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Abstract: We construct a cubic field theory which provides all genus amplitudes of the
topological A-model for all non-compact toric Calabi-Yau threefolds. The topology of
a given Feynman diagram encodes the topology of a fixed Calabi-Yau, with Schwinger
parameters playing the role of Kähler classes of the threefold. We interpret this result as
an operatorial computation of the amplitudes in the B-model mirror which is the quantum
Kodaira-Spencer theory. The only degree of freedom of this theory is an unconventional
chiral scalar on a Riemann surface. In this setup we identify the B-branes on the mirror
Riemann surface as fermions related to the chiral boson by bosonization.

1. Introduction

Topological strings have been a focus of much interest since they were proposed more
than a decade ago [1]. A central question has been how to compute the corresponding
amplitudes. There have been two natural approaches available: i) using mirror symmetry
to transform the problem to an easier one; ii) mathematical idea of localization. Both
approaches can in principle yield answers to all genus amplitudes (at least in the non-
compact case). However the computations get more and more involved as one goes to
higher genera and neither method becomes very practical.

Ever since the discovery of large N Chern-Simons/topological string duality [2]
another approach has opened up: Chern-Simons amplitudes seem to give an efficient
way to sum up all genus amplitudes. This idea was developed recently [3, 4] where it
was shown that one can compute all genus A-model amplitudes on local toric 3-folds
from its relation to Chern-Simons amplitudes. However in trying to obtain amplitudes
in this way, one had often to take certain limits. The main aim of the present paper is
to bring this line of thought to a natural conclusion by giving the direct answer for the
topological string amplitudes, without any need to take any limits.

Toric 3-folds are characterized by a graph which encodes where the cycles
of a T 2 fibration degenerates. The vertices of this graph are generically trivalent. The
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computations in [3 and 4] were more natural in the context of tetravalent vertices of
the toric graph. To obtain the generic situation of the trivalent graph, one had to take
particular limits in the Calabi-Yau moduli space. Thus the basic goal is to directly cap-
ture the structure of the trivalent vertex. That there should be such a vertex has already
been noted [5, 6]1. In this paper we show how this can be achieved. The idea can be
summarized, roughly, as putting many brane/anti-brane pairs which effectively chop
off the Calabi-Yau to patches with trivial topology of C3. Computing open topological
string on C3 defines the cubic topological vertex. Gluing these together yields the closed
topological string results (with or without additional D-branes). Thus the full amplitude
can be obtained from a cubic field theory, where each Calabi-Yau corresponds to a Fe-
ynman graph with some fixed Schwinger times (determined by the Kähler class of the
Calabi-Yau).

This result can best be understood in the mirror picture as computation of the quan-
tum Kodaira-Spencer theory [8]. The Kodaira-Spencer theory is, in this context of
non-compact Calabi-Yau, captured locally by a chiral boson on a Riemann surface.
The degrees of freedom on the brane get mapped, in this setup, to coherent states of the
chiral boson, and the trivalent vertex gets identified with the quantum correlations of the
chiral boson. Moreover, the brane in the B-model gets identified with the fermions of this
chiral boson. Thus the fact that knowing amplitudes involving branes leads to closed
string results translates to the statement that knowing amplitudes involving fermions
leads via bosonization to the full answer for the chiral boson. The topological vertex
gets mapped, in this setup, to a state in the three-fold tensor product of the Fock space of
a single bosonic string oscillator. To leading order in string coupling and oscillator num-
bers this is a squeezed state as in the conventional approaches to the operator formulation
in the Riemann surface. However the full topological vertex is far more complicated;
the chiral scalar is not a conventional field. The full vertex involves infinitely many
oscillator terms together with highly non-trivial gs dependence. Nevertheless, we find
the following closed formula for this highly non-trivial vertex |C〉:

〈t1n, t2m, t3p|C〉 =
∑
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Here Ri,Qi are representations of U(N), N Rk
RiRj

is the number of times the represen-

tation Rk appears in the tensor product of representations Ri and Rj , Rt denotes the
representation whoseYoung Tableau is the transpose of that ofR andWRQ = SRQ/S00,
where S is the S-matrix of the modular transformation of the characters ofU(N)k WZW
for fixed k+N = 2πi/gs andN → ∞. The t in are the coherent states of a single bosonic
string oscillator and they are related to Vi by t in = tr(Vi)

n in the fundamental represen-
tation, κR is related to the quadratic Casimir of the representation R and q = exp(gs).
This is obtained by considering certain amplitudes in the context of large N topological
duality [2].

1 This had also been noted in our discussions with D.-E. Diaconescu and A. Grassi. In particular,
progress towards formulation of the vertex in terms of mathematical localization techniques has been
made [7].
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The organization of this paper is as follows: In Sect. 2 we review the relevant facts
about local toric Calabi-Yau threefolds including their T 2 fibration structure and its
relation to (p, q) 5-branes. We also review mirror symmetry of these manifolds, where
mirror geometry reduces, in the appropriate sense, to a Riemann surface. In Sect. 3 we
discuss how the knowledge of A-model open topological string amplitudes on C3 with
3 sets of Lagrangian D-branes (defining a trivalent vertex) can be used to compute the
A-model amplitudes for all toric Calabi-Yau threefolds with or without D-branes. In
Sect. 4 we formulate the vertex in terms of a chiral bosonic oscillator in 1+1 dimension.
In Sect. 5 we formulate the mirror B-model and discuss the interpretation of the vertex
in this setup. In Sect. 6 we derive the complete expression for the cubic vertex using the
large N topological duality in terms of certain Chern-Simons amplitudes. In Sect. 7 we
explain how the vertex can be evaluated explicitly. In Sect. 8 we evaluate the vertex for
low excitations and show that it passes some highly non-trivial tests. In Sect. 9 we apply
our formalism to a number of examples.

2. Toric Geometry and Mirror Symmetry

A smooth Calabi-Yau three-fold can be obtained by gluing together C3 patches in a way
that is consistent with Ricci-flatness. For toric Calabi-Yau threefolds the gluing data and
the resulting manifold are simple to describe.

