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Abstract: The Ashkin-Teller (AT) model is a generalization of Ising 2—d to a four
states spin model; it can be written in the form of two Ising layers (in general with
different couplings) interacting via a four—spin interaction. It was conjectured long ago
(by Kadanoff and Wegner, Wu and Lin, Baxter and others) that AT has in general two
critical points, and that universality holds, in the sense that the critical exponents are the
same as in the Ising model, except when the couplings of the two Ising layers are equal
(isotropic case). We obtain an explicit expression for the specific heat from which we
prove this conjecture in the weakly interacting case and we locate precisely the critical
points. We find the somewhat unexpected feature that, despite universality, holds for the
specific heat, nevertheless nonuniversal critical indexes appear: for instance the distance
between the critical points rescale with an anomalous exponent as we let the couplings
of the two Ising layers coincide (isotropic limit); and so does the constant in front of the
logarithm in the specific heat. Our result also explains how the crossover from universal
to nonuniversal behaviour is realized.

1. Introduction

1.1. Historical introduction. Ashkin and Teller [AT] introduced their model as a gener-
alization of the Ising model to a four component system; in each site of a bidimensional
lattice there is a spin which can take four values, and only nearest neighbor spins interact.
The model can be also considered a generalization of the four state Potts model to which
it reduces for a suitable choice of the parameters.

A very convenient representation of the Ashkin Teller model is in terms of Ising spins
[F]; one associates with each site of the square lattice two spin variables, a,gl) and 0,22);

the partition function is given by Ef\ATJ = Zom) G e Hau where
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Hpyy (0", 0@) = IV H (0D) + TP H (@) + 2V (e, 0@) = > HAT
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where Hj is the Ising model hamiltonian, é;, &y are the unit vectors ¢, = (1, 0), &y =
(0, 1) and Ay is a square subset of Z? of side M. The free energy and the specific heat
are given by

1 1
f= lim mlogaj‘\’g . Cy=lim — Y < HAMHM >4, 7 .(1.2)

M —o00

where < - >, 7 denotes the truncated expectation w.r.t. the Gibbs distribution with
the Hamiltonian (1.1). The case J = J@ is called isotropic. For A = 0 the model
reduces to two independent Ising models and it has two critical points if JV % J@; it
was conjectured by Kadanoff and Wegner [K, KW] and later on by Wu and Lin [WL]
that the AT model has in general two critical points also when A # 0, except when the
model is isotropic.

The isotropic case was studied by Kadanoff [K] who, by scaling theory, conjectured
a relation between the critical exponents of isotropic AT and those of the Eight vertex
model, which had been solved by Baxter and has nonuniversal indexes. Further evidence
for the validity of Kadanoff’s prediction was given by [PB] (using second order renor-
malization group arguments) and by [LP, N] (by a heuristic mapping of both models
into the massive Luttinger model describing one dimensional interacting fermions in the
continuum). Indeed nonuniversal critical behaviour in the specific heat in the isotropic
AT model, for small X, has been rigorously established in [M1].

The anisotropic case is much less understood. As we said, it is believed that there are
two critical points, contrary to what happens in the isotropic case. Baxter [Ba] conjec-
tured that "presumably" universality holds at the critical points for J( £ J@ (i.e. the
critical indices are the same as in the Ising model), except when J( = J©® when
the two critical points coincide and nonuniversal behaviour is found. Since the 1970’s,
the anisotropic AT model was studied by various approximate or numerical methods:
Migdal-Kadanoff Renormalization Group [DR], Monte Carlo Renormalization group
[Bel], finite size scaling [Bad]; such results give evidence of the fact that, far away from
the isotropic point, AT has two critical points and belongs to the same universality class
of Ising; however they do not give information about the precise relative location of the
critical points and the critical behaviour of the specific heat when J( is close to J 2.
The problem of how the crossover from universal to nonuniversal behaviour is realized
in the isotropic limit remained for years completely unsolved, even at a heuristic level.

We will study the anisotropic Ashkin—Teller model by writing the partition function
and the specific heat as Grassmann integrals corresponding to a d = 1 + 1 interacting
fermionic theory; this is possible because the Ising model can be reformulated as a free
Sfermions model (see [SML, H, S or ID]). One can then take advantage from the the-
ory of Grassmann integrals for weakly interacting d = 1 4 1 fermions, which is quite
well developed, starting from [BG1] (see also [BG, GM or BM] for extensive reviews).
Fermionic RG methods for classical spin models have been already applied in [PS] to
the Ising model perturbed by a four spin interaction, proving a universality result for the
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specific heat; and in [M1] to prove a nonuniversality result for the 8 vertex or the isotro-
pic AT model. By such techniques one can develop a perturbative expansion, convergent
up to the critical points, uniformly in the parameters.

1.2. Main results. We find it convenient to introduce the variables ) = tanh J (),
j=1,2and
D 4@ D@
l=— , u=—": (1.3)
2 2

The parameter 1 measures the anisotropy of the system. We consider then the free energy
or the specific heat as functions of 7, u, A.

If A = 0, AT is exactly solvable, because the Hamiltonian (1.1) is the sum of two
independent Ising model Hamiltonians. From the Ising model exact solution [O, SML,
MW] one finds that f is analytic for all 7, u except for

t=1F=V2—14ul, (1.4)

and for 7 close to tci the specific heat C), has a logarithmic divergence: C, >~ —C log |t —
tF|, where C > 0 and ~ means that the ratio of both sides tends to 1 as  — .

We consider the case in which A is small with respect to +/2 — 1 and we distinguish
two regimes.

1) If u is much bigger than A (so that the unperturbed critical points are well sep-
arated) we find that the presence of A just changes by a small amount the loca-
tion of the critical points, i.e. we find that the critical points have the form ¢ =
V2—-14+00)+ |u|(l + O(k)); moreover the asymptotic behaviour of C, at
criticality remains essentially unchanged: C, >~ —Clog |t — tci|.

2) When u is small compared to A the interaction has a more dramatic effect. We find
that the system has still only two critical points (%, u); their center (7 + 1) /2
is just shifted by O (1) from V2 — 1, as in item (1); however their relative location
scales, as u — 0, with an “anomalous critical exponent” n(A), continuously vary-
ing with A: more precisely we find that £ — 1= = O(|u|'*"), where 7 is analytic
in A near A = 0 and n = —bA + O(A?), b > 0. In particular the relative location
of the critical points as a function of the anisotropy parameter u with A fixed and
small has a different qualitative behaviour, depending on the sign of A, see Fig 1.

Fort — tCi (X, u) the specific heat C, still has a logarithmic divergence but, for all
u # 0, the constant in front of the log is O (|u|"¢), where 7, is analytic in A for small A
and 0. = ak + O(A?), a # 0. The logarithmic behaviour is found only in an extremely
small region around the critical points; outside this region, C, varies as t — tci()», u)
according to a power law behaviour with nonuniversal exponent. The conclusion is that,
for all u # 0, there is universality for the specific heat (which diverges with the same
exponent as in the Ising model); nevertheless nonuniversal critical indexes appear in the
theory, in the difference between the critical points and in the constant in front of the
logarithm in the specific heat. One can speak of anomalous universality as the specific
heat diverges at criticality as in Ising, but the isotropic limit # — 0 is reached with
nonuniversal critical indices.

With the notations introduced above and calling D a sufficiently small O (1) interval
(i.e. with amplitude independent of A) centered around V2 —1, we can express our main
result as follows.
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Fig. 1. The qualitative behavIour of tcJr (A, u) —t. (X, u) as a function of u for two different values of A
(in arbitrary units). The graphs are (qualitative) plots of 20u|, with n ~ —bA, b > 0

Main Theorem. There exists €1 such that, fort +u € D, j = 1,2, and |A| < &1, one
can define two functions tci (A, u) with the following properties:

zci(,\,u)z«/i—1+u*(,\)i|u|1+"(1+Fi(/\,u)), (1.5)

where |v*(M)| < c|Al, |[FT (X, u)| < c|A|, for some positive constant ¢ and n = n()) is
an analytic function of A s.t. n(A) = —bA + 0, b >0, and:

1) the free energy f(t,u, )) and the specific heat Cy(t, u, 1) in (1.2) are analytic in
the regiont +u € D, |A| <¢ejandt # tci(k, u);
2) in the same region of parameters, the specific heat can be written as:

— 1t — ¢t — A27c
e R T
:

def - — def
where A2 (t — 1)+ WH' and 1, éf(tj +1.)/2; the exponent n. = nc(A) =
ak + O(Az), a # 0, is analytic in A; the functions C; = Cj(A,t,u), j = 1,2,3, are
bounded above and below by O (1) constants, finally C1 — C; vanishes for A = u = 0.

Remarks. 1) The key hypothesis for the validity of the Main Theorem is the smallness
of .. When A = 0 the critical points correspond to r4u = /2—1: hence for simplic-
ity we restrict 7 & u in a sufficiently small O (1) interval around +/2 — 1. A possible

explicit choice for D, convenient for our proof, could be D = [W;ﬁ, @].
Our technique would allow us to prove the above theorem, at the cost of a length-
ier discussion, for any tD 1@ < 0: of course in that case we should distinguish
different regions of parameters and treat in a different way the cases of low or
high temperature or the case of big anisotropy (i.e. the cases t << +/2 — 1 or
t>>+2—1or|ul >>1).

2) Equation (1.6) shows how the crossover from universal to nonuniversal behaviour
is realized. When u # 0 only the first term in (1.6) can be singular in correspon-
dence to the two critical points; it has a logarithmic singularity (as in the Ising
model) with a constant O (A%¢) in front. However the logarithmic term dominates
the second one only if 7 varies inside an extremely small region O (Ju]| Ine=a/lrly,
a > 0, around the critical points. Outside such a region the power law behaviour
corresponding to the second addend in (1.6) dominates. When u — 0 one recovers
the power law decay found in [M1] for the isotropic case. See Fig 2.
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Fig. 2. The qualitative behaviour of C,, as a function of r — 7, where 7, = (tcJr + t.)/2. The three graphs
are plots of (1.6), withC; = C, = 1,C3 =0,u = 0.01, n = n, = 0.1, 0, —0.1 respectively; the central
curve corresponds to A = 0, the upper one to A > 0 and the lowerto A < 0

3) By the result of item (1) of the Main Theorem, C, is analytic in A, ¢, u outside
the critical line. This is not apparent from (1.6), because A is non-analytic in u at
u = 0 (of course the bounded functions C; are non-analytic in u also, in a suit-
able way compensating the non analyticity of A). We get to (1.6) by interpolating
two different asymptotic behaviours of C,, in the regions |t — 7| < 2|u|'" and
|t — 7| = 2|u|"*" and the non analyticity of A is introduced “by hand” by our
estimates and it is not intrinsic for C,,. Equation (1.6) is simply a convenient way
to describe the crossover between different critical behaviours of C,.

4) We do not study the free energy directly at r = tcfE (X, u), therefore in order to show
that t = tci (A, u) is a critical point we must study some thermodynamic property
like the specific heat by evaluating it at r # tcjE (A, u) and M = oo and then verify
that it has a singular behavior as t — t. The case ¢ precisely equal to ¢ cannot
be discussed at the moment with our techniques, in spite of the uniformity of our
bounds as ¢t — ¢F. The reason is that we write the AT partition function as a sum
of 16 different partition functions, differing for boundary terms. Our estimates on
each single term are uniform up to the critical point; however, in order to show that
the free energy computed with one of the 16 terms is the same as the complete free
energy, we need to stay at t # tf: in this case boundary terms are suppressed as

~ g kMt —tF k> 0,as M — oo. If we stay exactly at the critical point, cancel-
lations between the 16 terms can be present (as it is well known already from the
Ising model exact solution [MW]) and we do not have control on the behaviour of
the free energy, as the infinite volume limit is approached.

1.3. Strategy of the proof. It is well known that the free energy and the specific heat of
the Ising model can be expressed as a sum of Pfaffians [MW] which can be equivalently
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written, see [ID, S], as Grassmann functional integrals, see for instance App A of [M1]
or §4 of [GM] for the basic definitions of Grassmann variables and Grassmann integra-
tion. The formal action of the Ising model in terms of Grassmann variables 1, ¥ has the
form

0 2 [Un @1 — i) + T @1 + 00T — 2701 + )0

+Hi(V2 =1 =)Wy, (1.7)

where 9; are discrete derivatives. ¥ and r are called Majorana fields, see [ID], because
of an analogy with relativistic Majorana fermions. They are massive, because of the pres-
ence of the last term in (1.7); criticality corresponds to the massless case (f = V2-1).
If A = O the free energy and specific heat can be written as the sum of Grassmann
integrals describing fwo kinds of Majorana fields, with masses m" = (D — /241 and
m® = 1@ — /2 + 1. The critical points are obtained by choosing one of the two fields
massless (in the isotropic case 1 = ® and the two fields become massless together).

If 1 # 0 again the free energy and the specific heat can be written as Grassmann inte-
grals, but the Majorana fields are interacting with a short range potential. By performing
a suitable change of variables, the partition function can be written, see §2 and §3, as a

sum of terms EZI}VZ (y1, y> label different boundary conditions) of the form

B = / P@y)eVIVEN L py) =Dy e HUTAY (1)

where ¢ = {y "

w,X?
the Grassmann integration; VD is a short range interaction, sum of monomials in i of
any degree, whose quartic term is weighted by a constant . = O(A); and Z; (¥ ™+, Avr)
has the form:

Vo ,x}w=i1 are elements of a Grassmann algebra; D is a symbol for

ZY Y (01 —iwdo)y,  —iwo vt W,
X,w

Hop VeV, x — Bt x (01 — iwdo) ¥ « (1.9)

withoy = O(t — V24 1)+ O\, 1, B1 = O) (in particular in the isotropic case
the terms proportional to p1 and B are absent). If A = 0, o1 = (m™M + m@)/2 and
ny = m® — m(l))/Z. 1/fi are called Dirac fields, because of an analogy with rel-
ativistic Dirac fermions; they are combinations of the Majorana variables 1//(j ), _(]),
j =1, 2, associated with the two Ising layers in (1.1): hence the description in terms of
Dirac variables mixes intrinsically the two Ising models and will be useful in a range of

momentum scale in which the two layers appear to be essentially equal.

One can compute Ezlfyz by expanding e VVVZi) iy Taylor series and integrat-
ing term by term the Grassmann monomials; since the propagators of P(dv) (i.e. the
elements of A~!, see (1.8), (1.9)) diverge for k = 0 and o1 + 1 = O in the infinite
volume limit M — o0, the series can converge uniformly in M only in a region outside
lo1 £ p1| < ¢, for some c, i.e. in the thermodynamic limit it can converge only far from
the critical points.

Since we are interested in the critical behaviour of the system, we set up a more com-
plicated procedure to evaluate the partition function, based on the (Wilsonian) Renormal-
ization Group (RG). The first step is to decompose the integration P (dv/) as a product
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of independent integrations: P(dvy) =[] ,1!:_00 P(dy™), where the momentum space
propagator corresponding to P (dy™) is not singular, but O(y "), for M — oo, y
being a fixed scaling parameter larger than 1. This decomposition is realized by slic-
ing in a smooth way the momentum space, so that ¥, if 1 < 0, depends only on
the momenta between y"~! and y"*!. We compute the Grassmann integrals defining
the partition function by iteratively integrating the fields ¥, (@ ... see §4. After
each integration step we rewrite the partition function in a way similar to (1.8), with the
quadratic form Z (¥, Ay) replaced by Z, (¥, A™ ), which has the same structure
of (1.9), with Zy, oy, iy, replacing Z1, o1, 1; the structure of Z, (¥, A(h)w) is pre-
served because of symmetry properties, guaranteeing that many other possible quadratic
“local” terms are indeed vanishing, or irrelevant in a RG sense. The interaction OB
replaced by an effective action V", h < 0, given by a sum of monomials of ¥ of arbi-
trary order, with kernels decaying in real space on scale y ~"; in particular the quartic
term is weighted by a coupling constant A, and the kernels of V) are analytic functions
of {An, ..., A1}, if A are small enough, k > h, and Iokly_k, |,uk|y_k < 1 (say — the
constant 1 could be replaced by any other constant O(1)).

In this way the problem of finding good bounds for log E?\z is reformulated into
the problem of controlling the size of A, o, wp, < 0, under the RG iterations. We
use a crucial property, called vanishing of Beta function, to prove that actually, if A
is small enough, |Ay| < 2|A1| (recall that A; = O(X)). The possibility of controlling
the flow of Aj is the main reason for describing the system in terms of Dirac vari-
ables. For oy, i, Zp,, we find that, under RG iterations, they evolve as: oj, =~ 0 yb2)‘h,
wn =y Mz~ P 1?1 Note in particular that Zj, grows exponentially with an
exponent O (12); this is connected with the presence of “critical indexes” in the correla-
tion functions, which means that their long distance behaviour is qualitatively changed
by the interaction.

