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Abstract: Non-linear sigma models that arise from the supersymmetric approach to
disordered electron systems contain a non-compact bosonic sector. We study the model
with target space H2, the two-hyperboloid with isometry group SU(1, 1), and prove that
in three dimensions moments of the fields are finite in the thermodynamic limit. Thus
the non-compact symmetry SU(1, 1) is spontaneously broken. The bound on moments
is compatible with the presence of extended states.

1. Introduction

Random-matrix ensembles such as the Gaussian Unitary Ensemble (GUE) and its cous-
ins have attracted much attention in both the physics and mathematics community
because of its many connections to statistical many-body theory, integrable systems,
number theory and probability. This article is motivated by the study of Gaussian matrix
ensembles which incorporate spatial structure and thus are no longer mean field in char-
acter. These ensembles are sometimes called band GUE models. They have the advantage
of being mathematically more tractable than say random Schrödinger operators and yet
they are expected to share the same qualitative features.

About twenty-five years ago, Wegner [W, S] introduced hyperbolic non-linear sigma
models to study band GUE models and disordered electron systems with N orbitals per
site. In the simplest case of these sigma models the hyperbolic ‘spins’ indexed by lattice
sites of Z

d take values in the hyperbolic plane H2 equipped with its SU(1, 1)-invariant
geometry. Soon thereafter, Efetov [E] extended Wegner’s work and introduced a class
of supersymmetric non-linear sigma models.

The supersymmetric formalism has the advantage of making it possible to perform
the disorder average and rigorously convert random matrices to a problem in statistical
mechanics. In particular, averages of products of Green’s functions become statistical
mechanical correlation functions. The resulting problem is how to analyse such statisti-
cal mechanics systems. One of the main difficulties in this analysis is the non-compact
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hyperbolic symmetry identified by Wegner which naturally arises when studying spectral
and transport properties of disordered systems. This paper is devoted to showing that a
certain class of SU(1, 1) sigma models can be effectively analysed in three dimensions
by using horospherical coordinates and Brascamp-Lieb inequalities.

Let � be a periodic box in Z
d (centered at 0) with volume |�| and define R(i, j)

with i, j ∈ � to be the elements of a Hermitian matrix drawn from the GUE. Thus the
probability density is taken to be proportional to exp(−TrR2)

∏
dR(i, j). Now let J

be a symmetric matrix with positive entries J (i, j) which are small when the distance
|i − j | is large. Then define a band matrix H with matrix elements

H(i, j) =
√
J (i, j) R(i, j). (1.1)

If we set

J (i, j) = ( −W 2�+ 1
)−1

(i, j) (1.2)

(with � the Laplacian of the lattice �), then this corresponds to a band of width W .
Note that J (i, j) has exponential decay e−|i−j |/W . Another convenient choice of J is
given as follows. Suppose that � is tiled by identical cubes of width W . Then define

J (i, j) =






J0 if i and i belong to the same cube,
J1 if j and j belong to adjacent cubes,
0 otherwise.

(1.3)

In both cases the matrix elements far from the diagonal are suppressed or vanish,
and now the dimension of the lattice plays an important role. One expects that H has
qualitatively the features of a random Schrödinger operator as we let the box� approach
Z
d . In fact, for the infinite-volume limit and fixed W we know that H has pure point

spectrum (and thus localization) at all energies in one dimension, and in any dimension
there is localization for energies in the Lifshitz tails. LargeW is expected to be roughly
inversely proportional to the strength λ of the random potential. For example in one
dimension the localization length is proportional to λ−2 for the random Schrödinger
operator, and proportional to W 2 for a band random matrix [FM].

For dimension d = 3, with J given by (1.2) and large W , the average local density
of states

ρ(E) = π−1Im
〈(
H − E − iε

)−1
(x, x)

〉
(1.4)

was studied using the supersymmetric formalism in the limit when ε goes to zero. ρ(E)
was shown to be smooth for E in an interval around zero and field correlations were
proven to decay exponentially fast [D].

To get information about time evolution or the behavior of the eigenstates, expecta-
tions like (1.4) are not sufficient. Instead one must consider

〈∣
∣(H − E − iε)−1(x, y)

∣
∣2
〉

(1.5)

and study its behavior as ε goes to zero. If (1.5) remains bounded for x = y and
ε|�|ρ(E) = 1, then the eigenstates near E are extended in the sense that the L4 norm
of an L2 normalized eigenstate goes to zero in the limit |�| → ∞.

What makes (1.5) more difficult to analyse than (1.4) is that the absolute value squared
eliminates oscillations and small denominators are felt when ε is small. In fact, even in
finite volume (1.4) does not diverge as ε goes to zero. However, (1.5) diverges roughly
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like ρ/(εξd), where ξ is the length over which the eigenfunctions are extended. Roughly
speaking, the hyperbolic symmetry emerges because the two Green’s functions in (1.5)
have energies with imaginary parts of opposite signs. Another feature of (1.5) is that the
corresponding statistical mechanics model is not expected to decay rapidly in 3 dimen-
sions but rather to exhibit a Goldstone mode so that (1.5) should behave in the limit
ε → 0 like 1/|x − y|, the Green’s function of the Laplacian corresponding to diffusive
time evolution.

The main purpose of this article is to analyse Wegner’s non-linear sigma model (for
one replica) as a component of Efetov’s supersymmetric model. More precisely we study
a sigma model that arises in Fyodorov’s work [F]. This model is formulated on a lattice,
whereas Wegner’s model emerges upon taking a continuum limit.

Roughly speaking supersymmetric models of disordered quantum systems have three
sectors: the Boson-Boson, Fermion-Fermion and Boson-Fermion sectors. The B-B sec-
tor has the hyperbolic symmetry; this is the sector which we study. Although the field
in this sector may potentially diverge we show that for dimension d ≥ 3, if ε|�|ρ = 1,
all moments of the field remain uniformly bounded. This is the analogue (in the sigma
model approximation) of the conjectured bound on (1.5) in d ≥ 3. The F-F sector may
also be studied in the sigma model approximation, and it corresponds to a classical Hei-
senberg model taking values in the two-dimensional sphere. Considered on its own, this
sector has no divergence because of the compactness of the target. In three dimensions,
the nearest neighbor Heisenberg model has an ordered state which may be established
by using infrared bounds. The main open problem which we do not address in this article
is the B-F sector, which couples the other two sectors in a supersymmetric fashion. This
must be understood to obtain a complete picture of the SUSY models. Nevertheless,
we will see that many phenomena of interest are already reflected in the sigma model
analysed in this article.