The toric Calabi-Yau 3-folds are special Lagrangian T 2 × R fibrations over the base
R3 (they are also Lagrangian T 3 fibrations, but this will not be relevant for us). The
geometry of the manifold is encoded in the one dimensional planar graph � in the base
that corresponds to the degeneration locus of the fibration. The edges of the graph are
oriented straight lines labeled by vectors (p, q) ∈ Z2, where the label corresponds to
the generator ofH1(T

2) which is the shrinking cycle. Changing the orientation on each
edge replaces (p, q) → (−p,−q) which does not change the Calabi-Yau geometry.
The condition of being a Calabi-Yau is equivalent to the condition that on each vertex,
if we choose the edges to be incoming with charges vi = (pi, qi), one must have

∑

i

vi = 0. (2.1)

If the local geometry of the threefold near the vertex is C3, then the vertex is trivalent.
Moreover, for any pair of incoming edges one has that

|vi ∧ vj | = 1, (2.2)

where ∧ denotes the symplectic product onH 1(T 2). This condition ensures smoothness.
The graph corresponding to C3 can be obtained as follows. Let zi be complex coor-

dinates on C3, i = 1, 2, 3. The base of the T 2 × R fibration is the image of moment
maps rα(z) = |z1|2 − |z3|2, rβ(z) = |z2|2 − |z3|2, and rγ (z) = Im(z1z2z3). The special
Lagrangian fibers are then generated by the action of the three “Hamiltonians” rα,β,γ on
C3 via the standard symplectic form ω = i

∑
i dzi ∧ dzi on C3 and Poisson brackets,

∂εzi = {ε · r, zi}ω. In particular, the T 2 fiber is generated by circle actions

exp(iαrα + iβrβ) : (z1, z2, z3) →
(
eiαz1, e

iβz2, e
−i(α+β)z3

)
, (2.3)

and rγ generates the real line R. We will call the cycle generated by rα the (0, 1) cycle,
the (1, 0) cycle is generated by rβ .
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We have that the (0, 1) cycle degenerates over z1 = 0 = z3. This subspace of C3

projects to the rα and rγ vanishing in the base and rβ ≥ 0, by their definition. Similarly
over z2 = 0 = z3, where (1, 0)-cycle degenerates, rβ and rγ vanish and rα ≥ 0, and the
1-cycle parameterized by α+β degenerates over z1 = 0 = z2, where rα − rβ = 0 = rγ
and rα ≤ 0 degenerate. To correlate the cycles unambiguously with the lines in the
graph (up to (q, p) → (−q,−p)) we will let a (−q, p) cycle of the T 2 degenerate over
an edge that corresponds to prα + qrβ = 0. The places in the base where T 2 fibers
degenerate are correlated with the zero’s of the corresponding Hamiltonians. This yields
the graph in Fig. 1 (drawn in the rγ = 0 plane).

Above we have made a choice for generators ofH1(T
2) to be the 1-cycles generated

by rα and rβ . Other choices will differ from this one by an SL(2,Z) transformation that
acts on the T 2. We can have rα generate a (p, q) 1-cycle and rβ the (t, s) 1-cycle where
ps − qt = 1. This of course is a symmetry of C3. However, when gluing different C3’s
together, as we will discuss below, the relative choices will matter and will give rise to
different geometries.

2.1. More general geometries. Other toric Calabi-Yau threefolds can be obtained by
gluing together C3’s. First, one adds more coordinates e.g. z4, . . . , zN+3, so that flat
patches are described by certain triples of the coordinates. Gluing different patches
corresponds, in terms of the base, to identifying some of the coordinates by N linear
relations:

∑

i

QA
i |zi |2 = tA, (2.4)

where QA, A = 1, . . . N are integral charges satisfying
∑

i

QA
i = 0 (2.5)

which is the Calabi-Yau constraint. Finally, one divides the space of solutions to (2.5)
by U(1)N action on z′s, where the AthU(1) acts on zi by

zi → exp
(
i QA

i θA

)
zi .

(0,1)

(1,0)

(−1,−1)

Fig. 1. The degenerate locus of the T 2 × R fibration of C3 in the base R3 = (rα, rβ , rγ ). This locus is a
graph �. The labels (−pi, qi ) correspond to the cycles of T 2 which vanish over the corresponding edge
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The N parameters tA are Kähler moduli of the Calabi-Yau. The mathematical construc-
tion above arises in the physical context of the two-dimensional linear sigma model with
N = (2, 2) supersymmetry on the Higgs branch [9]. The theory hasN + 3 chiral fields,
whose lowest components are z’s, which are charged under N vector multiplets with
chargesQA

i . Equations (2.4) give minima of the D-term potential as solutions. Dividing
by theU(1)N gauge group, the Higgs branch is a Kähler manifold, and when (2.5) holds,
the theory flows to a two dimensional conformal sigma model in the IR.

From the linear sigma model data described above, i.e. the set of N + 3 coordinates
zi’s and the D-term equations one can construct the graph � corresponding to the toric
Calabi-Yau manifold. First, we must find a decomposition of the set of all coordinates
{zi}N+3

i=1 into triplets Uα = (zia , zja , zka) that correspond to the decomposition of X
into C3 patches. We will describe this below in an example, but it should be clear how
to do this in general. We can pick one of the C3 patches, say U1 and in this patch we
get the Hamiltonians rα = |zi1 |2 − |zi3 |2, rβ = |zi2 |2 − |zi3 |2 which generate the T 2

fiber in this patch. As it turns out, these can serve as global coordinates in the base
R3. Correspondingly, they generate a globally defined T 2 fiber2. We can call the cycle
generated by rα the (1, 0) cycle, and that generated by rβ the (0, 1) cycle. Equation (2.4)
then can be used to find the action of rα,β on the other patches. Namely, in the Ua 
=1
patch, we can solve for all the other z’s in terms of zia , . . . , zka using (2.4), since this is
by the definition what we mean by the Ua patch. The degenerate locus in this patch is
then found analogously to the case of C3 above, where we use the rα and rβ as generators
of the fiber globally.

