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Abstract: When string theory is compactified on a six-dimensional manifold with a
nontrivial NS flux turned on, mirror symmetry exchanges the flux with a purely geomet-
rical composite NS form associated with lack of integrability of the complex structure on
the mirror side. Considering a general class of T 3-fibered geometries admitting SU(3)
structure, we find an exchange of pure spinors (eiJ and �) in dual geometries under
fiberwise T–duality, and study the transformations of the NS flux and the components
of intrinsic torsion. A complementary study of action of twisted covariant derivatives
on invariant spinors allows to extend our results to generic geometries and formulate a
proposal for mirror symmetry in compactifications with NS flux.

1. Introduction

Mirror symmetry is a pairing between different compactifications which give rise to the
same four–dimensional effective theory. For Calabi–Yau compactifications it is well–
understood and has played an important role, becoming arguably the most interesting
mathematical application of string theory. More general compactifications with fluxes
on manifolds which are not Ricci–flat have become the focus of much attention recently,
and it would be important to extend to these at least partially the machinery which proved
so useful for Calabi–Yaus.

If we had to consider only supersymmetric vacua, our search would be premature.
The conditions on fluxes and warping to compensate non–Ricci–flatness and preserve
supersymmetry are well–understood for some types of fluxes. To some extent, as we
review later, these conditions are even translated into mathematical requirements: the
manifold has to have SU(3) structure and fall into a certain class in the mathematical clas-
sification of these objects. But the Bianchi identity becomes an equation for which there
is no existence theorem in the literature, unlike the famousYau theorem for Calabi–Yaus
(not even the analogue of Calabi conjecture seems to have been formulated: this might
be a task for string theory). If there is no singularity in the internal compact manifold,
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and the higher derivative terms are not taken into account, one can actually show even
non–existence theorems.

Fortunately mirror symmetry as a more general equivalence of effective theories, and
not only of vacua, still makes sense. As emphasized in [1], to have supersymmetry of the
effective action SU(3) structure is enough, without the extra requirements mentioned
above, which ensure we are actually in a supersymmetric vacuum. Not only looking
for mirror symmetric SU(3) manifolds makes sense, but it is sensible to expect that a
formal advance in this direction might help to understand the still elusive problem of
compactifications with fluxes.

Much in this spirit, [1] (building on a comment in [2]) considered a particular case.
Namely, anH flux on Calabi–Yau manifolds (without back–reaction: we are not dealing
with a vacuum) get mapped to so–called half–flat manifolds, a particular class of SU(3)
structure manifolds, without anyH flux. The amount by which these half–flat manifolds
fail to be Ricci–flat is measured by a certain quantity called intrinsic torsion. We can thus
say that, in this example, H flux gets exchanged by mirror symmetry with components
of the intrinsic torsion associated with lack of integrability of the complex structure.

It is natural to wonder what happens in more general cases, when on both sides one
has both H and intrinsic torsion. (As mentioned above, this for example is necessary in
order to have supersymmetric vacua.) In the Calabi–Yau case, a concrete approach to
mirror symmetry is the Strominger–Yau–Zaslow (SYZ) [3] conjecture. This states that
i) every Calabi–Yau is a T 3 special lagrangian fibration over a three–dimensional base,
and ii) mirror symmetry is T–duality along the three circles of the T 3. It is natural to
try and generalize this method to the present problem. Part i) of the conjecture came
originally from considering moduli spaces of D–branes on Calabi–Yaus; generalizing
this to background with fluxes does seem premature, and in any case we do not attempt
it here, although later we will comment more on it. So we simply assume the manifold
and flux we start with have this property, of admitting three Killing vectors. The idea is
that the mirror transformations found in this class of examples will generalize to some
extent to the most general case.

Having assumed this, we perform T–duality along the three isometries at once. T–
duality will preserve four–dimensional effective theories, but since eventually we hope
this procedure could be extended to more general situations by including singular fibers
as in SYZ, we want to show why this should be called mirror symmetry – for that matter,
indeed, why is there any mirror symmetry at all. A good framework for answering this is
Hitchin’s method based on Clifford(6,6) spinors [4]. As we review later in more detail,
these are simply formal sums of forms on the manifold. Existence on a manifold of a
Clifford(6,6) spinor without zeros which is also pure (annihilated by half of the gamma
matrices) is the same as saying that there is a SU(3,3) structure on the manifold. (If
the spinor is also closed, Hitchin calls these manifolds generalized Calabi–Yaus.) For a
SU(3) structure, there are two pure spinors which are orthogonal and of unit norm. From
this point of view it is natural to conjecture that mirror symmetry between two SU(3)
structure manifolds exchanges these two pure spinors. We can be more explicit if we
compare this Clifford(6,6) spinor definition of SU(3) structure with the more usual one,
existence of a two–form J and three–form� obeying J∧� = 0 and i�∧�̄ = (2J )3/3!.
In these terms the two pure spinors are eiJ and �. We can actually multiply the first
spinor by eB leaving it pure [4]. So what we are claiming is

eB+iJ ←→ � . (1.1)

The arrows here will be made precise in Sect. 3. In the Calabi–Yau case, this exchange
is implicit in many applications of mirror symmetry. For example, the even periods and
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the D–brane charge can be written using eB+iJ , and its exchange with � was used in
mapping [5] stringy–corrected DUY equations [6] to the special lagrangian condition;
eB+iJ was also used in formulating the concept of �–stability [7].

With this in mind, we check that T–duality along T 3 (when it is possible) realizes
the exchange (1.1), and for this reason we call it mirror symmetry. In this sense we have
generalized part ii) of SYZ. However as it stands, (1.1) is hardly useful in predicting the
mirror background starting from a particular six-manifold and NS flux.

After having discussed and justified the method, we can schematically describe here
our results. The usual quantities which measure non–Ricci–flatness of the SU(3) man-
ifold are the five components of the intrinsic torsion (mentioned above) labeled as Wi ,
i = 1 . . . 5, in the representations 1⊕ 1, 8⊕ 8, 6⊕ 6̄, 3⊕ 3̄, 3⊕ 3̄ respectively. What is
puzzling at first is that one does not see many ways of mirror pairing these representa-
tions, except for W4 and W5 which are two vectors. The answer is that the two mirrors
have indeed two different SU(3) structures: the two SU(3) are differently embedded into
Spin(6,6), because the fiber directions change from tangent bundle to cotangent bundle,
roughly speaking. As a result, representations get actually mixed. What is preserved is
the representations that these objects have once pulled back to the base manifold, which
is untouched by T–duality.W2 andW3 get then split asW2 = ws2+wa2 (8→ 5⊕ 3) and
W3 = ws3 + wt3 (6→ 5⊕ 1), and we get

W1 − iH1 ←→ −(W1 − iH1) ,

w̄s2 ←→ ws3 − ihs3,
w5, w̄

a
2 ←→ w4 − ih4 . (1.2)

A more detailed discussion of these equations can be found in Sect. 4 (see in particular
(4.11) for the precise statement). In (1.2) one can see that W1, W3, W4 get naturally
complexified by the components of H in the corresponding representation. This is no
surprise as these torsions appear, as we review later, in dJ , and the natural object in
string theory is always B + iJ . In the present context, this arises rather due to the usual
combination E = g + B of T–duality. As we will specify in Sect. 2, we mostly work
with a purely base–fiber type B–field, which is not the most general form allowed by
T 3 invariance. However, we will see that this is just a simplifying technical assumption,
and may eventually be relaxed. Note also that (1.2) complements (1.1) in an essential
way by specifying in a more practical fashion the data of the mirror background (the
metric and the NS flux). In particular, it quantifies the exchange of components of the
flux and the intrinsic torsion on mirror sides.