We perform the iterative integration described above up to a scale &} such that (lons [+

|,uh»l~|)y_hT = 0(1), in such a way that (|o}| + |ur)y ™" < O(1), forall h > h} and
convergence of the kernels of the effective potential can be guaranteed by our estimates.
In the range of scales 4 > h7 the flow of the effective coupling constant A, is essentially
the same as for the isotropic AT model [M1] (since |up|y " is small, the iteration “does
not see” the anisotropy and the system seems to behave as if there was just one critical
point) and nonuniversal critical indexes are generated (they appear in the flows of oy, up,
and Zj,), following the same mechanism of the isotropic case.

We note that after the integration of w(l), el w(hf“), we can still reformulate
the problem in terms of the original Majorana fermions y (=1, 2=k a5s0ciated
with the two Ising models in (1.1). On scale A7 their masses are deeply changed w.r.t.

D — 2+ 1Tandt® — V2 +1: they are given by ml(ql*) = |Uh>{| + |th| and m/(f*) =
1 1

|O’hT| — |Mh’;|- Note that the condition Iohf| + |,uh]~| = O(yhT) implies that the field
Y 1=1D is massive on scale h} (so that the Ising layer with j = 1 is “far from criti-
cality” on the same scale). This implies that we can integrate (without any multiscale
decomposition) the massive Majorana field 1//(1’5}’7), obtaining an effective theory of a
single Majorana field with mass |oh»1«| — | ht |, which can be arbitrarily small. The inte-
gration of the scales < h7, see §6, is done again by a multiscale decomposition similar
to the one just described; an important feature is however that there are no more quartic
marginal terms, because the anticommutativity of Grassmann variables forbids local
quartic monomials of a single Majorana fermion. The problem is essentially equivalent
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to the study of a single perturbed Ising model with “upper” cutoff on momentum space
O(Vhf) and mass |U’f(| — |,uh»f |. The flow of the effective mass and of Z; is non-
anomalous in this regime: in particular the mass of the Majorana field is just shifted by
O()Ly’ff) from |<7h’;| — Hn |. Criticality is found when the effective mass on scale —oo
is vanishing; the values of ¢, u for which this happens are found by solving a non-trivial
implicit function problem.

Finally, see §7, we define a similar expansion for the specific heat and we compute
its asymptotic behaviour arbitrarily near the critical points.

Technically it is an interesting feature of this problem that there are two regimes in
which the system must be described in terms of different fields: the first one in which the
natural variables are Dirac Grassmann variables, and the second one in which they are
Majorana; note that the scale separating the two regimes is dynamically generated by
the RG iterations (and of course its precise location is not crucial and &7 can be modified
in h{ + n, n € Z, without qualitatively affecting the bounds).

2. Fermionic Representation

2.1. The partition function E "‘(] ) =Y, exp{—J Y H (o))} of the Ising model can
be written as a Grassmann 1ntegral; this is a classical result, mainly due to [LMS], [Ka,
H, MW, S]. In Appendix A1, starting from a formula obtained in [MW], we prove that

w2 (2 cosh JWyM?
Ml )
2
D 5D 5,0 70 5, SV
x Y| ] dbdm avedvy)  (—1ybreS 0 2.)

e,&'=+% XeEAy

Eg]) — (_

where j = 1,2 denotes the lattice, y = (¢,&’) and 8, is 84+ = 1,04 - = 6_ 4 =
§__ =2and,ift¥) = tanh JO),
DDy — D =D () 7y,
sPa Py =0 3 [m 1, + Vv
xeAy
+ Z [ (/)H(1)+V(/)V(1)+V(/)H(/)
xeAy
wORY L OV 4 V,E”H,Ef')] , 2.2)

where H,Ej ), ﬁ;j), Vx(j ), V,((j) are Grassmann variables verifying different boundary
conditions depending on the label y = (g, &’) which is not affixed explicitly, to simplify
the notations, i.e.

=)

() - —(J
HX+M§0—8H , HX+M§1 =& H
) () D _ g ’_
Hx+Méo = e¢Hy , Hx+é1 = &' Hy , &€& == (2.3)

and identical definitions are set for the variables V), V(j ); we shall say that ﬁ(j ),

HY, V(J ) V) satisfy e—periodic (¢/—periodic) boundary conditions in the vertical
(horlzontal) direction.
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2.2. By expanding in power series exp{—AV}, we see that the partition function of the
model (1.1) is

EﬁT _ Z e,/(l)HI(U(l))e,J(Z)H,(H(Z))e,)\v(a(l))0(2))
M
o) g2
— (cosh 1)2M’ > ¢~/ VHI(@)—I D H ()

o), 6@

1 1 2) _(2) 1 1 2) (2
'H(l—kko()() ()G(A><1+XG()£+)50§)£+)€>’(2‘4)

X+e Ox X+eq
xeAy

where A = tanh A. The r.h.s. of (2.4) can be rewritten as:

2
QAT_
“AM_[ I1 (“”\3](1) 570

"_91(\)1111 X, X+6; VX, X+8é;
=0,

) |2 RPN i 2

{(JD})

where E;j )({J;Q,}) is the partition function of an Ising model in which the couplings
are allowed to depend on the bonds (the coupling associated to the n.n. bond (x, x)

on the lattice j is called J(]),) Using for u(l)({.](l),}) an expression similar to (2.1),
we find that we can express Z7 as a sum of sixteen partition functions labeled by
Y1, V2 = (€1, €)), (€2, &}) (corresponding to choosing each ¢; and 8/ as &+):

1 2
B4l = 7 (cosh 2)2M Z (—1)dnHonghty? (2.6)
Y1:Y2

each of which is given by a functional integral

2
257 = [4(1 + 5D T (cosh JOHM: (— 1)
j=1
j=1.2
/ [] ¢ dmY avPav? i e r+s2e? v o)

xeAy

where, if we define

At =2 +u?) + (=D u(1 + 12— u?)]

AW = - : (2.8)
14 AG% — u?)
we have that t(]) j =1,2,is given by t =1t 1Y) and V), by:
_ Oy FO @ 7O 0 7@,

V= Z b (H Hx+e Hy Hx+e + Vi Vx+e Vx X+eo> ’
XeAy

YOS

A= ———. 2.9)

A(t? — u?)
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2.3. From now on, we shall study in detail only the partition function E,, o

"‘(_T ) (= , i.e. the partition function in which all Grassmannian variables verify an-
tiperiodic boundary conditions (see (2.3)). We shall see in §5.5 below that, if (A, ¢, u)
does not belong to the critical surface, which is a suitable 2—-dimensional subset of
[—e1,e1] x D x [—%, %] which we will explicitly determine in §5.6, the partition

function E%;" divided by Egl)y’ 352))/2 is exponentially insensitive to boundary condi-

tions as M — oo.
Asin [M1] we find it convenient to perform the following change of variables, « = =,
o= =xlI:

1 P
ﬁ Z (—ia)’ I(H)((J)_{_le)E])) _ zam/4(1// Xa) x)
j=1,2
1 RNy .
5 2 il (W ioW) = 9+ (2.10)
j=1,2

Let k € D_ _, where D_ _ is the set of k’s such that k = 2x/M(n1 4+ 1/2) and
ko =2 /M (no +1/2), where —[M /2] < ng,n1 < [(M —1)/2],no,n € Z The Fou-

rier transform of the Grassmannian fields ¢g «, ¢ = ¥, x, is given by ¢°‘ k = er Ay
—mkx¢

With the above definitions, it is straightforward algebra to verify that the final expres-
sion is:

== _E—EMZ/p(dl/,)P(dX)eQ(l/f,x)-&-V(l/f,x)’ 2.11)

where E is a suitable constant; Q (¥, x) collects the quadratic terms of the form wg; X
Xff;,(z; V (i, x) is the quartic interaction (it is equal to Vj, see (2.9), in terms of the Iﬂj,
Xf variables); P(d¢), ¢ = ¥, x, is

rap) =N TT T1 d¢wkd¢wkexp{ 4M2 3 d)lf’TA¢(k)<I>k},

keD_ _ w==1 keD_ _
i sin k 4 sin kg —ioy (k) —%(i sin k 4 sin kq) in(k)
Ay (k) = iog(k) i sink — sin ko —in(k) —5 (i sink — sinkp)
ST | =4 (i sink + sinko) i (k) i sink + sin ko —iog (k)
—ipn(k) —%(i sink — sinkq) iog (k) isink — sin kg
(2.12)
where
e S T _ 46— 4= A+ o+
P k = (¢1,k’ ¢_1’k5 ¢1’_k7 ¢—1,—k) s Pk = (¢1,k’ ¢_1’k5 ¢1’_k7 ¢_1)_1((%713)

Nj is chosen in such a way that f P(d¢) = 1 and, if we define tk = (t(l) + t/{z))/Z,

dif(t(l) (2))/2 for ¢ = i, x we have:
+/2+1
op(k) = 2(1 + #) + coskg + cosk — 2,
A

w(k) = —(uy/t))(cosk + coskp). (2.14)
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In the first of (2.14) the — (+) sign corresponds to ¢ = ¥ (¢ = x). The parameter u in

(2.12) is given by < 11(0).
It is convenient to split the /2 — 1 appearing in the definition of oy (K) as:

V2-l=(W2—-1+2 ) - vdefw—% (2.15)

where v is a parameter to be properly chosen later as a function of A, in such a way that
the average location of the critical points will be given by f, = fy; in other words v
has the role of a counterterm fixing the middle point of the critical temperatures. The
splitting (2.15) induces the following splitting of P(dy/):

ef 1 P
P@y) = Podp)e ™Y | FE S i) s (2.16)

2M?
k,w

where P, (dv) is given by (2.12) with ¢ = ¢ and ad£f2(l — ty /1)) replacing oy (0).

2.4. Integration of the x variables. The propagators < ¢y w¢;/a/ > of the fermionic
integration P (d¢) verify the following bound, for some A, x > O:

| < ¢ 87 > | < AT MoV 2.17)

where m is the minimum between |m¢ )| and |m¢)| and, for j = 1,2, mm is given by

((bj)defZ(t(/) ty)/ty, j = 1, 2. Note that both mg(l) and mg(z) are O(1). This suggests
to integrate first the x variables.
After the integration of the x variables we shall rewrite (2.11) as

—_ 2 _pym
Eyr=e / P2y oy (@y)e Y YEV YD) =0, (2.18)

where C1(k) = 1, Z) = ty, 01 = o/(1 — ), 1 = /(1 — §) and Pz, o p;,c, (dV)
is the exponential of a quadratic form:

w==+1
PZlle,MhCl(dw) ZNfl 1_[ dl//(j,kdwaj,k
keD_ _
1 T 4 (D)
><exp[—m 3 ziciaow! T Al (k)\Ilk],

keD_ _
W ey _ (MK N (k)
A,/, k) = <N<1)(k) M(l)(k) s
MO () = isink +sinko +a (k) —i (o1 +c1(k)
- i (o1 + c1(k)) i sink — sinko + a; (k)

Dk = bik) i (ui+di(k))
! (k)_<—i(ull+d1(k)) by (k) ) (2.19)
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where A} is chosen in such a way that [ Pz, 5, u,.c;(d¥) = 1. Moreover V(I is the
interaction, which can be expressed as a sum of monomials in ¥ of arbitrary order:

2n

VO ) = Z > Hx/f"““”wz(},)w(k],...,an_o(S(Zaiki) (2.20)

n=1 ky,...ky, i=1 i=1
a0

and 8(k) = Y ;2 8k27n. The constant Ej in (2.18), the functions ai, bT, c1, dj in

(2.19) and the kernels W2(n) w0 in (2.20) have the properties described in the following
theorem, proved in Appendix A2. Note that from now on we will consider all functions
appearing in the theory as functions of A, o1, w1 (of course ¢ and u can be analytically and
elementarily expressed in terms of A, o1, w1). We shall also assume |01/, |p1]| bounded
by some O (1) constant. Note that if # &= u belong to a sufficiently small interval D cen-
tered around +/2 — 1, as assumed in the hypothesis of the Main Theorem in §1, then of
course |o1], |u1| < c1 forasuitable constant c¢q (in particular, if D is chosen as in Remark
(1) following the Main Theorem, we find |o1| < 1 + O(ey) and |1| < 2+ O(ey)).

Theorem 2.1. Assume that |o1|, |u1| < c1 for some constant c; > 0. There exists a
constant g1 such that, if |A|, |v| < &1, then &, can be written as in (2.18), (2.19),
(2.20), where:

1) Eq is an O (1) constant;

2) ali(k), b?t (k) are analytic odd functions of k and c1(k), d1 (K) real analytic even
functions of K; in a neighborhood of k = 0, af(k) = 0(o1Kk) + O(K%), bli(k) =
O(u1k) + O(K), c1(k) = O(K*) and di (k) = O (u1K>);

3) the determinant | det Ay, (K)| can be bounded above and below by some constant
times [(01 —uD?+ |c(k)|][(01 +u?+ |c(k)|] and c(K) = coskg + cosk — 2;

4) Wz(yll)a o are analytic functions of ki, k, v, 01, p1, i = 1,...,2n and, for some
constant C,
1
Wy o1 - kag 1) < MECT |3 max{ /2] 2.21)

4) —a) the terms in (2.21) with n = 2 can be written as
Ly > 9 V¥ e Vi Sk + ko — ks — k)
ki,....ka
+ Z Y Wag ki, ko, ka)ys! o2 o3 o kp(Zalk)
ki,....kg 2, @
(2.22)

where L1 is real and W4 a,0(K1, K2, K3) vanishes atky =k, = k3 = (% %):
4) —b) the term in (2 21) with n = 1 can be written as:

3 Y Y[Siod i T + MG

a)a + k
+Fy(i sink + wsin ko)‘&g,k‘ﬁg,—k

+G1(isink + wsin ko)l/}iklﬁ;k]
YD Moo OV T2 e (223)

k oo
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where Wz’g,g(k) is O(kz) in a neighborhood of k = 0; S1, My, F1, G| are real
analytic functions of ., o1, w1, v s.t. F1 = O(Au1) and

Li=114+00o)+0Gu) . S;i=s1+yn +00od)+00u?),
My =mi+ O0Guio) + 0Guy) , Gi=z1+ 0@(o1) + OGur)l, (2.24)

with s1 = o1 f1, m1 = w1 f>» andly, ny, f1, f2, z1 independent of o1, |41, moreover
L =xZ}+0M2), fi, o =0, yni = v/Zi + I+ OO>), for some c}
independent of A, and 71 = 0()\2).

Remark. The meaning of Theorem 2.1 is that after the integration of the y fields we are
left with a fermionic integration similar to (2.12) up to corrections which are at least
0 (k?), and an effective interaction containing terms with any number of fields.

A priori many bilinear terms with kernel O (1) or O (k) with respect to k neark = 0
could be generated by the y—integration besides the ones originally present in (2.12);
however symmetry considerations restrict drastically the number of possible bilinear
terms O(1) or O (k). Only one new term of the form ), (i sink + w sin ko)l/;‘g’k&z’_k
appears, which is “dimensionally” marginal in a RG sense; however it is weighted by
a constant O(Ap1) and this will improve its “dimension”, so that it will result to be
irrelevant, see §3.2 below.

3. Integration of the ¥ Variables: First Regime

3.1. Multiscale analysis. From the bound on detAf//l)(k) described in Theorem 2.1,
we see that the ¢ fields have a mass given by min{|o; — w1, |o1 + @1}, which can
be arbitrarly small; their integration in the infrared region (small k) needs a multiscale
analysis. We introduce a scaling parameter y > 1 which will be used to define a geomet-
rically growing sequence of length scales 1, y, y2, ..., i.e. of geometrically decreasing
momentum scales yh, h=0,—1,-2,... Correspondingly we introduce C* compact

support functions f; (k) h < 1, with the following properties: if |k|d§f\/ sin? k + sin® ko,
when 71 < 0, fr(k) = 0 for [k| < y"=2 or [k| > ", and f(k) = 1,if k| = y"~!;
fik) =0 for k| < y~!and fi(k) = 1 for |k| > 1; furthermore:
1
1= Y fu) . where:  hy =minf{h:y" > ﬁsin%} RRNERY
h=hy

and +/2 sin(;r/ M) is the smallest momentum allowed by the antiperiodic boundary con-
ditions, i.e. +/2sin(x/M) = minkep__ [K|.