Example. O(−3) → P2. A familiar example of a Calabi-Yau manifold, X, of this type
is the O(−3) bundle over P2. In this case, there are four coordinates z0, z1, z2, z3, and
the D-term constraint is

|z1|2 + |z2|2 + |z3|2 − 3|z0|2 = t. (2.6)

There are three patches Ui defined by zi 
= 0, for i = 1, 2, 3, since at least one of these
three coordinates must be non-zero in X. All of these three patches look like C3. For
example, for z3 
= 0, we can “solve” for z3 in terms of the other three unconstrained
coordinates which then parameterize C3 : U3 = (z0, z1, z2). Namely, in this patch, we
can use (2.6) to solve for the absolute value of z3, in terms of z0,1,2, and moreover its
phase can be gauged away by dividing with the U(1) action of the symplectic quotient
construction: (z0, z1, z2, z3) → (e−3iθ z0, e

iθ z1, e
iθ z2, e

iθ z3). We are left with the space
of three unconstrained coordinates z0, z1, z2 as we claimed and this is of course C3. A
similar statement holds for the other two patches.

Now let us construct the corresponding degeneration graph �. Let the T 2 fiber in
the U3 = (z0, z1, z2) patch be generated by rα and rβ , where rα = |z1|2 − |z0|2 and
rβ = |z2|2−|z0|2. The graph of the degenerate fibers in the rα−rβ plane is the same as in
our first C3 example, Fig. 1 (the third direction in the base, rγ is now given by the gauge
invariant product rγ = Im(z0z1z2z3)). The same two Hamiltonians rα,β generate the
action in the U2 = (z0, z1, z3) patch, where we use the (2.6) constraint to rewrite them
as follows. Since both z0 and z1 are the coordinates of this patch rα does not change,

2 The third coordinate in the base is rγ = Im
(∏N+3

i=1 zi

)
which is manifestly gauge invariant and

moreover, patch by patch, can be identified with the coordinate used in the C3 example above.
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rα = |z1|2 − |z0|2. On the other hand, rβ changes as z2 is not a natural coordinate here,
so instead we have rβ = t + 2|z0|2 − |z1|2 − |z3|2, and hence

exp (iα rα + iβrβ) : (z0, z1, z3) →
(
ei(−α+2β)z0, e

i(α−β)z1, e
−iβz3

)
.

We see from the above that the fibers degenerate over three lines: i) rα + rβ = 0, and
since z0 = 0 = z3 there, t ≥ rα ≥ 0, where the fact that we have to stop when rα = t

comes from (2.6). Over this line (−1, 1) cycle degenerates. ii) There is a line over which
a (−1, 2) cycle degenerates where z1 = 0 = z3, 2rα + rβ = t , and t ≥ rβ ≥ 0 and
finally, iii) There is a line over which rα = 0, t ≥ rβ ≥ 0, where z0 = 0 = z1 and
(0, 1)-cycle degenerates. The U1 patch is similar, and we end up with the graph for
O(−3) → P2 shown in Fig. 2. Since at least two of the z’s have to be zero for the fiber
to degenerate, the graph lies in the rγ = 0 plane.

2.2. Toric algorithm for general geometries. The above way of constructing � becomes
cumbersome for more complicated geometries. There is an algorithm which does this
efficiently. It is a standard construction in toric geometry and we will review it here.
This is not meant to be didactic, so for a more thorough exposition see for example [10].
The algorithm is as follows. To each coordinate zi associate a vector �vi in Z3. The �vi are
chosen to satisfy an equation analogous to (2.4), i.e.

∑

i

QA
i �vi = 0.

Since the chargesQA are integral, the equations can be solved. The Calabi-Yau condition,∑
i Q

A
i = 0 implies in fact that we can choose all the vectors to lie on a plane P , a unit

distance from the origin, e.g. we can choose all the vi’s to be of the form �vi = ( �wi, 1),
where �wi is now a two-vector with integer entries. This provides an easy way to partition

Fig. 2. The graph of O(−3) → P2. The manifold is built out of three C3 patches with the different
orientations as in the figure. The transition functions correspond to SL(2,Z) transformations of the T 2

fibers as one goes from one patch to the next
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Fig. 3. The graph �̂ of O(−3) → P2. The black points correspond to vectors �wi . Its dual is the graph
of degenerate fibers �

the z’s into triplets that parameterize C3 patches. Namely, the z’s correspond to a collec-
tion of integral points on a planeP whose coordinates are �wi , and this can be triangulated
by considering triangles whose vertices are triplets of �w’s. The triangulation that gives
a good covering of X is such that all the triangles in P have unit area. This is in a sense
a maximal triangulation. For example, for C3 we can take: w1 = (0, 0), w2 = (1, 0)
and w3 = (0, 1) and the triangulation has a triangle with these vectors as vertices. For
O(−3) → P2 we can take w0 = (0, 0), w1 = (−1, 0), w2 = (0,−1) and w3 = (1, 1)
with 3 triangles corresponding to (w0, w1, w2), (w0, w1, w3) and (w0, w2, w3). In gen-
eral the choice of the triangulation is not unique. There is an obvious SL(2,Z) action of
the plane P , which is a symmetry of the closed string theory onX. But, in general there
are also different possible triangulations of the same set of points, and these correspond to
different phases in the Kähler moduli space. For a given choice of the Kähler parameters
in (2.4) the allowed triangulation is such that the triplets of coordinates corresponding to
every unit-volume triangle can all be simultaneously zero in X. We can think about this
triangulation as giving rise to a graph �̂ ∈ P . Given �̂, finding the graph � describing
the degeneration of the T 2 fibers is trivial – it is simply the dual graph in the sense that
edges of �̂ are normals to the edges of � and vice versa!

In fact, running this algorithm backwards provides a fast way to associate a
Calabi-Yau manifold to a graph�. We first find a dual graph �̂. The vertices of this graph
are vectors ŵi , with integer entries. Linear relations between the vectors v̂i = (ŵi , 1)
allow us to read off the charges Qi

A.
To completely specify the geometry we also have to specify the Kähler form ω ∈

H 1,1(X). As discussed above, this is captured by the moduli tA in the D-term equations
(2.4) of the linear sigma model. In the formalism we will develop in the following sec-
tions we will need to know the areas of holomorphic curves in X which are fixed by the
torus actions. It is in fact very easy to determine these directly from the graph �. This
however is easiest to physically motivate in terms of the (p, q) five-brane picture which
we will discuss below.