We have also indicated in (1.2) that some of the components of the intrinsic torsion
we begin with are actually related; so T 3 fibrations are not the most general SU(3)
manifold. This in a way answers in the negative the question about generalizing part i)
of SYZ: we are getting mirror symmetry only for a subclass of manifolds. In particu-
lar, supersymmetric vacua with only the three-form switched on are outside this class:
indeed the conditions for these are [8] (reinterpreted in terms of torsions for example
in [9] and [10])

W1 = W2 = 0 , W3 = ∗H3 , W4 = dφ = iH4 , W5 = 2dφ, (1.3)

where we denoted byH4 andH3 the components in the representations 3 and 6 of SU(3)
respectively, in analogy with the notation for torsions (see also Appendix A). So the
next natural step would be to try and include more general classes, among which maybe
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supersymmetric vacua1. In order to do so, it is natural to wonder to what extent the
transformation rules can be put in a nicer form, and in particular be covariantized. It
turns out that it is convenient to use spinors. Although also the previously mentioned
Clifford(6,6) spinors can be used, here we mean a more conventional Clifford(6) spinor
without zeros. One such spinor, call it ε, always exists on any SU(3) structure manifold
and can actually be used to define it. It turns out that using ε a different basis forW ’s can
be defined, which is diagonal under T–duality: elements of the basis transform picking
a sign.

The idea of this different spinorial basis for W ’s is roughly speaking the follow-
ing. Usual W ’s are defined, as we review later, from dJ and d�. Now, not only ε is
equivalent to the pair J,�, but the information contained in dJ and d� can also be
completely extracted from DMε. Using SU(3) structure, this can be decomposed as
DMε =

(
qM + iq̃Mγ + iqMNγN

)
ε, where γ is the chiral gamma in six dimensions

and the group representations inside the quantities qM , q̃M , qMN are in one-to-one cor-
respondence with the W ’s. Switching to the spinorial basis accomplishes two things.
First, it allows to capture the exchange of the pure spinors eiJ and � and the exchange
of their integrability properties simultaneously. More importantly, it allows to conjec-
ture the six-dimensional covariantization of the mirror transformation (1.2), written in
terms of the forms pulled back to the base of the T 3 fibration. Details can be found in
Sect. 5.

For the purposes of studying mirror symmetry/T–duality we will need first to intro-
duce the covariant derivative twisted by the NS flux:

DHMε =
(
QM + iQ̃Mγ + iQMNγ

N
)
ε, (1.4)

where, as we will see in detail, Q’s are obtained from q’s by complexifying certain
components of the intrinsic torsion by the matching components of the flux (as in (1.2)).
We will show that their restrictions to the base (denoted by hatted quantities) transform
as

Q̂ij −→ − ¯̂Qij , Q̂i −→ − ¯̂Qi. (1.5)

We will then argue that this simplification is due to the simple transformation of the
ten–dimensional spinors under T–duality.

Finally we will try, in Sect. 5.1, to collect these several points of view to argue that
in general a rule like

Qmn←→−Qmn̄ , Qm←→−Q̄m

should hold. This rule is consistent with what we found in the T 3 fibered case, and
with the principle that supersymmetric vacua should map in supersymmetric vacua (not
necessarily the same). There are however more checks that could be done if one under-
stood better examples; we discuss this in Sect. 6. For example, in the case we mentioned
above of compactifications with H only described by (1.3), one should understand
moduli spaces and then check that a kind of exchange of complex and Kähler moduli
(although, as we will argue, this has to be taken with a grain of salt) should happen. This
might be interesting for the problem of fixing moduli. We end with a section on open
problems.

1 There may actually be supersymmetric vacua involving T 3 fibrations, if other fields are included.
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2. Geometric Setting

We start with an introductory section on T–duality, mainly to fix the notations.
The six–dimensional manifold will be taken to be a T 3 fibration over a baseB. Coor-

dinates on the base will be denoted by (y1, y2, y3), and on the fiber by (x1, x2, x3). All
the quantities will only depend on the y coordinates, so that the x directions are Killing
vectors. We will use conventions for indices as follows:

• i, j, k, . . . are used in the 3d y subspace,
• α, β, γ, . . . are used in the 3d x subspace,
• M,N, . . . are used in the total 6d space for real coordinates : dyM = (dyi, dxα),
• m, n, . . . are used for holomorphic/antiholomorphic indices,
• A,B,C, . . . are indices in the total 3d complex frame space,
• a, b, c, . . . and a′, b′, c′, . . . are used in the 3d real y and x frame spaces. Primes

will be dropped quickly.

We write then the most general metric and B field as 2

ds2 = gij dyidyj + hαβ eαeβ = GMNdyMdyN, (2.1)

B2 = 1

2
Bij dy

i ∧ dyj + Bα ∧ (dxα + 1

2
λα)+ 1

2
Bαβ e

α ∧ eβ, (2.2)

where λα = λαi dyi , Bα = Biαdyi and we have defined

eα ≡ dxα + λα .
Of course the vielbein reads (eai dy

i, V aα e
α), where

δabe
a
i e
b
j = gij ,

gij eai e
b
j = δab ,

δa′b′V
a′
α V

b′
β = hαβ ,

hαβV a
′

α V
b′
β = δa

′b′ ;
we also record that the inverse vielbein has instead the form

eia(
∂

∂yi
− λαi

∂

∂xα
) , V αa

∂

∂xα
. (2.3)

T–duality along the three xα directions can be expressed conveniently in terms of the
quantity E = g + B:

Eijdy
idyj + Eiαdyidxα + Eαidxαdyi + Eαβdxαdxβ

�→ Eijdy
idyj + Eαβ(dxα + Eiαdyi)(dxβ − Eβjdyj ) ; (2.4)

notice that in this expression all the (implicit) tensor products are neither symmetrized
nor antisymmetrized, for example dyidyj = dyi⊗dyj . Also remark that in this expres-
sion we used the dyi, dxα basis instead of dyi, eα as virtually everywhere else. Eαβ is
the inverse of Eαβ and can be decomposed in symmetric and antisymmetric parts:

Eαβ =
(

1

h+ B
)αβ
= ĥαβ + B̂αβ, where






ĥ = 1

h+ B h
1

h− B
B̂ = 1

h+ B (−B)
1

h− B
. (2.5)

2 with the convention that ω1 ∧ ω2 = ω1 ⊗ ω2 − ω2 ⊗ ω1
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The objects ĥ and B̂ would also be called in other contexts H and �. (In this paper H
denotes instead the three–form field.)

Using the relations

B̂ĥ−1 = −h−1B , ĥ−1B̂ = −Bh−1 , B̂ĥ−1B̂ = ĥ− h−1

one can show that the T–dual metric and B field can be obtained by the original ones
(2.1), (2.2) by the substitutions

hαβ ←→ ĥαβ ; Bαβ ←→ B̂αβ ; Bα ←→ λα, (2.6)

and leaving the gij and Bij in variant. Notice that last equation in (2.6) means that
the twisting of each of the three S1 bundles gets exchanged with the B field. This fact
played, for example, a role in a number of applications and was recently formalized in
mathematical terms in [11].