The purpose is to perform the integration of (2.19) over the fermion fields in an itera-
tive way. After each iteration we shall be left with a “simpler” Grassmannian integration
to perform: if h = 1,0, —1, ... , hys, we shall write

—_— _Yh) (<h)y_ g2
C‘AT:/PZhﬁh,uh,Ch(dw(Sh))e VOWZED-M En | V(h)(()):(), (3.2)

where the quantities Zj, o, in, Chy Pz,.0p.10.c, (¥ EM), VW and Ej, have to be

. . . . —_ Yy
defined recursively and the result of the last iteration will be E,, = e M E*W’M,
i.e. the value of the partition function.
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Pz, 6. 1.Ch (dwfh)) is defined by (2.19) in which wereplace Z, o1, u1, af’, by, c1,

dy, C1(k) with Zy, o5, i, a?, by, cu, dp, Ch(k), where Cp(k)~! = Z?:hM fi(K).
Moreover

s 2n
1 i(<h h def
V(h)(W) = Z M2n Z l_[ wa (< )Wz(n)ot a)(kl’ ey kzn_l)(S(Zalk ) i
n=1 k2n 1. i=1 .
d f i < h
- Z Z 1_[ 80 wgf(xth)w(n) l,g,g(xl’ et in) s (33)
X1, XZn i=l1
li

where in the last line j; = 0,1, 0; > 0 and 9; is the forward discrete derivative in the
é; direction.
Note that the field (=), whose propagator is given by the inverse of Z;,Cj, (k)A(h) ,

has the same support of C, '(k), that is on a strip of width " around the singularity
k = 0. The field ¥ = coincides with the field v of the previous section, so that (2.18)
is the same as (3.2) with h = 1.

It is crucial for the following to think WZ(Z)Q h < 1, as functions of the variables
or(k), uk(k), k=h,h+1,...,0,1, ke D_ _ . The iterative construction below will
inductively imply that the dependence on these variables is well defined (note that for
h = 1 we can think of the kernels of V() as functions of o1, L1, see Theorem 2.1).

3.2. The localization operator. We now begin to describe the iterative construction lead-
ing to (3.2). The first step consists in defining a localization operator £ acting on the
kernels of V™ in terms of which we shall rewrite V" = £y® 4+ RY®  where
R =1 — L. The iterative integration procedure will use such splitting, see §3.3 below.

L will be non-zero only if acting on a kernel W2(n)(x © withn = 1, 2. In this case £ will

be the combination of four different operators: £;, j = 0, 1, whose effect on a function
of k will be essentially to extract the term of order j from its Taylor series in k; and P},

j =0, 1, whose effect on a functional of the sequence oy, (k), up (K), ... , o1, ng will be
essentially to extract the term of order j fromits power seriesin oy, (K), up(K), ... , o1, 1.
The actionof £, j = 0, 1, on the kernels WZ(n)a w(kl, ..., ko) isdefined as follows:
) Ifn=1,
h h -
LoWy") (k. arak) = Z Wy oKy 100k,
n n'==+l1
= (h) 1 (h) sin k , sin k()
LWyl aiok) = 2 > Waly (K ok [n——= +n' =]
n.y=%1 M M
(3.4)
where k,,; = (nd;. n'3;) are the smallest momenta allowed by the antiperiodic
boundary conditions.
2) Ifn=2,L;W;" =0and
def ~(h) = — - —
LoWm ki ko ks k) W R Ry K Ki) (3.5)

3) Ifn > 2, LoWangw = L1Wangw =0.
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The action of P}, j = 0, 1, on the kernels Wgn,g,g, thought of as functionals of the

sequence oy, (K), wp(K), ... , o1, pu1 is defined as follows:
def =
POW2n o0 = W2n ReNo) a””:u‘h) 0
A~ def aWZnaw W2n<xw
PiWongw = [k( ) +Mk( ) ]
e S dop (k) lg®=ptm=0 i (k) lo®=pt=o
(3.6)

Given L, Pj, j = 0, 1 as above, we define the action of £ on the kernels V’Vz,l,g,g as
follows:

1) If n = 1, then
Lo(Po +P1)W2,Q’Q ifwor +wy =0and oy +a =0,

far def LoPy WQ,Q,Q ifw; +wr =0and oy + ay # 0,
20T L P Wy if ) +ws #0and &y + 0oz = 0,
0 if w; + w2 # 0and a1 + oy # 0.

2) If n = 2, then EW4,%Qdéfﬁo770 W4,%Q.
3) Ifn > 2, then LW2, 4,0 = 0.

Finally, the effect of £ on V™ is, by definition, to replace on the r.h.s. of (3.3) Wzn’g,g
with LW, ¢ ». Note that L2V®) = LY®),
Using the previous definitions we get the following result, proven in Appendix A2.2.
. k=h,...,1
We use the notation ¢ ) = {Gk(k)}keD ! and p = by

Lemma 3.1. Let the action of £ on V™ be defined as above. Then
LYW ED) = (54 + y"np) FED + mp FED + 1, FEY + 2, F S 3.

where sy, ny, my, ly, and zj, are real constants and sy, is linear in g(h) and independent
of u™; my is linear in u and independent of ™ ; ny,, Iy, z, are independent of

a®, E(h); moreover, ithdéfD_ _Nik: C;l(k) > 0},

< < — d 1 ~
FEP &) = =0 Z Y iR 5 Y R,

keDj, w==%1 keDy,
Y N (sh) gash)  def 1 B(<h
F(< NUAS )y = Y Z Z zanp‘" ﬂw « = 30 Z F,ES (k) ,
keDj, a,wo=%1 keDy,
h S (<h) +(<h h h
FEP@E) = o 3 BRI s0 +le — ks — k).
ki,..., kseDy,
1
F;Sh)(w(fh)) =53 Z Z (i sink + wsinko)
keDy w==%1
h hy def 1 T(=h
1/f+(< )w (<h) de o Z F{(S )(k), (3.8)

keD),

where §(k) = M? " .72 8k 27n.
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Remark. The application of L to the kernels of the effective potential generates the sum
in (3.7), i.e. a linear combination of the Grassmannian monomials in (3.8) which, in
the renormalization group language, are called “relevant” (the first two) or “marginal”
operators (the two others).

. def . .
We now consider the operator R el L. The following result holds, see Appendix
A2 for the proof. We use the notation R|1 =1 — Lo, Ry =1— Ly — L1, S1 =1 — Py,
S =1—-Py—Pr.

Lemma 3.2. The action of R on Wzn,g@for n =1, 2 is the following:
1) Ifn =1, then

[S2 + R2(Py + ,Pl)]WZ,g,Q ifwr+wy =0,

RVT’Q,%Q = {[R1S1 + R2Po] Wz,%@ ifw; +wr #0and a1 + oy =0,
RiS1W2 4.0 ifwr +wr #0and a1 + oy #£ 0.

2)Ifn =2, then Rﬁqg,@ =[S+ RIPO]WQ,Q,Q-

Remark. Theeffectof R, j = 1,2 on Wi

.. CONSIStS in extracting the rest of a Taylor

series in k of order j. The effectof S;, j = 1,2 0n WZ(n )a © consists in extracting the rest
of a power series in (¢, £) of order j. The definitions are given in such a way that
RWQ,Z,%Q is at least quadra_tic ink,a®, &(h) if n = 1 and at least linear ink, o™, E(h)
when n = 2. This will give dimensional gain factors in the bounds for RWz(z)aw w.r.t.

the bounds for W(h)

= 1, 2, as we shall see in detail in Appendix A4.

3.3. Renormalization. Once the above definitions are given we can describe our inte-
gration procedure for # < 0.
We start from (3.2) and we rewrite it as

0] (<hyy_RYh) (=hyy_ 2
/ch,ah,uh,ch(dw(fh))e LYO W Ziy =) -RVOVZiy =) =M Ey (3.9)

with LV as in (3.7). Then we include the quadratic part of LV (except the term
proportional to ny) in the fermionic integration, so obtaining

- (<h)
/ch—l,gh—l»llh—l,ch(dl/j )
x e WP 2y SN =y i Fo (VZip EH-RVO(VZiy E-M2E (3 1)

where Zh 1(k) Zh(l +z1C), (k)) and

Zy _
on1 () 7](k)(0h(k)+5hc &) L 0 7f(k)(l/«h(k)+mhchl(k)),
Z ® de Z
a?_ (k)™ 7’“(k) a® by k) 7’1(]() b (K),
e Zn
10 an®) . dy 1()”’—" = dy k). 3.11)

ZH (k) ~1(k)
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The integration in (3.10) differs from the one in (3.2) and (3.9): Py ohiith1.Ch
is defined by (2.19) with Z; and A')’ replaced by Zj_1 (k) and Ay ™",

Now we can perform the integration of the ¥ ® field. It is convenient to rescale the
fields:

0 < d <
VW (S Zp 1y =)y =4 My Zn— =)

+yhthg VZhy &) + RVO Zyy =) | (3.12)
where A;, = (Zh— ) In, vy = z=nj, and RYW = (1 — £)VM s the irrelevant part of

V® | and rewrite (3.10) as
Ye _
e (th+Eh)/PZh—laUh—l)llh—l;Ch—l(dw(fh )

(h) _V(h)( 7 (<h))
X/PZh vonrur. o @¥ ) e VZi-1¥ (3.13)

where we used the decomposition ¥ (5P = ¢ &=D 1 " (and (=D (1) are
iEdependent) and fj(K) is defined by the relation C; ! (k)Z;_ll(k) = C;_ll(k)Z;_l |+
I (k)Z;_ll, namely:

G, Gl
Zp1(k)  Zn—

def

fnk) E Z,- 1[ (3.14)

Zh frnr1(K) ]
L+ zp fak)d”

Note that ﬁl(k) has the same support as f}, (k). Moreover ch Lt ebbhto 1 dy Py is

Ot ih1.Ch (dy ™), with Z;_1 (k) resp. Cj, replaced
by Zj_1, resp. fh . The single scale propagator is

|=fol1+
defined in the same way as Py

)y (i) e (h)
/ch 1Oh—1 1+ Hdy ™) Y Yy

= (’”,(x Y . a=(w) , d=@, o), (3.15)
Zp1¢

where

1 _— ~

h — h—1 —

gl (=¥ = s YK R alAY Ry sy (B16)
k

with j(—, 1) = j'(4+-, D =L j(=, =) = j'(+.-D =2, j(+, D) = j'(=. 1) =3
and j(+,—1) = j'(=, —1) = 4. One finds that g\") (x) = g{"(x) — aa’'g"2) (%),
where g(j )(x) Jj =1, 2 are defined in Appendix A3, see (A3.1).

The long distance behav10ur of the propagator is given by the following lemma,
proved in Appendix A3.

Lemma 3.3. Let Uhdéfcrh (0) and uhdéf ur(0) and assume |A| < €1 for a small constant
1. Suppose that for h > h,

1 1 1
< — s < — s < — , 317
|znl < > lsn] < 2IUhI |mp| < 2I,thI (3.17)
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that there exists c s.t.

e < ‘ Oh ‘ B ‘ i ‘ < ocl
Uh 1 Hh—1
2 2
o~ < ‘ ‘ s (3.18)
Zp—1
and that, for some constant C1,
loj | A
<0, —F=Cis (3.19)
14 14

then, for all h > h, given the positive integers N, ng, ny and putting n = nqo + ny, there
exists a constant Cy , s.1.

y(l+n)h

9001 e (x — y)l < Cu,
"1+ (yhldx — y)DN
M X TX0

= ;(sm R , sin 7) (3.20)

,  where d(x)

Furthermore, ifPo, ‘P1 are defined as in (3.6) and 51, Sy are defined as in Lemma 3.2, we
have that P]g a ] =0, 1 and S]g o J = 1,2, satisfy the same bound (3.20), times

a factor (lg” I;rh‘“ ”l) The bounds for Poga a and P; gyz, hold even without hypothesis
(3.19). o

After the integration of the field on scale & we are left with an integral involving the
fields w(fh’l) and the new effective interaction V* 1  defined as

V2w S 0B M Yo=YV (VZiry &)
e " M= PZh 1,0h—1,Mh— 1fh(dl/f Je " -(3.21)

It is easy to see that Y*"=1 is of the form (3.3) and that E,—1 = Ep +t;, + Eh. It is
sufficient to use the well known identity

M2 Ep V0 Zyay =) = Z S ED)ET OO 2y =),

n>1

(3.22)

where 5' T(X (¥ ™); n) is the truncated expectation of order n w.r.t. the propagator
Zh 1g ,,deﬁned as

(h)
eFxX ™y n) = —log / Py s onyr i @0 (323)

Note that the above procedure allows us to write the running coupling constants Uy =
(A—1,Vh—1), h < 1,interms of U, h < k < 1, namely v,_1 = B (Vy, ... , V1), where
B is the so—called Beta function.
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3.4. Analticity of the effective potential. We have expressed the effective potential V)
in terms of the running coupling constants ,i, v, k > h, and of the renormalization
constants Zy, i (K), or(K), k > h.

In Appendix A4 we will prove the following result.

Theorem 3.4. Let ohdéfoh (0) and uhdéf,uh (0) and assume |\| < &1 for a small constant
&1. Suppose that for h > h the hypothesis (3.17), (3.18) and (3.19) hold. If, for some
constant c,

max{|An|, [vpl} < clA], (3.24)
h>h
then there exists C > 0 s.t. the kernels in (3.3) satisfy
h — _
/ dxy - dXan W3,y 1 o o (K15 X2)| < M2y 7M€ e
(3.25)

where D(n) = =2 +n+k and k = 21221 oi.

Moreover |Eﬁ+1| + 11541 = clrly®" and the kernels ofEV(i” satisfy
Isipl = Clllogl  Imjpl = ClAl|mg] (3.26)
and
gl < CIAL . Izl < CIAP 1 < CIA2. (3.27)

The bounds (3.26) hold even if (3.19) does not hold. The bounds (3.27) hold even if
(3.19) and the first two of (3.18) do not hold.

Remarks. 1) The above result immediately implies analyticity of the effective potential
of scale & in the running coupling constants A, vk, k > h, under the assumptions
(3.17), (3.18), (3.19) and (3.24).

2) The assumptions (3.18) and (3.24) will be proved in §4 and Appendix AS below,
solving the flow equations for v, = (An,vy) and Zy, oy, wp, given by vy =
Br@n, ..., V1), Zp—1 = Zp(1 + zp) and (3.11). They will be proved to be true up
toh = —o0.

4. The Flow of the Running Coupling Constants

The convergence of the expansion for the effective potential is proved by Theorem 3.1
under the hypothesis that the running coupling constants are small, see (3.24), and that
the bounds (3.17), (3.18) and (3.19) are satisfied. We now want to show that, choosing A
small enough and v as a suitable function of A, such hypotheses are indeed verified. In
order to prove this, we will solve the flow equations for the renormalization constants
(following from (3.11) and the preceding line):

Zp—1 1tz 071_—1:1+Sh/0h—Zh R
Zn oy, 1+ 2z Mh 14z,

mp/in —Zh’(4‘1)

together with those for the running coupling constants:

M1 = A+ BE Oy i -3 A1, V1),
Vhet = yVh + B G vis s A1, 1) 4.2)
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The functions ﬂi’, ﬁ"} are called the A and v components of the Beta function, see the
comment after (3.23), and, by construction, are independent of oy, ik, so that their con-
vergence follow just from (3.24) and the last of (3.18), i.e. without assuming (3.19), see
Theorem 3.1. While for a general kernel we will apply Theorem 3.1 just up to a finite
scale h7 (in order to insure the validity of (3.19) with h = h1), we will inductively study
the flow generated by (4.2) up to scale —oo, and we shall prove that it is bounded for
all scales. The main result on the flows of A; and vj, proven in Appendix AS, is the
following.

Theorem 4.1. If 1. is small enough, there exists an analytic function v* () independent
of t,u such that the running coupling constants {,p, vi}h<1 with vi = v*(}) verify
lon| < claly @M and |ap| < c|A|. Moreover the kernels zy,, s, and my, satisfy (3.17)
and the solutions of the flow equations (4.1) satisfy (3.18).

Once v is conveniently chosen as in Theorem 4.1, one can study in more detail the
flows of the renormalization constants. In Appendix A5 we prove the following.

Lemma 4.2. If A is small enough and v is chosen as in Theorem 4.1, the solution of
(4.1) can be written as:

L(h—1)+F] _ h
Zh — 7/77«'(7 )+ I3 , Wh = Ml)’n”(h 1)+Fﬂ’-

oy = aly””(hfl)JrFéq, (4.3)
where n;, 1, n; and FZ’ F[LL, F(’; are O (M) functions, independent of o1, (1.