2.3. Semi-compact theories. In the same spirit, we can also consider certain semi-com-
pact models. Namely, the geometries discussed so far had only a T 2 subspace of the fiber
compact. Here we show that we can also consider some models where four out of six
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(1,−1)
(1,0)

(0,1)

(1,1)

Fig. 4. The graph of the semi-compact O(−K) → P1 × P1 which arises by imposing identifications in
the base R2. The sizes of the two P1’s in the base, that are usually independent, must be equal here

directions in the geometry are compact. These geometries can be obtained by imposing
identifications on two of the directions in the base corresponding to the plane of the
graph �. Clearly, not all toric Calabi-Yau manifolds will admit the compactifications,
but only those with enough symmetry. For those that do, some of the moduli that exist
in the non-compact geometry are frozen in the compact one, as they are not consistent
with the identifications which we impose.

For example, consider the graph corresponding to O(−K) → P1 × P1. When the
sizes of the two P1’s are equal we can consider a compactification that corresponds to
identifying points related by:

(rα, rβ) ∼ (rα + 2πR, rβ + 2πR) ∼ (rα − 2πR, rβ + 2πR).

The resulting geometry has a single Kähler modulus instead of the two that exist in the
non-compact case.

As in examples studied in [11] various degenerations of the graph � and its different
phases allowed by the charge conservation (2.1) correspond to geometric transitions of
the full Calabi-Yau geometry. It is easy to see that the semi-compact models often have
obstructions to existence of transitions that exist in the fully non-compact models. As
the simplest example consider the semi-compact version of T ∗S3. This corresponds to
having a (1, 0) and (0, 1) cycle degenerating over the corresponding cycles of the “base”
T 2, at different values of rγ , i.e., the graph has two components, and the corresponding
manifold has b3 = 1. This geometry, however, does not have a geometric transition
O(−1) ⊕ O(−1) → P1 since the blowup-mode that gives the P1 a finite size is pro-
jected out in the semi-compact case. Such an obstruction to a transition from a single
S3 is familiar from the fully compact Calabi-Yau manifolds. Once we discuss the (p, q)
five-brane language, it will be manifest that these models have the same obstructions
to resolutions of singularities as the compact manifolds do. This is related to the fact
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that the gauge theories obtained by compactifying string theory on these geometries are
honestly 4-dimensional.

2.4. Relation to (p, q) 5-brane webs. We can connect the description of Calabi-Yau
geometry by a duality to the web of (p, q) five branes [12]. This gives an intuitive
picture of the geometry. The connection was derived in [13] and we will now review it.

Recall that M-theory on T 2 is related to type IIB string theory on S1. Since the
Calabi-Yau manifolds we have been considering are T 2 fibered over B = R4, we can
relate geometric M theory compactification on the Calabi-Yau manifold X to type IIB
on flat space B × S1. However, due to the fact that T 2 is not fibered trivially, this is
not related to the vacuum type IIB compactification. The local type of singularity over
a line in the graph is the Taub-Nut space, where the (p, q) label denotes which cycle
of the T 2 corresponds to the S1 of the Taub-Nut geometry. Under the duality, this local
degeneration of X is mapped to the (p, q) five-brane that wraps the discriminant locus
in the base spaceB, and lives on a point on the S1. The fact that the (p, q) type of the five
brane is correlated with its orientation in the base is a consequence of the BPS condition.
More precisely, a configuration of five branes that preserves supersymmetry and 4 + 1
dimensional Lorentz invariance is pointlike in a fixed R2 subspace of the base. In the
two remaining directions of the base, which we parameterized by (rα, rβ) above, the
five branes are lines where the equation of the (p, q) five brane is prα + qrβ = const.

The (p, q) five-brane picture provides a simple way to read off the sizes of various
holomorphic curves embedded in the Calabi-Yau X. For this paper, we will only need
to know this for the curves which are invariant under the T 2 action. It is clear from
the discussion in the previous subsections of this section that these are the curves in X
which correspond to the edges of the graph �. The duality of M-theory on X to the IIB
with 5-branes relates the membranes wrapping holomorphic curves inX to (p, q) string
webs ending on the 5-brane web. The masses of the corresponding BPS states get related
by the duality. In the M-theory picture, the masses of BPS states are the Kähler volumes
of the holomorphic curves, and in the IIB language they are the tensions×lengths of
the corresponding strings. The curves that project to the edges of the graph correspond
to strings that are within the five-branes themselves. These strings are instantons of the
five-brane theory. As discussed in [12] the instanton of a (p, q) five brane is a string
whose tension is

Tp,q = Im(τ)

|pτ + q|Ts,

where τ is the type IIB dilaton-axion field τ = χ
2π + i

gs
, and the Ts is a tension of

a fundamental string which is an instanton in an NS, or (1, 0), five-brane. Note that
this is not a conventional free (r, s) string tension for any r, s (which would have been
Ts
√
r2 + q2), and correspondingly the instanton in general does not correspond to any

free (p, q) string. This is because the action of an instanton (i.e. tension in this case, as
the instanton is a string) is simply governed by the coefficient of the F ∧ ∗F term in the
five-brane action and this is Ts/gs for a D5 brane and Tp,q for a (p, q) five-brane. Thus,
knowing the length x of a (p, q) edge in �, the area of a holomorphic curve correspond-
ing to this edge is x/

√
p2 + q2 (we will take τ = i which is the square T 2). On the other

hand, the slope of the five-brane in the R2 is correlated with its (p, q) type as we said
above, and this allows us to read-off the lengths of all the edges in the graph in terms
of the few independent ones which correspond to the Kähler moduli tA in (2.4). For
example, suppose that the length of the horizontal edge in the graph ofO(−3) → P2 is
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t . Then the length of the (1,−1) edge is t
√

2. However the tension of the corresponding
instanton in 1/

√
2 so the area of the holomorphic curve corresponding to this leg is t .

Similarly, we find that the area of the curve corresponding to the (0, 1) leg is also t .