We can also find the vielbein V̂ aα of the T–dual metric ĥαβ , that satisfies V̂ aαV̂ aβ =
ĥαβ :

V̂ aα =
(

1

h+ B
)αβ

V aβ = V aβ
(

1

h− B
)βα

(2.7)

whose inverse is

V̂ aα ≡ ĥαβV̂ aβ = (h− B)αβV aβ = V aβ(h+ B)βα . (2.8)

The T–duality transformations of the vielbein then are:

V aα ←→ V̂ aα ; V aα ←→ V̂ aα . (2.9)

We will mostly work in the case when the B-field is purely of base–fiber type in
frame indices. Transformation (2.6) shows that this condition is conserved by T–duality,
while (2.5) reduces to ĥαβ = hαβ . Consequently, V̂ aα = V aα and V̂ aα = V aα . T–duality
then only amounts to moving fiber indices up and down (still exchanging Bα and λα

though).
For later use, we also define here the tensors defining the SU(3) structure. These

would be a priori only a two–form J and a three–form � satisfying J ∧ � = 0 and
i�∧�̄ = (2J )3/3!, but here we define the structure in a more conventional way starting
from an almost complex structure. The latter is defined by giving the (1, 0) vielbein

EA = ieai dyi + V a
′

α e
α, (2.10)

where A = a = a′ goes from 1 to 3. The corresponding (0,1) vielbein is EB̄ = EB .
This almost complex structure is in general not integrable, as (even after rescaling) it is
not expressible as d of a complex coordinate, EA 
= αAdzA. However, with an abuse of
language we will use the quantity

dzj ≡ dyj − iV jγ eγ = −iejaEa, (2.11)

keeping in mind that there is no reason for an actual coordinate zi to exist. We also used
in this expression the notation

Viα ≡ δaa′eai V a
′

α = eai Vaα.
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The two–form J (sometimes called the fundamental form) is defined by

J = i

2
δAB E

A ∧ EB̄ = i

2
gij dz

i ∧ dz̄j = −Viα dyi ∧ eα. (2.12)

The holomorphic 3-form reads instead

� = E1 ∧ E2 ∧ E3 = 1

6
εABC E

A ∧ EB ∧ EC = − i
6
εijk dz

i ∧ dzj ∧ dzk, (2.13)

where εijk = εabc eaiebj eck .
The choices we are making for the SU(3) structure are inspired by the SYZ approach.

As we stressed above, these choices reduce the structure group further and are thus not
to be expected to be as general (not even locally) as the T 3 fibration structure was in
the SYZ approach. In particular some unaesthetic features will arise later in the dual
of the complex coordinates. Anyway, in Sect. 5.1 we will try to amend this loss of
generality.

3. Mirror Symmetry as T–Duality

We start in this section showing, as promised in the introduction, how eB+iJ and � get
exchanged by T–duality.

First we do the easier case, in which there is no B field and λ twisting of the T 3

bundle. The basic idea is that� can be written in a sense as an exponential of the almost
complex structure JMN applied to a degenerate three–form εijkdy

idyjdyk , that can be
thought of as the holomorphic three–form in the large complex structure limit. A way
to be more explicit is the following. Expand � from (2.13) using the expression for
the holomorphic vielbein in (2.10). One obtains four terms, with dy3, dy2e, and so on.
Define now the operation V ⊥�(·) by

V ⊥�(eα1 . . . eαk ) = 1

(3− k)!ε
α1...α3eαk+1 . . . eα3 , k = 0 . . . 3 .

This is essentially a Hodge star on the fiber, except it sends a k-form in the fiber into a
3− k-vector (a section of3−kT ). Lower eα are indeed vectors ∂α ≡ ∂/∂xα . This oper-
ation is very similar to the T–duality transformation of spinors to be discussed shortly.
Using this, on every component of the expansion in dy and e of �, we get a sum of
(k, k) tensors, namely k indices up and k down: those down are along the fiber. The sum
can be expressed as an exponent of V αi eαdy

i , which is the complex structure. T–duality
is now easy to perform. According to (2.9) its action is simply to raise and lower the α
index: the tangent bundle (in the fiber direction) of the starting manifold is equal to the
cotangent bundle (again in the fiber direction) of the T–dual manifold. As a result the
complex structure now gets mapped to Viαeαdyi , the fundamental two–form J . So we
have gotten

T (V ⊥��) = i

3!
eiJ . (3.1)

The case with B–field and λ is less trivial. Although this is not strictly required here, we
find it already at this point helpful to think about this in terms of Clifford(d, d) spinors. So
we make a brief intermezzo explaining these and then we get back to our computation.
Much of this material is taken from [4].
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3.1. Clifford(d, d) spinors. Clifford algebra is usually defined on the tangent bundle (or
cotangent) of a manifold using the metric. In physical notation this amounts to defin-
ing d gamma matrices which satisfy {γM, γ N } = 2gMN , where gMN is the metric
on the cotangent bundle of the manifold. On the SU(3) manifold there is moreover a
well–known representation of this Clifford algebra, on �0,p forms. If we on the con-
trary forget about the metric (thus about the SO(d) structure), this algebra cannot be
defined.

If we consider, however, both the tangent and the cotangent bundles of the manifold
at the same time, there is a natural pairing between them (namely contraction between a
vector and a form, (dyM, ∂N) = δMN ), in which the metric does not enter. This “metric”
on T ⊕ T ∗ is block–off–diagonal

(
0 1
1 0

)

and thus of signature (d, d). Concretely, what this means is that one has to define 2d
independent gamma matrices, γM, γM , that satisfy {γM, γ N } = 0 = {γM, γN } and
{γM, γN } = δMN . Even though the Clifford structure has been defined on T ⊕ T ∗, for-
tunately the algebra still has a representation in terms of the forms on the manifold.
Only now we have twice the number of creators and annihilators, and instead of using
simply (0, p) forms as before, we have to use forms of all possible degrees. On this
space ⊕dp=1

pT ∗, an explicit representation is

γM = dyM∧ , γM = ι∂M . (3.2)

In all this we stress again that we have to consider γM and γM as independent: we
cannot raise and lower indices using the metric. In this Clifford(d, d) algebra, however,
the usual Clifford(d) is embedded: indeed a combination of wedge and contraction in
(3.2) is the more conventional Clifford product, and if we use that we can raise and lower
indices.

As stated in the introduction, a pure spinor is one which is annihilated exactly by half
of the gamma matrices. If we come back to the application we have in mind, both eiJ

and �̄ are pure:

(γM − iJMNγN)eiJ = 0 ,
(γM − iJMNγN)�̄ = 0 ,

(γM − iJMNγN)�̄ = 0 .
(3.3)

The gammas that annihilate the pure spinor �̄ are more familiar if one expresses them
in holomorphic/antiholomorphic indices: γm� = γm̄� = 0. Indeed �̄ is one of the
Clifford vacua for the Clifford(d) representation mentioned above (this is why we wrote
the relations for �̄ rather than �). Let us also notice that the annihilators of the two
Clifford(d, d) spinors in (3.3) become the same when we allow ourselves to raise and
lower indices on gammas, that is, when we descend to Clifford(d): eiJ becomes then an
alternative expression for a Clifford vacuum of Clifford(d).

As already mentioned, this dual way of realizing Clifford(d) from Clifford(d, d) is
obviously in the center of mirror symmetry-exchange of the Kähler form and the holo-
morphic three-form (or their non-integrable generalizations) is seen as different choices
of Clifford vacuum.
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3.2. Back to mirror symmetry. In this section, the only parts of the above theory that we
actually use here are the formulas for the annihilators (3.3), which of course could have
been derived independently. This insight gives however a useful rule of thumb, in par-
ticular when dealing with eiJ , where we can save ourselves expanding the exponential
as we did above. What we will do in the following will be to consider eiJ and� as Clif-
ford(6,6) spinors, and other forms acting on them as combinations of gamma matrices.
This is of course not the only possibility. One might have included B in the definition of
the pure spinor. Due to technical details in how T–duality works we preferred this way.
Also, we will work here in the case Bαβ = 0.