We now describe the hyperbolic sigma model which we shall analyse. In a periodic
box � ∈ Z

d (not the � of before, but the lattice of cubes that tile the original lattice),
we associate to each lattice site j ∈ � a matrix

Sj = Tjσ3T
−1
j , (1.6)

where Tj is subject to the conditions T ∗σ3T = σ3 = diag(1,−1) and Det Tj = 1. Thus
Tj belongs to SU(1, 1), and Sj belongs to an adjoint orbit of SU(1, 1), which may be
identified with the symmetric space SU(1, 1)/U(1) ∼= H2, where U(1) is the isotropy
subgroup generated by iσ3.

The action or energy of a configuration j �→ Sj is given by

A�(S, h) = 1
2

∑

�

′
Tr (SjSj ′)+ 1

2h
∑

j∈�
Tr (σ3Sj ), (1.7)

where
∑′
� denotes the sum over pairs of nearest-neighbor sites of �, and h > 0. Let

dµ(S) denote an invariant measure on SU(1, 1)/U(1) and define

Z�(β, h) =
∫

e−β A�(S,h) ∏

j∈�
dµ(Sj ).

Expectations in this model are given by

Z�(β, h)
−1

∫

F(S) e−β A�(S,h) ∏

j∈�
dµ(Sj ) = 〈F 〉�(β, h). (1.8)
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Note that by M := Sσ3 = T T ∗ = M∗ > 0, the SU(1, 1)-orbit S = T σ3T
−1 can

be identified with the positive Hermitian matrices M in SU(1, 1). Thus, Tr SjSj ′ =
TrMjM

−1
j ′ and Tr σ3Sj = TrMj , and we see that A�(S, h) > 0. Since an SU(1, 1)-

symmetry emerges at h = 0, positivity of h is needed to make the integrals exist.
h corresponds to a magnetic field and breaks the non-compact SU(1, 1) symmetry to
U(1).

Our main result may be stated as follows.

Theorem 1.1. For d ≥ 3 space dimensions there is a constant C0 such that
〈(

Tr σ3S0
)2
〉

�
(β, h) ≤ C0 (1.9)

for all β ≥ 3/2 and |�|h ≥ 1.

Remark. If the SU(1, 1)-symmetry were restored in the limit h → 0, the expectation of
the unbounded observable (Tr σ3S0)

2 would have to diverge in that limit. Our result can
therefore be viewed as a statement of spontaneous symmetry breaking. (A more detailed
discussion of what it means for a non-compact symmetry to be broken spontaneously
has recently been given in [N].)

Higher moments of Tr σ3S0 can also be bounded in d ≥ 3. For d = 1, 2 we expect
(but do not prove) that the same kind of bound holds except that we must require

|�| ≤
{

exp(C2β) d = 2,
C1β d = 1, (1.10)

with constants C1, C2 independent of β.
Our proof can easily be extended to finite-range interactions for large β; however,

for technical reasons it does not easily extend to infinite-range interactions.

In the next section we shall explain the relation between the band random matrices
and the sigma models described above. Roughly speaking, the magnetic field h is pro-
portional to ε, the imaginary part of the energy in (1.5), and β is proportional toW 2, the
square of the band width. In d = 1, the action (1.7) just describes a random walk on H2

indexed by time j ∈ Z.
In the sigma-model approximation we shall see that

〈〈∣
∣(H − E + iε)−1(x, x)

∣
∣2
〉〉

≡
〈∣
∣(H − E + iε)−1(x, x)

∣
∣2

∣
∣Det(H − E + iε)

∣
∣−2

〉

〈∣
∣Det(H − E + iε)

∣
∣−2

〉

∝
〈(

Tr σ3S0
)2
〉

�
(β, h). (1.11)

Here again we identify h with ε. The extra factors of the inverse determinant appear
because we have not included the F-F and F-B sectors.

The proof of Theorem 1.1 relies on the use of horospherical coordinates (s, t) to
parametrize Sj ∈ H2 (for the details see Sect. 3). The action in these coordinates is

A�(S, h) =
∑′

i,j∈�

(
cosh(ti − tj )+ eti+tj (si − sj )

2
)

+ h
∑

j∈�

(
cosh tj + s2

j etj
)
.

(1.12)
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The Gibbs measure now takes the form e−β A�(S,h)∏
j∈� etj dtj dsj .

Note thatA� is convex in t and quadratic in s. (We mention in passing that the Bakry-
Emery tensor Hess + Ricci for A� is not positive in the natural hyperbolic geometry.)
One of the key advantages of the horospherical coordinates is that we can integrate out
the s variables thereby producing an effective action Eh(t). For β ≥ 3/2 we prove that
the Hessian of Eh(t) is positive, and in fact as quadratic forms we prove

E′′(t) = Hess Eh(t) ≥ −(β − 1
2 )�+ h, (1.13)

with � the discrete Laplacian. Now the Brascamp-Lieb inequality may be applied to
control fluctuations of the tx in terms of

(− (β − 1
2 )�+ h)−1

(x, x). This is bounded in
three dimensions provided |�|h ≥ 1. In one or two dimensions one must require (1.10).

The remainder of this paper is organized as follows. In Sect. 2 we describe the relation
of the sigma model (1.7) to the random band model described by (1.3) following ideas
of Fyodorov. Horospherical coordinates are introduced in Sect. 3 and convexity of the
effective action is proved in Sect. 4. The Brascamp-Lieb inequality together with a Ward
identity are used in Sect. 5 to obtain bounds on the t fields. The remaining Sects. 6 and
7 explain how to control the s field fluctuations and the h-regularization.

There are a number of open questions related to this paper. The primary one is to
determine whether there are analogous bounds for more general hyperbolic sigma mod-
els such as those of higher rank. There are also problems involving averages of Green’s
functions which are not uniformly elliptic. Note that s correlations are expressed in terms
of

〈
(−∇e2t∇ + h et )−1 (x, y)

〉
. (1.14)

Since the t fields are not bounded from below, the Green’s function (1.14) is not uni-
formly elliptic. The distribution of the t fields is given by the convex effective action
Eh. Although we obtain good bounds on (1.14) for the diagonal x = y, the off-diagonal
bounds obtained by our methods are not sharp.