2.5. Mirror Symmetry and the dual B-model Geometries. Mirror manifolds of the local
toric Calabi-Yau manifolds were derived in [14], by using T-duality in the linear sigma
model in the previous section. The result of [14] is as follows. The mirror theory is a
theory of variation of complex structure of a certain hypersurface Y which is given in
terms of n+ 3 dual variables yi [14] with the periodicity yi ∼ yi + 2πi. The variables
yi are related to variables of the linear sigma model (2.4) as

Re(yi) = |zi |2, (2.7)

so in particular, the D-term equation (2.4) is mirrored by
∑

i

QA
i y

i = tA. (2.8)

Note that (2.8) has a three-dimensional family of solutions. One parameter is trivial and
is given by yi → yi + c. Let us parameterize the two non-trivial families of solutions
by u, v, and pick an inhomogenous solution. Then the hypersurface Y is given by [15]

x x̃ = ey1(u,v) + ey2(u,v) + · · · + eyN+3(u,v) ≡ P(u, v), (2.9)

where yi(u, v) solve (2.8). The solutions to (2.8) are of the form

yi = wui u+ wvi v + ti (t),

for some vector �wi = (wui , w
v
i ) with integer entries. In fact this is the same vector

that we associated to the coordinate zi in the previous section, when we discussed toric
geometry. The monomials ew1u+w2v are in one to one correspondence with points of the
graph �̂.

In the sections to follow a prominent role will be played by the Riemann surfaceX,
obtained by setting x, x̃ to zero in (2.9),

X : 0 = P(u, v). (2.10)

Note that this Riemann surface is closely related to the graph � and it is in fact obtained
by the fattening of its edges. For example, for the mirror of C3 we get

eu + ev + 1 = 0 (2.11)

and this has three asymptotic regimes corresponding to u → ∞, where the equation of
the Riemann surface is v = iπ . This is a long cylinder parameterized by u. Similarly,
there is a long cylinder parameterized by v → ∞, where u = iπ and there is a third
cylinder where u = v + iπ , and u, v → ∞, so that this Riemann surface corresponds
to a sphere with three punctures. From “far away” the Riemann surface will look like
the graph � of C3. Similarly, the Riemann surface X of any X has a degenerate limit
where it looks like the graph �. It is clear that by gluing various patches given by (2.11)
dictated by the graph � we can obtain the full Riemann surface X.
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3. Topological A-Model and the Vertex

The amplitudes of the topological A-model localize on holomorphic maps from the
worldsheet to the target space [1]. In particular the path integral defining the free energy
of the theory reduces to a sum over the topological type of holomorphic maps from the
worldsheet to the Calabi-Yau space X. Each term in the sum involves an integral over
the moduli space M of that type of map, which leads to the so-called Gromov-Witten
invariant of that map, weighted by the e−Area, where the area is that of the target space
curve.

In this paper we will find a very efficient way to calculate the A-model amplitudes on
local toric Calabi-Yau manifolds described in the previous section, to all genera, exactly.
The rough idea is to place Lagrangian D-brane/anti-D-brane pairs in appropriate places
(one on each edge of the toric diagram) to cut the Calabi-Yau manifold X into patches
which are C3. They do not quite cut the Calabi-Yau in pieces as their dimension is too
low, but all closed string worldsheet configurations will nevertheless cross them. More
precisely, using toric actions the configurations can be made to pass through the lines of
the toric graph [16]. Thus if we are interested in the closed string amplitudes we could
use the D-branes as “tags” for when the closed string goes from one patch to another.
Thus the open string amplitudes on each patch, glued together in an appropriate way,
should have the full information about the closed string amplitudes.

The idea is then as follows. Consider chopping the graph � into tri-valent vertices
by cutting each of the legs into two. Physically we can view this as placing a D-brane/
anti-D-brane pair. Each vertex corresponds to a C3 patch, as in Figs. 2 and 5. This cuts
the P1’s which correspond to compact legs of � into disks. Consider the mapsg → X.
The maps which contribute to the A-model amplitudes themselves project to (subgraph
of) �, and cutting the graphs cuts the maps as well, so we get Riemann surfaces with
boundaries. We are led to consider the open topological string on C3 with three (stacks
of) Lagrangian D-branes of the appropriate kind, one on each leg. From these data we
should be able to obtain, by suitable gluing, closed string amplitudes on arbitrary toric
Calabi-Yau threefolds.

3.1. The vertex as an open string amplitude. Consider again the description of the C3

in Sect. 2. The Lagrangian D-branes we need are in fact among the original examples of
special Lagrangians of Harvey and Lawson [17]. The topology of all of the Lagrangians
is C × S1. In particular, they project to lines in the base R3, and wrap the T 2 fiber. In
the base, the three Lagrangians L1,2,3 are given by3

L1 : rα = 0, rβ = r∗1 , rγ ≥ 0,
L2 : rβ = 0, rα = r∗2 , rγ ≥ 0,
L3 : rα − rβ = 0, rα = r∗3 , rγ ≥ 0. (3.1)

In order not to have the boundary at rγ = 0, Li’s are constrained to end on the graph
�, where one of the 1-cycles of the T 2 degenerates to S1. The parameters r∗i correspond
to the moduli of Li’s, and the “no boundary” constraint that we just mentioned is what
constrains the number of the moduli to one. The Lagrangians are easily seen to intersect
the fixed P1’s along S1’s so the boundaries of the maps can end on them. For example,
a holomorphic disc ending on L1 is given by z1 = 0 = z3, |z2|2 ≤ r∗1 .

3 The Lagrangians are pointlike in the fiber generated by rγ . The fiber is parameterized by Re(z1z2z3)
and the Lagrangians are where this vanishes.
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Σ g=4

Fig. 5. The curves that are invariant under T 2 action in the O(−3) → P2 geometry. All the invariant
curves are P1’s. The maps from g>0 that give a non-zero contribution to the A-model amplitudes are
degenerate maps where the genus g > 0 parts of the curve are mapped to vertices

Now, consider the topologicalA-model string amplitude corresponding to some num-
ber of D-branesNi on the ith LagrangianLi on C3. The partition function takes the form

Z =
∑

�k(1),�k(2),�k(3)
C�k(1),�k(2),�k(3)

3∏

i=1

1

z�k(i)
T r�k(i)Vi, (3.2)

where Vi is the path ordered exponential of the Wilson-line on the ith D-brane, Vi =
P exp[

∮
A1] around the S1,

T r�kV =
∞∏

j=1

(trV j )kj ,

and

z�k =
∏

j

kj ! jkj .