Let us consider for example the expression eB�. Due to γ α� = iγ iV αi �, this equals
eiBα∧V α�. If we act on this with the operator V ⊥� defined above, the prefactor can be
taken out (it does not contain any eα). On � we get V ⊥�(�) = e−iV αeα as above; the
only thing to notice is that eα is simply ∂α , as seen on (2.3). If we finally apply T–duality,
V αeα �→ Vαe

α; putting it together with the inert factor eiBα∧V α = eiB
α∧Vα , we have

shown

i

3!
T (eiJ ) = V ⊥�(eB�) e−Bαλα . (3.4)

It is a little surprising that the B field has to be subtracted on the right-hand side rather
than being already present on the left-hand side. In the same way we can also prove the
more reassuring

T (�) = i

3!
V ⊥�(eBeiJ ) eBαλα . (3.5)

The exchange eB+iJ ←→ � as presented in (3.4) and (3.5) is not very aesthetically
pleasing, however the exponents involving the T–duality anti-invariant Bαλα are easy to
explain going back to (3.3). The condition of purity e.g. on� is essentially dz∧� = 0,
and the holomorphic coordinates change under T–duality. The reason for this is that the
dzi which we have defined above as dyi − iV iγ eγ has a λ hidden inside eγ . Since λ
gets exchanged with B due to (2.6), dz on the original manifold does not map exactly
to dz, but dz −→ dz − i(BαV α − λαVα) shifting by another T–duality anti-invariant.
Thus the role of e±Bαλα is to compensate for this change, preserving the condition for
purity.

The combinations eiJ and � allow, as we have commented on in the introduction
and as we will see further later on, to treat J and � more symmetrically. The most
symmetrical object one might imagine is actually the SU(3) invariant spinor ε itself.
Given also the role that we anticipated it will have in torsions, one might wonder at
this point if it is more convenient to use T–duality transformation of ε and forget all
the rest. The problem is, so to speak, that the spinor is too symmetric. The trans-
formation rule of the ten–dimensional spinors are known: in the case without Bαβ ,
we simply have ψ+ → ψ+, ψ− → γf ψ−, where γf is the product of the three
gammas in the fiber directions [12]. However, when we express ψ± in terms of the
chirality projected ε± of the six–dimensional spinor, γf ε+ is actually ε− and all the
information we get is that a IIA compactification has been exchanged with a IIB one.
This means that the spinor is essentially on both the original and the T–dual mani-
fold the pull–back of a spinor in the base. Still, using the familiar bilinear definitions
for J and � (5.2) and γf ε+ = ε−, one can show the identities above in a different
way.
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4. Intrinsic Torsions and Their Duals

This section is the technical core of the paper. Here we define and compute intrinsic
torsions for our T 3 fibered manifolds. As stressed in the introduction, these are not the
most general SU(3) structure manifolds. Performing T–duality along the T 3 is then easy
using (2.6) and (2.9).

4.1. Conventional definition of torsions. We do not aim here at reviewing intrinsic tor-
sions on manifolds with G–structures as discussions already exist in the literature, see
for example [13] and among recent physics papers [1, 9]. Here we give a good working
definition. It is familiar that, if we are on a SU(3) holonomy manifold, not only J and
� are well defined, but also they are closed: dJ = 0 = d�. If they are not, dJ and d�
give a good measure of how far the manifold is from having SU(3) holonomy. The usual
definitions require to split them in SU(3) representations:

dJ = −3

2
Im(W1�̄)+W4 ∧ J +W3,

d� = W1J
2 +W2 ∧ J + W̄5 ∧�, (4.1)

where the representations of the Wi are as follows:

• W1 is a complex zero–form in 1⊕ 1;
• W2 is a complex primitive two–form, so it lies in 8⊕ 8;
• W3 is a real primitive (2, 1)⊕ (1, 2) form, so it lies in 6⊕ 6̄;
• W4 is a real one–form in 3⊕ 3̄;
• W5 is a complex (1, 0)–form (notice that in (4.1) the (0, 1) part drops out), so its

degrees of freedom are again 3⊕ 3̄.

These Wi allow to classify quickly any SU(3) manifold. We will later define them
in an alternative way using directly the spinor; that definition will be more natural
for T–duality, but the W ’s are often better to analyze the type of the manifold. For
example, notice that in (4.1) the exterior derivative d does not satisfy the usual rule
d : �p,q → �p+1,q ⊕�p,q+1. For an almost complex manifold as we have here, there
are also (p+2, q−1) and (p−1, q+2) contributions. Hence in (4.1) the (3, 0)⊕ (0, 3)
part of dJ , namely Im(W1�̄), and the (2, 2) part of d�, which readsW1J

2+W2∧J . So
we know actually thatW1 = W2 = 0 iff the manifold is complex. One can check indeed
that the Nijenhuis tensor can be expressed in terms of W1 and W2. Other examples of
the use of theseW ’s abound in the literature. Notice also that the information of dJ and
d� is a little redundant, as W1 appears in both.

Before we start computing, notice that from this classical definition it would be not
obvious to guess transformation laws forW ’s, other than some qualitative features. There
are two vectors, but the 8 and the 6 are different representations. If one thinks already
at this stage about decomposing in base representations, guessing becomes easier, but
one feels rapidly the need for a more solid ground. One way, which we pursue in this
section, is to compute blindly. The other way is to put J and � on a more symmetrical
basis, using the formalism of Clifford(d, d), or, which is another manifestation of the
same idea, to actually use the SU(3) invariant spinor directly. We do this in the next
section.
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4.2. Computations of torsions in the T 3 fibered case. We can now compute W ’s from
the expressions (2.12) and (2.13). This is done by doing contractions, partial or total,
appropriate to isolate the component of interest. For example W4 is computed contract-
ing J�dJ .3 First we give W1,W4,W5, expressed in the holomorphic basis.4 Note that
W4 is real and W5 holomorphic, so that W4 = w4

i dz
i + c. c. and W5 = w5

i dz
i , while

W1 = w1 is a scalar.5 These components read:

w1 = − i

12
εijk Viα [d(V − iλ)]αjk, (4.2)

w4
k = −

1

4
V αj [dVα]jk, (4.3)

w5
k = −

1

4

{
V jα [d(V + iλ)]αjk − hαβ∂khαβ

}
, (4.4)

where [d(·)]ij = 2∂[i (·)j ].
We now pass to W2 and W3. W2 is a (1,1)-form, and W3 is a real (2, 1)⊕ (1, 2), and

are written as

W2 = w2
ij dz

i ∧ dz̄j , W3 = 1

2
w3
ijk dz

i ∧ dz̄j ∧ dz̄k + c. c. (4.5)

However, since the representation 6 can be expressed not only as a primitive (2, 1)
form, but also as a symmetric tensor with two holomorphic indices, we will give this
latter expression for W3. The way to pass from one to another is w3

ij = w3
ipq�

pq
j .

This is already a little in the spirit of the different basis for intrinsic torsion that we
will give later. Furthermore, these two matrices with indices ij can actually be further
decomposed in representation theory of the SO(3) of the base. w2

ij has a symmetric
and an antisymmetric part; the symmetric part does not drop out, it only contributes to
the dy ∧ e part; the antisymmetric part can be dualized to a three dimensional vector
wi2 = 1

2ε
ijk w2

jk . As forW3,w3
ij = w3

{ij}0+ 1
3 w

3
t gij is already symmetric but has a trace

part w3
t on the three-dimensional base (of course, it is traceless in six dimensions):

w2
{ij} =

1

24
εpqk [d(V − iλ)]αpq [2Vkαgij − 3Vjαgik − 3Viαgjk], (4.6)

w2
k = −

1

4
V jα [d(V − iλ)]αjk, (4.7)

w3
{ij}0 =

1

24
εpqk [dVα]pq [2V αk gij − 3V αj gik − 3V αi gjk], (4.8)

w3
t =

1

8
εpqk [d(V − 3iλ)]αpqVkα. (4.9)

3 Complete expressions for all five components of the intrinsic torsion for a metric of the form (2.1)
can be found in Appendix A.