Moreover 0, — 1, = —bA + O(|A]*), b > 0.

4.1. The scale h. The integration described in §3 is iterated up to a scale 7} defined in
the following way:

1
def | min {1, [log, |oy |7 ]} lf|01|'"" > 2|,
1

hi= e 4.4)
min {1, [logy ut]| ‘*W]} ifloy| e o <2luil'- ”M
From (4.4) it follows that
Coy" < loye| + || < Cry"T (4.5)
with C1, Cy independent of A, i1, oy.
1 I
This is obvious in the case hf = 1. If i7 < I and |oy|™% > 2|ug|'~», then

Y"1l = ¢,|o1|™5, with 1 < ¢, < y, so that, using the third of (4.3), we see that

Coy™i < |ops| < CighT, for some Cj, C2 = O(1). Furthermore, using also the second
of (4.3), we find

[t P
lo l| o' rllon]” "’” wlte <] (4.6)
nx
1

and (4.5) follows.
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1 1 B 1
If hf < 1 and |oy|T=70 < 2|pq|!~", then y hi=1 = ¢, lu| ™™, with 1 < cu <V, s0
that, using the second of (4.3) and || = O (Ju|), we see that nghl < |,uh*| <Cly h.
Furthermore, using the third (4.3), we find

1

o | e o kY
e =al Mol eyt e < (4.7)
Mo |

for some C{ = O(1), and (4.5) again follows.

Remark. The specific value of A7 is not crucial: if we change i} in h] +n, n € Z,
the constants Cy, C7 in (4.5) are replaced by different O (1) constants and the estimates
below are not qualitatively modified. Of course, the specific values of Cy, C; (then, the
specific value of /7) can affect the convergence radius of the pertubative series in A. The
optimal value of /7] should be chosen by maximizing the corresponding convergence
radius. Since here we are not interested in optimal estimates, we find the choice in (4.4)
convenient.

Note also that 47 is a non-analytic function of (A, ¢, u) (in particular for small u we

have y"i ~ |u|'T0™) Asa consequence, the asymptotic expression for the specific heat
near the critical points (that we shall obtain in the next section) will contain non-analytic
functions of u (in fact it will contain terms depending on /7). However, as explained in
Remark (3) after the Main Theorem, this does not imply that C,, is non analytic: it is
clear that in this case the non analyticity is introduced “by hand” by our specific choice
of 7.

From the results of Theorem 4.1 and Lemma 4.2, together with (4.4) and (4.5), it
follows that the assumptions of Theorem 3.4 are satisfied for any 4 > h7}. The integration
of the scales < h’f must be performed in a different way, as discussed in next the section.

5. Integration of the ¥ Variables: Second Regime

5.1. Integration of the ¥ field. 1f h7 is fixed as in §4.1, we can use Theorem 3.4 up

to the scale i = hi+ 1.
Once all the scales > hT are integrated out, it is more convenient to describe the

system in terms of the fields 1//6(01), 6(02), w = =1, defined through the following change

of variables:

~ a(<h¥) I ~q,<ht) . ~@<hb) j 1 _ikx 2 G
1ﬁa),k V= ﬁ(ww,fakl - laww Otk ) lf)/,g( = m Ze lkxwé){;( . (51)
k
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. . 2 (j)
If we perform this change of variables, we find P =]z
p g ZhT’UhT’MhT’ChT l_[]_ z, * m(/) Ch*

(j,<h)), Tdef (j,=h?) (j,=h})

where, if W/ W v Dy,
PZ; m(’) G (dl/,(J,<h*))dcf
< 1(1)1—[ ‘ﬁgk_h )CXP{ 4M2 Z Ch*(k)\p(’ =T (k)qj(/ <h)}
N ko keD:
0 ot (TS sk b0 im0 o) )

i(m (J)(k) +c(”(k)) (—i sink + sinko) +a; (”(k)

and aZ)T(j ) mzj*), c}(f*) are given by (A3.2) with h = h* + 1.

The propagators gwjl’i,}zll) associated with the fermionic integration (5.2) are given by
(A3.1) with i = h* + 1. Note that, by (4.5), max{|m(”| |m(2) 1} = lows| + luwr| =

O(J/hT) (see (A3.2) for the definition of mD (2)) From now on, for definiteness

h*’
(1)| |m(2)|} —

we shall suppose that max{|m |m(1)| Then, it is easy to realize that the

(1,<h?) .
propagator g, », 1S bounded as follows:
(1+n)h}

9ot CNnn———————
| xo0 Ox gwl a)z (X)| = an+(yhl|d(X)|)N

, n=ng+ni, (5.3)

1,<h¥ . .
namely gé,l ’wzl) satisfies the same bound as the single scale propagator on scale i1 = h7.

This suggests to integrate out Y 1=mD without any other scale decomposition. We find
the following result:

Lemma 5.1. If |A| < €1, |o1], |u1]| < c1 (c1, &1 being the same as in Theorem 2.1) and
vy is fixed as in Theorem 4.1, we can rewrite the partition function as

D Q.<hH)\_12F
—_— 2 5y =V UV Zay =) - ME
Eir = / P() (2) (dw(lshl))e I G (5.4)

where: n’i;lz*) k) = mzz*) (k)— yhTTrhT Ch_*l (K), with T afree parameter, s.t. |7rh>1k| <c|\|;
1 1 1
|Ep: — Epel < clAly®i; and

VO (@) = iy P (g 0=
(h ) 2n
=22Hﬁ,mmww%m2m
n=1 o i=l1 i=l1
o0

hy)
Z 1_[ 8;:1 l/fé)%?xt ;n O. j a)(X] LA in) ’ (5.5)
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with F( =h) given by the first of (3.8) with w(z h)wf/ replacing w+( h)w_(ih);

o'k
and WZn,U,j,w satisfying the same bound (3.25) as W. Z(Z)o . with h = hi.

e

In order to prove the lemma it is sufficient to consider (3.2) with 2 = h} and rewrite

.Then the integration over the y (1-=/1)

0
PZys e g Cpp 3 theproduct]_[ —1 P 2yt 2.

J)

field is done as the integration of the x’s in Appendix A2, recalling the bound (5.3).
Finally we rewrite m h*) (k) as ](12*) kK +vy lnh*Ch* (k), where Tps is a parameter to
1
be suitably fixed below as a function of A, o1, 1.

5.2. The localization operator. The integration of the r.h.s. of (5.4) is done in an iterative

way similar to the one described in §3. If & = k7, hT — 1, ..., we shall write:
—_— 2 _ (2,<h) 2
Ear = / ;lm @y =)V T, (5.6)

where 7( is given by an expansion similar to (5.5), with & replacing A} and Z, in (2)
are defined recursively in the following way. We first introduce a localtzanon operator
L. As in §(3.2), we define £ as a combination of four operators £; and P;, j = 0, L.
L are defined as in (3.4) and (3.5), while P( and P, in analogy with (3.6), are defined
as the operators extractmg from a functional of mzz) (k), h < h},the contr1but10ns inde-
pendent and linear in 7, )(k) Note that inductively the kernels W2n » can be thought
of as functionals of my(K), h <k < hT Given L}, 77., , J = 0, 1 as above, we define the

action of £ on the kernels Wg,? o as follows.

1) Ifn = 1, then

—(h) def | Lo(Po + 791)W2 w ifor+w =0,
W = () :
‘CIPOWZ,Q ifw) +w #0.

2) Iftn > 2, then[,Wan =0.

It is easy to prove the analogue of Lemma 3.1:
V" = (s + v p) FS 4 2 FE=P (5.7)

where sp,, p, and z;, are real constants and sy, is linear in n?,(f) (K), h < k < h?; pj and
zp are independent of m,(( )(k) Furthermore Fy =M and F, =1 are given by the first
and the last of (3.8) with w(z h)w(2 _h) replacing 1//+( h)l/f_(<h)

Remark. Note that the action of £ on the quartic terms is trivial. The reason for such a
choice is that in the present case no quartic local term can appear, because of the Pauli

principle: 1/;1(2 h)l/fl(z h)i/f(2 h)w(z ") — 0, s that LoW4,, = 0.
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Using the symmetry properties exposed in Appendix A2.2, we can prove the analogue
of Lemma 3.2: if n = 1, then

[S2 4+ Ra(Po +P)IWay ifwr 4wy =0,

_ . 5.8
[R1S1+ RoPolW2 0.0 ifwr +wy #0, ©8)

R, = {

where S; =1 —Pypand Sy = 1 — Py — Py;if n = 2, then W4,Q = R1W4’Q.

5.3. Renormalization for h < hi. If £ and R = 1 — L are defined as in the previous
subsection, we can rewrite (5.6) as:

=) - 0 P
/P(Z)Aa)c (dw(lih))efﬁv WZpy @=) RV (VZyy @ h))*Mth' (5.9)

Furthermore, using (5.7) and defining:

~(2) (k)def Zp

= d _ ~ —
0Lz, 04+ Moz L A 200 + ¢ dos)

(5.10)

-1(k) (

we see that (5.9) is equal to

fP(z) (dy 2=V P s = (Vi D= RV (Zyy =) - M Enty)
Zhi® Ch
(5.11)

Again, we rescale the potential:

PO (JZn o ENE oy, FO=0 (JZ, =) 4+ RY (JZpp @=1) (5.12)

where Z;,_1 = 2};—1(0) and 7, = (Zy/Zp—1)pn; we define ﬁ_l as in (3.14), we
perform the single scale integration and we define the new effective potential as

—(h—1) _ ~
. v( ( /thlT//(z‘Sh 1)) MZEhdef /
= 1 )

Zp—1,my,~ lfh

(dl,l/a h)) VDV Zy @ <h>)(5 13)

Finally we pose Ej,—1 = Ej + 1, + Eh. Note that the above procedure allows us to write
the j interms of mp, h < k < hT’ namely 7,_1 = yhnh + ﬁﬁ(nh, . ,nhT), where

ﬁfz‘ is the Beta function.
Proceeding as in §3 we can inductively show that V(h) has the structure of (5.5), with
h replacing A7 and that the kernels of V(h) are bounded as follows.

Lemma 5.2. Let the hypothesis of Lemma 5.1 be satisfied and suppose that, for h <
h < h’l‘ and some constants ¢, % > 0,

~(2)

e < Mh el AL Zn < oI
—5 = , < <
m;l_)l Zp-1

~(2 h
il < clal L 1) < yh (5.14)
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Then the partition function can be rewritten as in 5.6 and there exists C > 0 s.t. the
—(h .
kernels ofV( ) satisfy:

—(h) _h _
/dxl ...dxz,,|wgnw.,g(xl,... L Xop)| < M2y ~hPe@) (C pymaxdn=D (5 15)

where Dy(n) = —2+n+kandk—z —1 0i- Fmally|Eh+1|+|th+1|<c|A|y

The proof of Lemma 5.2 is essentially identical to the proof of Theorem 3.4 and we
do not repeat it here.
It is possible to fix 7+ so that the first three assumptions in (5.14) are valid for any

h < h7. More precisely, the following result holds, see Appendix A6.

Lemma 5.3. If |A| < ¢y, |o1], |t1] < c1 and vy is fixed as in Theorem 4.1, there exists
7y (A, o1, 1) such that, if we fix Ty = 7T (A, 01, 1), for h < h we have:
1 1

i ~(2)  ~ F
] < claly OPOTIDm® =@y 7z =z, (5.16)
—h
where F,f; and Fg are O(L). Moreover:

<clil (Mo = of |4y My —
(5.17)

5.4. The integration of the scales < h3. In order to insure that the last assumption in
(5.14) holds, we iterate the preceding construction up to the scale A} defined as the scale

2
st P < y*=1 for any h% < k < h* and |mh* >y
Once we have integrated all the fields VASES ), we can integrate ¥ @=h3) without any

further multiscale decomposition. Note in fact that by definition the propagator satisfies
the same bound (5.3) with & replacing h7. Then, if we define

_M2E_,.d DD (7 @Sty
oM Ey ;f/p o e W : (5.18)

Zh* |mh§ I’C@

we find that |E§h§| < c|k|y2h3 (the proof is a repetition of the estimates on the single
scale integration).

Combining this bound with the results of Theorem 3.4, Lemma 5.1, Lemma 5.2 and
Lemma 5.3, together with the results of §4 we finally find that the free energy associated
to &, is given by the following finite sum, uniformly convergent with the size of A :

1

. 1 o — -
Jim 5 log By = Eyy + (g — Epp) + h %;H(Eh +m), (519
=

where Esh§ =limy_ Esh§ and it is easy to see that Eghﬁ, for any finite 4%, exists

and satisfies the same bound of E -
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5.5. Keeping h} finite. From the discussion of the previous subsection, it follows that,
for any finite 4%, (5.19) is an analytic function of A, t, u, for |A| sufficiently small,
uniformly in A} (this is an elementary consequence of Vitali’s convergence theorem).
Moreover, repeating the discussion of Appendix G in [M1], it can be proved that, for
any yhz > 0 (here yhg plays the role of |t — .| in Appendix G of [M1]), the limit (5.19)
coincides with limp; o 1/ M 2 log EZ‘}W for any choice y1, y» of boundary conditions;
hence this limit coincides with —2 log cosh A plus the free energy in (1.2), see also (2.6).
We can state the result as follows.

Lemma 5.4, There exists €1 > 0 such that, if |A| < &] and t £ u € D (the same as in
the Main Theorem), the free energy f defined in (1.2) is real analytic in A, t, u, except

possibly for the choices of A, t, u such that yhz =0.

We shall see in §6 below that the specific heatis logarithmically divergent as y@ — 0.
So the critical point is really given by the condition y"3 = 0. We shall explicitly solve
the equation for the critical point in the next subsection.

5.6. The critical points. In the present subsection we check that, if t = u € D, D being
a suitable interval centered around /2 — 1, see the Main Theorem, there are precisely
two critical points of the form (1.5). More precisely, keeping in mind that the equation
for the critical point is simply yh3 = 0 (see the end of the previous subsection), we
prove the following.

Lemma 5.5. Let |A| < e1,t £ u € D and T be fixed as in Lemma 5.3. Then yhz =0
only if (A, t,u) = (A, tci()», u), u), where tci()», u) is given by (1.5).

Proof. From the definition of 13 given above, see §5.4, it follows that /7 satisfies the
following equation:

*

n
hi—1 Fp? h*
2 =Ccpy " |O-hT| - |//Lh‘f| —UgY lnh‘f s (520)

14

for some 1 < ¢, < y and o, = signoq. Then, the equation yhz = 0 can be rewritten
as:

o | = lpns| — oy Ty =0 (5.21)

First note that the result of Lemma 5.5 is trivial when hT = 1. If AT < 1, (5.21) cannot

1 1
be solved when |o| =70 > 2|u| '~ . In fact,

nE ¥
|Gl|yn,,(hf—l)+Fol nu(hf—=1)+F,!

h*
— |uly —QsY l7Th’1‘

R

ra _ e I—np
= |1l ey = (Jpallon | )lon| P ] — gy = Lo (5.22)

3y
* 1

where c1, c’1 are constants = 1 + O(}), T = O(A) and yhl’] = ¢y |op| ™70, with

1 < ¢y < y.Now,if |uq| > 0, the r.h.s. of (5.22) equation is strictly positive.
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1 1 % 1
So,letus consider the case 1} < 1and |o| ™= <2|pq |7 (s.t. yM=c, log,, |ul I=nu
with 1 < ¢, < y). In this case (5.21) can be easily solved to find:

Nu—No b p— FhT FhT 1-no 1 1 FhT
lot] = lpillul =me e, Ty T TR A ul e, ey T . (5.23)

Note that c‘ZZ"H]")/“'"ﬂ’tlI 7 = 14 O(}) is just a function of u, (it does not depend
on t), because of our definition of h’lk Moreover Tpy is a smooth function of z: if we
call Tps (t, u), resp. Tp (', u), the correction corresponding to the initial data o (¢, u),
wi(t, u), resp. o (t', u), wi(t', u), we have

No —1
|7ps (8, u) — 703 (', )| < el A Ju e |t = 1] (5.24)

where we used (5.17) and the bounds |0y —o{| < c|t —¢'| and |1 — p}| < clullt — 1],
following from the definitions of (o1, t1) in terms of (o, u) and of (¢, u), see §2.
Using the same definitions we also realize that (5.23) can be rewritten as

B VD) 1L+ (2 — u?)
r_[ﬁ—1+ = £ lul (1+Af(r,u))] . 6
where
1 —
140 — Z" : (5.26)
nw

and the crucial property is that n = —bA 4+ O(A2), b > 0, see Lemma 4.2 and Appendix
AS5. We also recall that both  and v are functions of A and are independent of #, u. More-
over f(t, u) is a suitable bounded function s.t. | f (t, u) — f(¢', u)| < c|u|~FTD|r — 1|,
as it follows from the Lipshitz property of T (5.24). The r.h.s. of (5.25) is Lipshitz in
t with constant O (4), so that (5.25) can be inverted w.r.t. ¢ by contractions and, for both
choices of the sign, we find a unique solution

t=1F00u) = V2 — 1+ v* Q) £ w7 (1 + FE(, w) , (5.27)

with |[FE(, u)| < c|k|, forsomec. 0O

5.7. Computation of h3. Letus now solve (5.20) in the general case of yh3 > 0. Calling

de K pk i3
& :fyhz h=Fn” /¢, we find:

nE nE
—1)(h*F—1)+F, ! —Dh*=1)+F,!
e L A B A Y A B A

5 hy x Iy
(770*1)(/'11*1)‘1“1"(7 ("u*ﬂa)(h1*1)+Fu —Fs

I
1+(1—ng)(h*—1)—Fy!
=y lo1] = lutly — gy T

(5.28)

U= ¢, |u|/=m) and, from the second

£

sbe

If oy | /0770 < 20y V070, we use y"i™
row of (5.27), we find: ¢ = C‘|01| —loy%l

lu|~ A+ where olic = o1(r u) and
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C = C(A, t, u) is bounded above and below by O (1) constants; defining A as in (1.6),
we can rewrite:

‘|01|—|01““c| ) —(07%) ‘ It — ]|t — 17
_ , e ” c c
e = Ol = Oy = O e (529)

where C" = C’'(A, t,u) and C” = C" (A, t, u) are bounded above and below by O (1)
constants.