2. Origin of the Model

We now review how the non-linear sigma model, (1.7) and (1.8), arises from the problem
of computing Green’s function averages for some ensembles of band random matrices.
Aside from putting our analysis on a solid footing in random-matrix theory and disor-
dered electron physics, this review will explain the origin of the hyperbolic target space
H2 and its Riemannian geometry.

Readers interested only in mathematical results, not in physical motivation and back-
ground, are invited to skip the present section; the remainder of the paper does not depend
on it.

2.1. Gaussian ensembles of band random matrices. Let � ⊂ Z
d be a periodic box as

before, and assign to every site i ∈ � one copy Vi of an N -dimensional unitary vector
space. (Physically speaking we are assigning N valence electron orbitals to every atom
of a solid with hypercubic lattice structure.) The finite-dimensional Hilbert space V of
the random-matrix model to be specified is the orthogonal sum

V = V1 ⊕ V2 ⊕ . . .⊕ V|�|.
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The basic framework we have in mind is single-electron quantum mechanics, and our
goal is to establish control over the spectral and transport properties of certain ensembles
of random HamiltoniansH . We shall take the Hamiltonians to be elements of Herm(V ),
the space of Hermitian operators on V .

A random-matrix model is now defined by a probability distribution on Herm(V ).
Equivalently, one may specify the Fourier transform or characteristic function:

�(K) = 〈
eiTrHK 〉

, (2.1)

where 〈. . . 〉 denotes the expectation value w.r.t. the probability distribution for the ran-
dom Hamiltonian H . The Fourier variable is some other element K ∈ Herm(V ).

For simplicity we shall restrict ourselves to the case of Gaussian distributions with
zero mean, 〈H 〉 = 0. If �i is the orthogonal projector on the linear subspace Vi ⊂ V ,
we take the characteristic function to be

�(K) = exp



− 1
2

|�|∑

i,j=1

Jij Tr (�i K �j K)



 , (2.2)

where the coefficients Jij are real, symmetric, and non-negative (they must also be
positive semi-definite as a quadratic form). The choice (2.2) also implies that all matrix
entries of H are statistically independent.

We mention in passing that the characteristic function (2.2) is invariant under con-
jugation K �→ UKU−1 by U ∈ U , where U is the direct product of all the groups of
unitary transformations in the subspaces:

U = U(V1)× U(V2)× · · · × U(V|�|).

This means that the probability distribution for the Hamiltonian H has a local gauge
invariance. Models of this kind were first introduced and studied by Wegner [W1].

By varying the lattice�, the number of orbitalsN , and the variances Jij , one obtains
a large class of Hermitian random-matrix models. In particular, if d(i, j) = |i − j |
denotes a distance function for�, and f is a rapidly decreasing positive function on R+
of width W , the choice Jij = f (|i − j |) gives an ensemble of band random matrices
with band width W and symmetry group U = U(N)|�|.

There exist two distinct situations where such a random-matrix ensemble is expected
to exhibit metallic behavior (in dimension d ≥ 3) and efficient methods of analysis are
available. The first one occurs when the width W is large (and, say, N = 1). This case
is dealt with by the Schäfer-Wegner method [S]; it will not be considered further in the
present paper (see however [Z] for a recent review of that method).

The second one is called the ‘granular model’. There,N � 1 and the diagonal of the
variance matrix Jij dominates the off-diagonal:

Jii �
∑

j :j �=i
Jij .

Each atom i ∈ � here is to be viewed as a grain, or small metallic particle, housing a
large numberN of electron states, and the squared matrix elements for tunneling between
grains (Jij for i �= j ) are small compared to the intra-grain matrix elements (Jii). The
appropriate method to use in this case is that of Fyodorov (Sect. 2.3). Metallic behavior
is expected to occur when the coefficients NJij /

√
JiiJjj are not too small.
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Another (perhaps more familiar) way of defining the class of granular models is to
say that one starts from matrices H drawn from the Gaussian Unitary Ensemble (GUE)
of matrix dimension N |�|, partitions V = C

N |�| as V = V1 ⊕ V2 ⊕ . . . ⊕ V|�|, and
then multiplies the variances of all matrix elements of H connecting Vi � C

N with
Vj � C

N by the positive number Jij . This is the same as the model (1.3) described in
the introduction, with N being equal to the volume of the cubes tiling the lattice.

2.2. Averaging the Green’s functions over the disorder. Fixing some lattice site 
 ∈ �,
let A
 be the average absolute square of the (
, 
) part of the Green’s function with
complex energy E − iε:

A
(E, ε) =
〈∣
∣Tr (H − E + iε)−1�


∣
∣2
〉
.

Physicists have developed an approximation scheme that calculates disorder averages
such as this one by relating them to the correlation functions of a supersymmetric non-lin-
ear sigma model [E1]. Here we shall address the related, but somewhat simpler problem
that arises from considering

B
(n)

 (E, ε) =

〈∣
∣Tr (H − E + iε)−1�


∣
∣2 × ∣

∣Det(H − E + iε)
∣
∣−2n

〉

〈∣
∣Det(H − E + iε)

∣
∣−2n

〉 . (2.3)

Note that B(n)
 can be viewed as the average squared Green’s function for a deformed
ensemble, where the probability distribution for the HamiltonianH is modified by mul-
tiplying it with 2n inverse powers of |Det(H −E+ iε)|. Inserting these factors modifies
the original problem, and it is far from clear how much bearing the results for n ≥ 1
will have on the case n = 0. (Physicists often use a procedure called the replica trick,
where one attempts to infer the answer for n = 0 by analytic continuation from the
answer for n ∈ N. We will make no such attempt here.) However, even if the n ≥ 1
situation was quite unrelated to n = 0, analysing it would still be a necessary step toward
establishing mathematical control over the full supersymmetric theory at n = 0. The
reason is that Efetov’s supersymmetric non-linear sigma model has the effective theory
of B(n)
 at n = 1 for its non-compact bosonic sector.

In order to express B(1)
 we introduce a pair of complex fields φ = (φ+, φ−), where
φ± ∈ V . The projections�j φ+ = φ+(j) and�j φ− = φ−(j) are complex N -compo-
nent vectors. The scalar product is given by

(φ∗
+, φ+) =

∑

j

φ∗
+(j) · φ+(j).

If A is a matrix or linear operator acting on V with ReA = 1
2 (A + A∗) > 0, we

normalize our Gaussian integrals over φ such that
∫

e−(φ∗+,Aφ+) = Det−1(A).

For fixed E, ε and � define the quadratic form

(φ∗, AHφ) = −i
(
φ∗

+, (H − E + iε)φ+)+ i(φ∗
−, (H − E − iε)φ−

)
. (2.4)
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Note that ReA ≥ ε and the integral over φ is therefore defined:

Z� ≡
∫

e−(φ∗, AHφ) = ∣
∣Det(H − E + iε)

∣
∣−2

,

and
∫

e−(φ∗, AHφ)|φ+(
)|2 |φ−(
)|2 = ∣
∣Tr(H − E + iε)−1�


∣
∣2

∣
∣Det(H − E + iε)

∣
∣−2
.

(2.5)

For general n ≥ 1 if we set φ±(j) = {φ±1(j), φ±2(j), . . . , φ±n(j)}, this produces
the factor |Det(H −E+ iε)|−2n and permits us to study more complicated observables
involving several Green’s functions.

Now we can calculate the average of Z� over the randomness in H by using (2.2).
First consider

〈
ei(φ∗+, Hφ+)−i(φ∗−, Hφ−)

〉
= e− 1

2

∑
JijTr (sMi sMj ), (2.6)

where

Mj =
(
φ∗+(j) · φ+(j) φ∗+(j) · φ−(j)
φ∗−(j) · φ+(j) φ∗−(j) · φ−(j)

)

, (2.7)

and s = σ3 = diag(1,−1). For general n, σ3 is replaced by the diagonal matrix s =
diag(Idn,−Idn). Note that the 2n × 2n matrices Mj are Hermitian and non-negative;
we say they lie in Herm+(C2n).

2.3. Fyodorov’s method. Following Fyodorov [F] we choose the matrices Mj as our
integration variables, i.e., we push forward the measure over the φ to a measure over the
non-negative matrices M . The push forward may be singular. However, if N ≥ 2n then
the push forward has a density (derived in Appendix A) given by

|�|∏

i=1

DetN−2n(Mi) dMi,

where dMi denotes a (suitably normalized) Lebesgue measure on Herm+(C2n). Now
set

dµ(Mi) := Det−2n(Mi) dMi. (2.8)

Then we obtain Fyodorov’s formula for Z� (for general n) in the form

Z� =
∫

e− 1
2

∑
ij JijTr (sMi sMj )

∏

k∈�
eTr (isE−ε)Mk DetN(Mk) dµ(Mk), (2.9)

where the integral is over the configurations {Mi} with Mi > 0 for all i ∈ �.
The formulation (2.9) offers a transparent view of the symmetries of the problem.

Indeed, let U(n, n) be the pseudo-unitary group of complex 2n × 2n matrices T with
inverse T −1 = sT ∗s. This group acts as a transformation group on the matrices Mi by

Mi �→ TMiT
∗.
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Clearly, the integration domain for Mi ∈ Herm+(C2n) of Fyodorov’s formula (2.9) is
invariant under that group action. Since |Det T | = 1 for T ∈ U(n, n), the same holds
true for the integration density dµ(Mi). From

Mi s �→ TMiT
∗s = TMi sT

−1

one sees that the function being integrated in (2.9) becomes invariant under the U(n, n)
group action when the parameter ε is taken to zero. Thus U(n, n) transformations are
global symmetries in that limit.

In what follows we focus on the case n = 1, where the symmetry group is U(1, 1)
or, what amounts to essentially the same, SU(1, 1).

2.4. The sigma-model approximation. The exact integral representation (2.9) is well
suited for further analysis in the granular limit which we now consider. Thus we now
assume N � 1, Jij = 0 for |i − j | ≥ 2, Jij = J1 > 0 for |i − j | = 1, and

Jii ≡ J0 � 2J1d.

Let us first consider the diagonal terms of the action (2.9):

∑

j∈�

(
1
2J0 Tr (sMj )

2 − iE Tr (sMj )−N Tr lnMj

)
.

The matrices Mj s may be expressed as

Mj s = Tj

(
p1(j) 0

0 −p2(j)

)

T −1
j , (2.10)

where p1(j), p2(j) are positive real numbers, and Tj ∈ SU(1, 1) is determined only up
to right multiplication by an arbitrary element in K ≡ U(1). The measure becomes

dµ(Mj ) = (p1(j)+ p2(j))
2

p1(j)2p2(j)2
dp1(j)dp2(j) dµK(Tj ), (2.11)

where dµK(Tj ) is an invariant measure for SU(1, 1)/U(1). The diagonal terms of the
action can be written in terms of p1, p2:

J0

2
(p2

1 + p2
2)− iE(p1 − p2)−N(lnp1 + lnp2).

The critical point for E2 ≤ 4NJ0 is given by

p1 = iE

2J0
+ ρN(E), ρN(E) =

√
4NJ0 − E2

2J0
, (2.12)

and p2 = p̄1, where ρN is the mean-field expression for the local density of states (but
for a factor of π ). In this approximation,

Mj s = Tj

(
ρN(E) 0

0 −ρN(E)
)

T −1
j + const × Id. (2.13)
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The last term arising from the imaginary part of p1, p2 is of no consequence. Thus

Mj s = ρN(E)Sj , (2.14)

where Sj was defined by Sj = Tjσ3T
−1
j as before. The action function of our model

now is

A�(S) = 1
2β

∑

�

′
Tr (SjSj ′)+ 1

2h
∑

j∈�
Tr (σ3Sj ),

with β = 2J1 ρ
2
N(E) and h = 2ε ρN(E). Similarly, by using (2.7) and (2.14), the

observable appearing in (2.5) is proportional to (Tr σ3S0)
2 in the sigma-model approx-

imation. The SU(1, 1)-invariant measure dµK(Tj ) is renamed to dµ(Sj ).
In order to eliminate the sigma-model approximation we must control the massive

fluctuations of p1(j), p2(j) about the saddle. Although the Gibbs measure is complex,
if we integrate over these eigenvalues a new effective action is produced which is real.
This new effective action may share the desired convexity properties with A�(S).

3. The Model in Horospherical Coordinates

Having clarified the origin of the hyperbolic non-linear sigma model in disordered elec-
tron physics, we now begin our study of it. In the present section we introduce a coordinate
system that takes advantage of the hyperbolic structure of H2 and is well suited for the
purpose of doing analysis on the sigma model, Eqs. (1.7) and (1.8).

For any connected and simply connected noncompact Lie group G with semisimple
Lie algebra there exists an Iwasawa decomposition [H]

G = NAK,

where K , A, and N are maximal compact, maximal Abelian and nilpotent subgroups,
respectively. In the case at hand, namely G = SU(1, 1) with Lie algebra

su(1, 1) = {x1σ1 + x2σ2 + ix3σ3
∣
∣(x1, x2, x3) ∈ R

3},

K is the U(1) subgroup generated by iσ3, and σi are the Pauli matrices. We choose
A � R

+ to be the Abelian group generated by σ1; the nilpotent group N then is the
one-parameter group with nilpotent generator σ2 − iσ3. Passing to equivalence classes
or cosets by the right action of K = U(1) on both sides of the Iwasawa decomposition,
one gets an identification

H2 � SU(1, 1)/U(1) � NA · o.

Thus the two-hyperboloid H2 is viewed as the orbit of the one-parameter groups N and
A acting on the coset o = K .

Introducing two real variables s and t , we parameterize the Lie groups N and A as

N = {ns = es(σ2−iσ3)/2
∣
∣s ∈ R}, A = {at = etσ1/2

∣
∣t ∈ R}.
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We refer to s and t as horospherical coordinates. Their relation to the matrix S parame-
terizing H2 is given by

S σ3 = nsat (nsat )
∗ =

(
cosh t + s2

2 et sinh t − (is + s2

2 )e
t

sinh t + (is − s2

2 )e
t cosh t + s2

2 et

)

, (3.1)

and the SU(1, 1)-invariant metric tensor g in these coordinates takes the form

g = 1
2 Tr dS2 = dt2 + e2tds2. (3.2)

How does the action of the subgroupsN ,A, andK on H2 look in horospherical coor-
dinates? (These group actions are important because they furnish global symmetries of
the non-linear sigma model in the limit of vanishing regularization, h → 0.) First of all,
since N is a one-parameter group one has

ns0(nsat ) · o = ns+s0at · o,

so ns0 ∈ N acts on nsat · o ∈ NA · o by simply translating (s, t) �→ (s + s0, t). Sec-
ond, from the fact that σ2 − iσ3 is an eigenvector of the commutator action [σ1, ·] with
eigenvalue −2, one easily verifies

at0(nsat ) · o = (at0nsa−t0)(at0at ) · o = ne−t0 s at+t0 · o,

so at0 ∈ A acts by (s, t) �→ (e−t0s, t+ t0). Third, the group action ofK in horospherical
coordinates is somewhat complicated and will not be considered here.

The energy or action function of the non-linear sigma model (1.8) in horospherical
coordinates is expressed by

A� = β
∑

�

′ (
cosh(ti − ti′)+ 1

2 (si − si′)
2eti+ti′

)
+ h

∑

j∈�

(
cosh tj + 1

2 s
2
j etj

)
. (3.3)

The Gibbs measure is

dµ�,A = e−A� ∏

i∈�
eti dti dsi .

As expected, dµ�,A becomes invariant under global N and A transformations,

ns : (si, ti) �→ (si + s, ti),

at : (si, ti) �→ (e−t si , ti + t), (3.4)

in the limit h → 0.
Our observable given in Theorem 1.1 may be expressed as

(
Tr σ3S0

)2 = (
2 cosh t0 + s2

0 et0
)2
. (3.5)

Note that since the action is quadratic in s, the integral over the variable s0 is Gaussian
and can be done explicitly.
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4. Integration of the s Fields

In this section we shall analyse the action (3.3). Since it is quadratic in the s fields, they
can be integrated out. Consider the interaction between the s and t fields in (3.3) and
define

B(s, t) =
∑

�

′
eti+tj (si − sj )

2 ≡ (s,D s)�, (4.1)

where (f, g)� ≡ ∑
i∈� fi gi , and D is a matrix corresponding to an elliptic operator

with periodic boundary conditions and with coefficients that depend on ti . As a quadratic
form D is non-negative, and its matrix elements are given by

Dij =
{−eti+tj |i − j | = 1

0 |i − j | > 1 , Dii = −
∑

j :j �=i
Dij . (4.2)

When the variables ti all vanish, D = −��, where �� is the discrete Laplacian of the
lattice � with periodic boundary conditions. Although D is elliptic, it is not uniformly
elliptic as the |ti | may be very large.

Using (4.1) and integrating over the s fields we obtain an explicit expression for the
effective action:

Eh = β
∑

�

′
cosh (ti − ti′)+ Ch(t)+

∑

j∈�
(−tj + h cosh tj ), (4.3)

where

Ch(t) = 1
2 ln Det

(
D(t)+ h et

) + const = − ln
∫

e− β
2 B(s,t)− h

2

∑
et s2∏

i∈� dsi . (4.4)

We are going to regard the torus variables ti as Cartesian coordinates of R
|�| equipped

with the canonical Euclidean geometry, and have therefore relocated the variable volume
factors eti from

∏
eti dti to Eh. Notice that the effective Gibbs measure

e−Eh ∏

i∈�
dti

for h = 0 is invariant under shifts ti → ti + γ . This invariance is a remnant of the
global symmetry (3.4) of the original theory, and will play an important role in later
discussions.

We shall first analyse a slightly different expression

e−C̃(t) =
∫

e− β
2 B(s,t)δ

(
∑

i∈�
si

)
∏

j∈�
dsj , (4.5)

where the δ-function eliminates the zero mode of B and makes the integral exist. By
Gaussian integration we have

C̃(t) = 1
2 ln Det D̃(t),
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where D̃ > 0 isD acting on the orthogonal complement of the constant functions. Both
C̃ and D̃ depend on � and the t field, but we shall frequently omit these dependences
for notational brevity. The effective action in t is

E� = β
∑

�

′
cosh(ti − ti′)+ C̃(t)+

∑

j∈�
(−tj + h cosh tj ). (4.6)

We shall set the factor of β/2 appearing in (4.5) equal to 1. By scaling in s this simply
shifts C̃(t) by a trivial constant.

For a function F of ti (i ∈ �) let the Euclidean Hessian of F be denoted by F ′′:

F ′′
ij = ∂2F

∂ti∂tj
(i, j ∈ �).

Theorem 4.1. For any value of the coupling parameter β ≥ 3/2 and dimension d ≥ 1
the function E� is convex and

E′′
� ≥ −(β − 1

2 )�� + h ≥ −�� + h.