Note that there are kj holes of winding number j so the sum h = |�k| = ∑
j kj is the

total number of holes on a fixed D-brane, and � = ∑
j jkj is the total winding number.

We have absorbed the modulus of the Lagrangian into the corresponding V which is
complexified in string theory. The vertex amplitude, C�k(1),�k(2),�k(3) is naturally a function
of the string coupling constant gs and, in the genus expansion, it contains information
about maps from Riemann surfaces of arbitrary genera into C3 with boundaries on the
D-branes, see Fig. 6.

The vertex C is the basic object from which, by gluing, we should be able to obtain
closed string amplitudes on arbitrary toric geometries. As we will see later, the vertex is
naturally used to calculate general A-model amplitudes with boundaries as well.
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L

L

L1

2

3

g=2,h=3
Σ

Fig. 6. A C3 with three-stacks of Lagrangian D-branes of the type discussed in the text. The A-model
amplitudes localize on holomorphic maps with boundaries where all the higher genus information is
mapped to the vertex

3.2. Framing of the vertices. Because of the above considerations we are led to con-
sider non-compact D-branes in C3. Due to the non-compactness of the world-volume of
D-branes, to fully specify the quantum theory we must specify the boundary conditions
on the fields on the D-branes at infinity. This was discovered in [11] and is the closed
string dual to the framing ambiguity of the Chern-Simons amplitudes [18].

To keep track of the boundary condition at infinity, we can use the following trick
[19]. We modify the geometry in a way that makes the Lagrangian cycles wrapped by the
D-branes compact, while not affecting the topological A-model amplitudes. We do so by
introducing compact S3 cycles in the geometry by allowing the T 2 fiber to degenerate
at additional locations in the base R3, as in Fig. 7. The additional three lines Fi in the
base correspond to degeneration of a fixed fi = (pi, qi) cycle there. There are now
compact special Lagrangian S3 cycles L̃1,2,3 which correspond to paths of the shortest
distance between the graphs � and Fi . For this cycle to be a non-degenerate S3 we need
the following condition on the holonomy:

fi ∧ vi = 1, (3.3)

where vi corresponds to the H1(T
2) class of the edges of the graph. Note that we have

chosen a particular orientation for the framing so that the above product is always +1.
Clearly, if fi is a solution to (3.3), so is fi − nvi for any integer n. This Z valued choice
does affect the physics of the D-brane. To specify the theory on the D-brane fully, we
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F1

F2

F3

Fig. 7. Three stacks of D-branes on C3. We have introduced graphs F1,2,3 to help us keep track of
framing. Fi are straight lines in the base, corresponding to vectors fi in the text. Different choices of fi
give different amplitudes. The choice in this figure is defined to be canonical framing

must specify a choice of framing [11], i.e., a choice of the integer n. This is a quantum
ambiguity and only the relative values of n are meaningful. Given an (arbitrary) choice
of framing for the ith leg, i.e. a vector f (0)i , the vector f (n) corresponds to a relative
framing associated to an integer n if

f (n) ∧ f (0) = n. (3.4)

It is crucial for us to keep track of framing. The relevant object is a framed vertex,

C
(f1,f2,f3)

�k(1),�k(2),�k(3) ,

where we specify the framing of the D-branes on the three legs.
Without loss of generality we can take the vi to be v1 = (−1,−1), v2 = (0, 1), v3 =

(1, 0), since any other choice is related to this one by an SL(2,Z) transformation. More
generally we can introduce a vertex which depends on both vi and fi , but knowing the
vertex for the canonical choice of vi with arbitrary framing fi is enough. Moreover, if
we know the vertex in any one framing, the vertex in any other framing is related to
it in a simple way [11, 20]. In order to describe this it is most convenient to go to the
“representation basis” for the vertex which we will now turn to.

3.3. The vertex in the representation basis. Topological open string amplitudes can be
written in terms of products of traces to various powers, as in (3.2). They can also be
rewritten in the representation basis, and this can be done unambiguously in the limit
where we take Ni → ∞ branes. We define the representation basis for the vertex by

∑

R1,R2,R3

C
f1,f2,f3
R1,R2,R3

3∏

i=1

TrRiVi =
∑

�k(1),�k(2),�k(3)
C
f1,f2,f3
�k(1),�k(2),�k(3)

3∏

i=1

1

z�k(i)
T r�k(i)Vi .



The Topological Vertex 439

To obtainC in the representation basis defined above, we make use of Frobenius formula

T r�kV =
∑

R

χR(C(�k))TrRV,

where χR(C(�k)) is the character of the symmetric group S� of � letters for the conjugacy
class C(�k), in representation corresponding to the Young tableau of R. Using this we
obtain

C
f1,f2,f3
R1,R2,R3

=
∑

�k(1),�k(2),�k(3)
C
f1,f2,f3
�k(1),�k(2),�k(3)

∏

i

χRi (C(
�k(i)))

z�k(i)
. (3.5)

Now we are ready to describe the framing dependence of the vertex. We have [20]

C
f1−n1v1,f2−n2v2,f3−n3v3
R1,R2,R3

= (−1)
∑
i ni�(Ri)q

∑
i niκRi /2C

f1,f2,f3
R1,R2,R3

, (3.6)

where κR is related to the quadratic Casimir CR of the representation R of U(N) as
κR = CR −N�(R), and �(R) is the number of boxes of the representation (which is the
same as the total winding number in the �k-basis). If the representation R is associated
to a Young tableaux whose ith row has �i boxes, �(R) = ∑

i �i , one has

κR =
∑

i

�i(�i − 2i + 1). (3.7)

3.4. Symmetries of the vertex. Consider an SL(2,Z) transformation that acts on the
T 2 fiber of C3, in the presence of D-branes. As already noted the vertex depends on
three pairs (fi, vi), where vi denotes the (p, q) structure of the edge and fi denotes the
framing associated to that edge, and one has

fi ∧ vi = 1

which means that (fi, vi) forms an oriented basis for H1(T
2). Moreover, if we orient

the edges inward towards the vertex, then
∑
i vi = 0. One also has that vi ∧ vj = ±1

for i 
= j . We can choose a cyclic ordering of vi according to the embedding of the
corresponding vectors in R2. In terms of this cyclic ordering we have

v2 ∧ v1 = v1 ∧ v3 = v3 ∧ v2 = 1.

It is clear that an element g ∈ SL(2,Z) generates a symmetry of the vertex while
replacing

(fi, vi) → (g · fi, g · vi).
There is one particularly natural choice of framing fi based on symmetry consider-

ations, namely (see Fig. 7)

(f1, f2, f3) = (v2, v3, v1).

Note that this has the required property that fi ∧ vi = 1. For any given choice of vi
cyclically ordered in this way, we shall call this the canonical framing and denote the cor-
responding vertex by C. Any other choice of framing, relative to this canonical choice,
will be denoted by Cn1,n2,n3 , where ni denote the amount of change in framing relative
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to the canonical choice. Let CR1,R2,R3 denote the vertex for the canonical framing for
vi : (−1,−1), (0, 1), (1, 0). Then it follows that

C
(fi ,vi )
R1,R2,R3

= (−1)
∑
i ni �(Ri)q

1
2

∑
i ni κRi CR1,R2,R3 (3.8)

where
ni = fi ∧ vi+1

and i runs mod 3. With three D-branes on the legs of the vertex, the vertex amplitude
CR1,R2,R3 is invariant under the Z3 subgroup of SL(2,Z) taking

v1 → v2, v2 → v3, v3 → v1.

Note that the condition that v3 → v1 follows from the first two from
∑
i vi = 0. Clearly

there is such an SL(2,Z) transformation, because (v1, v2) and (v2, v3) form an oriented
basis for H1(T

2). For example for the simple choice of vi : (−1,−1), (0, 1), (1, 0) it
is generated by T S−1 in the standard basis for generators of SL(2,Z), so we see that
the vertex amplitude with canonical choice of framing, which is compatible with this
cyclicity, has a cyclic symmetry,

CR1,R2,R3 = CR3,R1,R2 = CR2,R3,R1 . (3.9)

So far we have oriented edges of the vertex away from the vertex. In gluing vertices
together we would need also to deal with arbitrary orientation of the edges. Suppose for
example we take v1 → −v1. What this does is to change the orientation of the circle on
the corresponding D-brane. This is a parity operation on the D-brane, which changes the
action to minus itself. Thus a genus g topological string amplitude with h boundaries on
the corresponding D-brane (in the ‘t Hooft notation) gets modified by

(−1)loops = (−1)2g−2+h = (−1)h.

This can also be obtained by viewing the change of the sign of the action as replacing
a topological brane by a topological anti-brane which replaces N → −N [21]. It is
convenient to write how this modifies the vertex in the representation basis. This can be
done using

χQt (C(�k)) = (−1)|�k|+�(Q)χQ(C(�k)), (3.10)

where �(Q) denotes the number of boxes of representation Q. It follows that

CR1,R2,R3 →v1→−v1 (−1)�(R1)CRt1,R2,R3
.

Similarly we can change any of the other vi → −vi .
We have seen that the vertex has cyclic symmetry in the canonical framing. It is

natural to ask what symmetry it has under permutation of any of the two representations.
There is a symmetry of C3 that exchanges any pair of its coordinates, say z1, z2. This
acts as orientation reversal on the world-volume of all three D-branes, as it acts on the
T 2 fiber by exchanging (1, 0) and (0, 1) 1-cycles, and the T 2 is wrapped by all the
D-branes. In addition the framings are shifted by one unit: We have

((f1, v1), (f2, v2), (f3, v3)) → ((f2, v1), (f3, v2), (f1, v3))



The Topological Vertex 441

and from (3.8) it follows that the new framing is shifted by

(f2 ∧ v2, f3 ∧ v3, f1 ∧ v1) = (v3 ∧ v2, v1 ∧ v3, v2 ∧ v1) = (1, 1, 1)

(see also Fig. 8). From this it follows that

CR1,R2,R3 = (−1)
∑
i �i C

−1,−1,−1
Rt1,R

t
3,R

t
2
. (3.11)

Since κRt = −κR , we can write this as

CR1,R2,R3 = q
∑
i κRi /2CRt1,R

t
3,R

t
2
. (3.12)

3.5. Gluing the vertices. In this section, we discuss how to glue open string amplitudes
to obtain closed string amplitudes. Consider a leg of some graph �, as in the Fig. 3. The
leg will contribute to closed string amplitudes via holomorphic curves that map to the
corresponding P1. By cutting the curve in the middle of the leg, we obtain a product
of open string amplitudes. Clearly, connected closed string graphs can give open string
graphs that are disconnected, so the gluing must be done at the level of the partition
function, schematically,

Z(�) ∼ Z(�L)× Z(�R),

where Z(�) is the amplitude corresponding to the graph � and, by cutting one of its
legs, the graph can be decomposed into �L and �R .

R1

R1

R2

R3

2R

R3

R1

2R

R3

A

A

A

D

D

D D D

D

Fig. 8. Various symmetries of the three-point vertex. The figures in the top row are related by a Z3
subgroup of SL(2,Z). The figure in the bottom row is generated from the top left one by a symmetry of
C3 that exchanges z1 and z2. This also maps a D-brane (D) to an anti D-brane (A)
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Moreover, clearly the open string Riemann surfaces one gets in this way have a
matching number of holes on the leg over which we glue, and also the winding numbers.
Thus, the right-hand side of the above equation is in fact

∑

�k
Z(�L)�k

exp(−�(�k)t)
∏
j kj !jkj

Z(�R)�k.

Above, t is the size of the relevant P1. In gluing these we have to be careful that both
gluing branes are defined with respect to the same framing. The combinatorial factor
comes about because all holes with the same winding number are indistinguishable,
and the factor of j for each hole of winding number j comes as the gluing respects the
cyclic ordering of the j windings. In addition, we must remember that XL and XR (the
manifolds corresponding to the graphs �L,R) come equipped with a choice of complex
structures, and this induces natural orientation of boundaries of the two disks inXL,R . In
order to glue the two disks into a P1 their boundaries must be oriented oppositely, which
can be interpreted as putting branes versus anti-branes. As was already discussed this is
equivalent to multiplying the amplitude by (−1)h, where h is the number of boundaries
of the Riemann surface. This gives the gluing a nice physical interpretation: we put N
D-branes on the relevant leg inXL andN anti D-branes inXR . The D-branes annihilate,
so from the corresponding open string amplitudes we obtain the amplitude for closed
strings on X. To summarize,

Z(�) =
∑

�k
Z(�L)�k

(−1)|�k|e−�(�k)t

z�k
Z(�R)�k. (3.13)

Obviously, (3.13) holds even in the presence of D-branes in X, where Z(X), etc. refer
to amplitudes with D-branes. At the very least, this is true, as long as the D-branes are
at locations away from the relevant leg, as all the considerations that led to (3.13) are
purely local. We will return to this in the sections below.

Note that in the representation basis the gluing operation is simply:

Z(X) =
∑

Q

Z(XL)Q(−1)�Qe−�(Q)tZ(XR)Qt , (3.14)

which follows from (3.10) and orthonormality of the characters

∑

�k

1

z�k
χR(C(�k))χR′(C(�k)) = δRR′ .

3.6. The gluing algorithm for closed and open strings. Putting together all we have said
so far, we can summarize the rules for computing closed string amplitudes from the
cubic vertex and the gluing rules as follows:

i) From the toric data described in Sect. 2, we can find the graph � corresponding to
the loci where the T 2 fibration degenerates. The edges of the graph are labeled by
integral vectors vi that encode which cycle of the T 2 fiber degenerates over the ith

edge. To each edge’s associated a representation Ri .
ii) For smooth Calabi-Yau, the graph can be partitioned to trivalent vertices and cor-

responding C3 patches Ua , where a labels the vertices a = 1, 2, . . . .
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iii) This associates to every vertex an ordered triplet of vectors (vi, vj , vk) by reading
off the three edges that meet at the vertex in a counter-clockwise cyclic order –
(vi, vj , vk) is equivalent to (vj , vk, vi).

iv) If all the edges are incoming, we associate a factorCRi,Rj ,Rk to the vertexUa , other-
wise we replace the corresponding representation by its transpose times (−1)�(R).

v) Let the vertex Ua share the ith edge with the vertex Ub whose corresponding triple
is (vi, v′

j , v
′
k). We can assume vi is outgoing at Ua and ingoing at Ub. We glue the

amplitudes by summing over the representations on the ith edge as:
∑

Ri

CRjRkRi e
−�(Ri)ti (−1)(ni+1)�(Ri)q−niκRi /2CRtiR′

jR
′
k
, (3.15)

where the integer ni is defined as

ni = |vk ′ ∧ vk|
and |vk ′ ∧ vk| equals vk ′ ∧ vk if both vk and v′

k are in(out)going, and −vk ′ ∧ vk ,
otherwise. This factor reflects the fact that the framing over the ith edge should be
the same on the two sides of gluings. The sign (−1)(ni+1)�(Ri) in (3.15) comes from
the sign associated to the framing, and the one associated to the gluing in (3.14).

vi) From the D-term equations (2.4), or the (p, q) 5-brane diagrams read off the lengths
ti of the edges in terms of the Kähler moduli tA ofX, ti = ti (t

A). Note that the edges
of the graph � are straight lines on the plane, with rational slope. To the ith edge
in the (pi, qi) direction of length xi in the plane, we associate a Kähler parameter
ti = xi/

√
p2 + q2.

vii) For a non-compact edge of the graph � the corresponding representation R is nec-
essarily trivial, R = 0 (we will sometimes denote this also by R = ·).

Naturally, the vertex can be used for calculating open string amplitudes on toric
Calabi-Yau manifolds as well as the closed string ones. When we place the D-branes
on the non-compact, outer edges of the graph �, we simply modify the (vii) above to a
sum over arbitrary representations R on the edge, where we weight the representations
by TrRV and V is the holonomy on the corresponding D-brane. For D-branes on the
inner edges, when we glue the maps onX from the maps onXL andXR , we must allow
for maps with the boundaries on the D-brane. Suppose that we wish to calculate an
amplitude corresponding to a D-brane on the ith edge of the toric graph. This modifies
the gluing rule in (v) above as follows.
v’) For a single D-brane on the ith edge, which is shared by vertices Ua and Ub in the

setup of (v), we glue the amplitudes by summing over the representations on the ith

edge and representations QL
i ,Q

R
i which “stop” on the D-brane from left and right

as: ∑

Ri,Q
L
i ,Q

R
i

CRj ,Rk,Ri⊗QLi (−1)s(i)qf (i)e−L(i)CRti⊗QRi ,R′
j ,R

′
k

TrQLi
Vi TrQRi

V −1
i ,

(3.16)

where we have collected the length, framing and sign factors in functionals L(i),
f (i) and s(i) on this leg:

L(i) = �(Ri) ti + �(QL
i ) ri + �(QR

i ) (ti − ri),

f (i) = pi κRi⊗QLi /2 + (n+ pi) κRti⊗QRi /2,

s(i) = �(Ri)+ pi �(Ri ⊗QL
i )+ (n+ pi) �(R

t
i ⊗QR

i ).
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The piece of the edge to the left of the brane has length ri , while the right-hand side of
the edge has length ti − ri . Vi is the holonomy on the D-brane. Note that e−r naturally
complexifies Vi : changing the holonomy by Vi → Vi e

iθ changes TrRVi to ei�(r)θTrRV .
The appearance of both TrRVi and TrRV

−1
i reflects the fact that, along with open string

instantons of area r and charge +1 ending on the D-brane, there are those of area t − r

and charge −1, where the “charge” refers to how their boundaries couple to the holon-
omy on the D-brane world volume. The integer ni is defined as in (v) and the choice
of an integer p corresponds to a choice of framing. This way of incorporating framing
is natural. Namely, while for the closed string amplitudes only the relative framing in
the left vs. right patch matters, corresponding to ni = |v′

k ∧ vk|, for the open string the
absolute choice of framing matters: we pick a vector fi , which frames the ith leg both
for the left and the right patch so that fi ∧ vi = 1. This corresponds to the choice of
coordinate on the D-brane which does affect the open string amplitude. Then the framing
of the left and the right vertex are

pi = |fi ