables); P(dφ), φ = ψ, χ , is

P(dφ) = N−1
φ

∏

k∈D−,−

∏

ω=±1

dφ+
ω,kdφ

−
ω,k exp

{
− tλ

4M2

∑

k∈D−,−
�
+,T
k Aφ(k)�k

}
,

Aφ(k) =







i sin k + sin k0 −iσφ(k) −µ2 (i sin k + sin k0) iµ(k)
iσφ(k) i sin k − sin k0 −iµ(k) −µ2 (i sin k − sin k0)

−µ2 (i sin k + sin k0) iµ(k) i sin k + sin k0 −iσφ(k)
−iµ(k) −µ2 (i sin k − sin k0) iσφ(k) i sin k − sin k0





 ,

(2.12)

where

�+,Tk = (φ̂+1,k, φ̂+−1,k, φ̂
−
1,−k, φ̂

−
−1,−k) , �T

k = (φ̂−1,k, φ̂−−1,k, φ̂
+
1,−k, φ̂

+
−1,−k),

(2.13)

Nφ is chosen in such a way that
∫
P(dφ) = 1 and, if we define tλ

def= (t(1)λ + t (2)λ )/2,

uλ
def= (t(1)λ − t (2)λ )/2, for φ = ψ, χ we have:

σφ(k) = 2
(

1+ ±
√

2+ 1

tλ

)
+ cos k0 + cos k − 2,

µ(k) = −(uλ/tλ)(cos k + cos k0). (2.14)
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In the first of (2.14) the − (+) sign corresponds to φ = ψ (φ = χ ). The parameter µ in

(2.12) is given by µ
def= µ(0).

It is convenient to split the
√

2− 1 appearing in the definition of σψ(k) as:

√
2− 1 = (

√
2− 1+ ν

2
)− ν

2
def= tψ − ν

2
, (2.15)

where ν is a parameter to be properly chosen later as a function of λ, in such a way that
the average location of the critical points will be given by tλ = tψ ; in other words ν
has the role of a counterterm fixing the middle point of the critical temperatures. The
splitting (2.15) induces the following splitting of P(dψ):

P(dψ) = Pσ (dψ)e−νFν(ψ) , Fν(ψ)
def= 1

2M2

∑

k,ω

(−iω)ψ̂+ω,kψ̂−−ω,k , (2.16)

where Pσ (dψ) is given by (2.12) with φ = ψ and σ
def= 2(1− tψ/tλ) replacing σψ(0).

2.4. Integration of the χ variables. The propagators < φσx,ωφ
σ ′
y,ω′ > of the fermionic

integration P(dφ) verify the following bound, for some A, κ > 0:

| < φσx,ωφ
σ ′
y,ω′ > | ≤ Ae−κm̄φ |x−y| , (2.17)

where m̄φ is the minimum between |m(1)φ | and |m(2)φ | and, for j = 1, 2, m(j)φ is given by

m
(j)
φ

def= 2(t(j)λ − tφ)/tλ, j = 1, 2. Note that both m(1)χ and m(2)χ are O(1). This suggests
to integrate first the χ variables.

After the integration of the χ variables we shall rewrite (2.11) as

�−AT = e−M
2E1

∫

PZ1,σ1,µ1,C1(dψ)e
−V(1)(

√
Z1ψ) , V(1)(0) = 0 , (2.18)

where C1(k) = 1, Z1 = tψ , σ1 = σ/(1− σ
2 ), µ1 = µ/(1− σ

2 ) and PZ1,σ1,µ1,C1(dψ)

is the exponential of a quadratic form:

PZ1,σ1,µ1,C1(dψ) = N−1
1

ω=±1∏

k∈D−,−
dψ+ω,kdψ

−
ω,k

× exp
[
− 1

4M2

∑

k∈D−,−
Z1C1(k)�

+,T
k A

(1)
ψ (k)�k

]
,

A
(1)
ψ (k) =

(
M(1)(k) N(1)(k)
N(1)(k) M(1)(k)

)

,

M(1)(k) =
(
i sin k + sin k0 + a+1 (k) −i (σ1 + c1(k))

i (σ1 + c1(k)) i sin k − sin k0 + a−1 (k)
)

,

N(1)(k) =
(

b+1 (k) i (µ1 + d1(k))
−i (µ1 + d1(k)) b−1 (k)

)

, (2.19)
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where N1 is chosen in such a way that
∫
PZ1,σ1,µ1,C1(dψ) = 1. Moreover V(1) is the

interaction, which can be expressed as a sum of monomials in ψ of arbitrary order:

V(1)(ψ) =
∞∑

n=1

∑

k1,... ,k2n
α,ω

2n∏

i=1

ψ̂
αi (≤1)
ωi ,ki

Ŵ
(1)
2n,α,ω(k1, . . . ,k2n−1)δ(

2n∑

i=1

αiki ) (2.20)

and δ(k) = ∑n∈Z
2 δk,2πn. The constant E1 in (2.18), the functions a±1 , b

±
1 , c1, d1 in

(2.19) and the kernels Ŵ (1)
2n,α,ω in (2.20) have the properties described in the following

theorem, proved in Appendix A2. Note that from now on we will consider all functions
appearing in the theory as functions ofλ, σ1, µ1 (of course t andu can be analytically and
elementarily expressed in terms of λ, σ1, µ1). We shall also assume |σ1|, |µ1| bounded
by some O(1) constant. Note that if t ± u belong to a sufficiently small intervalD cen-
tered around

√
2− 1, as assumed in the hypothesis of the Main Theorem in §1, then of

course |σ1|, |µ1| ≤ c1 for a suitable constant c1 (in particular, ifD is chosen as in Remark
(1) following the Main Theorem, we find |σ1| ≤ 1+O(ε1) and |µ1| ≤ 2+O(ε1)).

Theorem 2.1. Assume that |σ1|, |µ1| ≤ c1 for some constant c1 > 0. There exists a
constant ε1 such that, if |λ|, |ν| ≤ ε1, then �−AT can be written as in (2.18), (2.19),
(2.20), where:

1) E1 is an O(1) constant;
2) a±1 (k), b

±
1 (k) are analytic odd functions of k and c1(k), d1(k) real analytic even

functions of k; in a neighborhood of k = 0, a±1 (k) = O(σ1k)+O(k3), b±1 (k) =
O(µ1k)+O(k3), c1(k) = O(k2) and d1(k) = O(µ1k2);

3) the determinant | detAψ(k)| can be bounded above and below by some constant
times

[
(σ1 − µ1)

2 + |c(k)|][(σ1 + µ1)
2 + |c(k)|] and c(k) = cos k0 + cos k − 2;

4) Ŵ (1)
2n,α,ω are analytic functions of ki , λ, ν, σ1, µ1, i = 1, . . . , 2n and, for some

constant C,

|Ŵ (1)
2n,α,ω(k1, . . . ,k2n−1)| ≤ M2Cn|λ|max{1,n/2} ; (2.21)

4) –a) the terms in (2.21) with n = 2 can be written as

L1

∑

k1,... ,k4

ψ̂+1,k1
ψ̂+−1,k2

ψ̂−−1,k3
ψ̂−1,k4

δ(k1 + k2 − k3 − k4)

+
∑

k1,... ,k4

∑

α,ω

W̃4,α,ω(k1,k2,k3)ψ̂
α1
ω1,k1

ψ̂
α2
ω2,k2

ψ̂
α3
ω3,k3

ψ̂
α4
ω4,k4

δ(

4∑

i=1

αiki ) ,

(2.22)

where L1 is real and W̃4,α,ω(k1,k2,k3) vanishes at k1 = k2 = k3 =
(
π
M
, π
M

)
;

4) –b) the term in (2.21) with n = 1 can be written as:

1

4

∑

ω,α=±

∑

k

[
S1(−iω)ψ̂+ω,kψ̂−−ω,k +M1(iω)ψ̂

α
ω,kψ̂

α
−ω,−k

+F1(i sin k + ω sin k0)ψ̂
α
ω,kψ̂

α
ω,−k

+G1(i sin k + ω sin k0)ψ̂
+
ω,kψ̂

−
ω,k

]

+
∑

k

∑

α,ω

W̃2,α,ω(k)ψ̂
α1
ω1,k

ψ̂
α2
ω2,−α1α2k, (2.23)
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where W̃2,α,ω(k) is O(k2) in a neighborhood of k = 0; S1,M1, F1,G1 are real
analytic functions of λ, σ1, µ1, ν s.t. F1 = O(λµ1) and

L1 = l1 +O(λσ1)+O(λµ1) , S1 = s1 + γ n1 +O(λσ 2
1 )+O(λµ2

1),

M1 = m1 +O(λµ1σ1)+O(λµ3
1) , G1 = z1 +O(λσ1)+O(λµ1)|, (2.24)

with s1 = σ1f1,m1 = µ1f2 and l1, n1, f1, f2, z1 independent of σ1, µ1; moreover
l1 = λ̃/Z2

1 + O(λ2), f1, f2 = O(λ), γ n1 = ν/Z1 + cν1λ + O(λ2), for some cν1
independent of λ, and z1 = O(λ2).

Remark. The meaning of Theorem 2.1 is that after the integration of the χ fields we are
left with a fermionic integration similar to (2.12) up to corrections which are at least
O(k2), and an effective interaction containing terms with any number of fields.

A priori many bilinear terms with kernelO(1) orO(k) with respect to k near k = 0
could be generated by the χ–integration besides the ones originally present in (2.12);
however symmetry considerations restrict drastically the number of possible bilinear
terms O(1) or O(k). Only one new term of the form

∑
k(i sin k + ω sin k0)ψ̂

α
ω,kψ̂

α
ω,−k

appears, which is “dimensionally” marginal in a RG sense; however it is weighted by
a constant O(λµ1) and this will improve its “dimension”, so that it will result to be
irrelevant, see §3.2 below.

3. Integration of the ψ Variables: First Regime

3.1. Multiscale analysis. From the bound on detA(1)ψ (k) described in Theorem 2.1,
we see that the ψ fields have a mass given by min{|σ1 − µ1|, |σ1 + µ1|}, which can
be arbitrarly small; their integration in the infrared region (small k) needs a multiscale
analysis. We introduce a scaling parameter γ > 1 which will be used to define a geomet-
rically growing sequence of length scales 1, γ, γ 2, . . . , i.e. of geometrically decreasing
momentum scales γ h, h = 0,−1,−2, . . . Correspondingly we introduce C∞ compact

support functions fh(k) h ≤ 1, with the following properties: if |k|def=
√

sin2 k + sin2 k0,
when h ≤ 0, fh(k) = 0 for |k| < γ h−2 or |k| > γ h, and fh(k) = 1, if |k| = γ h−1;
f1(k) = 0 for |k| ≤ γ−1 and f1(k) = 1 for |k| ≥ 1; furthermore:

1 =
1∑

h=hM
fh(k) , where : hM = min{h : γ h >

√
2 sin

π

M
} , (3.1)

and
√

2 sin(π/M) is the smallest momentum allowed by the antiperiodic boundary con-
ditions, i.e.

√
2 sin(π/M) = mink∈D−,− |k|.

The purpose is to perform the integration of (2.19) over the fermion fields in an itera-
tive way. After each iteration we shall be left with a “simpler” Grassmannian integration
to perform: if h = 1, 0,−1, . . . , hM , we shall write

�−AT =
∫

PZh,σh,µh,Ch(dψ
(≤h)) e−V(h)(

√
Zhψ

(≤h))−M2Eh , V(h)(0) = 0 , (3.2)

where the quantities Zh, σh, µh, Ch, PZh,σh,µh,Ch(dψ
(≤h)), V(h) and Eh have to be

defined recursively and the result of the last iteration will be �−AT = e−M
2E−1+hM ,

i.e. the value of the partition function.
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PZh,σh,µh,Ch(dψ
(≤h)) is defined by (2.19) in which we replaceZ1, σ1, µ1, a

ω
1 , b

ω
1 , c1,

d1, C1(k) with Zh, σh, µh, aωh , b
ω
h , ch, dh, Ch(k), where Ch(k)−1 = ∑h

j=hM fj (k).
Moreover

V(h)(ψ) =
∞∑

n=1

1

M2n

∑

k1,... ,k2n−1,
α,ω

2n∏

i=1

ψ̂
αi (≤h)
ωi ,ki

Ŵ
(h)
2n,α,ω(k1, . . . ,k2n−1)δ(

2n∑

i=1

αiki )
def=

def=
∞∑

n=1

∑

x1,... ,x2n,
σ ,j,ω,α

2n∏

i=1

∂
σi
ji
ψαi(≤h)ωi ,xi W

(h)
2n,σ ,j,α,ω(x1, . . . , x2n) , (3.3)

where in the last line ji = 0, 1, σi ≥ 0 and ∂j is the forward discrete derivative in the
êj direction.

Note that the field ψ(≤h), whose propagator is given by the inverse of ZhCh(k)A
(h)
ψ ,

has the same support of C−1
h (k), that is on a strip of width γ h around the singularity

k = 0. The field ψ(≤1) coincides with the field ψ of the previous section, so that (2.18)
is the same as (3.2) with h = 1.

It is crucial for the following to think Ŵ (h)
2n,α,ω, h ≤ 1, as functions of the variables

σk(k), µk(k), k = h, h+ 1, . . . , 0, 1, k ∈ D−,−. The iterative construction below will
inductively imply that the dependence on these variables is well defined (note that for
h = 1 we can think of the kernels of V(1) as functions of σ1, µ1, see Theorem 2.1).

3.2. The localization operator. We now begin to describe the iterative construction lead-
ing to (3.2). The first step consists in defining a localization operator L acting on the
kernels of V(h), in terms of which we shall rewrite V(h) = LV(h) + RV(h), where
R = 1− L. The iterative integration procedure will use such splitting, see §3.3 below.

L will be non-zero only if acting on a kernel Ŵ (h)
2n,α,ω with n = 1, 2. In this case L will

be the combination of four different operators: Lj , j = 0, 1, whose effect on a function
of k will be essentially to extract the term of order j from its Taylor series in k; and Pj ,
j = 0, 1, whose effect on a functional of the sequence σh(k), µh(k), . . . , σ1, µ1 will be
essentially to extract the term of order j from its power series inσh(k), µh(k), . . . , σ1, µ1.

The action of Lj , j = 0, 1, on the kernels Ŵ (h)
2n,α,ω(k1, . . . ,k2n) is defined as follows:

1) If n = 1,

L0Ŵ
(h)
2,α,ω(k, α1α2k) = 1

4

∑

η,η′=±1

Ŵ
(h)
2,α,ω(k̄ηη′ , α1α2k̄ηη′),

L1Ŵ
(h)
2,α,ω(k, α1α2k) = 1

4

∑

η,η′=±1

Ŵ
(h)
2,α,ω(k̄ηη′ , α1α2k̄ηη′)

[
η

sin k

sin π
M

+ η′ sin k0

sin π
M

]
,

(3.4)

where k̄ηη′ =
(
η π
M
, η′ π

M

)
are the smallest momenta allowed by the antiperiodic

boundary conditions.
2) If n = 2, L1Ŵ

(h)
4,α,ω = 0 and

L0Ŵ
(h)
4,α,ω(k1,k2,k3,k4)

def= Ŵ (h)
4,α,ω(k̄++, k̄++, k̄++, k̄++) . (3.5)

3) If n > 2, L0Ŵ2n,α,ω = L1Ŵ2n,α,ω = 0 .
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The action of Pj , j = 0, 1, on the kernels Ŵ2n,α,ω, thought of as functionals of the
sequence σh(k), µh(k), . . . , σ1, µ1 is defined as follows:

P0Ŵ2n,α,ω
def= Ŵ2n,α,ω

∣
∣
∣
σ (h)=µ(h)=0

,

P1Ŵ2n,α,ω
def=

∑

k≥h,k

[
σk(k)

∂Ŵ2n,α,ω

∂σk(k)

∣
∣
∣
σ (h)=µ(h)=0

+ µk(k)
∂Ŵ2n,α,ω

∂µk(k)

∣
∣
∣
σ (h)=µ(h)=0

]
.

(3.6)

Given Lj ,Pj , j = 0, 1 as above, we define the action of L on the kernels Ŵ2n,α,ω as
follows:

1) If n = 1, then

LŴ2,α,ω
def=






L0(P0 + P1)Ŵ2,α,ω if ω1 + ω2 = 0 and α1 + α2 = 0,
L0P1Ŵ2,α,ω if ω1 + ω2 = 0 and α1 + α2 �= 0,
L1P0Ŵ2,α,ω if ω1 + ω2 �= 0 and α1 + α2 = 0,
0 if ω1 + ω2 �= 0 and α1 + α2 �= 0.

2) If n = 2, then LŴ4,α,ω
def= L0P0Ŵ4,α,ω.

3) If n > 2, then LŴ2n,α,ω = 0.

Finally, the effect of L on V(h) is, by definition, to replace on the r.h.s. of (3.3) Ŵ2n,α,ω

with LŴ2n,α,ω. Note that L2V(h) = LV(h).
Using the previous definitions we get the following result, proven in Appendix A2.2.

We use the notation σ (h) = {σk(k)}k=h,... ,1k∈D−,− and µ(h) = {µk(k)}k=h,... ,1k∈D−,− .

Lemma 3.1. Let the action of L on V(h) be defined as above. Then

LV(h)(ψ(≤h)) = (sh + γ hnh)F (≤h)σ +mhF (≤h)µ + lhF (≤h)λ + zhF (≤h)ζ , (3.7)

where sh, nh,mh, lh and zh are real constants and sh is linear in σ (h) and independent
of µ(h); mh is linear in µ(h) and independent of σ (h); nh, lh, zh are independent of

σ (h), µ(h); moreover, if Dh
def=D−,− ∩ {k : C−1

h (k) > 0},

F (≤h)σ (ψ(≤h)) = 1

2M2

∑

k∈Dh

∑

ω=±1

(−iω)ψ̂+(≤h)ω,k ψ̂
−(≤h)
−ω,k

def= 1

M2

∑

k∈Dh
F̂ (≤h)σ (k) ,

F (≤h)µ (ψ(≤h)) = 1

4M2

∑

k∈Dh

∑

α,ω=±1

iωψ̂
α(≤h)
ω,k ψ̂

α(≤h)
−ω,−k

def= 1

M2

∑

k∈Dh
F̂ (≤h)µ (k) ,

F
(≤h)
λ (ψ(≤h)) = 1

M8

∑

k1,...,k4∈Dh
ψ̂
+(≤h)
1,k1

ψ̂
+(≤h)
−1,k2

ψ̂
−(≤h)
−1,k3

ψ̂
−(≤h)
1,k4

δ(k1 + k2 − k3 − k4) ,

F
(≤h)
ζ (ψ(≤h)) = 1

2M2

∑

k∈Dh

∑

ω=±1

(i sin k + ω sin k0)

×ψ̂+(≤h)ω,k ψ̂
−(≤h)
ω,k

def= 1

M2

∑

k∈Dh
F̂
(≤h)
ζ (k), (3.8)

where δ(k) = M2∑
n∈Z

2 δk,2πn.
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Remark. The application of L to the kernels of the effective potential generates the sum
in (3.7), i.e. a linear combination of the Grassmannian monomials in (3.8) which, in
the renormalization group language, are called “relevant” (the first two) or “marginal”
operators (the two others).

We now consider the operator Rdef= 1−L. The following result holds, see Appendix
A2 for the proof. We use the notation R1 = 1− L0, R2 = 1− L0 − L1, S1 = 1− P0,
S2 = 1− P0 − P1.

Lemma 3.2. The action of R on Ŵ2n,α,ω for n = 1, 2 is the following:

1) If n = 1, then

RŴ2,α,ω =






[S2 +R2(P0 + P1)]Ŵ2,α,ω if ω1 + ω2 = 0,
[R1S1 +R2P0]Ŵ2,α,ω if ω1 + ω2 �= 0 and α1 + α2 = 0,
R1S1Ŵ2,α,ω if ω1 + ω2 �= 0 and α1 + α2 �= 0.

2) If n = 2, then RŴ4,α,ω = [S1 +R1P0]Ŵ4,α,ω.

Remark. The effect of Rj , j = 1, 2 on Ŵ (h)
2n,α,ω consists in extracting the rest of a Taylor

series in k of order j . The effect of Sj , j = 1, 2 on Ŵ (h)
2n,α,ω consists in extracting the rest

of a power series in (σ (h), µ(h)) of order j . The definitions are given in such a way that

RŴ2n,α,ω is at least quadratic in k, σ (h), µ(h) if n = 1 and at least linear in k, σ (h), µ(h)

when n = 2. This will give dimensional gain factors in the bounds for RŴ (h)
2n,α,ω w.r.t.

the bounds for Ŵ (h)
2n,α,ω, n = 1, 2, as we shall see in detail in Appendix A4.

3.3. Renormalization. Once the above definitions are given we can describe our inte-
gration procedure for h ≤ 0.

We start from (3.2) and we rewrite it as
∫

PZh,σh,µh,Ch(dψ
(≤h)) e−LV(h)(

√
Zhψ

(≤h))−RV(h)(
√
Zhψ

(≤h))−M2Eh , (3.9)

with LV(h) as in (3.7). Then we include the quadratic part of LV(h) (except the term
proportional to nh) in the fermionic integration, so obtaining

∫

PẐh−1,σh−1,µh−1,Ch
(dψ(≤h))

×e−lhFλ(
√
Zhψ

(≤h))−γ hnhFσ (
√
Zhψ

(≤h))−RV(h)(
√
Zhψ

(≤h))−M2Eh , (3.10)

where Ẑh−1(k)
def= Zh(1+ zhC−1

h (k)) and

σh−1(k)
def= Zh

Ẑh−1(k)
(σh(k)+ shC−1

h (k)) , µh−1(k)
def= Zh

Ẑh−1(k)
(µh(k)+mhC−1

h (k)),

aωh−1(k)
def= Zh

Ẑh−1(k)
aωh (k) , bωh−1(k)

def= Zh

Ẑh−1(k)
bωh (k),

ch−1(k)
def= Zh

Ẑh−1(k)
ch(k) , dh−1(k)

def= Zh

Ẑh−1(k)
dh(k) . (3.11)
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The integration in (3.10) differs from the one in (3.2) and (3.9): PẐh−1,σh−1,µh−1,Ch

is defined by (2.19) with Z1 and A(1)ψ replaced by Ẑh−1(k) and A(h−1)
ψ .

Now we can perform the integration of the ψ(h) field. It is convenient to rescale the
fields:

V̂(h)(
√
Zh−1ψ

(≤h)) def= λhFλ(
√
Zh−1ψ

(≤h))
+γ hνhFσ (

√
Zh−1ψ

(≤h))+RV(h)(
√
Zhψ

(≤h)) , (3.12)

where λh =
(
Zh
Zh−1

)2
lh, νh = Zh

Zh−1
nh and RV(h) = (1− L)V(h) is the irrelevant part of

V(h), and rewrite (3.10) as

e−M
2(th+Eh)

∫

PZh−1,σh−1,µh−1,Ch−1(dψ
(≤h−1))

×
∫

P
Zh−1,σh−1,µh−1,f̃

−1
h
(dψ(h)) e−V̂(h)(√Zh−1ψ

(≤h)), (3.13)

where we used the decomposition ψ(≤h) = ψ(≤h−1) + ψ(h) (and ψ(≤h−1), ψ(h) are
independent) and f̃h(k) is defined by the relation C−1

h (k)Ẑ−1
h−1(k) = C−1

h−1(k)Z
−1
h−1 +

f̃h(k)Z
−1
h−1, namely:

f̃h(k)
def= Zh−1

[ C−1
h (k)

Ẑh−1(k)
− C

−1
h−1(k)

Zh−1

]
= fh(k)

[
1+ zhfh+1(k)

1+ zhfh(k)
]
. (3.14)

Note that f̃h(k) has the same support as fh(k). Moreover P
Zh−1,σh−1,µh−1,f̃

−1
h
(dψ(h)) is

defined in the same way as PẐh−1,σh−1,µh−1,Ch
(dψ(h)), with Ẑh−1(k) resp. Ch replaced

by Zh−1, resp. f̃−1
h . The single scale propagator is

∫

P
Zh−1,σh−1,µh−1,f̃

−1
h
(dψ(h)) ψα(h)x,ω ψ

α′(h)
y,ω′

= 1

Zh−1
g
(h)

a,a′(x − y) , a = (α, ω) , a′ = (α′, ω′) , (3.15)

where

g
(h)

a,a′(x − y) = 1

2M2

∑

k

eiαα
′k(x−y)f̃h(k)[A

(h−1)
ψ (k)]−1

j (a),j ′(a′) (3.16)

with j (−, 1) = j ′(+, 1) = 1, j (−,−1) = j ′(+,−1) = 2, j (+, 1) = j ′(−, 1) = 3
and j (+,−1) = j ′(−,−1) = 4. One finds that g(h)

a,a′(x) = g
(1,h)
ω,ω′ (x) − αα′g(2,h)ω,ω′ (x),

where g(j,h)
ω,ω′ (x), j = 1, 2 are defined in Appendix A3, see (A3.1).

The long distance behaviour of the propagator is given by the following lemma,
proved in Appendix A3.

Lemma 3.3. Let σh
def= σh(0) and µh

def= µh(0) and assume |λ| ≤ ε1 for a small constant
ε1. Suppose that for h > h̄,

|zh| ≤ 1

2
, |sh| ≤ 1

2
|σh| , |mh| ≤ 1

2
|µh| , (3.17)
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that there exists c s.t.

e−c|λ| ≤
∣
∣
∣
σh

σh−1

∣
∣
∣ ≤ ec|λ| , e−c|λ| ≤

∣
∣
∣
µh

µh−1

∣
∣
∣ ≤ ec|λ| ,

e−c|λ|
2 ≤

∣
∣
∣
Zh

Zh−1

∣
∣
∣ ≤ ec|λ|2 , (3.18)

and that, for some constant C1,

|σh̄|
γ h̄
≤ C1 ,

|µh̄|
γ h̄
≤ C1 ; (3.19)

then, for all h ≥ h̄, given the positive integers N, n0, n1 and putting n = n0 + n1, there
exists a constant CN,n s.t.

|∂n0
x0
∂n1
x g

(h)

a,a′(x − y)| ≤ CN,n γ (1+n)h

1+ (γ h|d(x − y)|)N , where d(x)

= M

π

(
sin

πx

M
, sin

πx0

M
) . (3.20)

Furthermore, if P0, P1 are defined as in (3.6) and S1, S2 are defined as in Lemma 3.2, we
have that Pj g(h)a,a′ , j = 0, 1 and Sj g(h)a,a′ , j = 1, 2, satisfy the same bound (3.20), times

a factor
( |σh|+|µh|

γ h

)j
. The bounds for P0g

(h)

a,a′ and P1g
(h)

a,a′ hold even without hypothesis
(3.19).

After the integration of the field on scale h we are left with an integral involving the
fields ψ(≤h−1) and the new effective interaction V(h−1), defined as

e−V(h−1)(
√
Zh−1ψ

(≤h−1))−ẼhM2=
∫

PZh−1,σh−1,µh−1,f̃h
(dψ(h))e−V̂(h)(√Zh−1ψ

(≤h)). (3.21)

It is easy to see that V(h−1) is of the form (3.3) and that Eh−1 = Eh + th + Ẽh. It is
sufficient to use the well known identity

M2Ẽh+V(h−1)(
√
Zh−1ψ

(≤h−1))=
∑

n≥1

1

n!
(−1)n+1ETh (V̂(h)(

√
Zh−1ψ

(≤h)); n),

(3.22)

where ETh (X(ψ(h)); n) is the truncated expectation of order n w.r.t. the propagator

Z−1
h−1g

(h)

a,a′ , defined as

ETh (X(ψ(h)); n) =
∂

∂λn
log
∫

PZh−1,σh−1,µh−1,f̃h
(dψ(h))eλX(ψ

(h))
∣
∣
∣
λ=0

. (3.23)

Note that the above procedure allows us to write the running coupling constants vh−1 =
(λh−1, νh−1), h ≤ 1, in terms of vk , h ≤ k ≤ 1, namely vh−1 = βh(vh, . . . , v1), where
βh is the so–called Beta function.
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3.4. Analticity of the effective potential. We have expressed the effective potential V(h)
in terms of the running coupling constants λk, νk , k ≥ h, and of the renormalization
constants Zk,µk(k), σk(k), k ≥ h.

In Appendix A4 we will prove the following result.

Theorem 3.4. Let σh
def= σh(0) andµh

def= µh(0) and assume |λ| ≤ ε1 for a small constant
ε1. Suppose that for h > h̄ the hypothesis (3.17), (3.18) and (3.19) hold. If, for some
constant c,

max
h>h̄
{|λh|, |νh|} ≤ c|λ| , (3.24)

then there exists C > 0 s.t. the kernels in (3.3) satisfy
∫

dx1 · · · dx2n|W(h̄)
2n,σ ,j,α,ω(x1, . . . , x2n)| ≤ M2γ−h̄Dk(n) (C |λ|)max(1,n−1),

(3.25)

where Dk(n) = −2+ n+ k and k =∑2n
i=1 σi .

Moreover |Ẽh̄+1| + |th̄+1| ≤ c|λ|γ 2h̄ and the kernels of LV(h̄) satisfy

|sh̄| ≤ C|λ||σh̄| , |mh̄| ≤ C|λ||µh̄| (3.26)

and

|nh̄| ≤ C|λ| , |zh̄| ≤ C|λ|2 , |lh̄| ≤ C|λ|2 . (3.27)

The bounds (3.26) hold even if (3.19) does not hold. The bounds (3.27) hold even if
(3.19) and the first two of (3.18) do not hold.

Remarks. 1) The above result immediately implies analyticity of the effective potential
of scale h in the running coupling constants λk, νk , k ≥ h, under the assumptions
(3.17), (3.18), (3.19) and (3.24).

2) The assumptions (3.18) and (3.24) will be proved in §4 and Appendix A5 below,
solving the flow equations for vh = (λh, νh) and Zh, σh, µh, given by vh−1 =
βh(vh, . . . , v1), Zh−1 = Zh(1 + zh) and (3.11). They will be proved to be true up
to h = −∞.

4. The Flow of the Running Coupling Constants

The convergence of the expansion for the effective potential is proved by Theorem 3.1
under the hypothesis that the running coupling constants are small, see (3.24), and that
the bounds (3.17), (3.18) and (3.19) are satisfied. We now want to show that, choosing λ
small enough and ν as a suitable function of λ, such hypotheses are indeed verified. In
order to prove this, we will solve the flow equations for the renormalization constants
(following from (3.11) and the preceding line):

Zh−1

Zh
= 1+ zh ,

σh−1

σh
= 1+ sh/σh − zh

1+ zh ,
µh−1

µh
= 1+ mh/µh − zh

1+ zh ,(4.1)

together with those for the running coupling constants:

λh−1 = λh + βhλ (λh, νh; . . . ; λ1, ν1),

νh−1 = γ νh + βhν (λh, νh; . . . ; λ1, ν1) . (4.2)
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The functions βhλ , β
h
ν are called the λ and ν components of the Beta function, see the

comment after (3.23), and, by construction, are independent of σk, µk , so that their con-
vergence follow just from (3.24) and the last of (3.18), i.e. without assuming (3.19), see
Theorem 3.1. While for a general kernel we will apply Theorem 3.1 just up to a finite
scale h∗1 (in order to insure the validity of (3.19) with h̄ = h∗1), we will inductively study
the flow generated by (4.2) up to scale −∞, and we shall prove that it is bounded for
all scales. The main result on the flows of λh and νh, proven in Appendix A5, is the
following.

Theorem 4.1. If λ is small enough, there exists an analytic function ν∗(λ) independent
of t, u such that the running coupling constants {λh, νh}h≤1 with ν1 = ν∗(λ) verify
|νh| ≤ c|λ|γ (ϑ/2)h and |λh| ≤ c|λ|. Moreover the kernels zh, sh and mh satisfy (3.17)
and the solutions of the flow equations (4.1) satisfy (3.18).

Once ν1 is conveniently chosen as in Theorem 4.1, one can study in more detail the
flows of the renormalization constants. In Appendix A5 we prove the following.

Lemma 4.2. If λ is small enough and ν1 is chosen as in Theorem 4.1, the solution of
(4.1) can be written as:

Zh = γ ηz(h−1)+Fhζ , µh = µ1γ
ηµ(h−1)+Fhµ , σh = σ1γ

ησ (h−1)+Fhσ , (4.3)

where ηz, ηµ, ηz and Fhζ , F
h
µ, F

h
σ are O(λ) functions, independent of σ1, µ1.

Moreover ησ − ηµ = −bλ+O(|λ|2), b > 0.

4.1. The scale h∗1. The integration described in §3 is iterated up to a scale h∗1 defined in
the following way:

h∗1
def=





min
{
1,
[

logγ |σ1|
1

1−ησ
]}

if |σ1|
1

1−ησ > 2|µ1|
1

1−ηµ ,

min
{
1,
[

logγ |u|
1

1−ηµ
]}

if |σ1|
1

1−ησ ≤ 2|µ1|
1

1−ηµ .
(4.4)

From (4.4) it follows that

C2γ
h∗1 ≤ |σh∗1 | + |µh∗1 | ≤ C1γ

h∗1 , (4.5)

with C1, C2 independent of λ,µ1, σ1.

This is obvious in the case h∗1 = 1. If h∗1 < 1 and |σ1|
1

1−ησ > 2|µ1|
1

1−ηµ , then

γ h
∗
1−1 = cσ |σ1|

1
1−ησ , with 1 ≤ cσ < γ , so that, using the third of (4.3), we see that

C2γ
h∗1 ≤ |σh∗1 | ≤ C′1gh

∗
1 , for some C′1, C2 = O(1). Furthermore, using also the second

of (4.3), we find

|µh∗1 |
|σh∗1 |

= cηµ−ησσ |µ1||σ1|−
1−ηµ
1−ησ γ F

h∗1
µ −F

h∗1
σ < 1 (4.6)

and (4.5) follows.



Anomalous Universality in the Anisotropic Ashkin–Teller Model 701

If h∗1 < 1 and |σ1|
1

1−ησ ≤ 2|µ1|
1

1−ηµ , then γ h
∗
1−1 = cu|u|

1
1−ηµ , with 1 ≤ cµ < γ , so

that, using the second of (4.3) and |µ1| = O(|u|), we see that C2γ
h∗1 ≤ |µh∗1 | ≤ C′1γ h

∗
1 .

Furthermore, using the third (4.3), we find

|σh∗1 |
|µh∗1 |

= cησ−ηµu |σ1||u|−
1−ησ
1−ηµ γ F

h∗1
σ −F

h∗1
µ < C′′1 , (4.7)

for some C′′1 = O(1), and (4.5) again follows.

Remark. The specific value of h∗1 is not crucial: if we change h∗1 in h∗1 + n, n ∈ Z,
the constants C1, C2 in (4.5) are replaced by differentO(1) constants and the estimates
below are not qualitatively modified. Of course, the specific values of C1, C2 (then, the
specific value of h∗1) can affect the convergence radius of the pertubative series in λ. The
optimal value of h∗1 should be chosen by maximizing the corresponding convergence
radius. Since here we are not interested in optimal estimates, we find the choice in (4.4)
convenient.

Note also that h∗1 is a non-analytic function of (λ, t, u) (in particular for small u we
have γ h

∗
1 ∼ |u|1+O(λ)).As a consequence, the asymptotic expression for the specific heat

near the critical points (that we shall obtain in the next section) will contain non-analytic
functions of u (in fact it will contain terms depending on h∗1). However, as explained in
Remark (3) after the Main Theorem, this does not imply that Cv is non analytic: it is
clear that in this case the non analyticity is introduced “by hand” by our specific choice
of h∗1.

From the results of Theorem 4.1 and Lemma 4.2, together with (4.4) and (4.5), it
follows that the assumptions of Theorem 3.4 are satisfied for any h̄ ≥ h∗1. The integration
of the scales≤ h∗1 must be performed in a different way, as discussed in next the section.

5. Integration of the ψ Variables: Second Regime

5.1. Integration of the ψ(1) field. If h∗1 is fixed as in §4.1, we can use Theorem 3.4 up
to the scale h̄ = h∗1 + 1.

Once all the scales > h∗1 are integrated out, it is more convenient to describe the

system in terms of the fields ψ(1)ω , ψ
(2)
ω , ω = ±1, defined through the following change

of variables:

ψ̂
α(≤h∗1)
ω,k = 1√

2
(ψ̂

(1,≤h∗1)
ω,−αk − iαψ̂

(2,≤h∗1)
ω,−αk ) , ψ

(j)
ω,x = 1

M2

∑

k

e−ikxψ̂
(j)

ω,k . (5.1)
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If we perform this change of variables, we find PZh∗1 ,σh∗1 ,µh∗1 ,Ch∗1
= ∏2

j=1 P
(j)

Zh∗1 ,m
(j)

h∗1
,Ch∗1

where, if �
(j,≤h∗1),T
k

def= (ψ(j,≤h
∗
1)

1,k , ψ
(j,≤h∗1)
−1,k ),

P
(j)

Zh∗1 ,m
(j)

h∗1
,Ch∗1

(dψ(j,≤h
∗
1))
def=

def= 1

N
(j)

h∗1

∏

k,ω

dψ
(j,≤h∗1)
ω,k exp

{
− Zh∗1

4M2

∑

k∈Dh∗1

Ch∗1 (k)�
(j,≤h∗1),T
k A

(h∗1)
j (k)�

(j,≤h∗1)
−k

}

A
(h∗1)
j (k)

def=



(−i sin k − sin k0)+ a+(j)h∗1

(k) −i(m(j)
h∗1
(k)+ c(j)

h∗1
(k)
)

i
(
m
(j)

h∗1
(k)+ c(j)

h∗1
(k)
)

(−i sin k + sin k0)+ a−(j)h∗1
(k)



(5.2)

and aω(j)
h∗1

, m(j)
h∗1

, c(j)
h∗1

are given by (A3.2) with h = h∗ + 1.

The propagators g
(j,≤h∗1)
ω1,ω2 associated with the fermionic integration (5.2) are given by

(A3.1) with h = h∗1 + 1. Note that, by (4.5), max{|m(1)
h∗1
|, |m(2)

h∗1
|} = |σh∗1 | + |µh∗1 | =

O(γ h
∗
1 ) (see (A3.2) for the definition of m(1)

h∗1
, m(2)

h∗1
). From now on, for definiteness

we shall suppose that max{|m(1)
h∗1
|, |m(2)

h∗1
|} = |m(1)

h∗1
|. Then, it is easy to realize that the

propagator g
(1,≤h∗1)
ω1,ω2 is bounded as follows:

|∂n0
x0
∂n1
x g

(1,≤h∗1)
ω1,ω2 (x)| ≤ CN,n γ (1+n)h∗1

1+ (γ h∗1 |d(x)|)N , n = n0 + n1 , (5.3)

namely g
(1,≤h∗1)
ω1,ω2 satisfies the same bound as the single scale propagator on scale h = h∗1.

This suggests to integrate out ψ(1,≤h∗1), without any other scale decomposition. We find
the following result:

Lemma 5.1. If |λ| ≤ ε1, |σ1|, |µ1| ≤ c1 (c1, ε1 being the same as in Theorem 2.1) and
ν1 is fixed as in Theorem 4.1, we can rewrite the partition function as

�−AT =
∫

P
(2)

Zh∗1 ,m̂
(2)
h∗1
,Ch∗1

(dψ(2,≤h
∗
1))e
−V(h

∗
1)(
√
Zh∗1ψ

(2,≤h∗1))−M2Eh∗1 , (5.4)

where: m̂(2)
h∗1
(k) = m(2)

h∗1
(k)−γ h∗1πh∗1C

−1
h∗1
(k), withπh∗1 a free parameter, s.t. |πh∗1 | ≤ c|λ|;

|Eh∗1 − Eh∗1 | ≤ c|λ|γ 2h∗1 ; and

V(h
∗
1)(ψ(2))− γ h∗1πh∗1F

(2,≤h∗1)
σ (ψ(2≤h

∗
1))

=
∞∑

n=1

∑

ω

2n∏

i=1

ψ̂
(2)
ωi ,ki

W
(h∗1)
2n,ω(k1, . . . ,k2n−1)δ(

2n∑

i=1

ki )

=
∞∑

n=1

∑

σ ,j,ω

2n∏

i=1

∂
σi
ji
ψ(2)ωi ,xiW

(h∗1)
2n,σ ,j,ω(x1, . . . , x2n) , (5.5)
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with F (2,≤h)σ given by the first of (3.8) with ψ̂(2,≤h)ω,k ψ̂
(2,≤h)
ω′,−k replacing ψ̂+(≤h)ω,k ψ̂

−(≤h)
ω′,k ;

and W
(h∗1)
2n,σ ,j,ω satisfying the same bound (3.25) as W(h̄)

2n,σ ,j,α,ω with h̄ = h∗1.

In order to prove the lemma it is sufficient to consider (3.2) with h = h∗1 and rewrite

PZh∗1 ,σh∗1 ,µh∗1 ,Ch∗1
as the product

∏2
j=1 P

(j)

Zh∗1 ,m
(j)

h∗1
,Ch∗1

.Then the integration over theψ(1,≤h∗1)

field is done as the integration of the χ ’s in Appendix A2, recalling the bound (5.3).
Finally we rewritem(2)

h∗1
(k) as m̂(2)

h∗1
(k)+ γ h∗1πh∗1C

−1
h∗1
(k), where πh∗1 is a parameter to

be suitably fixed below as a function of λ, σ1, µ1.

5.2. The localization operator. The integration of the r.h.s. of (5.4) is done in an iterative
way similar to the one described in §3. If h = h∗1, h∗1 − 1, . . . , we shall write:

�−AT =
∫

P
(2)

Zh,m̂
(2)
h ,Ch

(dψ(2,≤h))e−V(h)(
√
Zhψ

(2,≤h))−M2Eh , (5.6)

where V(h) is given by an expansion similar to (5.5), with h replacing h∗1 and Zh, m̂
(2)
h

are defined recursively in the following way. We first introduce a localization operator
L. As in §(3.2), we define L as a combination of four operators Lj and Pj , j = 0, 1.
Lj are defined as in (3.4) and (3.5), while P0 and P1, in analogy with (3.6), are defined

as the operators extracting from a functional of m̂(2)h (k), h ≤ h∗1, the contributions inde-

pendent and linear in m̂(2)h (k). Note that inductively the kernels W
(h)

2n,ω can be thought

of as functionals of m̂k(k), h ≤ k ≤ h∗1. Given Lj ,Pj , j = 0, 1 as above, we define the

action of L on the kernels W
(h)

2n,ω as follows.

1) If n = 1, then

LW(h)

2,ω
def=
{

L0(P0 + P1)W
(h)

2,ω if ω1 + ω2 = 0,

L1P0W
(h)

2,ω if ω1 + ω2 �= 0.

2) If n > 2, then LW(h)

2n,ω = 0.

It is easy to prove the analogue of Lemma 3.1:

LV(h) = (sh + γ hph)F (2,≤h)σ + zhF (2,≤h)ζ , (5.7)

where sh, ph and zh are real constants and sh is linear in m̂(2)k (k), h ≤ k ≤ h∗1; ph and

zh are independent of m̂(2)k (k). Furthermore F (2,≤h)σ and F (2,≤h)ζ are given by the first

and the last of (3.8) with ψ̂(2,≤h)ω,k ψ̂
(2,≤h)
ω′,−k replacing ψ̂+(≤h)ω,k ψ̂

−(≤h)
ω′,k .

Remark. Note that the action of L on the quartic terms is trivial. The reason for such a
choice is that in the present case no quartic local term can appear, because of the Pauli
principle: ψ(2,h)1,x ψ

(2,h)
1,x ψ

(2,h)
−1,xψ

(2,h)
−1,x = 0, so that L0W 4,ω = 0.
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Using the symmetry properties exposed inAppendixA2.2, we can prove the analogue
of Lemma 3.2: if n = 1, then

RW 2,ω =
{

[S2 +R2(P0 + P1)]W 2,ω if ω1 + ω2 = 0,
[R1S1 +R2P0]W 2,α,ω if ω1 + ω2 �= 0,

(5.8)

where S1 = 1− P0 and S2 = 1− P0 − P1; if n = 2, then W 4,ω = R1W 4,ω.

5.3. Renormalization for h ≤ h∗1. If L and R = 1 − L are defined as in the previous
subsection, we can rewrite (5.6) as:

∫

P
(2)

Zh,m̂
(2)
h ,Ch

(dψ(2,≤h))e−LV(h)(
√
Zhψ

(2,≤h))−RV(h)(
√
Zhψ

(2,≤h))−M2Eh . (5.9)

Furthermore, using (5.7) and defining:

Ẑh−1(k)
def= Zh(1+ C−1

h (k)zh) , m̂
(2)
h−1(k)

def= Zh

Ẑh−1(k)

(
m̂
(2)
h (k)+ C−1

h (k)sh
)
,

(5.10)

we see that (5.9) is equal to
∫

P
(2)

Ẑh−1,m̂
(2)
h−1,Ch

(dψ(2,≤h))e−γ
hphF

(2,≤h)
σ (

√
Zhψ

(2),≤h)−RVh(
√
Zhψ

(2),≤h)−M2(Eh+th).

(5.11)

Again, we rescale the potential:

Ṽ(h)(
√
Zh−1ψ

(≤h))def= γ hπhF (2,≤h)σ (
√
Zh−1ψ

(2,≤h))+RVh(
√
Zhψ

(2,≤h)),(5.12)

where Zh−1 = Ẑh−1(0) and πh = (Zh/Zh−1)ph; we define f̃−1
h as in (3.14), we

perform the single scale integration and we define the new effective potential as

e−V(h−1)
(
√
Zh−1ψ

(2,≤h−1))−M2Ẽh
def=
∫

P
(2)

Zh−1,m̂
(2)
h−1,f̃

−1
h

(dψ(2,h))e−Ṽh(
√
Zhψ

(2,≤h)) .(5.13)

Finally we poseEh−1 = Eh+ th+ Ẽh. Note that the above procedure allows us to write
the πh in terms of πk , h ≤ k ≤ h∗1, namely πh−1 = γ hπh + βhπ(πh, . . . , πh∗1 ), where

βhπ is the Beta function.

Proceeding as in §3 we can inductively show that V(h) has the structure of (5.5), with

h replacing h∗1 and that the kernels of V(h) are bounded as follows.

Lemma 5.2. Let the hypothesis of Lemma 5.1 be satisfied and suppose that, for h̄ <
h ≤ h∗1 and some constants c, ϑ > 0,

e−c|λ| ≤ m̂
(2)
h

m̂
(2)
h−1

≤ ec|λ| , e−c|λ|
2 ≤ Zh

Zh−1
≤ ec|λ|2 ,

|πh| ≤ c|λ| , |m̂(2)
h̄
| ≤ γ h̄. (5.14)
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Then the partition function can be rewritten as in 5.6 and there exists C > 0 s.t. the

kernels of V(h) satisfy:
∫

dx1 · · · dx2n|W(h̄)

2n,σ ,j,ω(x1, . . . , x2n)| ≤ M2γ−h̄Dk(n) (C |λ|)max(1,n−1), (5.15)

where Dk(n) = −2+ n+ k and k =∑2n
i=1 σi . Finally |Eh̄+1| + |th̄+1| ≤ c|λ|γ 2h̄.

The proof of Lemma 5.2 is essentially identical to the proof of Theorem 3.4 and we
do not repeat it here.

It is possible to fix πh∗1 so that the first three assumptions in (5.14) are valid for any
h ≤ h∗1. More precisely, the following result holds, see Appendix A6.

Lemma 5.3. If |λ| ≤ ε1, |σ1|, |µ1| ≤ c1 and ν1 is fixed as in Theorem 4.1, there exists
π∗
h∗1
(λ, σ1, µ1) such that, if we fix πh∗1 = π∗h∗1 (λ, σ1, µ1), for h ≤ h∗1 we have:

|πh| ≤ c|λ|γ (ϑ/2)(h−h∗1) , m̂
(2)
h = m̂(2)h∗1 γ

Fhm , Zh = Zh∗1γ
F
h
ζ , (5.16)

where Fhm and F
h

ζ are O(λ). Moreover:

∣
∣
∣π∗h∗1 (λ, σ1, µ1)−π∗h∗1 (λ, σ

′
1, µ
′
1)

∣
∣
∣≤c|λ|

(
γ (ησ−1)h∗1 |σ1 − σ ′1|+γ (ηµ−1)h∗1 |µ1 − µ′1|

)
.

(5.17)

5.4. The integration of the scales ≤ h∗2. In order to insure that the last assumption in
(5.14) holds, we iterate the preceding construction up to the scale h∗2 defined as the scale

s.t. |m̂(2)k | ≤ γ k−1 for any h∗2 ≤ k ≤ h∗1 and |m̂(2)
h∗2−1| > γ h

∗
2−2.

Once we have integrated all the fields ψ(>h
∗
2), we can integrate ψ(2,≤h∗2) without any

further multiscale decomposition. Note in fact that by definition the propagator satisfies
the same bound (5.3) with h∗2 replacing h∗1. Then, if we define

e
−M2Ẽ≤h∗2 def=

∫

P
Zh∗2−1,m̂

(2)
h∗2−1

,Ch∗2
e
−Ṽ(h

∗
2)(
√
Zh∗2−1ψ

(2,≤h∗2))
, (5.18)

we find that |Ẽ≤h∗2 | ≤ c|λ|γ 2h∗2 (the proof is a repetition of the estimates on the single
scale integration).

Combining this bound with the results of Theorem 3.4, Lemma 5.1, Lemma 5.2 and
Lemma 5.3, together with the results of §4 we finally find that the free energy associated
to �−AT is given by the following finite sum, uniformly convergent with the size of�M :

lim
M→∞

1

M2 log�−AT = E≤h∗2 + (Eh∗1 − Eh∗1 )+
1∑

h=h∗2+1

(Ẽh + th) , (5.19)

where E≤h∗2 = limM→∞ Ẽ≤h∗2 and it is easy to see that E≤h∗2 , for any finite h∗2, exists

and satisfies the same bound of Ẽh∗2 .
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5.5. Keeping h∗2 finite. From the discussion of the previous subsection, it follows that,
for any finite h∗2, (5.19) is an analytic function of λ, t, u, for |λ| sufficiently small,
uniformly in h∗2 (this is an elementary consequence of Vitali’s convergence theorem).
Moreover, repeating the discussion of Appendix G in [M1], it can be proved that, for
any γ h

∗
2 > 0 (here γ h

∗
2 plays the role of |t − tc| in Appendix G of [M1]), the limit (5.19)

coincides with limM→∞ 1/M2 log�γ1,γ2
AT for any choice γ1, γ2 of boundary conditions;

hence this limit coincides with−2 log cosh λ plus the free energy in (1.2), see also (2.6).
We can state the result as follows.

Lemma 5.4. There exists ε1 > 0 such that, if |λ| ≤ ε1 and t ± u ∈ D (the same as in
the Main Theorem), the free energy f defined in (1.2) is real analytic in λ, t, u, except
possibly for the choices of λ, t, u such that γ h

∗
2 = 0.

We shall see in §6 below that the specific heat is logarithmically divergent asγ h
∗
2 → 0.

So the critical point is really given by the condition γ h
∗
2 = 0. We shall explicitly solve

the equation for the critical point in the next subsection.

5.6. The critical points. In the present subsection we check that, if t ± u ∈ D,D being
a suitable interval centered around

√
2 − 1, see the Main Theorem, there are precisely

two critical points of the form (1.5). More precisely, keeping in mind that the equation
for the critical point is simply γ h

∗
2 = 0 (see the end of the previous subsection), we

prove the following.

Lemma 5.5. Let |λ| ≤ ε1, t ± u ∈ D and πh∗1 be fixed as in Lemma 5.3. Then γ h
∗
2 = 0

only if (λ, t, u) = (λ, t±c (λ, u), u), where t±c (λ, u) is given by (1.5).