Proof. Clearly from (4.6)

E′′
� ≥ −β �� + h+ C̃′′, (4.7)

so it suffices to estimate C̃′′. From (4.5) with β/2 set to 1 we have

∂C̃

∂ti
= 〈Ui〉s , Ui =

∑

j :|i−j |=1

eti+tj (si − sj )
2, (4.8)

where 〈·〉
s

denotes the average over the s field with Gibbs weight e−Bδ. For |i− j | > 1
we have

− ∂2C̃

∂ti∂tj
= 〈Ui ; Uj 〉s ≡ 〈Ui Uj 〉s − 〈Ui〉s 〈Uj 〉s ,

and for |i − j | = 1

− ∂2C̃

∂ti∂tj
= 〈Ui ; Uj 〉s − 〈eti+tj (si − sj )

2〉
s
,

while on the diagonal

−∂
2C̃

∂t2i
= 〈Ui ; Ui〉s − 〈Ui〉s .

Let

Kij = 〈Ui ; Uj 〉s , (4.9)

and decompose C̃′′ into two pieces:

C̃′′
ij = (

2〈Ui〉s δij −Kij
) + Rij , (4.10)

where R is a local remainder term.
By explicit computation Kij (t) ≥ 0 for all i, j and field configurations t , because

the square of a Green’s function arises. ��
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Lemma 4.2. With U and K defined by (4.8) and (4.9) we have for every t ,
∑

j

Kij = 2〈Ui〉s . (4.11)

This relation implies that as a quadratic form

2〈Ui〉s δij −Kij ≥ 0. (4.12)

Proof. To get (4.11) make the change of variables sk → skeγ (k ∈ �). Then Ui →
Ui e2γ and B → B e2γ , while the expectation value 〈Ui〉s remains invariant. Differen-
tiating 〈Ui〉s with respect to γ at γ = 0 yields

0 = 2〈Ui〉s − 2〈Ui;B〉,
and since B = 1

2

∑
j Uj we obtain (4.11).

The non-negativity of the quadratic form (4.12) now follows from the Schwarz
inequality:

∣
∣
∣
∑

i,j

Kijfifj

∣
∣
∣ ≤

[∑

i,j

Kijf
2
j

] 1
2
[∑

i,j

Kijf
2
i

] 1
2 = 2

∑

i

Uif
2
i .

Here we used the pointwise positivity of Kij to write the first expression as a scalar
product of two vectors u and v with components uij = √

Kijfj and vij = √
Kijfi . ��

We now must estimate the remaining local partR = C̃′′−2〈U〉δ+K , which is expressed
by

Rij = −〈Ui〉s δij + eti+tj 〈(si − sj )
2〉
s
δ(|i − j | − 1).

Note that R ≤ 0 as a quadratic form and that
∑
j Rij = 0 for each i.

Lemma 4.3. For all real fi
∣
∣
∣
∑

i,j

Rij fifj

∣
∣
∣ ≤ 1

2

∑

i

(∇f )2i , (4.13)

where ∇f denotes the discrete gradient of the lattice �.

Proof. The left-hand side of (4.13) can be written as a sum over nearest-neighbor pairs
i, j : ∑

|i−j |=1

′
Rij (fi − fj )

2.

It therefore suffices to show that for each pair i, j we have

eti+tj 〈(si − sj )
2〉
s

≤ 1/2.

This result follows from the fact that 〈 · 〉s is a Gaussian expectation in s with terms
eti+tj (si − sj )

2 appearing in the action, B. Indeed, if u, v1, v2, . . . are real variables it
is a general fact that

∫
cu2 e−cu2−Q(u,v)du

∏
a dva∫

e−cu2−Q(u,v)du
∏
a dva

≤ 1/2

for any positive constant c and any Q ≥ 0 which is quadratic in u, v. If we set cu2 =
(si−sj )2eti+tj andQ = B−cu2 (restricted to the linear subspace given by the constraint∑
i∈� si = 0), we obtain the desired result. ��
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From the decomposition (4.10) and the two lemmas we have

C̃′′ ≥ R ≥ 1
2��.

Inserting this bound into (4.7) completes the proof of Theorem 4.1.

5. The Brascamp-Lieb Inequality

We now state the Brascamp-Lieb inequality [B] in a form in which we shall apply it. Let
A = A(t) be a convex function of N variables t = (t1, . . . , tN ) ∈ R

N , where R
N is the

Euclidean vector space with scalar product

(ϕ, t) =
N∑

i=1

ϕi ti .

With the function A associate the measure dµA(t) = e−A(t)∏ dti . Assume that the
Euclidean Hessian of A satisfies

A′′(t) ≥ H > 0, (5.1)

where H is a positive N ×N matrix independent of t .

Theorem 5.1 (Brascamp-Lieb). If A satisfies (5.1) then

〈e(ϕ, t)〉A =
∫

e(ϕ, t)e−A(t)∏N
dti

∫
e−A(t)∏N

dti
≤ e〈(ϕ, t)〉A e

1
2 (ϕ,H

−1ϕ). (5.2)

For our application we identify A with the function E = E�(t) given by (4.6).
Theorem 4.1 tells us to put H = −(β − 1

2 )�� + h. If we then set

Gij = (−(β − 1
2 )�� + h

)−1
ij

(5.3)

and fix a site i ∈ � with field variable ti , we have

〈eαti−α〈ti 〉E 〉E ≤ e
1
2α

2Gii . (5.4)

In dimension d ≥ 3 and for β ≥ 3/2 the Green’s function Gii is uniformly bounded as
� → Z

d provided h|�| ≥ 1.
Now we drop the subscriptE and let 〈·〉 = 〈·〉E . Large fluctuations of the field t away

from its average are very unlikely:

p = ProbE{ti − 〈ti〉 ≥ ρ} ≤ e
− ρ2

2Gii .