4 In what follows, we will denote W ’s in complex coordinates as lower case w’s. For example, w̄2
ij

is W̄ 2
mn̄, even if we did not explicitly mark i and j as holomorphic and antiholomorphic indices in this

expression. This is also true for the other components.
5 As already emphasized, one has to bear in mind that the almost complex structure is in general not

integrable, so that dzi is not to be understood as the differential of a hypothetical coordinate zi .
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Before turning to the T–duality transformations of components of the intrinsic torsion
and the flux, we observe that the conditions for a supersymmetric vacuum with H only
(1.3) are not compatible in a nontrivial way with the expressions above, as we anticipated
in the introduction. For example, demanding W1 = W2 = 0 sets λ and V to constants.

4.3. T–duality. It is now easy to see what the transformation rules of theW ’s are. Decom-
posing in base representations says essentially where to look. One sees immediately that
the various three–dimensional vectors and symmetric matrices are all similar. Before
spelling this out, one should however stress that the full six–dimensional quantities have
a more complicated transformation rule. As explained in Sect. 3.2, due to the presence
of λ in eγ , dzi = dyi − iV iγ eγ on the original manifold does not map exactly to dz on
the mirror side.

With this important caveat in mind, let us proceed to give T–duality transformations.
As we said, many of the expressions we have for W ’s are similar (see Appendix A).
The differences are mainly because of Vα versus V α . This is already good, as these
quantities are exchanged by T–duality (2.9). One also sees that some of the quantities
contain λ, that after T–duality become B as we just recalled. So, we are led naturally to
complexify some of the torsions adding dB projected in the appropriate representation.
As these projections are verbatim those we did for dJ in the previous subsection, this
step is trivial. Thus defining components for H as for other forms 6

H = −3

2
Im(H1�̄)+H4 ∧ J +H3 (4.10)

we find the transformations:

w1 − ih1 ←→−(w1 − ih1) ,

w2
{ij} ←→ (w3 + ih3){ij}0 ,

w5
k −

1

4
hαβ∂khαβ = w̄2

k ←→ (w4 − ih4)k, (4.11)

describing the mixing of the components of the flux and of the intrinsic torsion under
mirror symmetry.

The central role in the mirror/T–duality transformation (4.11) is obviously played by
W2 (a component of the torsion associated with the non-integrability of the complex
structure). It splits in two different pieces upon restriction to the base and the respective
mixing of the two parts of W2 with complexified H3 and H4 is an essential ingredient
of the mirror map.

We will now try to rederive and generalize to generic geometries these results from
a different point of view, using spinors rather than differential forms.

5. Spinorial Basis

The idea is that the same information we have in dJ and d� are contained in DMε.
Doing the effort of reexpressing torsions in these terms pays off for several reasons.

6 The explicit expressions for components ofH in the T 3-fibered geometry can be found in Appendix
A. We labeled these components so that they match the corresponding ones in dJ . H1 is then the 1⊕ 1
complex scalar, H3 the 6⊕ 6̄ real 3-form and H4 the 3⊕ 3̄ real 1-form.
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First of all, the combinations that appear in DMε transform better. Second, they might
be useful in future occasions to analyze the geometry behind a given supersymmetry
transformation without even having to bother to construct bilinears. In particular, we
can find from this approach immediately the conditions (1.3) for supersymmetric vacua
with H .

One proceeds in the following way. What we call ε in what follows is the SU(3)
invariant spinor, which can be furthermore decomposed by chirality as ε+ + ε−. Again,
if we were on a manifold of SU(3) holonomy, we would have a covariantly constant
spinor, DMε = 0. This is not the case, but still decomposing DMε into representa-
tions will give us a measure of how far we are from the SU(3) holonomy. The way of
decomposing DMε into representations is again implicit in the literature. On a SU(3)
invariant manifold, a basis for spinors is given by ε± and γMε± (or alternatively we
can trade ε± with ε and γ ε). So, for example, anything else in Clifford algebra acting
on ε, say γM1...Mn , can be reexpressed in terms of this basis. Explicit formulas for this
are known (see for example [6]; in [14] a complete set of these equations is provided,
along with the simple group theoretical description of how to get them, for the case of
seven–manifolds with G2 structure). We will not however need them here, it is enough
to know that this decomposition can be done. Actually, with one exception: the relation
γMγ ε = iJMNγ

Nε can be used to eliminate one possible term. So we can write in
general

DMε =
(
qM + iq̃Mγ + iqMNγN

)
ε . (5.1)

The real q’s that we have defined in this equation are just another definition of intrin-
sic torsion. To see that they can be compared with the W ’s above, it suffices to use
group theory. qM and q̃M are vectors, 3 ⊕ 3̄ ; as to qMN , it can be decomposed into
(3⊕ 3̄)⊗2 = (6⊕ 3̄)⊕ (6̄⊕ 3)⊕ (8⊕ 1)⊕ (8⊕ 1). We see that all the representations
of theW ’s are present. There is one redundancy, since we get three vectors (qM , q̃M and
one from qMN ). The objects we get in this way are the same as the W ’s up to factors.
Qualitatively we could stop here; in the present context we are actually interested in
getting the factors, as they are important for being able to express q’s in terms of W ’s
explicitly. This is done as follows. After having decomposed qMN as above, we can
define J and � as bilinears as

ε†γMNγ ε = iJMN , −iε†γMNP (1+ γ )ε = �MNP . (5.2)

One can now compute their exterior derivative using (5.1). Comparing the result with
(4.1) gives the desired coefficients. The result is

qMN = 1

4

(
W+1 GMN +W−1 JMN

)+ 1

8

(
�MNP (W5 − 2PW4)

P + c. c.
)

+1

4

(
−JMPW 2,+

PN +W 2,−
MN

)
+ 1

8
Im(W 3

MN)

= Re

[
1

2
W1P̄MN + 1

4
�MNP (W̄5 − 2W4)

P

+ i
2
P̄M

PW 2
PN −

i

8
W 3
MN

]
, (5.3)

qM + iq̃M = [W̄5 − P̄W4]M, (5.4)
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where Wi = W+i − iW−i as usual in the literature, and we have defined W 3
MN =

W 3
MPQ�

PQ
N and used a holomorphic projector P = 1

2 (1 − iJ ). We had observed
in the previous section that the split of W2 in two parts upon restriction to the base is
crucial in the mirror transformation. Here we can see that the split nature of W2 reveals
itself in covariant six-dimensional expressions: W+2 and W−2 enter respectively into the
symmetric and antisymmetric parts of qMN .

It is worth recording the same expression in holomorphic/antiholomorphic basis:

qmn = − i
4
w3
mn +

1

4
�mnp(w̄5 − 2w̄4)

p , qmn̄ = − i
4
w2
mn̄ +

1

4
w̄1gmn̄ . (5.5)

And for the remaining vector:

qm − iq̃m = (w5 − w4)m . (5.6)

The quantities we have defined so far would not be expected to behave nicely under
T–duality, for the following simple reason. The transformation laws we have computed
in (4.11) have, as one would expect also from the arguments in [1] and from (1.1), the
feature of exchanging some torsions withH . Therefore we have to add a dependence on
H to the covariant derivative in (5.1). Then also the q defined in (5.1) will change and
(5.1) will become

DHMε =
(
QM + iQ̃Mγ + iQMNγ

N
)
ε . (5.7)

We have defined DH (and as a consequence the Q’s) in such a way as to find good
T–duality transformation properties afterwards. Not too surprisingly, we have found
that the best definition is exactly the same as the one which appears in supergravity
supersymmetry transformations: DHM ≡ (DM + 1

8HMNP γ
NP ). We find then

QMN = Re

[
1

2
(W1 + 3iH1)P̄MN + 1

4
�MNP (W̄5 − 2(W4 + iH4))

P

+ i
2
P̄ P
M W 2

PN −
i

8
(W 3 + iH 3)MN

]
. (5.8)

So, addingH asD→ DH complexifiesW asW + iH , though at the end the Re in (5.8)
makes theQ’s real. It should also be possible to write directly a formula for the (con)tor-
sion, as an alternative to formulas for the q’s that we have given. The fact thatH appears
asHMNP γNP tells us already that this formula will have a pieceKMNP = dJMNP+. . .
that will combine withH . As we will not need it here, we do not pursue this. Notice also
that the G2 analogue of what we just did for H is discussed in detail in [14] for the G2
case.