Proof. From the definition of h∗2 given above, see §5.4, it follows that h∗2 satisfies the
following equation:

γ h
∗
2−1 = cmγ F

h∗2
m

∣
∣
∣|σh∗1 | − |µh∗1 | − ασ γ h

∗
1πh∗1

∣
∣
∣ , (5.20)

for some 1 ≤ cm < γ and ασ = sign σ1. Then, the equation γ h
∗
2 = 0 can be rewritten

as:

|σh∗1 | − |µh∗1 | − ασ γ h
∗
1πh∗1 = 0 . (5.21)

First note that the result of Lemma 5.5 is trivial when h∗1 = 1. If h∗1 < 1, (5.21) cannot

be solved when |σ1|
1

1−ησ > 2|µ1|
1

1−ηµ . In fact,

|σ1|γ ησ (h∗1−1)+Fh
∗
1

σ − |µ1|γ ηµ(h∗1−1)+Fh
∗
1

µ − ασ γ h∗1πh∗1
= |σ1|1+

ησ
1−ησ c1 −

(
|µ1||σ1|−

1−ηµ
1−ησ

)
|σ1|

1−ηµ
1−ησ −

ηµ
1−ησ c′1 − ασ γ h

∗
1πh∗1 ≥

γ h
∗
1−1

3γ
,(5.22)

where c1, c
′
1 are constants = 1 + O(λ), πh∗1 = O(λ) and γ h

∗
1−1 = cσ |σ1|

1
1−ησ , with

1 ≤ cσ < γ . Now, if |µ1| > 0, the r.h.s. of (5.22) equation is strictly positive.
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So, let us consider the caseh∗1<1 and |σ1|
1

1−ησ ≤2|µ1|
1

1−ηµ (s.t.γ h
∗
1=cu logγ |u|

1
1−ηµ ,

with 1 ≤ cu ≤ γ ). In this case (5.21) can be easily solved to find:

|σ1| = |µ1||u|
ηµ−ησ
1−ηµ c

ηµ−ησ
u γ F

h∗1
µ −F

h∗1
σ + |u|

1−ησ
1−ηµ c1−ησ

u ασ γ
1−Fh

∗
1

σ πh∗1 . (5.23)

Note that c
ηµ−ησ
u γ F

h∗1
µ −F

h∗1
σ = 1 + O(λ) is just a function of u, (it does not depend

on t), because of our definition of h∗1. Moreover πh∗1 is a smooth function of t : if we
call πh∗1 (t, u), resp. πh∗1 (t

′, u), the correction corresponding to the initial data σ1(t, u),

µ1(t, u), resp. σ1(t
′, u), µ1(t

′, u), we have

|πh∗1 (t, u)− πh∗1 (t ′, u)| ≤ c|λ||u|
ησ−1
1−ηµ |t − t ′| , (5.24)

where we used (5.17) and the bounds |σ1− σ ′1| ≤ c|t − t ′| and |µ1−µ′1| ≤ c|u||t − t ′|,
following from the definitions of (σ1, µ1) in terms of (σ, µ) and of (t, u), see §2.

Using the same definitions we also realize that (5.23) can be rewritten as

t =
[√

2− 1+ ν(λ)
2
± |u|1+η

(
1+ λf (t, u)

)]1+ λ̂(t2 − u2)

1+ λ̂ , (5.25)

where

1+ ηdef= 1− ησ
1− ηµ , (5.26)

and the crucial property is that η = −bλ+O(λ2), b > 0, see Lemma 4.2 and Appendix
A5. We also recall that both η and ν are functions of λ and are independent of t, u. More-
over f (t, u) is a suitable bounded function s.t. |f (t, u)− f (t ′, u)| ≤ c|u|−(1+η)|t − t ′|,
as it follows from the Lipshitz property of πh∗1 (5.24). The r.h.s. of (5.25) is Lipshitz in
t with constantO(λ), so that (5.25) can be inverted w.r.t. t by contractions and, for both
choices of the sign, we find a unique solution

t = t±c (λ, u) =
√

2− 1+ ν∗(λ)± |u|1+η(1+ F±(λ, u)) , (5.27)

with |F±(λ, u)| ≤ c∣∣λ|, for some c. ��

5.7. Computation of h∗2. Let us now solve (5.20) in the general case of γ h
∗
2 ≥ 0. Calling

ε
def= γ h∗2−h∗1−F

h∗2
m /cm, we find:

ε =
∣
∣
∣
∣
∣
|σ1|γ (ησ−1)(h∗1−1)+Fh

∗
1

σ − |µ1|γ (ηµ−1)(h∗1−1)+Fh
∗
1

µ − ασ γπh∗1

∣
∣
∣
∣
∣

= γ (ησ−1)(h∗1−1)+Fh
∗
1

σ

∣
∣
∣
∣
∣
|σ1| − |µ1|γ (ηµ−ησ )(h

∗
1−1)+Fh

∗
1

µ −F
h∗1
σ − ασ γ 1+(1−ησ )(h∗1−1)−Fh

∗
1

σ πh∗1

∣
∣
∣
∣
∣
.

(5.28)

If |σ1|1/(1−ησ ) ≤ 2|µ1|1/(1−ηµ), we use γ h
∗
1−1 = cu|u|1/(1−ηµ) and, from the second

row of (5.27), we find: ε = C
∣
∣
∣|σ1| − |σασ1,c |

∣
∣
∣ |u|−(1+η), where σ±1,c = σ1(λ, t

±
c , u) and
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C = C(λ, t, u) is bounded above and below by O(1) constants; defining 	 as in (1.6),
we can rewrite:

ε = C

∣
∣
∣|σ1| − |σασ1,c |

∣
∣
∣

|u|1+η = C′
∣
∣
∣σ 2

1 − (σασ1,c)
2
∣
∣
∣

	|u|1+η = C′′ |t − t
+
c | · |t − t−c |
	2 , (5.29)

where C′ = C′(λ, t, u) and C′′ = C′′(λ, t, u) are bounded above and below by O(1)
constants.

In the opposite case (|σ1|1/(1−ηs) > 2|µ1|1/(1−ηµ)), we use γ h
∗
1−1 = cσ |σ1|1/(1−ησ )

and, from the first row of (5.27), we find ε = C̃(1− |µ1||σ1|−1/(1+η) − ασ γπh∗1 ) = C̄,

where C̃ and C̄ are bounded above and below byO(1) constants. Since in this region of
parameters |t − t±c |	−1 is also bounded above and below byO(1) constants, we can in
both cases write

ε = Cε(λ, t, u) |t − t
+
c | · |t − t−c |
	2 , C1,ε ≤ Cε(λ, t, u) ≤ C2,ε (5.30)

and Cj,ε, j = 1, 2, are suitable positive O(1) constants.

6. The Specific Heat

Consider the specific heat defined in (1.2). The correlation function< HAT
x HAT

y >�M,T
can be conveniently written as

< HAT
x HAT

y >�,T = ∂2

∂φx∂φy
log�AT (φ)

∣
∣
∣
φ=0

,

�AT (φ)
def=

∑

σ (1),σ (2)

e−
∑

x∈�(1+φx)H
AT
x , (6.1)

where φx is a real commuting auxiliary field (with periodic boundary conditions).
Repeating the construction of §2, we see that �AT (φ) admit a Grassmannian repre-

sentation similar to the one of �AT , and in particular, if x �= y:

∂2

∂φx∂φy
log�AT (φ)

∣
∣
∣
φ=0
= ∂2

∂φx∂φy
log

∑

γ1,γ2

(−1)δγ1+δγ2 �̂
γ1,γ2
AT (φ)

∣
∣
∣
φ=0

,

�̂
γ1,γ2
AT (φ) =

∫ j=1,2∏

x∈�M
dH

(j)
x dH

(j)

x dV
(j)
x dV

(j)

x eS
(1)
γ1 (t

(1))+S(2)γ2 (t
(2))+Vλ+B(φ), (6.2)

where δγ , S(j)(t (j)) and Vλ where defined in §2 (see (2.2) and previous lines, and (2.9)),
the apex γ1, γ2 attached to �̂AT refers to the boundary conditions assigned to the Grass-
mannian fields, as in §2 and finally B(φ) is defined as:

B(φ) =
∑

x∈�
φx

{
a(1)
(
H
(1)
x H

(1)
x+ê1
+ V (1)x V

(1)
x+ê0

)+ a(2)(H(2)
x H

(2)
x+ê1
+ V (2)x V

(2)
x+ê0

)

+λ̃a(H(1)
x H

(1)
x+ê1

H
(2)
x H

(2)
x+ê1
+ V (1)x V

(1)
x+ê0

V
(2)
x V

(2)
x+ê0

)}def=
∑

x∈�
φxAx , (6.3)
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where a(1), a(2) and ã are O(1) constants, with a(1) − a(2) = O(u). Using (6.2) and
(6.3) we can rewrite:

< HAT
x HAT

y >�,T= 1

4
(cosh J )2M

2 ∑

γ1,γ2

(−1)δγ1+δγ2
�
γ1,γ2
AT

�AT
< AxAy >

γ1,γ2
�M,T

,(6.4)

where < · >γ1,γ2
�M,T

is the average w.r.t. the boundary conditions γ1, γ2. Proceeding as

in Appendix G of [M1] one can show that, if γ h
∗
2 > 0, < AxAy >

γ1,γ2
�M,T

is expo-

nentially insensitive to boundary conditions and
∑
γ1,γ2

(−1)δγ1+δγ2�
γ1,γ2
AT /�AT is an

O(1) constant. Then from now on we will study only �−AT (φ)
def= �̂(−,−),(−,−)AT (φ) and

< AxAy >
(−,−),(−,−)
�M,T

.
As in §2 we integrate out the χ fields and, proceeding as in Appendix A2.1, we find:

�−AT (φ) =
∫

PZ1,σ1,µ1,C1(dψ)e
V(1)+B(1) , (6.5)

where

B(1)(ψ, φ)=
∞∑

m,n=1

σ ,j,α,ω
∑

x1···xm
y1···y2n

B
(1)
m,2n;σ ,j,α,ω(x1, . . . , xm; y1, . . . , y2n)

[ m∏

i=1

φxi

][ 2n∏

i=1

∂
σi
ji
ψ
αi
yi ,ωi

]
. (6.6)

We proceed as for the partition function, namely as described in §3 above. We introduce
the scale decomposition described in §3 and we perform iteratively the integration of
the single scale fields, starting from the field of scale 1. After the integration of the fields
ψ(1), . . . , ψ(h+1), h∗1 < h ≤ 0, we are left with

�−AT (φ)=e−M
2Eh+S(h+1)(φ)

∫

PZh,σh,µh,Ch(dψ
≤h)e−V(h)(

√
Zhψ

(≤h))+B(h)(√Zhψ(≤h),φ) ,
(6.7)

wherePZh,σh,µhmh,Ch(dψ
(≤h)) and V(h) are the same as in §3,S(h+1) (φ) denotes the sum

of the contributions dependent on φ but independent of ψ , and finally B(h)(ψ(≤h), φ)
denotes the sum over all terms containing at least one φ field and two ψ fields. S(h+1)

and B(h) can be represented as

S(h+1)(φ) =
∞∑

m=1

∑

x1···xm
S(h+1)
m (x1, . . . , xm)

m∏

i=1

φxi

B(h)(ψ(≤h), φ) =
∞∑

m,n=1

σ ,j,α,ω
∑

x1···xm
y1···y2n

B
(h)
m,2n;σ ,j,α,ω(x1, . . . , xm; y1, . . . , y2n)

[ m∏

i=1

φxi

]

×
[ 2n∏

i=1

∂σiψ(≤h)αiyi ,ωi

]
. (6.8)

Since the field φ is equivalent, regarding dimensional bounds, to two ψ fields (see
Theorem 6.1 below for a more precise statement), the only terms in the expansion for B(h)
which are not irrelevant are those with m = n = 1, σ1 = σ2 = 0 and they are marginal.
Hence we extend the definition of the localization operator L, so that its action on
B(h)(ψ(≤h), φ) is defined by its action on the kernels B̂(h)m,2n;α,ω(q1, . . .,qm;k1, . . .,k2n):
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1) if m = n = 1 and α1 + α2 = ω1 + ω2 = 0, then LB̂(h)1,2;σ ,α,ω(q1;k1,k2)
def=

P0B̂
(h)
1,2;α,ω(k+;k+,k+), where P0 is defined as in (3.6);

2) in all other cases LB̂(h)m,2n;α,ω = 0.

Using the symmetry considerations of Appendix B together with the remark that φx is
invariant under Complex conjugation, Hole–particle and (1)←→(2), while under Parity
φx → φ−x and under Rotation φ(x,x0) → φ(−x0,−x), we easily realize that LB(h) has
necessarily the following form:

LB(h)(ψ(≤h), φ) = Zh

Zh

∑

x,ω

(−iω)
2

φxψ
(≤h)+
ω,x ψ

(≤h)−
−ω,x , (6.9)

where Zh is real and Z1 = a(1)|σ=µ=0 = a(2)|σ=µ=0.

Note that apriori a term
∑

x,ω,α φxψ
(≤h)α
ω,x ψ

(≤h)α
−ω,x is allowed by symmetry but, using

(1)←→(2) symmetry, one sees that its kernel is proportional to µk , k ≥ h. So, with our
definition of localization, such a term contributes to RB(h).

Now that the action of L on B is defined, we can describe the single scale integration,
for h > h∗1. The integral in the r.h.s. of (6.7) can be rewritten as:

e−M
2th

∫

PZh−1,σh−1,µh−1,Ch−1(dψ
≤h−1)

·
∫

P
Zh−1,σh−1,µh−1,f̃

−1
h
(dψ(h))e−V̂(h)(√Zh−1ψ

(≤h))+B̂(h)(√Zh−1ψ
(≤h),φ), (6.10)

where V̂(h) was defined in (3.12) and

B̂(h)(
√
Zh−1ψ

(≤h), φ)def= B(h)(
√
Zhψ

(≤h), φ) . (6.11)

Finally we define

e−ẼhM
2+S̃(h)(φ)−V(h−1)(

√
Zh−1ψ

(≤h−1))+B(h−1)(
√
Zh−1ψ

(≤h−1),φ)

def=
∫

P
Zh−1,σh−1,µh−1,f̃

−1
h
(dψ(h))e−V̂(h)(√Zh−1ψ

(≤h))+B̂(h)(√Zh−1ψ
(≤h),φ) , (6.12)

and

Eh−1
def= Eh + th + Ẽh , S(h)(φ)

def= S(h+1)(φ)+ S̃(h)(φ) . (6.13)

With the definitions above, it is easy to verify that Zh−1 satisfies the equation Zh−1 =
Zh(1 + zh), where zh = bλh + O(λ2), for some b �= 0. Then, for some c > 0,
Z1e
−c|λ|h ≤ Zh ≤ Z1e

c|λ|h. The analogue of Theorem 3.1 for the kernels of B(h) holds:

Theorem 6.1. Suppose that the hypothesis of Lemma 5.1 is satisfied. Then, for h∗1 ≤
h̄ ≤ 1 and a suitable constant C, the kernels of B(h) satisfy

∫

dx1 · · · dx2n|B(h̄)2n,m;σ ,j,α,ω(x1, . . . , xm; y1, . . . , y2n)|

≤ M2γ−h̄(Dk(n)+m) (C |λ|)max(1,n−1) , (6.14)

where Dk(n) = −2+ n+ k and k =∑2n
i=1 σi .
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Fig. 3. The lowest order diagrams contributing to < HAT
x HAT

y >�M,T . The wavy lines ending in the
points labeled x and y represent the fields φx and φy respectively. The solid lines labeled by h and going
from x to y represent the propagators g(h)(x − y). The sums are over the scale indices and, even if not
explicitly written, over the indexes α, ω (and the propagators depend on these indexes)

Note that, consistently with our definition of localization, the dimension of
B
(h)
2,1;(0,0),(+,−),(ω,−ω) is D0(1)+ 1 = 0.

Again, proceeding as in §4, we can study the flow of Zh up to h = −∞ and prove

that Zh = Z1γ
η(h−1)+Fhz̄ , where η is a non-trivial analytic function of λ (its linear part

is non-vanishing) and Fhz̄ is a suitableO(λ) function (independent of σ1, µ1). We recall
that Z1 = O(1).

We proceed as above up to the scale h∗1. Once the scale h∗1 is reached we pass to the
ψ(1), ψ(2) variables, we integrate out (say) the ψ(1) fields and we get

∫

P
(2)

Zh∗1 ,m̂
(2)
h∗1
,Ch∗1

(dψ(2)(≤h
∗
1))e
−V(h

∗
1)(
√
Zh∗1ψ

(2,≤h∗1))+B(h
∗
1)(
√
Zh∗1ψ

(2,≤h∗1))
, (6.15)

with LBh
∗
1 (
√
Zh∗1ψ

(2),≤h∗1 ) = Zh∗1
∑

x iφxψ
(2,≤h∗1)
1,x ψ

(2,≤h∗1)
−1,x .

The scales h∗2 ≤ h ≤ h∗1 are integrated as in §5 and one finds that the flow of Zh in

this regime is trivial, i.e. if h∗2 ≤ h ≤ h∗1, Zh = Zh∗1γ F
h
z , with Fhz = O(λ).

The result is that the correlation function < HAT
x HAT

y >�M,T is given by a con-
vergent power series in λ, uniformly in �M . Then, the leading behaviour of the spe-
cific heat is given by the sum over x and y of the lowest order contributions to <
HAT

x HAT
y >�M,T , namely by the diagrams in Fig. 3. Absolute convergence of the

power series of < HAT
x HAT

y >�M,T implies that the rest is a small correction.

The conclusion is that Cv , for λ small and |t −√2+ 1|, |u| ≤ (√2− 1)/4, is given
by:

Cv = 1

|�|
∑

x,y∈�M

∑

ω1,ω2=±1

1∑

h,h′=h∗2

(Z
(1)
h∨h′)

2

Zh−1Zh′−1

×
[

G
(h)
(+,ω1),(+,ω2)

(x − y)G(h
′)

(−,−ω2),(−,−ω1)
(y− x)

+G(h)(+,ω1),(−,−ω2)
(x − y)G(h

′)
(−,−ω1),(+,ω2)

(x − y)
]

+ 1

|�|
∑

x,y∈�M

1∑

h∗2

(Zh

Zh

)2
�
(h)
�M
(x − y) , (6.16)

where h ∨ h′ = max{h, h′} and G(h)(α1,ω1),(α2,ω2)
(x) must be interpreted as
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G
(h)
(α1ω1),(α2,ω2)

(x) =






g
(h)
(α1ω1),(α2,ω2)

(x) if h > h∗1,
g
(1,≤h∗1)
ω1,ω2 (x)+ g(2,h

∗
1)

ω1,ω2 (x) if h = h∗1,
g
(2,h)
ω1,ω2(x) if h∗2 < h < h∗1,
g
(2,≤h∗2)
ω1,ω2 (x) if h = h∗2.