Indeed, when ti − 〈ti〉 ≥ ρ we have eα (ti−〈ti 〉−ρ) ≥ 1 for all α ≥ 0, so that

p ≤ 〈eα (ti−〈ti 〉−ρ)〉 ≤ e−α ρ e
1
2α

2Gii = e
− ρ2

2Gii

for α = ρ/Gii . The same estimate applies to the probability of an event ti − 〈ti〉 ≤ −ρ,
so altogether we have

ProbE{|ti − 〈ti〉| ≥ ρ} ≤ 2 e
− ρ2

2Gii . (5.5)
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Our estimates on the t field will be complete once we have estimated the average 〈ti〉.
To do this consider the change of variables tj → tj + γ , sj → e−γ sj (j ∈ �). Then if
we take the derivative in γ of the logarithm of the partition function at γ = 0 we get

h
∑

j∈�
〈sinh tj 〉 = 1, (5.6)

where 1 is produced from the δ-function: δ(e−γ ∑
sj ) = eγ δ(

∑
sj ). By translation

invariance we see that for h|�| = 1 we have 〈sinh ti〉 = 1, so that by Jensen’s inequality
and (5.4) we have

e〈ti 〉 ≤ 〈eti 〉 = 2 + 〈e−ti 〉 ≤ 2 + e−〈ti 〉 e
1
2Gii .

This gives an upper bound to 〈ti〉:
〈ti〉 ≤ 1 + 1

4Gii.

To obtain the lower bound we use 〈sinh ti〉 ≥ 0:

e−〈ti 〉 ≤ 〈e−ti 〉 ≤ 〈eti 〉 ≤ e〈ti 〉 e
1
2Gii .

Hence

− 1
4Gii ≤ 〈ti〉 ≤ 1 + 1

4Gii. (5.7)

This completes our estimates on the t fields and its fluctuations.

6. Bounds on the s Fields

Recall that in addition to the t variables the observable given by (3.5) contains factors of
s2

0 and s4
0 . These averages may be explicitly calculated in terms of the covariance for the

s field given, see (4.1), byD−1 on the orthogonal complement of the constant functions
which we have denoted by D̃−1. Here we show how to deal with the s4

0 term:

〈s4
0 〉s = 3D̃−1(0, 0)2. (6.1)

The s2
0 term is similar and can be handled in the same way.

The operator D is non-negative but depends on t . If all tj ≥ 0 then D ≥ −�� and
we have bounds onD−1 in terms of the free Green’s function −�−1

� in dimension three.
However, the t field may take large negative values and so there is no uniform bound on
D̃−1(t). The control of 〈D̃−1(0, 0)2〉 will come from the fact that large negative values
of t are very rare by (5.5) and (5.7).

To bound the average of D̃−1(0, 0)2 we shall first consider an elliptic operator L
whose quadratic form is

(f, Lf ) ≡
∑

j∈�
(∇f )2j aj ,

where aj ≥ (1 + |j |)−p. Let L̃ denote the projection on the orthogonal complement of
the constant functions.
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Lemma 6.1. For d ≥ 3 and p < d − 2 the Green’s function of L̃ is uniformly bounded
(as � → Z

d ) by 0 ≤ L̃−1(0, 0) ≤ Ap < ∞.

Proof. LetCn denote the cube of side 2n centered at the origin and let χn be its indicator
function. Note that

fn = 2−dnχn − 2−d(n+1)χn+1

has zero average and the square of its L2 norm is bounded by 2−dn.
As a quadratic form, L̃ restricted to Cn (with Neumann boundary conditions) is at

least 2−(2+p)n, and we therefore have

(fn−1 , L̃
−1fn−1) ≤ 2(2+p)n2−d(n−1).

To complete the proof of the lemma note that the projection of δ0 onto the orthogo-
nal complement of the constants can be written as a sum over the fn. By the Schwarz
inequality we have

L̃−1(0, 0) ≤
( ∞∑

n=0

(fn, L̃
−1fn)

1/2

)2

≤ Ap,

provided that p < d − 2. ��
Lemma 6.2. There is a constant c0 so that

〈
D̃−1(0, 0)2

〉
≤ c0. (6.2)

Proof. Fix some value of p with 0 < p ≤ 1
2 , and for each integer k let χk(t) denote the

characteristic function of the set of configurations t = {tj }j∈� that satisfy

etx+ty ≥ e−k(|x| + 1)−p

for all nearest neighbors x, y. We then have χk(t)D̃−1(0, 0)2 ≤ (A ek)2 by Lemma 6.1.
We now claim that for all k ≥ κ ≡ max{0,−〈tx + ty〉},

〈1 − χk(t)〉t ≤ B e−c (k−κ)2 , (6.3)

which by Borel-Cantelli gives the desired statement:
〈
D̃−1(0, 0)2

〉
=

〈(
χ0 + χ1(1 − χ0)+ χ2(1 − χ1)+ . . .

)
D̃−1(0, 0)2

〉

≤ const + A2B
∑

k≥κ
e2(k+1)e−c (k−κ)2 ≤ const.

To establish our claim (6.3) suppose that

etx+ty ≤ e−k

(|x| + 1)p
≤ e−(k+np)

for x in the range en ≤ |x| ≤ en+1. Then by (5.5) and (5.7) the probability of this event
for k ≥ κ is less than

e(n+1)d e−c(k−κ+np)2 ,

whose sum over n is no greater than e−c (k−κ)2 times a constant B. ��
The lemma works for any power of D̃−1(0, 0). Thus by the Schwarz inequality and (5.4)
we can bound the expectation of our observable e2t0s4

0 .
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7. Adjusting the Regularization

We have used the δ-function regularization in the s variables rather than the correct term
h
∑
j∈� s2

j etj which appears in the action A�.

Recall Ch = 1
2 ln Det (D + h et ) and C̃ = 1

2 ln Det D̃. We shall express Ch in terms
of C̃. To do this, let P0 denote the orthogonal projector on the vector space spanned by
the normalized constant function ψ0,j = |�|−1/2, and let P = 1 −P0. The determinant
can be calculated in terms of P and P0 blocks:

Det(D + h et ) = Det(D̃ + hPt ) (ψ0, h etψ0),

where Pt is given by

Pt = P etP − P etP0 etP · (ψ0, etψ0)
−1.

Using the Schwarz inequality it is easy to see that Pt ≥ 0.
Thus Ch = C̃ + 1

2 Tr ln(1 + hD̃−1Pt) + 1
2 ln (ψ0, etψ0). We have left out the ln h

term since it is cancelled in the normalization.
Let F(t) be our (positive) observable. Now we can write

〈F(t) 〉Eh = 〈F(t) e−Rh〉E
〈e−Rh〉E ,

where

Rh = Ch − C̃ = 1
2 Tr ln(1 + hD̃−1Pt)+ 1

2 ln (ψ0, etψ0).

Since the first term of Rh is positive we have

〈F(t)〉Eh ≤ 〈F(t) (ψ0, etψ0)
− 1

2 〉E
e−〈Rh〉E ≤ 〈F(t)e− 1

2 (ψ0,tψ0)〉E e〈Rh〉E ,

where we have used Jensen’s inequality. Since Pt is positive we have

〈
Tr ln(1 + hD̃−1Pt)

〉
E

≤ h
〈
Tr (D̃−1Pt)

〉
E

≤ h|�|〈et0D̃−1(0, 0)〉E ≤ const,

and the other term in 〈Rh〉 is estimated by

〈 1
2 ln (ψ0, etψ0)

〉 ≤ 1
2

〈
et0

〉 ≤ const.

The desired bound on 〈F 〉Eh now follows from estimates we obtained for 〈 〉E . This
completes our proof of Theorem 1.1.
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8. Appendix: Push Forward of Measure in Fyodorov’s Method

Consider the mapping

ψ : Hom(Cn,CN) → Herm+(Cn), ϕ �→ ϕ∗ϕ = M,

and fix some (translation-invariant) Lebesgue measure dϕ dϕ̄ on Hom(Cn,CN). We
claim that, ifN ≥ n, there exists a Lebesgue measure cn,N dM = dMn,N (with normal-
ization constant depending on n and N ) such that the equality

∫

Hom(Cn,CN)

F (ϕ∗ϕ) dϕ dϕ̄ =
∫

Herm+(Cn)

F (M)DetN−n(M) dMn,N (8.1)

holds for all functionsM �→ F(M) on Herm+(Cn)with finite integral
∫
F(ϕ∗ϕ) dϕ dϕ̄.

In other words, ψ pushes the measure dϕ dϕ̄ forward to

ψ(dϕ dϕ̄) = DetN−n(M) dMn,N .

While this claim can be viewed and proved as a statement in invariant theory, the most
elementary proof is to express the integrals on both sides in terms of generalized polar
coordinates, as follows.

Given any complex rectangular matrix ϕ ∈ Hom(Cn,CN) for N ≥ n, consider the
non-negative Hermitian matricesM = ϕ∗ϕ andM ′ = ϕ ϕ∗, which are of size n×n and
N × N respectively. The rank of M ′ cannot exceed n, so there must be at least N − n

zero eigenvalues. The other n eigenvalues are in general non-zero, and coincide with
the eigenvalues of M = ϕ∗ϕ. Denote these eigenvalues by λ1, . . . , λn; their positive
square roots

√
λk are sometimes called the singular values of ϕ. There always exist two

unitary matrices U ∈ U(n) and V ∈ U(N) such that

ϕ∗ = U
√
λ

T
V −1, ϕ = V

√
λU−1,

where
√
λ is the rectangular N × n matrix with diagonal entries

√
λ1, . . . ,

√
λn and

zeroes everywhere else.
Let J (

√
λ) be the Jacobian of this singular value (or polar) decomposition:

J (
√
λ) =

∏

1≤i<i′≤n

(√
λi −

√
λi′

)2(√
λi +

√
λi′

)2 n∏

k=1

√
λk

1+2(N−n)
.

Fix the values of n and N ≥ n. Then by a standard argument there exists some (fixed)
choice of Haar measure dU for U(n) such that

∫

Hom(Cn,CN)

F (ϕ∗ϕ) dϕ dϕ̄ =
∫

Rn+

(∫

U(n)
F (UλU−1) dU

)

J (
√
λ)

n∏

k=1

d
√
λk

holds for all integrable F . Here λ = diag(λ1, λ2, . . . , λn).
On the other hand, fix some Lebesgue measure dM for Herm(Cn). By diagonalizing

the Hermitian matrix M and transforming the integral
∫
f (M)dM to the eigenvalue

representation M = UλU−1 you get
∫

Herm+(Cn)

f (M) dM = bn,N

∫

Rn+

(∫

U(n)
f (UλU−1)dU

)∏

i<j

(λi − λj )
2
∏

k

dλk.
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The constant bn,N is determined by the (arbitrary) choice of dM relative to dU . Now
put f (M) = DetN−n(M)F(M). Since DetN−n(M) = ∏

k λ
N−n
k , the desired statement

(8.1) follows (with cn,N = 2−n/bn,N ) by comparing expressions and noting
∏

i<j

(λi − λj )
2
∏

k

λN−n
k dλk = 2nJ (

√
λ)

∏

k

d
√
λk.

The relation (8.1) can also be viewed from another perspective, which we shall now
offer. First note that the integral on the left-hand side can be regarded as a distribution
(or continuous linear functional), say µ, on Herm+(Cn):

µ : F �→
∫

F(ϕ∗ϕ) dϕ dϕ̄.

Next observe that the non-compact Lie group GL(n,C) acts transitively on the positive
Hermitian n× n matrices M by

M �→ TMT ∗ (T ∈ GL(n,C)).

Via this action we can identify (a dense open subset of) Herm+(Cn)with the non-compact
symmetric space GL(n,C)/U(n). The corresponding action on functions, F �→ T F , is
given by

T F (M) = F
(
T −1MT −1∗)

.

Given that T ∈ GL(n,C) acts on the functions, there is also an action µ �→ T (µ)

on the distributions, by T (µ)[F ] = µ[T
−1
F ]. Since the Jacobian of the transformation

ϕ �→ ϕ ◦ T ∗ and ϕ∗ �→ T ◦ ϕ∗ is DetN(T ∗T ), the distribution µ at hand satisfies

T (µ) = DetN(T ∗T )µ.

Now we make the same considerations on the right-hand side of (8.1), i.e. for the
distribution

µ̃ : F �→
∫

F(M)DetN−n(M) dM.

Under the transformation M �→ TMT ∗ the Lebesgue measure dM transforms into
Detn(T ∗T ) dM . Hence Det−n(M) dM is invariant under such transformations, and

T (µ̃) = DetN(T ∗T ) µ̃,

i.e., µ̃ transforms in exactly the same way as µ. It is an invariant-theoretic fact — result-
ing from the interpretation of µ as a linear functional on U(N)-invariant state vectors
F in the oscillator or Shale-Weil representation of Sp(2nN) — that the vector space
of distributions with this transformation property has dimension one. Therefore, there
exists some constant cn,N such that

µ = cn,N × µ̃.

As a corollary, we note that Det−n(M) dM is an invariant measure for the symmetric
space of positive Hermitean n × n matrices, Herm+(Cn) � GL(n,C)/U(n). The case
encountered in the main text of the paper is obtained by replacing n → 2n.
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