In the opposite case (Jop |/ > 2|/L1|1/(1_W)) we use y" M=1—=¢, |c71|1/(1 ’7”)
and, from the first row of (5.27), we find ¢ = C(1 — |u1]||op |~/ 0+ — o, ynh*) =
where C and C are bounded above and below by O (1) constants. Since in this region of
parameters |t — tcjtlA_l is also bounded above and below by O (1) constants, we can in
both cases write

+ —
|t_tc|'|t_tc|

e =Co(h,1,10) " ,

Cre = Ce(h,t,u) <Cae (530

and Cj ., j = 1, 2, are suitable positive O(1) constants.

6. The Specific Heat

Consider the specific heat defined in (1.2). The correlation function < HAT HM >4, 7
can be conveniently written as

82
< HAT HAT = —logE ,
< Hy' >ar Frcrs g AT(¢)¢:O
d _ AT
Ear@) d Y e Deea ool 6.)
cM.g®

where ¢y is a real commuting auxiliary field (with periodic boundary conditions).
Repeating the construction of §2, we see that E 47 (¢) admit a Grassmannian repre-
sentation similar to the one of E 47, and in particular, if x # y:

2 2
log8ar(¢)| = log 3 (~1)TnEL )|
0y 0Py ¢=0 0y 0Py 1/12)/2 AT ¢=0
j=12
e =[] dBDdBY avDav o Sy (D)5 (D) +ViAB@) - (6.2)
xeAy

where 8, SU)(+/)) and V; where defined in §2 (see (2.2) and previous lines, and (2.9)),

the apex y1, y2 attached to E a7 refers to the boundary conditions assigned to the Grass-
mannian fields, as in §2 and finally B(¢) is defined as:

_ (1 () (1 — (D, (D) @ (H () 1;(2) @2
B(¢)_Z¢{ )(_ Hx+e +V Vx+e +a (_ HX+e|+V VX+eo)

xeA

D 1) 7@ Q) D) 72,2 dgf
a(Hy B A HD, + VIV VIVE N S geac. 63)

XeA
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where a1, ¢® and @ are O(1) constants, with ¥ —a® = 0 (). Using (6.2) and
(6.3) we can rewrite:

H)’l Y2
< HMHM > ) = —(cosh Ty (=Pt AL < g Ay ST (6.4)
V.72 Sar
where < - >K1};4V2T is the average w.r.t. the boundary conditions y1, y». Proceeding as

in Appendix G of [M1] one can show that, if yhﬁ > 0, < AxAy >K1 VZT is expo-

(_1)5)/1 +8V2 =Vl VZ/ BaT is an

o(l) constant Then from now on we will study only E AT((/))difEfAT )(¢>) and

) (==
< AxAy > A
Asi 1n §2 we 1ntegrate out the x fields and, proceeding as in Appendix A2.1, we find:

nentially insensitive to boundary conditions and Zyl "

—~— (¢))] 1
C‘AT(@=/le,al,u1,cl(d1ﬁ)€v B (6.5)

where

o,j,a.w

we= Y Y B0, iM(xl,...,xm;yl,...,yzn)[]'[cpx,}[]'[a"'wy,w,] (66)

m,n=1 X1~Xm
Y1-Yon

We proceed as for the partition function, namely as described in §3 above. We introduce
the scale decomposition described in §3 and we perform iteratively the integration of
the single scale fields, starting from the field of scale 1. After the integration of the fields
Yy Ly BFD Y < h <0, we are left with

Ear @)= IO [y @y IV )

6.7)

where Pz, o, juumy,C,p (A SM) and V) are the same asin §3, S"*D (¢) denotes the sum

of the contributions dependent on ¢ but independent of v, and finally B (v (=P ¢)
denotes the sum over all terms containing at least one ¢ field and two ¢ fields. S (h+1)
and B™ can be represented as

S(h+1)(¢) — Z Z S,(,fl+l)(X1, ces sxm)l_[d)Xi
i=1

m=1X1Xp

0.j.2.0 m
h
B(h)(l/f(gh)’qs): Z Z B,(n)zn(,j%g(xlw--:Xm§YIv«~-aY2n)[l_[¢x,-]
m,n=1 X1~¥m B =
Y1¥2n
2n
<[ TTowszhe]. (6.8)
i=1

Since the field ¢ is equivalent, regarding dimensional bounds, to two ¥ fields (see
Theorem 6.1 below for a more precise statement), the only terms in the expansion for 3%
which are not irrelevant are those with m = n = 1, o1 = 02 = 0 and they are marginal.
Hence we extend the definition of the localization operator L, so that its action on

B(h)(lﬂ(<h) ¢) is defined by its action on the kernels Bm M, w((h, oo Qms Ky, o Kop):
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Difm=n=1anda +a = o +o = 0, then LB (qiiki . kn™

PoB\")., o (k1K k), where P is defined as in (3.6);
B", . =0

2) in all other cases £ i S—

Using the symmetry considerations of Appendix B together with the remark that ¢ is
invariant under Complex conjugation, Hole—particle and (1) <— (2), while under Parity
¢x — ¢—x and under Rotation ¢ x,) — P(—xs.—x)> We easily realize that LBM has
necessarily the following form:

Z (—iw) h)—
LBOwEN. )= 2 ) —— SN (6.9)
X,
where Z, isreal and Z; = aW|y—,—0 = aP |5 =0
Note that apriori a term ), , ¢X (<h)ar 1//5)}’;“ is allowed by symmetry but, using

(1) «— (2) symmetry, one sees that its kernel is proportional to py, k > h. So, with our
definition of localization, such a term contributes to RBM.

Now that the action of £ on B is defined, we can describe the single scale integration,
for h > h7. The integral in the r.h.s. of (6.7) can be rewritten as:

—M? <h—1
e h/PZh—lth—lth—vah—l(dw_ )

/ P onsn o @y e VIV BN WZS R0 (6 10)

where V™ was defined in (3.12) and

ot
B (JZyp S )L BY 2y S ) (6.11)
Finally we define
o EnMP 450 () V=D (yZy iy S D)+ BED (VZy iy D )
def _Ph) (<h)y 4 RBh) (=h)
e /PZ;, o )7.h—|(d1/f(h))e VO Zy—1p ENABD(Zp—1y =, 9) ,(6.12)

and

def

d ~ ~
EveiE +1,+ B . SO@)E 504D (g) + 50 (g) . (6.13)

With the definitions above, it is easy to verify that 7;, | satisfies the equation Z,_| =
Zh(l + Zp), where z, = biy + O()\?), for some b # 0. Then, for some ¢ > 0,
Zie~ch <7, < Zlecw . The analogue of Theorem 3.1 for the kernels of B™ holds:

Theorem 6.1. Suppose that the hypothesis of Lemma 5.1 is satisfied. Then, for hi <
h < 1 and a suitable constant C, the kernels of B®M satisfy

h
fdxl s dX2n|B§n?m;£sja%Q(Xl s Xmi Vs You)l
< M2y—ﬁ(Dk(n)+m) (c |)L|)m‘”(1*”_1) , (6.14)

where Diy(n) = =2 +n +kand k = Z, | Oi.
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Sk ,IZWVVQV\M + Zh h MNQWW

Fig. 3. The lowest order diagrams contributing to < Hy ATH AT Ay, T- The wavy lines ending in the
points labeled x and y represent the fields ¢x and ¢y respectlvely The solid lines labeled by & and going

from x to y represent the propagators g (x — y). The sums are over the scale indices and, even if not
explicitly written, over the indexes o, w (and the propagators depend on these indexes)

Note that, consistently with our definition of localization, the dimension of

(h)
BZI(OO)(+—)(w w)lsDo(l)—i-l:O. _
Again, proceeding as in §4, we can study the flow of Zj up to h = —oo and prove

that 7;, =7 yﬁ(h_1)+F : , where 7 is a non-trivial analytic function of A (its linear part
is non-vanishing) and th is a suitable O (A) function (independent of o1, 11). We recall
that Z; = O(1).

We proceed as above up to the scale /7. Once the scale A} is reached we pass to the
v D @ variables, we integrate out (say) the v (! fields and we get

50D @<k 70D (2.=h})
o =V V()7 Y4B V([ Z)% 1)
/P@) dy@EM)y, VA VoY (6.15)

Zyx,m A(z) Chl ’
= s = o @.shY) @.<h))
with LB ([ Zysp D =) = Zp 3L iur 'y 6 1x
The scales h* <h< h* are integrated as in §5 and one finds that the flow of 7;, in
this regime is trivial, i.e. 1fh <h < h?, Zh = Zh*y , with Fh o).

The result is that the correlation function < HfTHyAT >a,,.T 18 given by a con-
vergent power series in A, uniformly in Ajs. Then, the leading behaviour of the spe-
cific heat is given by the sum over x and y of the lowest order contributions to <
HATHAT >4, 7, namely by the diagrams in Fig. 3. Absolute convergence of the

power series of < H;‘THyAT > A, 7 implies that the rest is a small correction.

The conclusion is that Cy, for A small and |t — /2 4+ 1], |u| < (v/2 — 1) /4, is given
by:

1
( )h/)2

Cv= |A| Z Z Z 7lzh’ 1

X, YeAy w1, 0y=%1 h h'=

) ()
[G o ho) X =VCC oy oY —X)

o )
TGO G o). (—ma) X = VCG i) (o) X — Y)}
3 Z(Zh) o® x—y), (6.16)
|A|
X,.YEAm hj

h .
where i v i’ = max{h, h'} and Gga)l’wl)’(azywz)(x) must be interpreted as
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) ,
g((ﬂt]a)}]l))(az CUZ)( ()2 h* lfh > hT’
(h) _ gw| a)zl ( )+ gwl CU2( ) lfh — h*,
G(aw)(a w)(X)_ @) '
101), (02,02 Gory i (X) ifhy < h < hi,
(2,<h%) }
ga)l,wz (X) lfh — h;

(2+n)h

Moreover, if N, ng, ny > 0 and n = ng + n1, [9{°9,, 2% ®)| < Crvanl M o

Now, calling 7. the exponent associated to Zj,/Zj,, from (6.16) we find:
— y2nc(h’{—1)

1+ 2 0) .

6.17)

Cy = —Ciy™™ilog, y"I "5 (14 Q) 1, () + €

where |Q(1)h*(k)| |§2(2)(A)| < c|A|, for some c. Note that, defining A as in (1.6),

y(l_””)hl A lis bounded above and below by O(1) constants. Then, using (5.30), (1.6)
follows.

Appendix A1. Proof of (2.1)

We start from Eq. (V.2.12) in [MW], expressing the partition function of the Ising model
with periodic boundary condition on a lattice with an even number of sites as a combi-
nation of the Pfaffians of four matrices with different boundary conditions, defined by
(V.2.10) and (V.2.11) in [MW]. In the general case (i.e. M 2 not necessarily even), the
(V.2.12) of [MW] becomes:

I _ _ L
Zp =3 e FIHI© — (—1)M2§(2cosh ,3])M2< _ PfA; +Pf A + Pf A3 Pf A4),

(Al.D)
where A; are matrices with elements (Z,-)X,j;y,k, with X,y € Ay, j,k=1,...,6,
given by:

0 0-10 01
0O 0 0-110
— 1 0 0 0 0 —1
(Ai)x;x= 01 0 0 —=10 (A1.2)
0 -10 1 0 1
-1 0 1 0 -10
— — — —T
and ((Ai)X;X—Fé])l"j = tal‘,l(sj,Z’ ((Ai)X;X-I—éo)i’j = fai,25j,1,(Ai)x;x+él = _(Al )X+él;X7
— — T
(Ai)X;X+éO = —(A; )X+@0;X; moreover

(AD(M.x0): (1.xg) = —(A )(1,x0); (M, xg) = (— 1) (A )(1,x0): (2,x0) 5

(AD e My (x1) = —(Ai ey enny = (=D AN e 2) (A1.3)

where [%] is the bigger integer < %; in all the other cases the matrices (Z,-)x’y are

identically zero.
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Given a (2n) x (2n) antisymmetric matrix A, it is well-known that Pf A =
(=D" fdwl <o droy - -exp{% Zi’j YiAijy;}, where ¥q, ... , Y2, are Grassmannian
variables. Then, we can rewrite (Al.1) as:

1 — — — .
5(2cosh,3J)M2 Z(—1)5v/ [ dH dH;dV,aV]dT dT] s “HV-D)
14 xeAy

(A1.4)

where: y = (¢, ¢); €, ¢’ = £1; 8, is defined after (2.1); ﬁi HY, VZ, Vy are Grass-
mannian variables with e—periodic resp. &’—periodic boundary conditions in the vertical,
resp. horizontal, direction, see (2.3) and following lines. Furthermore:

X " x+é

. _ oV gv k728 Va4
ST H V. T =0y [HUH] o+ VivEe ]
X
+ [Vﬁﬁi VHIT + VW H + BT, + TV, + TV +T§T,Z].
X

(A1.5)

The T—fields appear only in the diagonal elements and they can be easily integrated out:

I1 / dT7dTY exp {E,Z T/ + /T, + TV + T V) + T Tx”]
XeEAy
= [] -1 -HLH, - VIV - VVH, - VH))
XeAy
—D"exp 3 [ﬁ,{ny YV WHL + HXVV,Z] : (A1.6)

XeAy

_ _ — )
where in the last identity we used that [H : H] + V;’ Ve + VY H: + HY V;/ ] = 0.
Substituting (A1.6) into (A1.4) we find (2.1).

Appendix A2. Integration of the Heavy Fermions. Symmetry Properties

A2.1. Integration of the x fields. Calling V(yr, x) = Q(¥, x) — vF, () + V¥, x),
we obtain

(=D"

n!

EL VW, x)in),

(A2.1)

—Eym? = 0O y) VO (y) = log / PP V0 =3

n=0

where E| is a constant and V1) is at least quadratic in ¥ and vanishing when A =
v=0. Q(l) is the rest (quadratic in ¥). Given s set of labels Py, i = 1,...,s and

~ def . ~ ~
X (Py,) el nferi ng;’x(f),the truncated expectation Sf(x(PU,), ..., X(Py,)) canbe

written as

ENX(Pyy), - KPP ) =Y ar [ | g (S 1) / dPr(PEGT (1),  (A22)

T teT
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where T is a set of lines forming an anchored tree between the cluster of poins P, ,. . ., Py,
i.e. T is a set of lines which becomes a tree if one identifies all the points in the same
clusters; t = {; » € [0, 1], 1 < i, i’ < s}, dPr(t) is a probability measure with support
on a set of t such that#; ;; = u; - uy for some family of vectors w; € R* of unit norm; oy
is a sign (irrelevant for the subsequent bounds); fel, f,é2 are the field labels associated to
the points connected by £; if a(f) = («x(f), w(f)), the propagator g, (f, f) is equal to

def alf) T .
8x(fo 1) = 8oy .a(rn KD =XUNZ < Koy xipXorimn =5 (B23)

if 2n = Zf:l | Py, |, then GT(t)isa@n—25s +2) x 2n —2s +2) antisymmetrix
matrix, whose elements are given by G?,f’ = ti(r).i(fH8x (f f), where: f, f & Fr

def . .
and Fr Uger L 2L i(f) is st f € Pi(y); finally Pf G is the Pfaffian of GT . If
s = 1 the sum over T is empty, but we can still use the above equation by interpreting
the rh.s. as 1 if Py, is empty, and detG (P;) otherwise.

Sketch of the proof of (A2.2). Equation (A2.2) is a trivial generalization of the well—
known formula expressing truncated fermionic expectations in terms of sums of deter-
minants [Le]. The only difference here is that the propagators < xz X, x, > are not
vanishing, so that Pfaffians appear instead of determinants. The proof can be done along
the same lines of Appendix A3 of [GM]. The only difference here is that the identity
known as the Berezin integral, see (A3.15) of [GM], that is the starting point to get to
(A2.2), must be replaced by the (more general) identity:

& ([17P) =PrG = -1y [ Prew[5060]. (A24)

j=1

where: the expectation &, is w.r.t. P(dy); if 2m = Zj’:l |Pj|, G is the 2m x 2m
antisymmetric matrix with entries G s = gé( £a f,)(x( ) —x(f")); and

n
B al(f) B a(f) a(f")
Dx=[1119%pon  CGO= 2 KhonCrrtaty o -
j=1 fep; [ f'eVi Py
(A2.5)

Starting from (A2.4), the proof in Appendix A3 of [GM] can be repeated step by step
in the present case, to find finally the analogue of (A.3.55) of [GM]. Then, using again
that f Dy exp(x, Gx)/2 is, unless for a sign, the Pfaffian of G, we find (A2.2). |

We now use the well-known property |Pf G'| = /| det G| and we can bound
det GT by the Gram-Hadamard (GH) inequality. Let Hdéf R* ® Ho, where H is the Hil-
bert space of complex four dimensional vectors F (k) = (Fi(k), ..., F4(k)), F; (k) be-
ing a function on the set D_ _, with scalar product < F, G >= Y"_ 1/M? ¥} F*(k)
G (k). We can write the elements of G” as inner products of vectors of :

Grp = tipiom8x (fo f1) =< wi(r) @ Ap, ui(pry ® By >, (A2.6)
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wherew; € R®,i =1,...,s, are vectors such that #; » = u; - uy, and, if gjj o (K) is the

Fourier transform of g;( +X—Y), As(k) and By (k) are given by

— ik 5X 5X 5X
Arl) =e™ X(f)<g a(f).(~ 1)(k)’gg(f),<—,—1>(k)’gg(,f>,<+,1>(k)’gg(,f'>,<+,—1)(k))’

(1,0,0,0), ifa(f") = (- D,
(0,1,0,0), ifa(f") = (- -1),
(0,0,1,0), ifa(f") = (+. D,
(0,0,0,1), ifa(f’) = (+, —D.

Bj(k) = e X/ (A2.7)

With these definitions and remembering (2.17), it is now clear that | P f GT| < cn—stl
for some constant C. Then, applying (A2.2) and the previous bound we find the second
of (2.21).

We now turn to the construction of Pz, 4, 4,,c;, in order to prove (2.19).

2 d 1
We define e 1M Pz, 61,11,c,dV) efP (dyr)e o) , where t1 is a normalization
constant. In order to write Pz, o, u,,c,(d¥) as an exponentlal of a quadratic form, it is
sufficient to calculate the correlations

def

o
wwl kw wy.—ajark 1 = /le o1,u1,C1 (d‘p)‘pw, kiﬂwj,mzk

_ eft]M2 / P (dW)P(dX)eQ(X W)wal wgi —ajonk”
(A2.8)

Itis easy to realize that the measure ~ P, (dy¥) P(d x)e Q0¥ factorizes into the product
of two measures generated by the fields w,f,’ ;, j = 1,2, defined by ¥, = (w(l)

i(— l)o‘lﬂ(z) )/~/2. In fact, using this change of variables, one finds that

Pg(dW)P(dX)eQ(X‘w: 1_[ P(j)(dlﬁ(j),d)((j))
j=12

1
- l_[ Wexp{_4M2 Zg(]) Tc(]) (j)} (A2.9)
=12

. . i . ; d i
for two suitable matrices Clﬁj ), whose determinants B¢/ (k) éf det Cl({j ) are equal to

B(j)(k)zW{Ztij)[l—(tij))z](Z cosk — cosko) + (11 — )2 — 1)),
A
(A2.10)
From the explicit expression of C(/ ) one finds
am? ¢l Camz ) ()
<y Dy 5 M <P 5 = M
19 BW(k) k A<J) B(n(k) ’
(J)
_am? ez (K
—1 (A2.11)

—() (1)
< ¥V tij) B(l)(k)
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where, if w = %1, recalling that ty, = V2 -1+ v/2 and defining ¢, = -2 -1,

4 .
(/) ) (k) o _° {2t(")tx (—i sin k cos ko + w sin kg cos k)
(t(]))z A

(t(])) +15 21(i sink — wsinko)},

(J) (k) { — tkj)(3tx + ty) cosk cos ko

Ty

—i—[(tij))2 + 2ty ty + t)z(](cosk ~+ cos kp)
2
)
—(1; (g + 1) + 2% o ). (A2.12)

It is clear that, for any monomial F (¢ ("), [ P(dy), dx W)Y F(yD) = [ PO (dy D))
F(yY)), with

pm(dl/,(]))def Hdllf(”dllll((j)

(])B(])(k) ) =) 1(k) ) 1(k) w(/ﬁ
.exp{ —Mzd 7 W Y) (_Jl)l(k) Ciji(k)) W(,Jl)( } (A2.13)

where det c(] ) cgj %(k) W) 1 (k) — c%jll (k)c(] ) 1 (k). If we now use the 1dent1tyt
ty 2+ (= 1)/ )/ (2 — o) and rewrite the measure PV (dy M) P@ (dy®) in terms of
wj)t,k we find:

Z1C1(k )\II+T
4M?

= Pzi.01.u1.c;@dY) , (A2.14)

1 _ _
PO@yPO@Y®) = <5 [ v dvy yexpl- Ay W)
k,w

with C1(K), Z1, o1 and 1| defined as after (2.18), and Aib“(k) as in (2.19), with

MO k) = ZL <—Cf1,_1(k) Cfl,l(k)> |

—o \ & —cf k)

2 —c_, (k) ¢, (k)
(1) — 1,—1 1,1
NV (k) = s < Ci—l(k) cl,l(k)> , (A2.15)

def

where %, (K)Z [(1—1/2) BV K)ch, o, %)/ det el +a(141/2) B (K)el, v (K)/

det c(z)] /2. It is easy to verify that A(l)(k) has the form (2.19). In fact, computing the
functions in (A2.15), one finds that, for k, o1 and w1 small,

MO k) = (1+ %)@ sink +sinko) + O(k3) —io] + O(k?)
B io] + O(k?) (1+ %) sink — sinko) + O (k%)
K1 7o H 3 : 2
Dy — [~ (@ sink + sinko) + O (k”) ing + O0(u1k?)
A ( —ip1 + O(uik?) —BL (i sink — sinko) + O(k?) (A2.16)
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where the higher order terms in k, o7 and 1¢| contribute to the corrections af—L k), bjE k),
c1(k) and d; (k). They have the reality and parity properties described after (2.19) and it
is apparent that ai" (k) = O (01K) + O (k®), b (k) = O(11k) + O(K), ¢1(K) = O (K?)
and d; (k) = O (u1Kk?).

A2.2. Symmetry properties. In this section we identify some symmetries of model (2.7)
and we prove that the quadratic and quartic terms in V(1) have the structure described in
(2.22), (2.23) and (2.24).

The formal action appearing in (2.7) (see also (2.2) and (2.9) for an explicit form) is
invariant under the following transformations:

1) Parity: H(]) — H(/) H(j) H(j) (the same for V and V). In terms of the

X
variables w“ k- this transformation is equivalent to w“ — i a)lﬁg,_k (the same
for x) and we shall call it parity.

2) Complex conjugation: w"‘ — w_w k (the same for x) and ¢ — ¢*, where ¢ is
a generic constant appearing in the formal action and ¢* is its complex conjugate.
Note that (2.10) is left invariant by this transformation that we shall call complex

conjugation. _ .
3) Hole-particle: HY = (—1)it B (the same for H, V, V). This transformation
is equivalent to w“ — % (the same for ) and we shall call it hole-particle.
() () =) ) () =) ()
4) Rotation: Hyxy — iV=y _ H = iV Ve, > iH Vi —
zHijx)O _- This transformation is equivalent to
Vo ok =~ oy o R = 0T R Ch iy
(A2.17)
and we shall call it rotatton ) _ )
5) Reflection: HXJXO — H xxo, ij,xo H(]x)xo, Vx(f)?o V(jx)xo, ij,xo —

lV(j) . Thls transformation is equivalent to w o (ko) il/fﬂ o.(—k.ko) (the same

for X) and we shall call it reflection.
6) The (1) <— (2) symmetry: H(l) <« H(z) H V(l) <~ V(z) V

V,((z), u — —u. This transformation is equivalent to w"‘ x> l()llﬂ _k (the same

for x) together with u — —u and we shall call it (1) <— (2) symmetry.

It is easy to verify that the quadratic forms P(dx), P(dy) and Pz, 5, u,.c, (d V) are
separately invariant under the symmetries above. Then the effective action VI (v) is
still invariant under the same symmetries. Using the invariance of V() under transfor-
mations (1)-(6), we now prove that the structure of its quadratic and quartic terms is the
one described in Theorem 2.1, see in particular (2.22), (2.23) and (2.24).

=M O

—H

X

Quartic term. Theterm Zk,» W (ky, ko, k3, k4)1&rk| ‘}jl,kz @:1’k31ﬁ[k45(k1+k2—k3—
k4) under complex conjugation becomes equal to Zki wW*(kq, kp, k3, k4)'ﬁ:1,k. wl_,kz
Va8 (ks + ks — ki — ko), so that W(ki, ko, ks, k) = W*(ks, ks, ki, ka).
Then, defining L1 = W(k44, k4, ki1, kiy), whereky = (w/M, /M), and [} =
POleéle |a1=M1=0’
the lower order term we find /| = X/le + 0.

we see that Ly and /; are real. From the explicit computation of
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Quadratic terms. We distinguish 4 cases (items (a)—(d) below).
a)Leta; = —ap = +andw; = —w2 = w and consider the expression Zw’k Wo(K; wy)
@;ktﬁ:&k. Under parity it becomes
Yok Wo ks ) (o)) (i) ¥, o= Wo(—ki w0V 07, 1
so that W, (k; 1) is even in k.
Under complex conjugation it becomes
Yk Wo O ) * Y b = =37,k W (ks ) i 9, 1
so that W, (K; 1) is purely imaginary.
Under hole-particle it becomes

Yk Wols k¥ 40, o= =3, e Woo Kt Y V7,

so that W, (k; 1) is odd in w.

Under (1) «<— (2) it becomes ) o

Yok Woki =) (=DVZ, OV =Yk Woki =DV Ve

so that W, (k; 1) is even in wp. Let us define S| = iw/2 Z,m,:il Weo Ky ),
where k,y = (9w/M, n'm/M), and yny = PyS1, s1 = P1S1 = 0105, Sl|01:m:0 +
10, S1 ‘Ul —p1=0" From the previous discussion we see that Sy, s1 and n arereal and 57 is
independent of (1. From the computation of the lower order terms we find s1 = O (Loy)
andyn; =v/Z1+ciA+ 0 (A?), for some constant c| independent of A. Note that since
Wy (K; 1) is even in K (so that in particular no linear terms in k appear) in real space
no terms of the form 1/f;; x0¥_, x can appear.
b)Leta; = oy = v and w; = —wy = w and consider the expression Zw’a’k W3 (k; 1)
lﬁg kl/}fw _k- We proceed as in item (a) and, by using parity, we see that W, (k; 111) is
even in k and odd in w.

By using complex conjugation, we see that W5 (k; 1) = —W_*(k; n1)*.

By using hole-particle, we see that W2 (k; 1) isevenina and W3 (k; 1) = =W % (k; up)*
implies that WS (k; 1) is purely imaginary.

By using (1) <— (2) we see that W5 (k; 1) is odd in 1.

If we define M| = —iw/2 Zn,n’ Wg (Kyys 1) and my = Py My, from the previous
properties it follows that M and m are real, m; is independent of o1 and, from the
computation of its lower order, m; = O(Au1). Note that since WS (k; 1) is even in
k (so that in particular no linear terms in k appear) in real space no terms of the form
Vo x0V, x can appear.
¢)Leta; = —ay = +, w1 = w3 = wand consider the expression ) _ , Wi (K; m)l/Af;;k

~

¥, x- By using parity we see that W, (k; 1) is odd in k.
By using reflection we see that W, (k, ko; 1) = W_(k, —ko; i£1).
By using complex conjugation we see that W,, (k, ko; 1) = Wi(—k, ko; pe1).
By using rotation we find W, (k, ko; 1) = —iwW,(ko, —k; 11).
By using (1) «— (2) we see that W,,(k; —u1) is even in pu.
If we define

Gi(k) = 1 ZW &, 1) sink , sinkg )
=y Y ' 1 nsinn/M 7 sint/M
1.1
= a, sink + b, sinkyp , (A2.18)
it can be easily verified that the previous properties imply that
def d
Ay = A—y = —a,, = iwb,, “fia . by=—-b_, =0 =—iwa, “ b = —iwia

(A2.19)
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witha = b real and independent of w. As a consequence, G1(k) = G (i sin k+w sin ko)

d . .
for some real constant G . If z; éf PoG1 and we compute the lowest order contribution
to z1, we find z; = O(A2). A
d)Leta) = ay = o, w; = wy = w and consider the expression ), . W& (k; u) vy
Ta

o.—k- Repeating the proof in item (c) we see that WS (k; p1) is odd in k and in p
and, if we define Fi (k) = 4—11 Yo Vo (ks 1) ( sn?l;fM +7 SI?;T’;(}M), we can rewrite

Fi1(k) = F1(i sink 4+ wsin ko). Since W2 (k; 1) is odd in p1, we find F1 = O(Ap1).
Note that with the definition of £ introduced in §3.2, the result of the previous dis-
cussion is the following:

VO @) = (1 +yn)FEY +m FED + 1 FED 42 FED (A2.20)

where s1,n1,m1,l; and z; are real constants and: s; is linear in o1 and independent
of w1; my is linear in w; and independent of o1; ny, [, z; are independent of oy, i1;

moreover Fy=", Fi=", F{=V, F\=") are defined by (3.8) with h = 1.

Proof of Lemma 3.1. The symmetries (1)—(6) discussed above are preserved by the
iterative integration procedure. In fact it is easy to verify that LV, RY™® and
(dy™) are, step by step, separately invariant under the transforma-

P [y
h—1,h—
ons (15065 ﬁen Lemma 3.1 can be proven exactly in the same way (A2.20) was

tions (1) (6 T
proven above.

Proof of Lemma 3.2. Itis sufficient to note that the symmetry properties discussed above
imply that LiWs o, = 0if w1 + @2 = 0; LoW2 g0 = 0if w1 + w2 # 0; PoW2 0,0 = 0
if @1 + a2 # 0; and use the definitions of R;, S;,i = 1,2. 0O

Appendix A3. Proof of Lemma 3.3

The propagators g‘(lhzl,(x) can be written in terms of the propagators gt(oja})l,) x),j=12,
see (3.16) and the following lines; gc(uja})’,) (x) are given by

gIM(x—y)

— =)
_ % Z e_ik(X_Y)f;l(k) isink + wsinky + a, 7 (k)
M
k

sin? k + sin? ko + (n_h(f)l(k)) B(j)l(k)

g (x—y)
—(J)
2 —ik(x—y) 7 —iwm,;,_, (k)
=2 2-¢ Jn (k) . (A3.])
Mz Zk: " sin? k + sin? ko + (_(/) (k)) +SB(j) (k)
where
a?™% (k) dif a? (k) + (—1Ibe &) . D 0 )+ (—1) d (k).
(j) (k) = th 1K) + (=D pup_1 (k) _(1) (k)def /) (k)—i-c(f)(k)

(sB,gf)l(k) defz a? ) (k) (i sin k — wsmko)+a‘“(”(k)ah“’<”(k)/2]. (A3.2)
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ol 4]

| Vo — <
Ok
: ~

h o h+1 hy 0 +1 +2

Fig. 4. A tree with its scale labels

In order to bound the propagators defined above, we need estimates on oy, (K), up(K)
and on the “corrections” a;’_; (k), b’_; (k), cp—1(K), dp—1(K). As regarding o, (k) and
ur(K), in [BM] is proved (see Proof of Lemma 2.6) that, on the support of f;,(k), for
some ¢, ¢~ oy| < |op—1(K)| < clop] and ¢ || < |pp—1(K)| < clup]. Note also
that, if h > h, using the first two of (3.18), we have ‘“’”;# < 2Cj. As regarding the

corrections, using their iterative definition (3.11), the asymptotic estimates near k = 0
of the corrections on scale 7 = 1 (see lines after (2.19)) and the hypothesis (3.18), we
easily find that, on the support of f;, (K):

PN N 2
_ _ 2
b (k) = O (upy 1720y 0 (y B=clDhy
_ 2 _
en(k) = Oy F=<POhy gy (k) = O (uyyy @20y | (A3.3)

The bounds on the propagators follow from the remark that, as a consequence of the
estimates discussed above, the denominators in (A3.1) are O ()/2”) on the support of fj,.

Appendix A4. Analyticity of the Effective Potentials

It is possible to write V™ (3.3) in terms of Gallavotti-Nicolo’ trees. See Fig. 4.
We need some definitions and notations.

1) Let us consider the family of all trees which can be constructed by joining a point 7,
the root, with an ordered set of n > 1 points, the endpoints of the unlabeled tree, so
that r is not a branching point. n will be called the order of the unlabeled tree and
the branching points will be called the non trivial vertices. Two unlabeled trees are
identified if they can be superposed by a suitable continuous deformation, so that the
endpoints with the same index coincide. Then the number of unlabeled trees with n
end-points is bounded by 4".

2) We associate a label 2 < 0 with the root and we denote 7}, ,, the corresponding set
of labeled trees with n endpoints. Moreover, we introduce a family of vertical lines,
labeled by an integer taking values in [/, 2], and we represent any tree T € 7}, , SO
that, if v is an endpoint or a non-trivial vertex, it is contained in a vertical line with
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index h, > h, to be called the scale of v, while the root is on the line with index
h. There is the constraint that, if v is an endpoint, i, > h + 1; if there is only one
end-point its scale must be equal to & + 2, for 4 < 0.

Moreover, there is only one vertex immediately following the root, which will be
denoted vy and can not be an endpoint; its scale is & + 1.

3) With each endpoint v of scale &, = 42 we associate one of the contributions to
V(U given by (2.21); with each endpoint v of scale &, < 1 one of the terms in £LVv—D
defined in (3.7). Moreover, we impose the constraint that, if v is an endpoint and &, < 1,
hy = hy + 1,if v’ is the non-trivial vertex immediately preceding v.

4) We introduce a field label f to distinguish the field variables appearing in the terms
associated with the endpoints as in item 3); the set of field labels associated with the
endpoint v will be called I,,. Analogously, if v is not an endpoint, we shall call 7, the
set of field labels associated with the endpoints following the vertex v; x(f), o (f) and
w(f) will denote the space-time point, the o index and the w index, respectively, of the
field variable with label f.

5) We associate with any vertex v of the tree a subset P, of [,, the external fields of v.
These subsets must satisfy various constraints. First of all, if v is not an endpoint and
v, ..., Uy, are the s, vertices immediately following it, then P, C U; Py,; if v is an
endpoint, P, = I,. We shall denote Q,, the intersection of P, and P,,; this definition
implies that P, = U; Q,,. The subsets P,,\ Q,,, whose union will be made, by definition,
of the internal fields of v, have to be non empty, if s, > 1, thatisif v is a non trivial vertex.
Given t € 7, ,, there are many possible choices of the subsets P,, v € T, compatible
with the previous constraints; let us call P one of these choices. Given P, we consider the
family Gp of all connected Feynman graphs, such that, for any v € 7, the internal fields
of v are paired by propagators of scale %,, so that the following condition is satisfied: for
any v € t, the subgraph built by the propagators associated with all vertices v’ > v is
connected. The sets P, have, in this picture, the role of the external legs of the subgraph
associated with v. The graphs belonging to Gp will be called compatible with P and we
shall denote P; the family of all choices of P such that Gp is not empty.

6) We associate with any vertex v an index p, € {s, p} and correspondingly an operator
Rp,» where R or R, are defined as

S ifn =1and w; + wp =0,

def | R1S1 ifn=1and w; + wy # 0,
R = A4.1
* S ifn =2, (Ad1)

1 ifn > 2;
and

Ro(Po+P1) ifn=1and w; +wy =0,

def R>Po ifn=1,01+wy #0and o] + a3 =0,
Rp,= 10 ifn=1,w; + wy #Z0and @] + ap # 0, (A4.2)
R1Po ifn=2,
0 ifn > 2.

Note that Ry + R, = R, see Lemma 3.2.
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The effective potential can be written in the following way:

VO Zyp ) + MPEjpyy = Z > VP, JZp &), (A4.3)
n=1 re’Th,n
where, if vg is the first vertex of T and 7y, ... , T, are the subtrees of T with root vg,

VW (2, JZpy M) is defined inductively by the relation
VO (@ Zip )

G )
= 5}{+1[V(h+1)(11, \/Zw(fhﬂ)); D /Zw‘fh+1>)] ’
| (Ad4.4)

and VD (g, /Z,p ShHD)y:
a) isequalto R, ]7(“1)(1 Zpy Gy if the subtree T; with first vertex v; is not
trivial (see (3. 12) for the definition of V(h))

b) if 7; is trivial and & < —1, it is equal to one of the terms in EV“’H) see (3.12),
or, if 7 = 0, to one of the terms contributing to po WZiy=h.

A4.1. Theexplicitexpression for the kernels of V™" can be found from (A4.3) and (A4.4)
by writing the truncated expectations of monomials of ¥ fields using the analogue of

(A22):if F(Py) = [T ep, , w;j{;?ﬁjg% the following identity holds:

ELT(Po).... T (Py))= ( ) Zan N ) / dPr, (P G™ (1),
Ty LeT,
(A4.5)

where g™ (f, f') = 8a(f).a(fHX(f) — x(f")) and the other symbols in a.1 have the
same meaning as those in A2.2.

Using iteratively A4.5 we can express the kernels of V" as sums of products of
propagators of the fields (the ones associated to the anchored trees T;) and Pfaffians of
matrices Gv.

A4.2. If the R operator were not applied to the vertices v € T then the result of the
iteration would lead to the following relation:

|Pag| h
Vi, 2y Sy =z 0 Y Z/dxvo rPT(Xvo){ [ I/’;xx<(;>),(ws<f)>}’
PE’F’I TeT fepuo
(A4.6)

where Xy, is the set of integration variables asociated to 7 and T = (J, Ty; W]'p g is
given by

Wipao) =[] ( )%][nl{ )| T1 /dPTv(tv)

vnot e.p. vnot e.p.

Pt Gl T <tv>[ [Te™ D]} (A47)

leT,
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where: e.p. is an abbreviation of “end points”; vi‘, ..., v} are the endpoints of 7, h; =
hv;« and Kf” (xy) are the corresponding kernels (equal to Aj,—18(xy) or v, —18(xy) if v
is an endpoint of type A or v on scale A, < 1; or equal to one of the kernels of VI if
hy = 2).

We can bound (A4.7) using (3.20) and the Gram—Hadamard inequality, see Appendix
A2, we would find:

/ Xy W (kug)| < C"M2[A [y ~H 24P 2

< T1 ! ( Zh, )¥ —1-2+13 (A4.8)
Sp! Zh,—1 4 ) ’

vnot e.p.

Wecall D, = -2 + % the dimension of v, depending on the number of the external
fields of v. If D,, < O for any v one can sum over 7, P, T obtaining convergence for A
small enough; however D, < 0 when there are two or four external lines. We will take
now into account the effect of the R operator and we will see how the bound (A4.21) is
improved.

A4.3. The effect of application of P; and S is to replace a kernel w with

2n,0,j,2,0
Wi and S; wih

J " 2n,0,j,0,0 2n,0,j,0,0°

the kernels W(h)

2n,0,j,0,0

If inductively, starting from the end—points, we write
in a form similar to (A4.7), we easily realize that, eventually, P;

or §; will act on some propagator of an anchored tree or on some Pfaffian Pf G™v, for
some v. It is easy to realize that P; and S;, when applied to Pfaffians, do not break the
Pfaffian structure. In fact the effect of P; on the Pfaffian of an antisymmetric matrix G
with elements G 7, 7, f, f "€ J, |J| = 2k, is the following (the proof is trivial):

1
PPt G =PfG° PIPIG =~ > PG p(—DPEGY, (A4.9)
f1.foel

where GO is the matrix with elements PoGy p, f, e, G(l) is the matrix with ele-

ments PoG 1 s, f. f € LT\ {fi U f2} and (—1)7 is the sign of the permutation
leading from the ordering J of the labels f in the L.h.s. to the ordering fi, f>, J; in the
r.h.s. The effect of S; is the following, see Appendix A7 for a proof:

k
SiPfG = ﬁ Y 8iGhp, Y. (Dk'k!PEGIPEGy,  (A4.10)
fi1.f2€d J1UL=J\U; fi
where the * on the sum means that J1 N Jy = @; |J;| = 2k;, i = 1,2; (—1)T is the
sign of the permutation leading from the ordering J of the field labels on the 1.h.s. to the
ordering f1, f2, J1, Jo ontherh.s.; G(l) is the matrix with elements PoG ¢, s/, f, e J;
G2 is the matrix with elements G ¢ ¢/, f, f " € Jp. The effect of S; on Pf GT is given
by a formula similar to (A4.10). Note that the number of terms in the sums appearing
in (A4.9), (A4.10) (and in the analogous equation for S,Pf GT), is bounded by c* for
some constant c.
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A4.4. It is possible to show that the R ; operators produce derivatives applied to the
propagators of the anchored trees and on the elements of G'7; and a product of “zeros”
of the form dj.’(x(le) — X(fez)), j =0,1,b = 0,1,2, associated to the lines £ €
T,. This is a well known result, and a very detailed discussion can be found in §3 of
[BM]. By such analysis, and using (A4.9),(A4.10), we get the following expression for

RYVW (v, /Zyp Sy
Rv(h)(t rw(ih))

ﬁ'on a4 (f) a(f)(sh)
= Z Z Z /d"vo fPTﬁ(Xvo){ l—[ gt X,s(f),w(f)}’
PeP, TeT BeBr ferO
(A4.11)

where Br is a set of indices which allows to distinguish the different terms produced
by the non trivial R operations; Xg(f) is a coordinate obtained by interpolating two
points in Xy, in a suitable way depending on B; gg(f) is a nonnegative integer < 2;
Jjg(f) =0,1and 5;’ is a suitable differential operator, dimensionally equivalent to 87
(see [BM] for a precise definition); W p 1, is given by:
Zn, ' by (v Cpo?) B v)) o
_ v Y; ;) oCply; i
Werrpt) = [] ( ) ][]‘[ 4 (K, ¥ P SErt) Kl x|
vnot e.p. i
Cp(v) oep(v) v, Ty
| I1 /dPTv ()P SiEe PE G T (8-
vnot e.p.

[ aqﬁ(f,mﬁ(f/ ld 40
Js(FYH s (A T isD

v

C (l) D (hy
& 0P St e ™ i)
(A4.12)

where v’f, ..., vy are the endpoints of 7; bg(v), bg(l), qﬂ(fll) and qﬂ(flz) are nonneg-
ative integers < 2; jg(v), jﬁ(fll), jﬁ(flz) and jg(/) can be 0 or 1; ig(v) and ig(/) can
be 1 or 2; Ig(v) and Ig(I) can be 0 or 1; C,g(v) c,g(v) Cg(l) and cg(l) can be 0, 1 and
max{Cp(v) + cp(v), Cp(1) + cp(l}) < 1; G~ (t,) is obtained from G"»Tv(t,) by

substituting the element #;( ). ;18" (f, f/) with t;(py.i (s )375(%) 375((;)) B (f, 7).
It would be very difficult to give a precise description of the various contributions of
the sum over Br, but fortunately we only need to know some very general properties,
which easily follow from the construction in §3.
1) There is a constant C such that, VT € T¢, |Br| < C"; for any 8 € Br, the

following inequality is satisfied:
[ I1 yh(f)q,s(f)][l_[ y—ha)bﬂ(z)] < [1 »=®. (A4.13)
feUy Py leT vnot e.p.

where h(f) = hy, — 1 if f € Py, otherwise it is the scale of the vertex where the field
with label f is contracted; h(l) = hy,ifl € T,, and

if|Pyl =4and py =p,
if|Pyl=2and py =p,
iflPol=2,py=sand 3 ;cp o(f)#0,
otherwise.

2(Py) = (Ad.14)

O = N =
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2) If we define
lon, | + |1, |\ Wip@) lon, | + 1tn, | \e8©Ois©
M=) )
VET LeT,
i(v,B)
def l—[ (|Gh | + [1n, I) 7 (A415)

veVg

the indices i (v, B) satisfy, for any Br, the following property:

Y i, =7 (P, (A4.16)

w>v
where

if |[Py]=4and p, =5 ,
1f|Pv| =Zandpv :sandeerw(f) =0 ,

if |Py| = 2, py = s and Zfepu w(f)#0,
otherwise.

7(Py) = (A4.17)

O =N =

A4.5. We canbound any |7>,Cﬁ’3(i’;)sflf(fj’))1>f Gl |in (A4.12), with Cp (v)+cp(v) = 0, 1,

by using (A4.9), (A4.10) and Gram inequality, as illustrated in Appendix A2 for the case
of the integration of the x fields. Using that the elements of G are all propagators on
scale h,, dimensionally bounded as in Lemma 3.3, we find:

S pe G < AR
s ‘ i I
B (S Py |7\Pu\fz<wl))[ I ythﬁm] ( |on, | *;thv | )‘f‘(")’f’(””‘:ﬂ(”) )
fed Y

’

(A4.18)

Cg(v)Ig(v)
where J, = U Y1 Py; \ Qu; . We will bound the factors (m”)‘j—w) e using (3.19)

by a constant.
If we call

b (v} Cp(v¥) _cp(vf) h,
[l_[dj (U*)( ﬁ ﬁ)Plﬁ(vf) iﬂ(u*) ( v*):|

1 Aqﬂ(f]l)Aqls(fl bﬁ([) Cp() Cﬁ(l) (hy) ¢ p1 £2
|| — ||3 a.r [ (x1, yDP 8 v(f,f)]]”,

V[ 1 jg) Ig(l) S; 10} 1> J1
vnot e.p. Svs leTy U0 '/ﬂ(fl > g !

JrpT.p = /dxuo

(A4.19)

we have, under the hypothesis (3.24),
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mows | Tipe |\ cp i (vf)
Jepra < M [T (F0) |

i=1 Y
{ 1—[ sz—l)yh 1o (V) g, =l Xger, bpD),,—ho v 2ie 10pW7) ) ~hu(su=1)
vnot e.p.
on,| + cpDip(0)
oy Sier, [ap D +ap )] } [ I1 ("l'y#) ] , (A4.20)
LeT

where n,(v) is the number of vertices of type v with scale A, + 1.
Now, substituting (A4.18), (A4.20) into (A4.12), using (A4.13), we find that:

lon, | + Iuhvl)"(”’ﬁ)

/ %y | Wep, 1,5 (%uy)| < C" M2y Pr0Rb T ( o

veVp

Sv Z M v
1_[ {S_CZ 2Py = IP\(Zhhtl) 2 y—[—2+’;+z(Pv)]} , (A4.21)
! _

vnot e.p.

where, if k = Zfero qs(f), Dr(p) = —2 + p + k and we have used (A4.15). Note
that given v € T and T € 7}, , and using (3.19) together with the first two of (3.18),

0] 0, 0, 0] . _

| _ ALV T oty O] thrpi—e < oy i,

vyt vt ol 1
ln | Tien] | pny | p lnl  (h—nyya— —hy)(1—

b W]y VEHL Gompi—i < cy ma=eid (aq.22)
v v sl Y

Moreover the indices i (v, B) satisty, for any Br, (A4.17) so that, using (A4.22) and
(A4.16), we find

i(v,B) ’
1—[ (Iahvl—:I/th|> <cr l—[ y=7 P (A4.23)

veVg Y vnote.p.

Substituting (A4.22) into (A4.21) and using (A4.16), we find:

/ A%y |We p.7.p (Xyy)| < C" M2 ||y ~HPe( D

1Pyl
H {_CZ Y 1Py = \M(i) 2 y—[—2+|g”|+Z(Pv)+(1—c|A|)z’(Pu)]}’
vnot e.p. So! Zhv_l
(A4.24)
where
D% 5 | Py | Py
+ > + 2(Py) 4+ (1 = c[ADZ (Py) = (A4.25)

Then (3.25) in Theorem 3.1 follows from the previous bounds and the remark that



Anomalous Universality in the Anisotropic Ashkin—Teller Model 727

Z ZZZH—V <o, (A4.26)

1€y, PeEP, TET BBy v

for some constant ¢, see [BM] or [GM] for further details.

The bound on Ej, 3, (3.26) and (3.27) follow from a similar analysis. The remarks
following (3.26) and (3.27) follow from noticing that in the expansion for £V only
propagators of type Py g(h v or P1 g<h ) appear (in order to bound these propagators we
do not need (3.19), see the last statement in Lemma 3. 3). Furthermore, by construction
In, ny, and zj, are independent of oy, g, so that, in order to prove (3.27) we do not even
need the first two inequalities in (3.18). O

A4.6. The sum over all the trees with root scale # and with at least a v with h, = k
is 0(|k|y%(h_k)); this follows from the fact that the bound (A4.26) holds, for some
¢ = 0(1), even if y 71176 is replaced by y ~*I®»!, for any constant ¥ > 0 independent
of A; and that D,, instead of using (A4.25), can also be bounded as D, > 1/2+|Py|/12.
This property is called short memory property.

Appendix AS. Proof of Theorem 4.1 and Lemma 4.2

We consider the space 1y of sequences v = {v;},<1 such that |v,| < clrly @Dk we

shall think 91 as a Banach space with norm || - ||y, where ||| |,9d§f SUPg<1 [Vkl y ~@/2k,
We will proceed as follows: we first show that, for any sequence v € 9y, the flow equa-
tion for vy, the hypothesis (3.17), (3.18) and the property |A; (V)| < c|)A| are verified,
uniformly in v. Then we fix v € M via an exponentially convergent iterative procedure,
in such a way that the flow equation for vy, is satisfied.

A5.1. Proof of Theorem 4.1. Given v € My, let us suppose inductively that (3.17),
(3.18) and that, fork > h + 1,

-1 (V) — A )] < colaly @2k (A5.1)

for some cop > 0. Note that (A5.1) is certainly true for # = 1 (in that case the r.h.s. of
(AS.1) is just the bound on ﬁ){). Note also that (AS5.1) implies that |A¢| < c|A|, for any
k > h.

Using (3.26), the second of (3.27) and (4.1) we find that (3.17), (3.18) are true with
h replaced by h — 1. B

We now consider the equation A,_; = A + ﬂi’ Ansvns ... A1,v), h > h. The
function ﬂi’ can be expressed as a convergent sum over tree diagrams, as described in
Appendix A4; note that it depends on (Ap, v; ... ; Aq, v1) directly through the end—
points of the trees and indirectly through the factors Zj/ Zh 1.

We can write Pog((i)’w)’(_’w) x—y = g(Lh,)w(x y) + 7o )(X —y), where

4 . ~ 1
def o~ iKx=Y) Fn (k) ——— (A5.2)
i

) o
Lo =¥ = k + wko



728 A. Giuliani, V. Mastropietro

and rcf)h) is the rest, satisfying the same bound as g((fL) o). (= times a factor y”. This

w)°
decomposition induces the following decomposition for ﬂff:

B navis oo s A1) = Bl G o hn)

1
+ > D G D+ Y Bl G vk s A v L(AS3)

k=h+1 k>h
with
1B L < clalPy™ DY < ey PPy — il
[P < Py @ B < eyt (A5.4)

The first two terms in (AS5.3) ﬁf’ 1. collect the contributions obtained by posing ré,k) =0,

k > h and substituting the discrete § function defined after (3.8) with M 281(,0. The first of
(A5.4) is called the vanishing of the Luttinger model Beta function property, see [BGPS,
GS, BM1] (or [BeM1] for a simplified proof), and it is a crucial property of interacting
fermionic systems ind = 1.

Using the decomposition (AS.3) and the bounds (A5.4) we prove the following bounds
for Aj(v), v € My:

L@ = < coldl® L AW = A ] < colalPy PPN (A5.5)
for some cg > 0. Moreover, given v, v’ € 9, we show that:

1A () = 2D < elrllly =l (A5.6)

de
where [[v — v'|l0 supy, -, vy — v} .

Proof of (A5.5). We decompose Aj — Aj | = ﬂf“ as in (AS.3). Using the bounds
(A5.4) and the inductive hypothesis (AS5.1), we find:

k
@) = A ] < APy D 4 37 ey PEFIER N g a2y O/
k>h+2 K'=h+2
+C|M2y(19/2)(ﬁ+1)+ Z 02|)\|2y(z9/2)ky(15‘(ﬁ+17k)) L (A5.7)

k>h+1
which, for cg big enough, immediately implies the second of (A5.5) withh — h — 1;
from this bound and the hypothesis (A5.1) follows the first of (A5.5). 0O

Proof of (A5.6). If we take two sequences v, v’ € My, we easily find that the beta func-
tion for A (v) — A; (1) can be represented by a tree expansion similar to the one for ,Bf,
with the property that the trees giving a non vanishing contribution have necessarily one
end—point on scale k > h associated to a coupling constant A;(v) — Ax(v) or v — v;.
Then we find:

() — A0 = A () — A ()

+ Y 1B 0w, vk A ) = BEOw (), v s A, VL (AS8)
h+1<k<1
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Note that [A1(v) — A1(¥)] < colrllvi — v}, because Aj = A/Z? + O(A*/Z}) and
Z1 =2 —14v/2.If we inductively suppose that, for any k& > I (V) — A(0)] <
2¢o|Alllv — v[|o, we find, by using the decomposition (A5.3):

A5 ) — 2] < colrllvi — vi| +clAl

x D IRy g Iy — vllo + v — vl ] . (A5.9)
k>h+1 k' >k

Choosing cp big enough, (A5.6) follows. O

We are now left with fixing the sequence v in such a way that the flow equation for
v is satisfied. Since we want to fix v in such a way that v_,, = 0, we must have:

1
vi=— > YR s A ) (A5.10)

k=—o00

If we manage to fix v; as in (A5.10), we also get:

v ==Y yFIBE G v ) (A5.11)
k<h

We look for a fixed point of the operator T : My — 9y defined as:

(Twn = — Y v " B @), vis - s A, v (A5.12)
k<h

where A (v) is the solution of the first line of (4.2), obtained as a function of the param-
eter v, as described above.

If we find a fixed point v* of (A5.12), the first two lines in (4.2) will be simultaneously
solved by A(v*) and v* respectively, and the solution will have the desired smallness
properties for A, and vy.

First note that, if |A| is sufficiently small, then T leaves 91y invariant: in fact, as a
consequence of parity cancellations, the v—component of the Beta function satisfies:

Bu Oty i -3 k1, v1) = BU s 5 20 + D vkBU O o 5 A, ),
k

(A5.13)
where, if ¢, ¢y are suitable constants
BI 1< clily®™  1BIK| < ealaly? B0 (A5.14)
By using (AS5.13) and choosing ¢ = 2¢; we obtain
[Tl < D 2er [y PRy < claly @728 (A5.15)

k<h
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Furthermore, using (A5.13) and (A5.6), we find that T is a contraction on IMty:

[(Tv)p = (T)pl < Yy B e, ves - s aa v = BEGw @), v s a0 V)

k<h
1 1 ,

<Y PR ES e @) = @)1+ Y v EF g — vy

k<h k'=k k'=k

1
’ ’

= Y Ikl Ml = Vilo + D2 v EO gy Ky — vl

k<h k' =k
< ly PP = 1, (A5.16)

hence ||(Tv) — (Tv)||ls < ¢”|A|||lv — V/||. Then, a unique fixed point v* for T exists
on M. Proof of Theorem 4.1 is concluded by noticing that T is analytic (in fact ﬁfj and
A are analytic in v in the domain My). O

AS5.2.Proof of Lemma4.2. From now on we shall think of A, and vy, fixed, with v; conve-
niently chosen as above (v; = v} (1)). Then we have |A;| < c|A| and |v;| < clrly @/
for some ¢, ¥ > 0. Having fixed v; as a convenient function of A, we can also think of
A, and vy, as functions of A.

The flow of Z,. The flow of Zj, is given by the first of (4.1) with z;, independent of o, k,
k > h.By Theorem 3.1 we have that |z;,| < c|k|2, uniformly in 4. Again, as for A;, and vy,

. . def .
we can formally study this equation up to 7 = —oo. We define y = 2 limp— oo 1425,
so that
def 'k — 2
log, Zn = Y log,(1+z) =n:(h =1+ . rk . % og, (1+Zlk+$). (A5.17)
k=t k=t Lo

Using the fact that zz_| — z is necessarily proportional to Ag_; — Ag Or to vg_| — Vg
and that Ag_; — A is bounded as in (A5.1), we easily find: |r§| < cY peplz—r —

. d
| < APy @Dk S, if FZ’ éfzkzhﬂré‘ and F{1 = 0, then th = O(\) and

h
Zy = y"Z(h_lHFC . Clearly, by definition, 1, and FZ’ only depend on Ag, vi, k < 1, so

they are independent of 7 and u.

The flow of . The flow of p), is given by the last of (4.1). One can easily show induc-
tively that py (K)/un, k > h, is independent of (1, so that one can think that p,_1/uy

is just a function of A, vy. Then, again we can study the flow equation for pu;, up to

h — —o00. We define y‘”l‘déf limp— —oo 14+ (mp/n —zn)/(1+2z1), so that, proceeding

as for Zj,, we see that
_ h
i = pyy OO (A5.18)

for a suitable F [} = O(1). Of course 1, and F ,’Z are independent of ¢ and u.
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. def
The flow of o,. The flow of o, can be studied as the one of wj,. If we define y ~ lef

limy— oo 1 4 (sp/on — zn)/(1 + z,), we find that
on = o1y h=DHE (A5.19)

for a suitable F (]} = O(A). Again, n, and F, ;’ are independent of ¢, u.
We are left with proving that n, — n, # 0. It is sufficient to note that, by direct
computation of the lowest order terms, for some ¥ > 0, (4.1) can be written as:

2 =biai + O(APY")y + O0(AP) , b1 >0,
sw/on = —boay + O(AY"")y + O , by >0,
mu/pn = baky + Oy + 0D . by >0, (A5.20)

where b1, by are constants independent of A and /. Using (A5.20) and the definitions of
nu and 1 we find: 7y — n, = (2ba/logy)r + O0R%). O

Appendix A6. Proof of Lemma 5.3

Proceeding as in §4 and Appendix A5, we first solve the equations for Z; and fﬁf)

parametrically in & = {m}p<pr. If |4] < c|Aly @B the first two assump-
tions of (5.14) easily follow. Now we will construct a sequence s such that |7j,| <
c|)\|y(19/2)(h7h’1‘) and satisfying the flow equation 7,1 = yhnh + ,87’1’ (Tn,y oo, nhT)'

A6.1. Tree expansion for ,sz‘. ,37@ can be expressed as a sum over tree diagrams, sim-
ilar to those used in Appendix A4. The main difference is that they have vertices on
scales k between & and +2. The vertices on scales ki, > h} + 1 are associated to the
truncated expectations (A4.4); the vertices on scale h, = h7 are associated to truncated

. 1,h% . .
expectations w.r.t. the propagators gé,, ,w‘z) ; the vertices on scale i, < h are associated to

truncated expectations w.r.t. the propagators gfuzl"'l)";rl). Moreover the end—points on scale

> hi + 1 are associated to the couplings A, or vy, as in Appendix A4; the end—points
on scales h < h} are necessarily associated to the couplings 7.

A6.2. Bounds on B!. The non-vanishing trees contributing to 8/ must have at least one
vertex on scale > h7: in fact the diagrams depending only on the vertices of type 7
are vanishing (they are chains, so they are vanishing, because of the compact support
property of the propagator). This means that, by the short memory property, see the
Remark at the end of Appendix A4: |,87h[| < c|)»|y’7(h’h7).

A6.3. Fixing the counterterm. We now proceed as in Appendix AS but the analysis here
is easier, because no A end—points can appear and the bound | ,37}1' | < c|)»|y’9(h_”7) holds.
As in Appendix A5, we can formally consider the flow equation up to 7 = —o0, even
if h; is a finite integer. This is because the beta function is independent of fn\,(cz) k< hT
and admits bounds uniform in 4. If we want to fix the counterterm T in such a way
that m_, = 0, we must have, for any & < h’l“:
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w= =) Y By (A6.1)
k<h
Let 91 be the space of sequences T = {m_qc, . .. , 7Th’{} such that || < c|k|y’(ﬁ/2)(h’h7).

We look for a fixed point of the operator T : 90t — 9t defined as:

T ==Y """ Brs .. i) (A6.2)
k<h

Using that ,3,’; is independent from n%,({z) and the bound on the beta function, choosing

A small enough and proceeding as in the proof of Theorem 4.1, we find that T is a
contraction on 91, so that we find a unique fixed point, and the first of (5.16) follows.

A6.4. The flows of Z), and r’ﬁf). Once 7+ is fixed via the iterative procedure of §A6.3,

we can study in more detail the flows of Z; and fﬁf) given by (5.10). Note that z

and s;, can be again expressed as a sum over tree diagrams and, as discussed for ,32,
see §A6.2, any non-vanishing diagram must have at least one vertex on scale > h7.

Then, by the short memory property, see §A4.6, we have z; = O (A2y? =10y and

Sp = O(An’if) y’m’_hT)) and, repeating the proof of Lemma 4.1, we find the second and
third of (5.16).

A6.5 The Lipshitz property (5.17). Clearly, 7. (A, o1, 1) — 1,5 (%, o, w}) can be ex-
1 1

pressed via a tree expansion similar to the one discussed above; in the trees with non-

vanishing value, there is either a difference of propagators at scale 2 > h} with couplings

on, i, and oy, wj, giving in the dimensional bounds an extra factor O (|oy, — o) ly =)

or O(juy — M;l|y_h); or a difference of propagators at scale & < h} (computed by

definition at ﬁi;z) = 0) with the “corrections” a;’, c, associated to oy, i1 or oy, u},
giving in the dimensional bounds an extra factor O (o1 — o{]) or O(|u1 — ) |). Then,

<cla Yyt

4 s 01, 1) = 4 G o 1)

k<h}
low — oyl lin — 1yl
[Z( i DD (o = of) + ls = i) ]
h>hy k<h<h}

(A6.3)

from which, using (A5.18) and (AS5.19), we easily get (5.17).

Appendix A7. Proof of (A4.10)

We have, by definition Pf G = (2k)™" 3", (=1)PG p(1)p(2) - - - G p(2k—1)p(2k)> Where
p=(pA),...... , p(]J])) is apermutation of the indices f € J (we suppose |J| = 2k)
and (—1)P its sign.
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If we apply S| = 1 — Py to Pf G and we call G(} f,défPon,f/, we find that S;Pf G
is equal to

1 0 0
2k Z(_l)p[Gp(l)p(Z) ~- G pr-1)pk) — Gp(l)p(z) T Gp(2k—1)p(2k)]
p

k
1
- Py . (G° .G
= g P (Gpu)p(z) Gp<2jfs>p<2j72>)
P j=1
xS1Gpej-npe)) (Gp(2j+1)p<2j+2> o Gp<2k71>p<2k>) , (A7.1)

where in the last sum the meaningless factors must be put equal to 1. We rewrite the two
sums over p and j in the following way:

k * kx

33333k w2

=1  j=1 fi.hel Ji,Jo P
=ty
where the * on the second sum means that the sets J; and J; are s.t. (f1, f2, J1, J2) isa
partition of J; the ** on the second sum means that p(1),..., p(2j — 2) belong to Ji,

(p(2j = 1), p(2j)) = (fi, f2) and p(2j + 1), ..., p(2k) belong to J,. Using (A7.2)
we can rewrite (A7.1) as

*

k
SiPfG = ﬁ Z Z (=D"81Gy,. 1, Z

j=1 fi.J Ji,J2
N#f
. _1pte2 (G0 .Gl
PG Z(Gma)pl(z) Gp.<2k171>p(2k1>>
P1.p2
X<GP2(1)P2(2) o Gp2(2k2—1)p(2k2)> : (A7.3)

where (—1)" is the sign of the permutation leading from the ordering J to the ordering
(f1, f2, J1, J2); pi, i = 1,2 is apermutation of the labels in J; (we suppose |J;| = 2k;)
and (—1)P is its sign. It is clear that (A7.3) is equivalent to (A4.10).
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