Moreover, if N, n0, n1 ≥ 0 and n = n0 + n1, |∂n0
x ∂x0�

(h)
�M
(x)| ≤ CN,n|λ| γ (2+n)h

1+(γ h|d(x)|)N .

Now, calling ηc the exponent associated to Zh/Zh, from (6.16) we find:

Cv = −C1γ
2ηch∗1 logγ γ

h∗1−h∗2(1+�(1)
h∗1,h

∗
2
(λ)
)+ C2

1− γ 2ηc(h∗1−1)

2ηc

(
1+�(2)

h∗1
(λ)
)
,

(6.17)

where |�(1)
h∗1,h

∗
2
(λ)|, |�(2)

h∗1
(λ)| ≤ c|λ|, for some c. Note that, defining 	 as in (1.6),

γ (1−ησ )h∗1	−1 is bounded above and below byO(1) constants. Then, using (5.30), (1.6)
follows.

Appendix A1. Proof of (2.1)

We start from Eq. (V.2.12) in [MW], expressing the partition function of the Ising model
with periodic boundary condition on a lattice with an even number of sites as a combi-
nation of the Pfaffians of four matrices with different boundary conditions, defined by
(V.2.10) and (V.2.11) in [MW]. In the general case (i.e. M2 not necessarily even), the
(V.2.12) of [MW] becomes:

ZI =
∑

σ

e−βJHI (σ ) = (−1)M
2 1

2
(2 cosh βJ )M

2
(
− Pf A1 + Pf A2 + Pf A3+Pf A4

)
,

(A1.1)

where Ai are matrices with elements (Ai)x,j ;y,k , with x, y ∈ �M , j, k = 1, . . . , 6,
given by:

(Ai)x;x =










0 0 −1 0 0 1
0 0 0 −1 1 0
1 0 0 0 0 −1
0 1 0 0 −1 0
0 −1 0 1 0 1
−1 0 1 0 −1 0










(A1.2)

and
(
(Ai)x;x+ê1

)
i,j
= tδi,1δj,2,

(
(Ai)x;x+ê0

)
i,j
= tδi,2δj,1, (Ai)x;x+ê1 = −(Ai

T
)x+ê1;x,

(Ai)x;x+ê0 = −(Ai
T
)x+ê0;x; moreover

(Ai)(M,x0);(1,x0) = −(A
T

i )(1,x0);(M,x0) = (−1)[
i−1

2 ](Ai)(1,x0);(2,x0),

(Ai)(x,M);(x,1) = −(ATi )(x,1);(x,M) = (−1)i−1(Ai)(x,1);(x,2) , (A1.3)

where [ i−1
2 ] is the bigger integer ≤ i−1

2 ; in all the other cases the matrices (Ai)x,y are
identically zero.
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Given a (2n) × (2n) antisymmetric matrix A, it is well–known that Pf A =
(−1)n

∫
dψ1 · · · dψ2n · · exp{ 12

∑
i,j ψiAijψj }, where ψ1, . . . , ψ2n are Grassmannian

variables. Then, we can rewrite (A1.1) as:

1

2
(2 cosh βJ )M

2 ∑

γ

(−1)δγ
∫ ∏

x∈�M
dH

γ

x dH
γ
x dV

γ

x dV
γ
x dT

γ

x dT
γ

x e
Sγ (t;H,V,T ) ,

(A1.4)

where: γ = (ε, ε′); ε, ε′ = ±1; δγ is defined after (2.1); H
γ

x , H
γ
x , V

γ

x , V
γ
x are Grass-

mannian variables with ε–periodic resp. ε′–periodic boundary conditions in the vertical,
resp. horizontal, direction, see (2.3) and following lines. Furthermore:

Sγ (t;H,V, T ) = t
∑

x

[
H
γ

xH
γ

x+ê1
+ V γxV γx+ê0

]

+
∑

x

[
V
γ

xH
γ

x +H
γ

x T
γ
x + V γx Hγ

x +Hγ
x T

γ

x + T γx V
γ

x + T
γ

xV
γ
x + T γx T γx

]
.

(A1.5)

The T –fields appear only in the diagonal elements and they can be easily integrated out:

∏

x∈�M

∫

dT
γ

x dT
γ
x exp

{
H
γ

x T
γ
x +Hγ

x T
γ

x + T γx V
γ

x + T
γ

xV
γ
x + T γx T γx

}

=
∏

x∈�M
(−1−Hγ

xH
γ
x − V γxV γx − V γx H

γ

x − V γx H
γ

x )

= (−1)M exp
∑

x∈�M

[
H
γ

xH
γ
x + V γxV γx + V γx H

γ

x +Hγ
x V

γ

x

]
, (A1.6)

where in the last identity we used that
[
H
γ

xH
γ
x + V γxV γx + V γx H

γ

x + Hγ
x V

γ

x

]2 = 0.

Substituting (A1.6) into (A1.4) we find (2.1).

Appendix A2. Integration of the Heavy Fermions. Symmetry Properties

A2.1. Integration of the χ fields. Calling V(ψ, χ) = Q(ψ, χ) − νFσ (ψ) + V (ψ, χ),
we obtain

−Ẽ1M
2 −Q(1)(ψ)− V(1)(ψ) = log

∫

P(dχ)eV(ψ,χ) =
∞∑

n=0

(−1)n

n!
ETχ (V(ψ, χ); n),

(A2.1)

where Ẽ1 is a constant and V(1) is at least quadratic in ψ and vanishing when λ =
ν = 0. Q(1) is the rest (quadratic in ψ). Given s set of labels Pvi , i = 1, . . . , s and

χ̃(Pvi )
def= ∏f∈Pvi χ

α(f )

ω(f ),x(f ), the truncated expectation ETχ (χ̃(Pv1), . . . , χ̃(Pvs )) can be
written as

ETχ (χ̃(Pv1), . . . , χ̃(Pvs )) =
∑

T

αT
∏

�∈T
gχ (f

1
� , f

2
� )

∫

dPT (t)Pf GT (t), (A2.2)
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whereT is a set of lines forming an anchored tree between the cluster of poinsPv1 ,. . ., Pvs
i.e. T is a set of lines which becomes a tree if one identifies all the points in the same
clusters; t = {ti,i′ ∈ [0, 1], 1 ≤ i, i′ ≤ s}, dPT (t) is a probability measure with support
on a set of t such that ti,i′ = ui ·ui′ for some family of vectors ui ∈ R

s of unit norm; αT
is a sign (irrelevant for the subsequent bounds); f 1

� , f
2
� are the field labels associated to

the points connected by �; if a(f ) = (α(f ), ω(f )), the propagator gχ(f, f ′) is equal to

gχ(f, f
′) = gχ

a(f ),a(f ′)(x(f )− x(f ′))def= < χ
α(f )

ω(f ),x(f )χ
α(f ′)
ω(f ′),x(f ′) >; (A2.3)

if 2n = ∑s
i=1 |Pvi |, then GT (t) is a (2n − 2s + 2) × (2n − 2s + 2) antisymmetrix

matrix, whose elements are given by GT
f,f ′ = ti(f ),i(f ′)gχ (f, f

′), where: f, f ′ �∈ FT
and FT

def= ∪�∈T {f 1
� , f

2
� }; i(f ) is s.t. f ∈ Pi(f ); finally Pf GT is the Pfaffian of GT . If

s = 1 the sum over T is empty, but we can still use the above equation by interpreting
the r.h.s. as 1 if Pv1 is empty, and detG(P1) otherwise.

Sketch of the proof of (A2.2). Equation (A2.2) is a trivial generalization of the well–
known formula expressing truncated fermionic expectations in terms of sums of deter-
minants [Le]. The only difference here is that the propagators < χαω1,x1

χαω2,x2
> are not

vanishing, so that Pfaffians appear instead of determinants. The proof can be done along
the same lines of Appendix A3 of [GM]. The only difference here is that the identity
known as the Berezin integral, see (A3.15) of [GM], that is the starting point to get to
(A2.2), must be replaced by the (more general) identity:

Eχ
( s∏

j=1

χ̃(Pj )
)
= Pf G = (−1)n

∫

Dχ exp
[1

2
(χ,Gχ)

]
, (A2.4)

where: the expectation Eχ is w.r.t. P(dχ); if 2m = ∑s
j=1

∣
∣Pj
∣
∣, G is the 2m × 2m

antisymmetric matrix with entries Gf,f ′ = gχa(f ),a(f ′)(x(f )− x(f ′)); and

Dχ =
n∏

j=1

∏

f∈Pj
dχα(f )x(f ),ω(f ) (χ,Gχ) =

∑

f,f ′∈∪iPi
χ
α(f )

x(f ),ω(f )Gf,f ′χ
α(f ′)
x(f ′),ω(f ′) .

(A2.5)

Starting from (A2.4), the proof in Appendix A3 of [GM] can be repeated step by step
in the present case, to find finally the analogue of (A.3.55) of [GM]. Then, using again
that

∫
Dχ exp(χ,Gχ)/2 is, unless for a sign, the Pfaffian of G, we find (A2.2). ��

We now use the well–known property |Pf GT | =
√
| detGT | and we can bound

detGT by the Gram–Hadamard (GH) inequality. Let Hdef= R
s⊗H0, where H0 is the Hil-

bert space of complex four dimensional vectors F(k) = (F1(k), . . . , F4(k)), Fi(k) be-
ing a function on the set D−,−, with scalar product< F,G >=∑4

i=1 1/M2∑
k F
∗
i (k)

Gi(k). We can write the elements of GT as inner products of vectors of H:

Gf,f ′ = ti(f ),i(f ′)gχ (f, f ′) =< ui(f ) ⊗ Af ,ui(f ′) ⊗ Bf ′ > , (A2.6)
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where ui ∈ R
s , i = 1, . . . , s, are vectors such that ti,i′ = ui · ui′ , and, if ĝχ

a,a′(k) is the

Fourier transform of gχ
a,a′(x − y), Af (k) and Bf ′(k) are given by

Af (k) = e−ikx(f )
(
ĝ
χ

a(f ),(−,1)(k), ĝ
χ

a(f ),(−,−1)(k), ĝ
χ

a(f ),(+,1)(k), ĝ
χ

a(f ),(+,−1)(k)
)
,

Bf ′(k) = e−ikx(f ′)






(1, 0, 0, 0), if a(f ′) = (−, 1),
(0, 1, 0, 0), if a(f ′) = (−,−1),
(0, 0, 1, 0), if a(f ′) = (+, 1),
(0, 0, 0, 1), if a(f ′) = (+,−1).

(A2.7)

With these definitions and remembering (2.17), it is now clear that |PfGT | ≤ Cn−s+1,
for some constant C. Then, applying (A2.2) and the previous bound we find the second
of (2.21).

We now turn to the construction of PZ1,σ1,µ1,C1 , in order to prove (2.19).

We define e−t1M2
PZ1,σ1,µ1,C1(dψ)

def= Pσ (dψ)e−Q(1)(ψ), where t1 is a normalization
constant. In order to write PZ1,σ1,µ1,C1(dψ) as an exponential of a quadratic form, it is
sufficient to calculate the correlations

< ψ
α1
ω1,k

ψ
α2
ω2,−α1α2k >1

def=
∫

PZ1,σ1,µ1,C1(dψ)ψ
α1
ω1,k

ψ
α2
ω2,−α1α2k

= e−t1M
2
∫

Pσ (dψ)P (dχ)e
Q(χ,ψ)ψ

α1
ω1,k

ψ
α2
ω2,−α1α2k.

(A2.8)

It is easy to realize that the measure∼ Pσ (dψ)P (dχ)eQ(χ,ψ) factorizes into the product
of two measures generated by the fields ψ(j)ω,x, j = 1, 2, defined by ψαω,x = (ψ

(1)
ω,x +

i(−1)αψ(2)ω,x)/
√

2. In fact, using this change of variables, one finds that

Pσ (dψ)P (dχ)e
Q(χ,ψ) =

∏

j=1,2

P (j)(dψ(j), dχ(j))

=
∏

j=1,2

1

N (j)
exp{− t

(j)
λ

4M2

∑

k

ξ
(j),T

k C
(j)

k ξ
(j)

−k } , (A2.9)

for two suitable matrices C(j)k , whose determinants B(j)(k)
def= detC(j)k are equal to

B(j)(k) = 16

(t
(j)
λ )4

{
2t (j)λ [1− (t(j)λ )2](2− cos k − cos k0)+ (t(j)λ − tψ )2(t(j)λ − tχ )2

}
.

(A2.10)

From the explicit expression of C(j)k one finds

< ψ
(j)

−kψ
(j)

k >1 = 4M2

t
(j)
λ

c
(j)
1,1(k)

B(j)(k)
, < ψ

(j)

−kψ
(j)

k >1= 4M2

t
(j)
λ

c
(j)
−1,1(k)

B(j)(k)
,

< ψ
(j)

−kψ
(j)

k >1 = 4M2

t
(j)
λ

c
(j)
−1,−1(k)

B(j)(k)
, (A2.11)
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where, if ω = ±1, recalling that tψ =
√

2− 1+ ν/2 and defining tχ = −
√

2− 1,

c(j)ω,ω(k)
def= 4

(t
(j)
λ )2

{
2t (j)λ tχ (−i sin k cos k0 + ω sin k0 cos k)

+[(t(j)λ )2 + t2χ ](i sin k − ω sin k0)
}
,

c
(j)
ω,−ω(k)

def= −iω 4

(t
(j)
λ )2

{− t (j)λ (3tχ + tψ ) cos k cos k0

+[(t(j)λ )2 + 2tχ tψ + t2χ ](cos k + cos k0)

−(t (j)λ (tψ + tχ )+ 2
tψ t

2
χ

t
(j)
λ

)}
. (A2.12)

It is clear that, for any monomialF(ψ(j)),
∫
P(dψ(j), dχ(j))F (ψ(j)) = ∫ P (j)(dψ(j))

F (ψ(j)), with

P (j)(dψ(j))
def= 1

Nj

∏

k

dψ
(j)

k dψ
(j)

k

· exp
{
− t

(j)
λ B(j)(k)

4M2 det c(j)k

(ψ
(j)

k , ψ
(j)

k )

(
c
(j)
−1,−1(k) −c(j)1,−1(k)

−c(j)−1,1(k) c
(j)
1,1(k)

)(
ψ
(j)

−k

ψ
(j)

−k

)
}
, (A2.13)

where det c(j)k = c(j)1,1(k)c
(j)
−1,−1(k)−c(j)1,−1(k)c

(j)
−1,1(k). If we now use the identity t (j)λ =

tψ (2+ (−1)jµ)/(2− σ) and rewrite the measure P (1)(dψ(1))P (2)(dψ(2)) in terms of
ψ±ω,k we find:

P (1)(dψ(1))P (2)(dψ(2)) = 1

N (1)

∏

k,ω

dψ+ω,kdψ
−
ω,k exp{−Z1C1(k)

4M2 �
+,T
k A

(1)
ψ �

−
k }

= PZ1,σ1,µ1,C1(dψ) , (A2.14)

with C1(k), Z1, σ1 and µ1 defined as after (2.18), and A(1)ψ (k) as in (2.19), with

M(1)(k) = 2

2− σ
(−c+−1,−1(k) c

+
−1,1(k)

c+1,−1(k) −c+1,1(k)
)

,

N(1)(k) = 2

2− σ
(−c−−1,−1(k) c

−
−1,1(k)

c−1,−1(k) −c−1,1(k)
)

, (A2.15)

where cαω1,ω2
(k)

def= [(1−µ/2)B(1)(k)c(1)ω1,ω2(k)/ det c(1)k +α(1+µ/2)B(2)(k)c(2)ω1,ω2(k)/

det c(2)k ]/2. It is easy to verify that A(1)ψ (k) has the form (2.19). In fact, computing the
functions in (A2.15), one finds that, for k, σ1 and µ1 small,

M(1)(k) =
((

1+ σ1
2

)
(i sin k + sin k0)+O(k3) −iσ1 +O(k2)

iσ1 +O(k2)
(
1+ σ1

2

)
(i sin k − sin k0)+O(k3)

)

,

N(1)(k) =
(−µ1

2 (i sin k + sin k0)+O(k3) iµ1 +O(µ1k2)

−iµ1 +O(µ1k2) −µ1
2 (i sin k − sin k0)+O(k3)

)

, (A2.16)
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where the higher order terms in k, σ1 andµ1 contribute to the corrections a±1 (k), b
±
1 (k),

c1(k) and d1(k). They have the reality and parity properties described after (2.19) and it
is apparent that a±1 (k) = O(σ1k)+O(k3), b±1 (k) = O(µ1k)+O(k3), c1(k) = O(k2)

and d1(k) = O(µ1k2).

A2.2. Symmetry properties. In this section we identify some symmetries of model (2.7)
and we prove that the quadratic and quartic terms in V(1) have the structure described in
(2.22), (2.23) and (2.24).

The formal action appearing in (2.7) (see also (2.2) and (2.9) for an explicit form) is
invariant under the following transformations:

1) Parity: H(j)
x → H

(j)

−x, H
(j)

x → −H(j)
−x (the same for V and V ). In terms of the

variables ψ̂αω,k, this transformation is equivalent to ψ̂αω,k → iωψ̂αω,−k (the same
for χ ) and we shall call it parity.

2) Complex conjugation: ψ̂αω,k → ψ̂−α−ω,k (the same for χ ) and c → c∗, where c is
a generic constant appearing in the formal action and c∗ is its complex conjugate.
Note that (2.10) is left invariant by this transformation that we shall call complex
conjugation.

3) Hole-particle:H(j)
x → (−1)j+1H

(j)
x (the same forH,V, V ). This transformation

is equivalent to ψ̂αω,k → ψ̂−αω,−k (the same for χ ) and we shall call it hole-particle.