The fact that the natural combination for T–duality and for supersymmetry is the same
will be useful later, when we will try to extend our results to the general case. Then this
is also a good place to see that of course the conditions for supersymmetry in the case
with H only (1.3) can be recovered from the spinor equation. To have supersymmetry
it is enough that one chirality, say ε+, is annihilated by DH . We have the expressions

DHm ε+ = (Qm + iQ̃m)ε+ + iQmnγ
nε−, DHm ε− = (Qm − iQ̃m)ε− − iQmn̄γ

n̄ε+,

DHm̄ ε+ = (Qm̄ + iQ̃m̄)ε+ + iQm̄nγ
nε−, DHm̄ ε− = (Qm̄ − iQ̃m̄)ε− − iQm̄n̄γ

n̄ε−.
(5.9)
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Notice that Qmn̄ and Qm̄n̄ have disappeared from DHε+, because ε−, being a Clifford
vacuum, is annihilated by γ n̄. From this one obtains directly that the complexifiedQmn

and Qm̄n have to vanish. These will say that the complexified W3 has to be purely an-
tiholomorphic, which in more usual terms means of type (1, 2) (this is the condition
W3 = ∗H3) and that W2 has to vanish. The vectors require a little more care because
usually the dilaton is rescaled in the metric (as a warping) and in the spinor itself. More
generally it is clear that one can use gamma matrices identities mentioned above to
reduce the expression to a form like (5.1), and then use (5.4) or (5.5).

For us the main advantage of having computed these quantities is to compare with
T–duality transformations given in previous sections, although we will see shortly how
these supersymmetry considerations can play a role in understanding the general case
(without T 3 fibration structure). We can restrict the free index in (5.1) to be on the base,
M = i, and furthermore apply a chirality projector

Diε+ = Q̂iε+ + iQ̂ij γ
j ε− , Diε− = ¯̂Qiε− + i ¯̂Qijγ

j ε+, (5.10)

having introduced hatted quantities for restrictions to the base. The quantities Q̂i and
Q̂ij in these expressions turn out to transform neatly under T–duality:

Q̂i −→ − ¯̂Qi, Q̂ij −→ − ¯̂Qij , (5.11)

with the expressions

Q̂i = Qi + iQ̃i = (W̄5 − 1

2
(W4 − iH4))i , (5.12)

Q̂ij = Qij − iQiαV
α
j = 2P̄Mj QiM

= 1

4

[
W̄1 + 3iH̄(1) + i

12
P̄ iM(W3 − iH3)Mi

]
gij

− i
4

[
W̄ 2
{ij} −

1

4
P̄Mi (W3 − iH3)Mj

]

+ i
2
εijk

[
W5 −W4 − iH4 − 1

2
W̄2

]k
. (5.13)

This means that at an effective level the rule tells us ε+ ↔ ε−.
We should remark that working so far with a finite-size T 3-fiber, we have extra

(nowhere vanishing) vector fields, and thus reduces structure. This may in particular
allow to locally preserve supersymmetry even when conditions (1.3) are violated. Since
when fibers degenerate this restricted stricture no longer exists, we avoided making
explicit use of it, even though doing restrictions to the base manifolds implicitly uses
the existence of a restricted structure. It is reasonable to expect that the results based
on representations are valid over the entire moduli space, and thus next we turn to the
six-dimensional covariantization of mirror transformation (4.11).

5.1. Approaches to the general case. At this point it is natural to wonder if we have
enough information to simply guess what mirror symmetry should be in the general
case. We have a precise set of transformation rules in the case of T 3 fibrations, and we
also know that supersymmetric vacua should be sent to supersymmetric vacua. As we
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remarked above, T–duality is induced by an exchange of ε+ with ε−. Since we also have
γ m̄ε− = 0, these two facts together would suggest the following proposal naturally
generalizing (5.11):

Qmn←→−Qmn̄ , Qm←→−Q̄m . (5.14)

We noticed above that representations of W ’s do not match in such a way as to suggest
immediately a transformation law. In the T–duality approach above this was solved by
decomposing further in representations of the SO(3) of the base. The proposal (5.14), on
the contrary, gets around this problem collecting together SU(3) representations rather
than decomposing them further: qualitatively, 6⊕ 3̄↔ 8⊕ 1.

Let us now check that this proposal for mirror symmetry agrees with T–duality and
with supersymmetry, as we just required. First of all, (5.14) agrees with the exchange
(5.11). Indeed we have

Q̂Mn̄ = PmP Q̂P n̄ + P̄ Pm̄ Q̂P n̄ = 2Qmn̄ + 2Qm̄n̄ ; (5.15)

similarly one can consider the transformation of Qm = Q̂m.
Turning now to supersymmetry, the two transformations in (5.14) induce simply

DHm ε+ −→ −DHm ε− . (5.16)

So if only H is present we are sending DHε+ = 0 to −DHε− = 0; in the latter case
supersymmetry is of course still preserved. In this form the duality might seem a little
tautological, in the sense that it sends a supersymmetric vacuum in another one in an
obvious way. Compare however with the usual mirror symmetry: a Calabi–Yau is sent
to another Calabi–Yau, and the nontriviality lies in the exchange of Kähler and complex
structure moduli. This should be happening for vacua withH only as well, and in a sense
this would be yet another check to do; we will comment on this in the next section.

Coming back to checking compatibility with supersymmetry, the situation becomes
more complicated with RR fluxes, because the latter also transform, and one would have
to check that they do it in a way compatible with the one we are giving for geometry and
H . This can be elaborated as follows. Just as the entire NS contribution to the covariant
derivative of the invariant spinor got summarized inQ’s (see (5.8)), the RR contribution
can be accounted for by introduction of similar objects, RM , R̃M and RMN with a group
decomposition matching that of Q’s. On supersymmetric backgrounds, the total action
of the covariant derivative of the invariant spinor should be zero and thus R = −Q.
Thus from this point of view the mirror transformation of the RR sector can also be
brought to the form (5.14). From the other side, in the T 3 fibered case, one could use the
known transformation rules of RR fields. From the above, it is clear that the natural way
to do this check in general would be to consider RR fields not as sums of forms but as
bispinors, expressing for example in terms of the latter supersymmetry transformations
also.

Even after all these motivations, the proposal (5.14) stands as a conjecture, and there
would be other possible checks to be made. One possibility is to use again the formalism
of Clifford(6,6) spinors. One can give an alternative definition of torsions, that we have
not mentioned so far, using the Clifford(6,6) spinors eiJ and �. Schematically one gets

DMe
iJ = qMeiJ + Im(q(2)M ·�) , DM� = (qM + iq̃M)�+ q(2)M · eiJ . (5.17)

In these equations, q(2)M · is the Clifford product of qMN using only the second index.
These formulas seem indeed to be consistent with the general rule (5.14) given above.
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6. Applications and Examples

In this section we analyze some simple consequences of the mirror symmetry transfor-
mation that we have proposed. Apart from the case in which only geometry and B-field
are present, the situation will be different from the usual one for Calabi–Yau’s in that
RR fluxes will transform, and so solutions with some types of fluxes switched on get
mapped generically to solutions with other types of fluxes. On top of this we should also
have the usual exchange of Kähler and complex structure moduli, in the sense of (1.1).
Simple checks of both claims have been listed in the previous section; here we take these
statements for granted and examine the consequences.