4) Rotation: H(j)
x,x0 → iV

(j)

−x0,−x , H
(j)

x,x0
→ iV

(j)
−x0,−x , V (j)x,x0 → iH

(j)

−x0,−x , V
(j)

x,x0
→

iH
(j)
−x0,−x . This transformation is equivalent to

ψ̂αω,(k,k0)
→−ωe−iωπ/4ψ̂α−ω,(−k0,−k) , χ̂αω,(k,k0)

→ ωe−iωπ/4χ̂α−ω,(−k0,−k),
(A2.17)

and we shall call it rotation.
5) Reflection: H(j)

x,x0 → iH
(j)

−x,x0
, H

(j)

x,x0
→ iH

(j)
−x,x0

, V (j)x,x0 → −iV (j)−x,x0
, V

(j)

x,x0
→

iV
(j)

−x,x0
. This transformation is equivalent to ψ̂αω,(k,k0)

→ iψ̂α−ω,(−k,k0)
(the same

for χ ) and we shall call it reflection.

6) The (1)←→(2) symmetry: H(1)
x ←→H

(2)
x , H

(1)
x ←→H

(2)
x , V (1)x ←→V

(2)
x , V

(1)
x ←→

V
(2)
x , u→−u. This transformation is equivalent to ψ̂αω,k →−iαψ̂−αω,−k (the same

for χ ) together with u→−u and we shall call it (1)←→(2) symmetry.

It is easy to verify that the quadratic forms P(dχ), P(dψ) and PZ1,σ1,µ1,C1(dψ) are
separately invariant under the symmetries above. Then the effective action V(1)(ψ) is
still invariant under the same symmetries. Using the invariance of V(1) under transfor-
mations (1)–(6), we now prove that the structure of its quadratic and quartic terms is the
one described in Theorem 2.1, see in particular (2.22), (2.23) and (2.24).

Quartic term. The term
∑

ki W(k1,k2,k3,k4)ψ̂
+
1,k1

ψ̂+−1,k2
ψ̂−−1,k3

ψ̂−1,k4
δ(k1+k2−k3−

k4) under complex conjugation becomes equal to
∑

ki W
∗(k1,k2,k3,k4)ψ̂

−
−1,k1

ψ̂−1,k2

ψ̂+1,k3
ψ̂+−1,k4

δ(k3 + k4 − k1 − k2), so that W(k1,k2,k3,k4) = W ∗(k3,k4,k1,k2).

Then, defining L1 = W(k̄++, k̄++, k̄++, k̄++), where k̄++ = (π/M, π/M), and l1 =
P0L1

def= L1
∣
∣
σ1=µ1=0, we see that L1 and l1 are real. From the explicit computation of

the lower order term we find l1 = λ̃/Z2
1 +O(λ2).
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Quadratic terms. We distinguish 4 cases (items (a)–(d) below).
a) Letα1 = −α2 = + andω1 = −ω2 = ω and consider the expression

∑
ω,k Wω(k;µ1)

ψ̂+ω,kψ̂
−
−ω,k. Under parity it becomes

∑
ω,k Wω(k;µ1)(iω)ψ̂

+
ω,−k(−iω)ψ̂−−ω,−k =

∑
ω,k Wω(−k;µ1)ψ̂

+
ω,kψ̂

−
−ω,k,

so that Wω(k;µ1) is even in k.
Under complex conjugation it becomes
∑
ω,k Wω(k;µ1)

∗ψ̂−−ω,kψ̂
+
ω,k = −

∑
ω,k Wω(k;µ1)

∗ψ̂+ω,kψ̂
−
−ω,k,

so that Wω(k;µ1) is purely imaginary.
Under hole-particle it becomes
∑
ω,k Wω(k;µ1)ψ̂

−
ω,−kψ̂

+
−ω,−k = −

∑
ω,k W−ω(k;µ1)ψ̂

+
ω,kψ̂

−
−ω,k,

so that Wω(k;µ1) is odd in ω.
Under (1)←→(2) it becomes∑

ω,k Wω(k;−µ1)(−i)ψ̂−−ω,−k(i)ψ̂
+
ω,−k =

∑
ω,k Wω(k;−µ1)ψ̂

+
ω,kψ̂

−
−ω,k,

so that Wω(k;µ1) is even in µ1. Let us define S1 = iω/2
∑
η,η′=±1Wω(k̄ηη′),

where k̄ηη′ = (ηπ/M, η′π/M), and γ n1 = P0S1, s1 = P1S1 = σ1∂σ1S1
∣
∣
σ1=µ1=0 +

µ1∂µ1S1
∣
∣
σ1=µ1=0. From the previous discussion we see thatS1, s1 andn1 are real and s1 is

independent ofµ1. From the computation of the lower order terms we find s1 = O(λσ1)

and γ n1 = ν/Z1+cν1λ+O(λ2), for some constant cν1 independent of λ. Note that since
Wω(k;µ1) is even in k (so that in particular no linear terms in k appear) in real space
no terms of the form ψ+ω,x∂ψ

−
−ω,x can appear.

b) Let α1 = α2 = α andω1 = −ω2 = ω and consider the expression
∑
ω,α,k W

α
ω(k;µ1)

ψ̂αω,kψ̂
α
−ω,−k. We proceed as in item (a) and, by using parity, we see that Wα

ω(k;µ1) is
even in k and odd in ω.
By using complex conjugation, we see that Wα

ω(k;µ1) = −W−αω (k;µ1)
∗.

By using hole-particle, we see thatWα
ω(k;µ1) is even inα andWα

ω(k;µ1) = −W−αω (k;µ1)
∗

implies that Wα
ω(k;µ1) is purely imaginary.

By using (1)←→(2) we see that Wα
ω(k;µ1) is odd in µ1.

If we define M1 = −iω/2
∑
η,η′ W

α
ω(k̄ηη′ ;µ1) and m1 = P1M1, from the previous

properties it follows that M1 and m1 are real, m1 is independent of σ1 and, from the
computation of its lower order, m1 = O(λµ1). Note that since Wα

ω(k;µ1) is even in
k (so that in particular no linear terms in k appear) in real space no terms of the form
ψαω,x∂ψ

α−ω,x can appear.

c) Let α1 = −α2 = +,ω1 = ω2 = ω and consider the expression
∑
ω,k Wω(k;µ1)ψ̂

+
ω,k

ψ̂−ω,k. By using parity we see that Wω(k;µ1) is odd in k.
By using reflection we see that Wω(k, k0;µ1) = W−ω(k,−k0;µ1).
By using complex conjugation we see that Wω(k, k0;µ1) = W ∗ω(−k, k0;µ1).
By using rotation we find Wω(k, k0;µ1) = −iωWω(k0,−k;µ1).
By using (1)←→(2) we see that Wω(k;−µ1) is even in µ1.

If we define
G1(k) = 1

4

∑

η,η′
Wω(k̄ηη′ ;µ1)(η

sin k

sin π/M
+ η′ sin k0

sin π/M
)

= aω sin k + bω sin k0 , (A2.18)

it can be easily verified that the previous properties imply that

aω = a−ω = −a∗ω = iωbω
def= ia , bω = −b−ω = b∗ω = −iωaω

def= ωb = −iωia
(A2.19)
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with a = b real and independent ofω.As a consequence,G1(k) = G1(i sin k+ω sin k0)

for some real constant G1. If z1
def= P0G1 and we compute the lowest order contribution

to z1, we find z1 = O(λ2).
d) Let α1 = α2 = α,ω1 = ω2 = ω and consider the expression

∑
α,ω,k W

α
ω(k;µ1)ψ̂

α
ω,k

ψ̂αω,−k. Repeating the proof in item (c) we see that Wα
ω(k;µ1) is odd in k and in µ1

and, if we define F1(k) = 1
4

∑
η,η′ W

α
ω(k̄ηη′ ;µ1)(η

sin k
sin π/M + η′ sin k0

sin π/M ), we can rewrite
F1(k) = F1(i sin k + ω sin k0). Since Wα

ω(k;µ1) is odd in µ1, we find F1 = O(λµ1).
Note that with the definition of L introduced in §3.2, the result of the previous dis-

cussion is the following:

LV(1)(ψ) = (s1 + γ n1)F
(≤1)
σ +m1F

(≤1)
µ + l1F (≤1)

λ + z1F
(≤1)
ζ , (A2.20)

where s1, n1,m1, l1 and z1 are real constants and: s1 is linear in σ1 and independent
of µ1; m1 is linear in µ1 and independent of σ1; n1, l1, z1 are independent of σ1, µ1;
moreover F (≤1)

σ , F (≤1)
µ , F (≤1)

λ , F (≤1)
ζ are defined by (3.8) with h = 1.

Proof of Lemma 3.1. The symmetries (1)–(6) discussed above are preserved by the
iterative integration procedure. In fact it is easy to verify that LV(h), RV(h) and
PZh−1,σh−1,µh−1,f̃h

(dψ(h)) are, step by step, separately invariant under the transforma-
tions (1)–(6). Then Lemma 3.1 can be proven exactly in the same way (A2.20) was
proven above. ��
Proof of Lemma 3.2. It is sufficient to note that the symmetry properties discussed above
imply that L1W2,α,ω = 0 if ω1+ω2 = 0; L0W2,α,ω = 0 if ω1+ω2 �= 0; P0W2,α,ω = 0
if α1 + α2 �= 0; and use the definitions of Ri , Si , i = 1, 2. ��

Appendix A3. Proof of Lemma 3.3

The propagators g(h)
a,a′(x) can be written in terms of the propagators g(j,h)

ω,ω′ (x), j = 1, 2,

see (3.16) and the following lines; g(j,h)
ω,ω′ (x) are given by

g(j,h)ω,ω (x − y)

= 2

M2

∑

k

e−ik(x−y)f̃h(k)
−i sin k + ω sin k0 + a−(j)h−1 (k)

sin2 k + sin2 k0 +
(
m
(j)
h−1(k)

)2 + δB(j)h−1(k)
,

g
(j,h)
ω,−ω(x − y)

= 2

M2

∑

k

e−ik(x−y)f̃h(k)
−iωm(j)h−1(k)

sin2 k + sin2 k0 +
(
m
(j)
h−1(k)

)2 + δB(j)h−1(k)
, (A3.1)

where

a
ω(j)
h−1 (k)

def= −aωh−1(k)+ (−1)j bωh−1(k) , c
(j)
h−1(k)

def= ch−1(k)+ (−1)j dh−1(k),

m
(j)
h−1(k)

def= σh−1(k)+ (−1)jµh−1(k) , m
(j)
h−1(k)

def=m(j)h−1(k)+ c(j)(k),
δB

(j)
h−1(k)

def=
∑

ω

[
a
ω(j)
h−1 (k)(i sin k − ω sin k0)+ aω(j)h−1 (k)a

−ω(j)
h−1 (k)/2

]
. (A3.2)
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Fig. 4. A tree with its scale labels

In order to bound the propagators defined above, we need estimates on σh(k), µh(k)
and on the “corrections” aωh−1(k), b

ω
h−1(k), ch−1(k), dh−1(k). As regarding σh(k) and

µh(k), in [BM] is proved (see Proof of Lemma 2.6) that, on the support of fh(k), for
some c, c−1|σh| ≤ |σh−1(k)| ≤ c|σh| and c−1|µh| ≤ |µh−1(k)| ≤ c|µh|. Note also
that, if h ≥ h̄, using the first two of (3.18), we have |σh|+|µh|

γ h
≤ 2C1. As regarding the

corrections, using their iterative definition (3.11), the asymptotic estimates near k = 0
of the corrections on scale h = 1 (see lines after (2.19)) and the hypothesis (3.18), we
easily find that, on the support of fh(k):

aωh−1(k) = O(σhγ (1−2c|λ|)h)+O(γ (3−c|λ|2)h) ,

bωh (k) = O(µhγ (1−2c|λ|)h)+O(γ (3−c|λ|2)h) ,
ch(k) = O(γ (2−c|λ|2)h) , dh(k) = O(µhγ (2−2c|λ|)h) . (A3.3)

The bounds on the propagators follow from the remark that, as a consequence of the
estimates discussed above, the denominators in (A3.1) areO(γ 2h) on the support of fh.

Appendix A4. Analyticity of the Effective Potentials

It is possible to write V(h) (3.3) in terms of Gallavotti-Nicolo’ trees. See Fig. 4.
We need some definitions and notations.

1) Let us consider the family of all trees which can be constructed by joining a point r ,
the root, with an ordered set of n ≥ 1 points, the endpoints of the unlabeled tree, so
that r is not a branching point. n will be called the order of the unlabeled tree and
the branching points will be called the non trivial vertices. Two unlabeled trees are
identified if they can be superposed by a suitable continuous deformation, so that the
endpoints with the same index coincide. Then the number of unlabeled trees with n
end-points is bounded by 4n.

2) We associate a label h ≤ 0 with the root and we denote Th,n the corresponding set
of labeled trees with n endpoints. Moreover, we introduce a family of vertical lines,
labeled by an integer taking values in [h, 2], and we represent any tree τ ∈ Th,n so
that, if v is an endpoint or a non-trivial vertex, it is contained in a vertical line with
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index hv > h, to be called the scale of v, while the root is on the line with index
h. There is the constraint that, if v is an endpoint, hv > h + 1; if there is only one
end-point its scale must be equal to h+ 2, for h ≤ 0.

Moreover, there is only one vertex immediately following the root, which will be
denoted v0 and can not be an endpoint; its scale is h+ 1.
3) With each endpoint v of scale hv = +2 we associate one of the contributions to

V(1) given by (2.21); with each endpoint v of scale hv ≤ 1 one of the terms in LV(hv−1)

defined in (3.7). Moreover, we impose the constraint that, if v is an endpoint and hv ≤ 1,
hv = hv′ + 1, if v′ is the non-trivial vertex immediately preceding v.
4) We introduce a field label f to distinguish the field variables appearing in the terms

associated with the endpoints as in item 3); the set of field labels associated with the
endpoint v will be called Iv . Analogously, if v is not an endpoint, we shall call Iv the
set of field labels associated with the endpoints following the vertex v; x(f ), σ(f ) and
ω(f ) will denote the space-time point, the σ index and the ω index, respectively, of the
field variable with label f .
5) We associate with any vertex v of the tree a subset Pv of Iv , the external fields of v.

These subsets must satisfy various constraints. First of all, if v is not an endpoint and
v1, . . . , vsv are the sv vertices immediately following it, then Pv ⊂ ∪iPvi ; if v is an
endpoint, Pv = Iv . We shall denote Qvi the intersection of Pv and Pvi ; this definition
implies thatPv = ∪iQvi . The subsetsPvi\Qvi , whose union will be made, by definition,
of the internal fields of v, have to be non empty, if sv > 1, that is if v is a non trivial vertex.
Given τ ∈ Tj,n, there are many possible choices of the subsets Pv , v ∈ τ , compatible
with the previous constraints; let us call P one of these choices. Given P, we consider the
family GP of all connected Feynman graphs, such that, for any v ∈ τ , the internal fields
of v are paired by propagators of scale hv , so that the following condition is satisfied: for
any v ∈ τ , the subgraph built by the propagators associated with all vertices v′ ≥ v is
connected. The sets Pv have, in this picture, the role of the external legs of the subgraph
associated with v. The graphs belonging to GP will be called compatible with P and we
shall denote Pτ the family of all choices of P such that GP is not empty.
6) We associate with any vertex v an index ρv ∈ {s, p} and correspondingly an operator
Rρv , where Rs or Rp are defined as

Rs
def=






S2 if n = 1 and ω1 + ω2 = 0,
R1S1 if n = 1 and ω1 + ω2 �= 0,
S1 if n = 2,
1 if n > 2;

(A4.1)

and

Rp
def=






R2(P0 + P1) if n = 1 and ω1 + ω2 = 0,
R2P0 if n = 1, ω1 + ω2 �= 0 and α1 + α2 = 0,
0 if n = 1, ω1 + ω2 �= 0 and α1 + α2 �= 0,
R1P0 if n = 2,
0 if n > 2.

(A4.2)

Note that Rs +Rp = R, see Lemma 3.2.
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The effective potential can be written in the following way:

V(h)(
√
Zhψ

(≤h))+M2Ẽh+1 =
∞∑

n=1

∑

τ∈Th,n
V(h)(τ,

√
Zhψ

(≤h)), (A4.3)

where, if v0 is the first vertex of τ and τ1, . . . , τs are the subtrees of τ with root v0,
V(h)(τ,

√
Zhψ

(≤h)) is defined inductively by the relation

V(h)(τ,
√
Zhψ

(≤h))

= (−1)s+1

s!
ETh+1[V̄ (h+1)(τ1,

√
Zhψ

(≤h+1)); . . . ; V̄ (h+1)(τs,
√
Zhψ

(≤h+1))] ,

(A4.4)

and V̄ (h+1)(τi,
√
Zhψ

(≤h+1)):

a) is equal to Rρvi
V̂(h+1)(τi,

√
Zhψ

(≤h+1)) if the subtree τi with first vertex vi is not

trivial (see (3.12) for the definition of V̂(h));
b) if τi is trivial and h ≤ −1, it is equal to one of the terms in LV̂(h+1), see (3.12),

or, if h = 0, to one of the terms contributing to V̂(1)(
√
Z1ψ

≤1).

A4.1. The explicit expression for the kernels of V(h) can be found from (A4.3) and (A4.4)
by writing the truncated expectations of monomials of ψ fields using the analogue of
(A2.2): if ψ̃(Pvi ) =

∏
f∈Pvi ψ

α(f )(hv)

x(f ),ω(f ), the following identity holds:

EThv(ψ̃(Pv1),. . . ,ψ̃(Pvs ))=
( 1

Zhv−1

)n∑

Tv

αTv

∏

�∈Tv
g(hv)(f 1

� , f
2
� )

∫

dPTv (t)Pf GTv (t),

(A4.5)

where g(h)(f, f ′) = ga(f ),a(f ′)(x(f ) − x(f ′)) and the other symbols in a.1 have the
same meaning as those in A2.2.

Using iteratively A4.5 we can express the kernels of V(h) as sums of products of
propagators of the fields (the ones associated to the anchored trees Tv) and Pfaffians of
matrices GTv .

A4.2. If the R operator were not applied to the vertices v ∈ τ then the result of the
iteration would lead to the following relation:

V∗h(τ,
√
Zhψ

(≤h)) =
√
Zh
|Pv0 | ∑

P∈Pτ

∑

T ∈T

∫

dxv0W
∗
τ,P,T(xv0)

{ ∏

f∈Pv0
ψ
α(f )(≤h)
x(f ),ω(f )

}
,

(A4.6)

where xv0 is the set of integration variables asociated to τ and T = ⋃v Tv; W ∗τ,P,T is
given by

W ∗τ,P,T(xv0) =
[ ∏

v not e.p.

( Zhv

Zhv−1

) |Pv |
2
][ n∏

i=1

K
hi
v∗i
(xv∗i )

]{ ∏

v not e.p.

1

sv!

∫

dPTv (tv)

· Pf Ghv,Tv (tv)
[ ∏

l∈Tv
g(hv)(f 1

l , f
2
l )
]}
, (A4.7)
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where: e.p. is an abbreviation of “end points”; v∗1 , . . . , v
∗
n are the endpoints of τ , hi =

hv∗i and Khv
v (xv) are the corresponding kernels (equal to λhv−1δ(xv) or νhv−1δ(xv) if v

is an endpoint of type λ or ν on scale hv ≤ 1; or equal to one of the kernels of V(1) if
hv = 2).

We can bound (A4.7) using (3.20) and the Gram–Hadamard inequality, see Appendix
A2, we would find:

∫

dxv0 |W ∗τ,P,T (xv0)| ≤ CnM2|λ|nγ−h(−2+|Pv0 |/2)

×
∏

v not e.p.

{
1

sv!

( Zhv

Zhv−1

) |Pv |
2
γ−[−2+ |Pv |2 ]

}

. (A4.8)

We call Dv = −2 + |Pv |2 the dimension of v, depending on the number of the external
fields of v. If Dv < 0 for any v one can sum over τ,P, T obtaining convergence for λ
small enough; however Dv ≤ 0 when there are two or four external lines. We will take
now into account the effect of the R operator and we will see how the bound (A4.21) is
improved.

A4.3. The effect of application of Pj and Sj is to replace a kernel W(h)
2n,σ ,j,α,ω with

PjW(h)
2n,σ ,j,α,ω and SjW(h)

2n,σ ,j,α,ω. If inductively, starting from the end–points, we write

the kernelsW(h)
2n,σ ,j,α,ω in a form similar to (A4.7), we easily realize that, eventually, Pj

or Sj will act on some propagator of an anchored tree or on some Pfaffian Pf GTv , for
some v. It is easy to realize that Pj and Sj , when applied to Pfaffians, do not break the
Pfaffian structure. In fact the effect of Pj on the Pfaffian of an antisymmetric matrix G
with elements Gf,f ′ , f, f ′ ∈ J , |J | = 2k, is the following (the proof is trivial):

P0Pf G = Pf G0 , P1Pf G = 1

2

∑

f1,f2∈J
P1Gf1,f2(−1)πPf G0

1 , (A4.9)

where G0 is the matrix with elements P0Gf,f ′ , f, f ′ ∈ J ; G0
1 is the matrix with ele-

ments P0Gf,f ′ , f, f ′ ∈ J1
def= J \ {f1 ∪ f2} and (−1)π is the sign of the permutation

leading from the ordering J of the labels f in the l.h.s. to the ordering f1, f2, J1 in the
r.h.s. The effect of Sj is the following, see Appendix A7 for a proof:

S1Pf G = 1

2 · k!

∑

f1,f2∈J
S1Gf1,f2

∗∑

J1∪J2=J\∪ifi
(−1)πk1! k2! Pf G0

1 Pf G2 , (A4.10)

where the ∗ on the sum means that J1 ∩ J2 = ∅; |Ji | = 2ki , i = 1, 2; (−1)π is the
sign of the permutation leading from the ordering J of the field labels on the l.h.s. to the
ordering f1, f2, J1, J2 on the r.h.s.;G0

1 is the matrix with elements P0Gf,f ′ , f, f ′ ∈ J1;
G2 is the matrix with elements Gf,f ′ , f, f ′ ∈ J2. The effect of S2 on Pf GT is given
by a formula similar to (A4.10). Note that the number of terms in the sums appearing
in (A4.9), (A4.10) (and in the analogous equation for S2Pf GT ), is bounded by ck for
some constant c.
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A4.4. It is possible to show that the Rj operators produce derivatives applied to the
propagators of the anchored trees and on the elements of GTv ; and a product of “zeros”
of the form dbj (x(f

1
� ) − x(f 2

� )), j = 0, 1, b = 0, 1, 2, associated to the lines � ∈
Tv . This is a well known result, and a very detailed discussion can be found in §3 of
[BM]. By such analysis, and using (A4.9),(A4.10), we get the following expression for
RV(h)(τ,

√
Zhψ

(≤h)):

RV(h)(τ,
√
Zhψ

(≤h))

=
√
Zh
|Pv0 | ∑

P∈Pτ

∑

T ∈T

∑

β∈BT

∫

dxv0Wτ,P,T,β(xv0)
{ ∏

f∈Pv0
∂̂
qβ (f )

jβ(f )
ψ
α(f )(≤h)
xβ(f ),ω(f )

}
,

(A4.11)

where BT is a set of indices which allows to distinguish the different terms produced
by the non trivial R operations; xβ(f ) is a coordinate obtained by interpolating two
points in xv0 , in a suitable way depending on β; qβ(f ) is a nonnegative integer ≤ 2;
jβ(f ) = 0, 1 and ∂̂qj is a suitable differential operator, dimensionally equivalent to ∂qj
(see [BM] for a precise definition); Wτ,P,T,β is given by:

Wτ,P,T,β(xv0) =
[ ∏

v not e.p.

( Zhv

Zhv−1

) |Pv |
2
][ n∏

i=1

d
bβ(v

∗
i )

jβ (v
∗
i )
(xiβ , yiβ)P

Cβ(v
∗
i )

Iβ (v
∗
i )

Scβ(v
∗
i )

iβ (v
∗
i )
K
hi
v∗i
(xv∗i )

]

·
{ ∏

v not e.p.

1

sv!

∫

dPTv (tv)P
Cβ(v)

Iβ (v)
Scβ(v)iβ (v)

Pf Ghv,Tvβ (tv)·

·
[ ∏

l∈Tv
∂̂
qβ(f

1
l )

jβ (f
1
l )
∂̂
qβ (f

2
l )

jβ (f
2
l )

[d
bβ(l)

jβ (l)
(xl , yl )P

Cβ(l)

Iβ (l)
Scβ(l)iβ (l)

g(hv)(f 1
l , f

2
l )]
]}
,

(A4.12)

where v∗1 , . . . , v
∗
n are the endpoints of τ ; bβ(v), bβ(l), qβ(f 1

l ) and qβ(f 2
l ) are nonneg-

ative integers ≤ 2; jβ(v), jβ(f 1
l ), jβ(f

2
l ) and jβ(l) can be 0 or 1; iβ(v) and iβ(l) can

be 1 or 2; Iβ(v) and Iβ(l) can be 0 or 1; Cβ(v), cβ(v), Cβ(l) and cβ(l) can be 0, 1 and
max{Cβ(v) + cβ(v), Cβ(l) + cβ(l}) ≤ 1; Ghv,Tvβ (tv) is obtained from Ghv,Tv (tv) by

substituting the element ti(f ),i(f ′)g(hv)(f, f ′) with ti(f ),i(f ′)∂̂
qβ (f )

jβ(f )
∂̂
qβ(f

′)
jβ (f ′) g

(hv)(f, f ′).
It would be very difficult to give a precise description of the various contributions of

the sum over BT , but fortunately we only need to know some very general properties,
which easily follow from the construction in §3.

1) There is a constant C such that, ∀T ∈ Tτ , |BT | ≤ Cn; for any β ∈ BT , the
following inequality is satisfied:

[ ∏

f∈∪vPv
γ h(f )qβ(f )

][∏

l∈T
γ−h(l)bβ(l)

]
≤

∏

v not e.p.

γ−z(Pv) , (A4.13)

where h(f ) = hv0 − 1 if f ∈ Pv0 , otherwise it is the scale of the vertex where the field
with label f is contracted; h(l) = hv , if l ∈ Tv and

z(Pv) =






1 if |Pv| = 4 and ρv = p ,
2 if |Pv| = 2 and ρv = p ,
1 if |Pv| = 2, ρv = s and

∑
f∈Pv ω(f ) �= 0 ,

0 otherwise.

(A4.14)



Anomalous Universality in the Anisotropic Ashkin–Teller Model 725

2) If we define

∏

v∈τ

[( |σhv | + |µhv |
γ hv

)cβ(v)iβ (v) ∏

�∈Tv

( |σhv | + |µhv |
γ hv

)cβ(�)iβ (�)]

def=
∏

v∈Vβ

( |σhv | + |µhv |
γ hv

)i(v,β)
, (A4.15)

the indices i(v, β) satisfy, for any BT , the following property:

∑

w≥v
i(v, β) ≥ z′(Pv) , (A4.16)

where

z′(Pv) =






1 if |Pv| = 4 and ρv = s ,
2 if |Pv| = 2 and ρv = sand

∑
f∈Pv ω(f ) = 0 ,

1 if |Pv| = 2, ρv = s and
∑
f∈Pv ω(f ) �= 0 ,

0 otherwise.

(A4.17)

A4.5. We can bound any |PCβ(v)

Iβ (v)
Scβ(v)iβ (v)

Pf Ghv,Tvβ | in (A4.12), withCβ(v)+cβ(v) = 0, 1,
by using (A4.9), (A4.10) and Gram inequality, as illustrated in Appendix A2 for the case
of the integration of the χ fields. Using that the elements of G are all propagators on
scale hv , dimensionally bounded as in Lemma 3.3, we find:

|PCβ(v)

Iβ (v)
Scβ(v)iβ (v)

Pf Ghv,Tvβ | ≤ C
∑sv
i=1 |Pvi |−|Pv |−2(sv−1)

·γ hv
2

(∑sv
i=1 |Pvi |−|Pv |−2(sv−1)

)[ ∏

f∈Jv
γ hvqβ(f )

]( |σhv | + |µhv |
γ hv

)cβ(v)iβ (v)+Cβ(v)Iβ (v)
,

(A4.18)

where Jv = ∪svi=1Pvi \Qvi . We will bound the factors
( |σhv |+|µhv |

γ hv

)Cβ(v)Iβ (v)
using (3.19)

by a constant.
If we call

Jτ,P,T ,β =
∫

dxv0

∣
∣
∣
[ n∏

i=1

d
bβ (v

∗
i
)

jβ (v
∗
i
)
(xiβ , yiβ )P

Cβ(v
∗
i
)

Iβ (v
∗
i
)

S
cβ (v

∗
i
)

iβ (v
∗
i
)
K
hi
v∗
i
(xv∗

i
)
]

·
{ ∏

vnot e.p.

1

sv!

[ ∏

l∈Tv
∂̂
qβ (f

1
l
)

jβ (f
1
l
)
∂̂
qβ (f

2
l
)

jβ (f
2
l
)
[d
bβ (l)

jβ (l)
(xl , yl )P

Cβ(l)

Iβ (l)
S
cβ (l)

iβ (l)
g(hv)(f 1

l , f
2
l )]
]}∣
∣
∣ ,

(A4.19)

we have, under the hypothesis (3.24),
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Jτ,P,T ,α ≤ CnM2|λ|n
[ n∏

i=1

( |σh∗i | + |µh∗i |
γ h
∗
i

)cβ(v∗i )iβ (v
∗
i )
]
·

·
{ ∏

v not e.p.

1

sv!
C2(sv−1)γ hvnν(v)γ−hv

∑
l∈Tv bβ(l)γ−hv

∑n
i=1 bβ(v

∗
i )γ−hv(sv−1) ·

·γ hv
∑
l∈Tv

[
qβ(f

1
l )+qβ(f 2

l )
]}[∏

�∈T

( |σhv | + |µhv |
γ hv

)cβ(�)iβ (�)]
, (A4.20)

where nν(v) is the number of vertices of type ν with scale hv + 1.
Now, substituting (A4.18), (A4.20) into (A4.12), using (A4.13), we find that:

∫

dxv0 |Wτ,P,T ,β(xv0)| ≤ CnM2|λ|nγ−hDk(|Pv0 |)
∏

v∈Vβ

( |σhv | + |µhv |
γ hv

)i(v,β)

·
∏

v not e.p.

{
1

sv!
C
∑sv
i=1 |Pvi |−|Pv |

( Zhv

Zhv−1

) |Pv |
2
γ−[−2+ |Pv |2 +z(Pv)]

}

, (A4.21)

where, if k = ∑f∈Pv0 qβ(f ), Dk(p) = −2 + p + k and we have used (A4.15). Note
that given v ∈ τ and τ ∈ Th,n and using (3.19) together with the first two of (3.18),

|σhv |
γ hv
= |σh|
γ h

|σhv |
|σh| γ

h−hv ≤ |σh|
γ h

γ (h−hv)(1−c|λ|) ≤ C1γ
(h−hv̄)(1−c|λ|),

|µhv |
γ hv
= |µh|

γ h

|µhv |
|µh| γ

h−hv ≤ |µh|
γ h

γ (h−hv)(1−c|λ|) ≤ C1γ
(h−hv)(1−c|λ|). (A4.22)

Moreover the indices i(v, β) satisfy, for any BT , (A4.17) so that, using (A4.22) and
(A4.16), we find

∏

v∈Vβ

( |σhv | + |µhv |
γ hv

)i(v,β) ≤ Cn1
∏

v not e.p.

γ−z
′(Pv) . (A4.23)

Substituting (A4.22) into (A4.21) and using (A4.16), we find:

∫

dxv0 |Wτ,P,T ,β(xv0)| ≤ CnM2|λ|nγ−hDk(|Pv0 |)

·
∏

v not e.p.

{
1

sv!
C
∑sv
i=1 |Pvi |−|Pv |

( Zhv

Zhv−1

) |Pv |
2
γ−[−2+ |Pv |2 +z(Pv)+(1−c|λ|)z′(Pv)]

}

,

(A4.24)

where

Dv
def= − 2+ |Pv|

2
+ z(Pv)+ (1− c|λ|)z′(Pv) ≥ |Pv|

6
. (A4.25)

Then (3.25) in Theorem 3.1 follows from the previous bounds and the remark that
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∑

τ∈Th,n

∑

P∈Pτ

∑

T ∈T

∑

β∈BT

∏

v

1

sv!
γ−

|Pv |
6 ≤ cn , (A4.26)

for some constant c, see [BM] or [GM] for further details.

The bound on Ẽh, th, (3.26) and (3.27) follow from a similar analysis. The remarks
following (3.26) and (3.27) follow from noticing that in the expansion for LV(h) only
propagators of type P0g

(hv)

a,a′ or P1g
(hv)

a,a′ appear (in order to bound these propagators we
do not need (3.19), see the last statement in Lemma 3.3). Furthermore, by construction
lh, nh and zh are independent of σk, µk , so that, in order to prove (3.27) we do not even
need the first two inequalities in (3.18). ��

A4.6. The sum over all the trees with root scale h and with at least a v with hv = k

is O(|λ|γ 1
2 (h−k)); this follows from the fact that the bound (A4.26) holds, for some

c = O(1), even if γ−|Pv |/6 is replaced by γ−κ|Pv |, for any constant κ > 0 independent
of λ; and thatDv , instead of using (A4.25), can also be bounded asDv ≥ 1/2+|Pv|/12.
This property is called short memory property.

Appendix A5. Proof of Theorem 4.1 and Lemma 4.2

We consider the space Mϑ of sequences ν = {νh}h≤1 such that |νh| ≤ c|λ|γ (ϑ/2)h; we

shall think Mϑ as a Banach space with norm || · ||ϑ , where ||ν||ϑdef= supk≤1 |νk|γ−(ϑ/2)k .
We will proceed as follows: we first show that, for any sequence ν ∈Mϑ , the flow equa-
tion for νh, the hypothesis (3.17), (3.18) and the property |λh(ν)| ≤ c|λ| are verified,
uniformly in ν. Then we fix ν ∈Mϑ via an exponentially convergent iterative procedure,
in such a way that the flow equation for νh is satisfied.

A5.1. Proof of Theorem 4.1. Given ν ∈ Mϑ , let us suppose inductively that (3.17),
(3.18) and that, for k > h̄+ 1,

|λk−1(ν)− λk(ν)| ≤ c0|λ|2γ (ϑ/2)k , (A5.1)

for some c0 > 0. Note that (A5.1) is certainly true for h = 1 (in that case the r.h.s. of
(A5.1) is just the bound on β1

λ). Note also that (A5.1) implies that |λk| ≤ c|λ|, for any
k > h̄.

Using (3.26), the second of (3.27) and (4.1) we find that (3.17), (3.18) are true with
h̄ replaced by h̄− 1.

We now consider the equation λh−1 = λh + βhλ (λh, νh; . . . ; λ1, ν1), h > h̄. The
function βhλ can be expressed as a convergent sum over tree diagrams, as described in
Appendix A4; note that it depends on (λh, νh; . . . ; λ1, ν1) directly through the end–
points of the trees and indirectly through the factors Zh/Zh−1.

We can write P0g
(h)
(+,ω),(−,ω)(x − y) = g(h)L,ω(x − y)+ r(h)ω (x − y), where

g
(h)
L,ω(x − y)

def= 4

M2

∑

k

e−ik(x−y)f̃h(k)
1

ik + ωk0
(A5.2)
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and r(h)ω is the rest, satisfying the same bound as g(h)(+,ω),(−,ω), times a factor γ h. This

decomposition induces the following decomposition for βhλ :

βhλ (λh, νh; . . . ; λ1, ν1) = βhλ,L(λh, . . . , λh)

+
1∑

k=h+1

D
h,k
λ + rhλ (λh, . . . , λ1)+

∑

k≥h
νkβ̃

h,k
λ (λk, νk; . . . ; λ1, ν1) ,(A5.3)

with

|βhλ,L| ≤ c|λ|2γ ϑh , |Dh,kλ | ≤ c|λ|γ ϑ(h−k)|λk − λh| ,
|rhλ | ≤ c|λ|2γ (ϑ/2)h , |β̃h,kλ | ≤ c|λ|γ ϑ(h−k) . (A5.4)

The first two terms in (A5.3) βhλ,L collect the contributions obtained by posing r(k)ω = 0,

k ≥ h and substituting the discrete δ function defined after (3.8) withM2δk,0. The first of
(A5.4) is called the vanishing of the Luttinger model Beta function property, see [BGPS,
GS, BM1] (or [BeM1] for a simplified proof), and it is a crucial property of interacting
fermionic systems in d = 1.

Using the decomposition (A5.3) and the bounds (A5.4) we prove the following bounds
for λh̄(ν), ν ∈Mϑ :

|λh̄(ν)− λ1(ν)| ≤ c0|λ|2 , |λh̄(ν)− λh̄+1(ν)| ≤ c0|λ|2γ (ϑ/2)h̄ , (A5.5)

for some c0 > 0. Moreover, given ν, ν′ ∈Mϑ , we show that:

|λh̄(ν)− λh̄(ν′)| ≤ c|λ|||ν − ν′||0 , (A5.6)

where ||ν − ν′||0def= suph≤1 |νh − ν′h|.

Proof of (A5.5). We decompose λh̄ − λh̄+1 = βh̄+1
λ as in (A5.3). Using the bounds

(A5.4) and the inductive hypothesis (A5.1), we find:

|λh̄(ν)− λh̄+1(ν)| ≤ c|λ|2γ ϑ(h̄+1) +
∑

k≥h̄+2

c|λ|γ ϑ(h̄+1−k)
k∑

k′=h̄+2

c0|λ|2γ (ϑ/2)k′

+c|λ|2γ (ϑ/2)(h̄+1) +
∑

k≥h̄+1

c2|λ|2γ (ϑ/2)kγ (ϑ(h̄+1−k)) , (A5.7)

which, for c0 big enough, immediately implies the second of (A5.5) with h → h − 1;
from this bound and the hypothesis (A5.1) follows the first of (A5.5). ��
Proof of (A5.6). If we take two sequences ν, ν′ ∈Mϑ , we easily find that the beta func-
tion for λh̄(ν)− λh̄(ν′) can be represented by a tree expansion similar to the one for βhλ ,
with the property that the trees giving a non vanishing contribution have necessarily one
end–point on scale k ≥ h associated to a coupling constant λk(ν) − λk(ν′) or νk − ν′k .
Then we find:

λh̄(ν)− λh̄(ν′) = λ1(ν)− λ1(ν
′)

+
∑

h̄+1≤k≤1

[βkλ(λk(ν), νk; . . . ; λ1, ν1)− βkλ(λk(ν′), ν′k; . . . ; λ1, ν
′
1)]. (A5.8)
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Note that |λ1(ν) − λ1(ν
′)| ≤ c0|λ||ν1 − ν′1|, because λ1 = λ/Z2

1 + O(λ2/Z4
1) and

Z1 =
√

2− 1+ ν/2. If we inductively suppose that, for any k > h̄, |λk(ν)− λk(ν′)| ≤
2c0|λ|||ν − ν′||0, we find, by using the decomposition (A5.3):

|λh̄(ν)− λh̄(ν′)| ≤ c0|λ||ν1 − ν′1| + c|λ|
×
∑

k≥h̄+1

γ (ϑ/2)k
∑

k′≥k
γ ϑ(k−k

′)
[
2c0|λ| ||ν − ν′||0 + |νk − ν′k|

]
. (A5.9)

Choosing c0 big enough, (A5.6) follows. ��

We are now left with fixing the sequence ν in such a way that the flow equation for
ν is satisfied. Since we want to fix ν in such a way that ν−∞ = 0, we must have:

ν1 = −
1∑

k=−∞
γ k−2βkν (λk, νk; . . . ; λ1, ν1) . (A5.10)

If we manage to fix ν1 as in (A5.10), we also get:

νh = −
∑

k≤h
γ k−h−1βkν (λk, νk; . . . ; λ1, ν1) . (A5.11)

We look for a fixed point of the operator T : Mϑ →Mϑ defined as:

(Tν)h = −
∑

k≤h
γ k−h−1βkν (λk(ν), νk; . . . ; λ1, ν1) . (A5.12)

where λk(ν) is the solution of the first line of (4.2), obtained as a function of the param-
eter ν, as described above.

If we find a fixed point ν∗ of (A5.12), the first two lines in (4.2) will be simultaneously
solved by λ(ν∗) and ν∗ respectively, and the solution will have the desired smallness
properties for λh and νh.

First note that, if |λ| is sufficiently small, then T leaves Mϑ invariant: in fact, as a
consequence of parity cancellations, the ν–component of the Beta function satisfies:

βhν (λh, νh; . . . ; λ1, ν1) = βhν,1(λh; . . . ; λ1)+
∑

k

νkβ̃
h,k
ν (λh, νh; . . . ; λ1, ν1),

(A5.13)

where, if c1, c2 are suitable constants

|βhν,1| ≤ c1|λ|γ ϑh |β̃h,kν | ≤ c2|λ|γ ϑ(h−k) . (A5.14)

By using (A5.13) and choosing c = 2c1 we obtain

|(Tν)h| ≤
∑

k≤h
2c1|λ|γ (ϑ/2)kγ k−h ≤ c|λ|γ (ϑ/2)h . (A5.15)
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Furthermore, using (A5.13) and (A5.6), we find that T is a contraction on Mϑ :

|(Tν)h − (Tν′)h| ≤
∑

k≤h
γ k−h−1|βkν (λk(ν), νk; . . . ; λ1, ν1)− βkν (λk(ν′), ν′k; . . . ; λ1, ν

′
1)|

≤ c
∑

k≤h
γ k−h−1



γ ϑk
1∑

k′=k
|λk′ (ν)− λk′ (ν′)| +

1∑

k′=k
γ ϑ(k−k′)|λ||νk′ − ν′k′ |





≤ c′
∑

k≤h
γ k−h−1

[
|k|γ ϑk |λ| ||ν − ν′||0 +

1∑

k′=k
γ ϑ(k−k′)|λ|γ (ϑ/2)k′ ||ν − ν′||ϑ

≤ c′′|λ|γ (ϑ/2)h||ν − ν′||ϑ , (A5.16)

hence ||(Tν)− (Tν′)||ϑ ≤ c′′|λ|||ν − ν′||ϑ . Then, a unique fixed point ν∗ for T exists
on Mϑ . Proof of Theorem 4.1 is concluded by noticing that T is analytic (in fact βhν and
λ are analytic in ν in the domain Mϑ ). ��

A5.2.Proof of Lemma 4.2. From now on we shall think of λh and νh fixed, with ν1 conve-
niently chosen as above (ν1 = ν∗1 (λ)). Then we have |λh| ≤ c|λ| and |νh| ≤ c|λ|γ (ϑ/2)h,
for some c, ϑ > 0. Having fixed ν1 as a convenient function of λ, we can also think of
λh and νh as functions of λ.

The flow ofZh. The flow ofZh is given by the first of (4.1) with zh independent of σk, µk ,
k ≥ h. By Theorem 3.1 we have that |zh| ≤ c|λ|2, uniformly inh.Again, as forλh and νh,

we can formally study this equation up to h = −∞. We define γ−ηzdef= limh→−∞ 1+zh,
so that

logγ Zh =
∑

k≥h+1

logγ (1+ zk) = ηz(h− 1)+
∑

k≥h+1

rkζ , rkζ
def= logγ

(
1+ zk − z−∞

1+ z−∞
)
. (A5.17)

Using the fact that zk−1 − zk is necessarily proportional to λk−1 − λk or to νk−1 − νk
and that λk−1 − λk is bounded as in (A5.1), we easily find: |rkζ | ≤ c

∑
k′≤k |zk′−1 −

zk′ | ≤ c′|λ|2γ (ϑ/2)k . So, if Fhζ
def= ∑k≥h+1 r

k
ζ and F 1

ζ = 0, then Fhζ = O(λ) and

Zh = γ ηz(h−1)+Fhζ . Clearly, by definition, ηz and Fhζ only depend on λk , νk , k ≤ 1, so
they are independent of t and u.

The flow of µh. The flow of µh is given by the last of (4.1). One can easily show induc-
tively that µk(k)/µh, k ≥ h, is independent of µ1, so that one can think that µh−1/µh
is just a function of λh, νh. Then, again we can study the flow equation for µh up to

h→−∞. We define γ−ηµdef= limh→−∞ 1+(mh/µh−zh)/(1+zh), so that, proceeding
as for Zh, we see that

µh = µ1γ
ηµ(h−1)+Fhµ , (A5.18)

for a suitable Fhµ = O(λ). Of course ηµ and Fhµ are independent of t and u.
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The flow of σh. The flow of σh can be studied as the one of µh. If we define γ−ησ def=
limh→−∞ 1+ (sh/σh − zh)/(1+ zh), we find that

σh = σ1γ
ησ (h−1)+Fhσ , (A5.19)

for a suitable Fhσ = O(λ). Again, ησ and Fhσ are independent of t, u.
We are left with proving that ησ − ηµ �= 0. It is sufficient to note that, by direct

computation of the lowest order terms, for some ϑ > 0, (4.1) can be written as:

zh = b1λ
2
h +O(|λ|2γ ϑh)+O(|λ|3) , b1 > 0,

sh/σh = −b2λh +O(|λ|γ ϑh)+O(|λ|2) , b2 > 0,

mh/µh = b2λh +O(|λ|γ ϑh)+O(|λ|2) , b2 > 0 , (A5.20)

where b1, b2 are constants independent of λ and h. Using (A5.20) and the definitions of
ηµ and ησ we find: ησ − ηµ = (2b2/ log γ )λ+O(λ2). ��

Appendix A6. Proof of Lemma 5.3

Proceeding as in §4 and Appendix A5, we first solve the equations for Zh and m̂(2)h
parametrically in π = {πh}h≤h∗1 . If |πh| ≤ c|λ|γ (ϑ/2)(h−h∗1), the first two assump-
tions of (5.14) easily follow. Now we will construct a sequence π such that |πh| ≤
c|λ|γ (ϑ/2)(h−h∗1) and satisfying the flow equation πh−1 = γ hπh + βhπ(πh, . . . , πh∗1 ).

A6.1. Tree expansion for βhπ . βhπ can be expressed as a sum over tree diagrams, sim-
ilar to those used in Appendix A4. The main difference is that they have vertices on
scales k between h and +2. The vertices on scales hv ≥ h∗1 + 1 are associated to the
truncated expectations (A4.4); the vertices on scale hv = h∗1 are associated to truncated

expectations w.r.t. the propagators g
(1,h∗1)
ω1,ω2 ; the vertices on scale hv < h∗1 are associated to

truncated expectations w.r.t. the propagators g(2,hv+1)
ω1,ω2 . Moreover the end–points on scale

≥ h∗1 + 1 are associated to the couplings λh or νh, as in Appendix A4; the end–points
on scales h ≤ h∗1 are necessarily associated to the couplings πh.

A6.2. Bounds on βhπ . The non-vanishing trees contributing to βhπ must have at least one
vertex on scale ≥ h∗1: in fact the diagrams depending only on the vertices of type π
are vanishing (they are chains, so they are vanishing, because of the compact support
property of the propagator). This means that, by the short memory property, see the
Remark at the end of Appendix A4: |βhπ | ≤ c|λ|γ ϑ(h−h

∗
1).

A6.3. Fixing the counterterm. We now proceed as in Appendix A5 but the analysis here
is easier, because no λ end–points can appear and the bound |βhπ | ≤ c|λ|γ ϑ(h−h

∗
1) holds.

As in Appendix A5, we can formally consider the flow equation up to h = −∞, even
if h∗2 is a finite integer. This is because the beta function is independent of m̂(2)k , k ≤ h∗1
and admits bounds uniform in h. If we want to fix the counterterm πh∗1 in such a way
that π−∞ = 0, we must have, for any h ≤ h∗1:
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πh = −
∑

k≤h
γ k−h−1βkπ (πk, . . . , πh∗1 ) . (A6.1)

LetM̃be the space of sequencesπ={π−∞, . . . , πh∗1 } such that |πh| ≤ c|λ|γ−(ϑ/2)(h−h∗1).
We look for a fixed point of the operator T̃ : M̃→ M̃ defined as:

(T̃π)h = −
∑

k≤h
γ k−h−1βkπ (πk; . . . ;πh∗1 ) . (A6.2)

Using that βkπ is independent from m̂
(2)
k and the bound on the beta function, choosing

λ small enough and proceeding as in the proof of Theorem 4.1, we find that T̃ is a
contraction on M̃, so that we find a unique fixed point, and the first of (5.16) follows.

A6.4. The flows of Zh and m̂(2)h . Once πh∗1 is fixed via the iterative procedure of §A6.3,

we can study in more detail the flows of Zh and m̂(2)h given by (5.10). Note that zh
and sh can be again expressed as a sum over tree diagrams and, as discussed for βhπ ,
see §A6.2, any non-vanishing diagram must have at least one vertex on scale ≥ h∗1.
Then, by the short memory property, see §A4.6, we have zh = O(λ2γ ϑ(h−h∗1)) and
sh = O(λm̂(2)h γ ϑ(h−h

∗
1)) and, repeating the proof of Lemma 4.1, we find the second and

third of (5.16).

A6.5 The Lipshitz property (5.17). Clearly, π∗
h∗1
(λ, σ1, µ1)− π∗h∗1 (λ, σ

′
1, µ
′
1) can be ex-

pressed via a tree expansion similar to the one discussed above; in the trees with non-
vanishing value, there is either a difference of propagators at scale h ≥ h∗1 with couplings
σh, µh and σ ′h, µ

′
h, giving in the dimensional bounds an extra factor O(|σh − σ ′h|γ−h)

or O(|µh − µ′h|γ−h); or a difference of propagators at scale h ≤ h∗1 (computed by

definition at m̂(2)h = 0) with the “corrections” aωh , ch associated to σ1, µ1 or σ ′1, µ
′
1,

giving in the dimensional bounds an extra factor O(|σ1 − σ ′1|) or O(|µ1 − µ′1|). Then,

∣
∣
∣πh∗1 (λ, σ1, µ1)− πh∗1 (λ, σ ′1, µ′1)

∣
∣
∣ ≤ c|λ|

∑

k≤h∗1
γ k−h

∗
1−1

·
[ ∑

h≥h∗1

( |σh − σ ′h|
γ h

+ |µh − µ
′
h|

γ h

)

+
∑

k≤h≤h∗1

(|σ1 − σ ′1| + |µ1 − µ′1|
)]
,

(A6.3)

from which, using (A5.18) and (A5.19), we easily get (5.17).

Appendix A7. Proof of (A4.10)

We have, by definition Pf G = (2kk!)−1∑
p(−1)pGp(1)p(2) · · ·Gp(2k−1)p(2k), where

p = (p(1), . . . . . . , p(|J |)) is a permutation of the indices f ∈ J (we suppose |J | = 2k)
and (−1)p its sign.
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If we apply S1 = 1−P0 to Pf G and we callG0
f,f ′

def= P0Gf,f ′ , we find that S1Pf G
is equal to

1

2kk!

∑

p

(−1)p
[
Gp(1)p(2) · · ·Gp(2k−1)p(2k) −G0

p(1)p(2) · · ·G0
p(2k−1)p(2k)

]

= 1

2kk!

∑

p

(−1)p
k∑

j=1

·
(
G0
p(1)p(2) · · ·G0

p(2j−3)p(2j−2)

)

×S1Gp(2j−1)p(2j)

(
Gp(2j+1)p(2j+2) · · ·Gp(2k−1)p(2k)

)
, (A7.1)

where in the last sum the meaningless factors must be put equal to 1. We rewrite the two
sums over p and j in the following way:

∑

p

k∑

j=1

=
k∑

j=1

∑

f1,f2∈J
f1 �=f2

∗∑

J1,J2

∗∗∑

p

, (A7.2)

where the ∗ on the second sum means that the sets J1 and J2 are s.t. (f1, f2, J1, J2) is a
partition of J ; the ∗∗ on the second sum means that p(1), . . . , p(2j − 2) belong to J1,
(p(2j − 1), p(2j)) = (f1, f2) and p(2j + 1), . . . , p(2k) belong to J2. Using (A7.2)
we can rewrite (A7.1) as

S1Pf G = 1

2kk!

k∑

j=1

∑

f1,f2∈J
f1 �=f2

(−1)πS1Gf1,f2

∗∑

J1,J2

·
∑

p1,p2

(−1)p1+p2
(
G0
p1(1)p1(2) · · ·G0

p1(2k1−1)p(2k1)

)

×
(
Gp2(1)p2(2) · · ·Gp2(2k2−1)p(2k2)

)
, (A7.3)

where (−1)π is the sign of the permutation leading from the ordering J to the ordering
(f1, f2, J1, J2); pi , i = 1, 2 is a permutation of the labels in Ji (we suppose |Ji | = 2ki)
and (−1)pi is its sign. It is clear that (A7.3) is equivalent to (A4.10).
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