The natural starting point is to check how the picture developed so far reduces to
known cases. We start from a brief discussion of an example which has already been
mentioned, and involves a CY manifold withB-field turned on. This case was considered
in [1] in great detail. Since the intrinsic torsion vanishes on CY, we start from QMN

built purely from components of H . TheQmn̄ gets a single contribution from H1. If we
follow [1] and look for a purely geometrical mirror, on the mirror side we may have
non-zero W̃3 and W̃4−W̃5 = 0. Looking atQmn, we see that the reality of the remaining
components of the flux ensures that on the mirror side only W̃−1 and W̃−2 survive. This
agrees with [1] up to a conventional ± exchange. So we recover as a particular case the
half-flat geometries and the G2 lifts discussed in [16, 17]. Note that neither the starting
configuration, nor its mirror are vacua but rather domain walls.

The simplest background is when the B-field is turned off and we just deal with
Calabi–Yau geometry. This case was also discussed in Sect. 3, where we recover the
exchange of the complex structure and (the exponentiated) Kähler form for mirror Ca-
labi–Yau manifolds. An exchange of complex and Kähler moduli for a metric of the form
(2.1) with λ = 0 and the integrability properties of its complex structure were studied
in [15]. Here we easily see that the exchange of the eiJ and � is accompanied by an
exchange of their integrability conditions.

Without turning RR fields on, we can also consider yet another possibility of vacua.7

These cases are to obey the conditions given in (1.3). In our language these condi-
tions read Qmn = 0 = Qm̄n. What one gets by the proposal (5.14) is the condition
Qmn̄ = 0 = Qm̄n̄, which is obviously isomorphic to it (see the comments in the previ-
ous section). Less trivial is the statement that complex and Kähler moduli are exchanged.
To check this one would first of course have to know by what groups moduli spaces are
computed.

This check we will not be able to perform here, and we limit ourselves to some com-
ments. First of all, in general moduli spaces of solutions with fluxes are likely not to be
simply factorized in Kähler and complex part. This is because, unlike the Calabi–Yau
case, the conditions are no longer dJ = 0 = d�, but something involving torsions; and
the definition of torsions (4.1) mixes� and J . Also, in the Calabi–Yau case the fact that
the conditions were of simple closure allowed to reduce the counting to a cohomology
problem. In general, here, we are dealing with conditions involving projections PrepdJ

andPrepd�, wherePrep is a projector on a certain representation. These conditions mean
roughly that a form is closed “up to” a contribution from the other form, schematically
dJ = operator(�). In general it should be possible to restate this as the cohomology
of a double complex. Coming back to the case with H only switched on, a preliminary

7 Here and in the parts with RR on also , the word vacuum should be understood with the usual grain of
salt: no–go theorems force us to consider noncompact or singular cases, or to hope (in a less well–defined
way) that some of the features analyzed here will survive after taking into account higher–derivatives
corrections.
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analysis of moduli spaces was sketched in [18], following ideas in [19]. Indeed the H–
twisted cohomology groups proposed there are total cohomologies of a double complex
with ∂̄ and H 2,1∧ as differentials. We will unfortunately not say more on this here, but
plan to come back to the issue in the future. For now we just observe that, in known
examples, fluxes fix complex structure moduli. These considerations tell us that in a
mirror picture Kähler moduli will be fixed.

The Type B solution for IIB strings presented in [20] provides another related case
of flux compactifications with the back-reaction taken into account. The metric now is
conformally CY, and RR-fluxes are turned on as well. In addition, supersymmetry con-
servation imposes restrictions on H -flux, which now turns out to be primitive. We will
not attempt here to present a complete analysis of the mirror transformation and will
ignore the RR sector (which mirror symmetry maps to RR fields in Type IIA theory).
Thus our starting data include W4 ∼ W5 and H4. Note that this means in particular that
we have Qmn̄ = 0, and thus we need Q̃mn = 0 on the mirror side. The two previous
examples have this feature: we could either take H̃ = 0 and W̃3 = W̃4 − W̃5 = 0
or have H̃ with imaginary selfdual primitive part and geometry given by W̃3 = ∗H̃3

and 2W̃4 = W̃5 = 2dφ̃ = 2iH̃4 as in [8]. However it is different from previous cases
Qmn 
= 0 and this results in additional non-integrability of the complex structure on the
mirror side (in particular, W̃−2 cannot be zero now). Of course, explicit constructions of
such IIA string backgrounds would be of some interest.

The last application we will discuss here concerns the possibility of lifting the SU(3)
mirror symmetry picture to the G2-structure case. We could start from IIA string theory
in a monopole background and lift it to M-theory, using the explicit relations between
the components of intrinsic torsion for SU(3) and G2 for U(1)-fibered manifolds. The
components of the torsion for the representations 1, 7 and 27 get complexified by the
corresponding representations of theG4-flux. The analogy with the SU(3) case is rather
close. There as well there was a number of components of the intrinsic torsion that get
complexified by the H -flux; mirror symmetry then mixed these with the components
corresponding to representations that are not contained in the flux (essentially 8 ⊕ 8
in that case, with some extra subtleties having to do with 3 ⊕ 3̄ appearing twice). In
the G2 geometry, 14 is such a representation, and the corresponding component of the
torsion is the lifting of W−2 [17, 21], the component of SU(3)-torsion central in the
exchange with the NS flux. Once more one would be hoping that going to the spinorial
basis and writing for the invariant spinor the twisted covariant derivative will lead to
a covariant expression for a mirror transformation for the G2 geometry. Indeed, as in
(5.1) the torsion for the G2-structure manifolds is also encoded in a covariant derivative
DMε = (qM + iqMNγN)ε, where q’s are real. Then the eleven-dimensional super-
symmetry transformations restricted to seven-dimensions twist the covariant deriva-
tive by a term i

3GMε − 1
3 (2GδMN + GMN + 2GNM)γNε, where we have defined

G ≡ 1
4!GMNPQ(∗�)MNPQ,GM ≡ 1

3!GMNPQ�
NPQ,GMN ≡ 1

3!GMPQR(∗�)PQRN
using the associative form �. Putting all together we arrive at the twisted operator

DGMε = (QM + iQMNγ
N)ε

which we can now use to extend the SU(3) mirror symmetry proposal. Indeed, the G2
analogue of (5.14) can be written as

Q+[MN ] ←→−Q−[MN ] Q{MN} −→ −Q{MN}, (6.1)

where ± denote selfdual and antiselfdual representations respectively. Note that only
the former is complexified byG-flux, and (6.1) exchanges 14 with 7+7. In view of this,
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we may go back to (5.14) and note that there as well, modulo the trace part, mirror
symmetry can be thought of as an exchange of selfdual and antiselfdual matrices (à la
Hermitian Yang-Mills).

7. Discussion

We conclude by mentioning some open technical and conceptual problems. Throughout
the paper we have worked with aBαβ = 0 case. Obviously, this choice simplifies greatly
the T–duality transformation. The reason for this is most clear on the spinorial picture.
As shown in [12], the only change in the simple T–duality transformations used above
(see Sect. 3.2) occurs when the Bαβ component of the B-field is nonzero. In this case
we have to use instead

ψ+ → ψ+ , ψ− → eEγf ψ−,

where Eαβ is defined in (2.5). We have here a gamma matrix exponential of E ≡
1
2E

αβγαβ which has the same form of the kappa–symmetry � operator; in the power
series expansion the products of all gamma matrices are antisymmetrized.

Note that without a Bαβ component, there is a certain ambiguity in the choice of
T–duality invariants (5.12). The ambiguity is in the complexification by H in Q’s. We
have chosen everywhere the plus sign (and correspondingly T–dual expressions which
become complex conjugates) for the following reason. The singlet representation allows
a simple calculation even with a non-vanishing Bαβ . The result is then the first formula
in (4.11), which fixes the ambiguity. For all other components we have chosen the com-
plexification rule consistent with that of W1, hence the choice of sign in the definition
of the twisted covariant derivative (5.7). The T–duality rule for the spinors given above
should allow to lift restrictions from the B-field and verify this explicitly. We would like
to emphasize though that this restriction is of a technical nature-for a number of appli-
cations the B-field is generic enough. First, the H -flux contains all the representations
it can. Second, in the holomorphic coordinate basis it is not hard to see that B is of
generic type and contains both (1, 1) and (2, 0) components. The latter is important for
several aspects of topological B-branes (see [22] for a recent discussion, in which also
Clifford(d,d) spinors appear) and mirror symmetry [23].

Clearly there are two directions in which our results have to be extended. As men-
tioned many times we have worked with a T 3 fibration with finite-size fibers (and thus
had a luxury of having extra vector fields without zeros) and most of our formulae
explicitly involve restrictions to the base of the fibration. At the end we succeeded in
finding a basis in which the mirror/T–duality transformations can be covariantized and
written over the entire six-dimensional manifold. The final simple rule for the mirror
transformation

Qmn←→−Qmn̄ , Qm←→−Q̄m

is of group-theoretical nature, and we conjectured it to be true for general geometries,
even without fibration structure at all, not even locally. In particular it should also work
when there is a fibration but with singular fibers. From the other side, singular T 3 fibers
hold the key to the SYZ picture, and would be extremely important to understand their
fate in any generalization of SYZ.

Finally, one would like to complete the picture by incorporating D-branes. A better
understanding of submanifolds in generalized CY manifolds as well as vector bundles
on these would be essential preliminaries. Extending the picture developed in [5] for
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the exchange of branes (a pair of calibration and bundle conditions) and T–duality to
the generalized CY case would be of great interest. We may recall once more that in
the SYZ picture both mirror manifolds appear as moduli spaces for D-branes wrapping
(sub)manifolds. One may hope that eventually developing the picture of D-brane mod-
uli spaces in geometries with NS fluxes may lead to refining the proposal for mirror
symmetry presented here.
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A. Intrinsic Torsion for T 3-Fibered Manifolds

The components of the intrinsic torsion are defined by

dJ = −3

2
Im(W1�̄)+W4 ∧ J +W3,

d� = W1J
2 +W2 ∧ J + W̄5 ∧�.

They can be computed using contractions (�) with J and �:

W1 = 4

3
J 2� d� = −4i

3
�� dJ = 1

3
εABC (E

A ∧ EB)� dEC

= − i

12
εijk Viα [d(V − iλ)]αjk,

W2 = 4J� [d�−W1J
2 − W̄5 ∧�]

= 1

12
εijk [d(V − iλ)]αjk [gpqViα − 3gpiVqα]dzp ∧ dz̄q,

W3 = dJ + 3

2
Im(W1�̄)−W4 ∧ J

= 3

8
Viα[dλα]jk dy

i ∧ dyj ∧ dyk

−1

4
[dVα]ik[

3

2
δkj δ

α
β + V αj V kβ − 2V kαVjβ ] dyi ∧ dyj ∧ eβ

+1

4
[dλα]jk[

1

2
ViαV

j
β V

k
γ − δji hαβV kγ ] dyi ∧ eβ ∧ eγ

−1

8
V iβV

j
γ [dVα]ij e

α ∧ eβ ∧ eγ

= 1

16

{
−i[dVα]jkV

α
i + i[dVα]ijV

α
k + i[dVα]kiV

α
j

+i[dVα]j lV
lαgik − i[dVα]klV

lαgij

+[dλα]jkViα + [dλα]ijVkα + [dλα]kiVjα
}
dzi ∧ dz̄j ∧ dz̄k + c. c.,
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W4 = 2J� dJ = 1

2
V αk [dVα]jk dy

j

= 1

2
hαβ [dhαβ − LgVαVβ ],

W
(1,0)
5 = −�� d�̄

= 1

4

{
V kα [d(V + iλ)]αjk + hαβ∂jhαβ

}
dzj

= 1

4

{
[hαβ LgV αV β ]j − iV kα [dλ]αjk

}
dzj ,

where dzj = dyj − iV jγ eγ .
In the last two expressions, we have used the Lie derivative L, which is defined by

LXY = [X, Y ] = [Xi∂iY
j − Y i∂iXj ]∂j , LXω = [Xi∂iωj + ωi∂jXi]dyj ,

(A.1)

on the vector field Y and the 1-form ω, with respect to the vector field X. We wrote V β

and Vβ for the 1-forms V βj dy
j and Vjβdyj , while gV α and gVα are the vector fields

V iα∂i and V iα∂i .

We also give here the components of the H field

H = dB2

= 1

2
∂kBαβ dy

k ∧ eα ∧ eβ + [∂kBiα − Bαβ∂kλβi ] dyk ∧ dyi ∧ eα

+1

2
[∂kBij − ∂kBiαλαj + Biα∂kλαj ] dyi ∧ dyj ∧ dyk. (A.2)

As a 3-form, we project H on representations of SU(3) as we did for dJ :

H = −3

2
Im(H1�̄)+H4 ∧ J +H3. (A.3)

These components are computed with the same contractions used for W ’s:

h1 = H1 = −4i

3
��H

= 1

12
εijkV αi V

β
j ∂kBαβ

+ i

12
εijkV αi [dBα − Bαβdλβ ]jk

− 1

12
εijk[∂kBij − ∂kBiαλαj + Biα∂kλαj ], (A.4)

H4 = 2J�H

= −1

2
V kα[dBα − Bαβdλβ ]jkdy

j − 1

2
V kα∂kBαβ e

β (A.5)

= h4
kdz

k + h̄4
kdz̄

k,

h4
k =

1

4

{
V jα[dBα − Bαβdλβ ]jk − iV jα∂jBαβV βk

}
, (A.6)



422 S. Fidanza, R. Minasian, A. Tomasiello

H3 = H + 3

2
Im(H1�̄)−H4 ∧ J

= 1

4
V kβV iγ [∂kBiα − Bαµ∂kλµi ] eα ∧ eβ ∧ eγ

+1

2

[
5

4
∂kBαβ − V jγ Vkα∂jBγβ − 1

2
V
γ

k V
j
α ∂jBγβ

]
dyk ∧ eα ∧ eβ

+1

8
[∂kBij − ∂iBjγ λγk − ∂iλγj Bkγ ]

×[V kβ V
j
α dy

i − V kβ V iαdyj + V iαV jβ dyk] ∧ eα ∧ eβ

+1

4
[(dBα)ik − Bαβ(dλβ)ik]

[
3

2
δkj δ

α
γ + V αj V kγ − 2V kαVjγ

]
dyi ∧ dyj ∧ eγ

+3

8
[∂kBij − ∂iBjγ λγk − ∂iλγj Bkγ ] dyi ∧ dyj ∧ dyk

−1

8
V αj V

β
k ∂iBαβ dy

i ∧ dyj ∧ dyk

= 1

2
h3
ijk dz

i ∧ dz̄j ∧ dz̄k + c. c. (A.7)

In analogy with w’s (see (4.6)-(4.9)) we have introduced h:

h3
ij = h3

ipq�
pq
j = h3

{ij}0 +
1

3
h3
t gij ,

h3
{ij}0 = −

1

24
εpqk [dBα]pq [2V αk gij − 3V αj gik − 3V αi gjk], (A.8)

h3
t = −

1

8
εpqk [dBα]pqV

α
k

− i
8
εpqk [dB − 1

2
(dBα ∧ λα + dλα ∧ Bα)]pqk. (A.9)
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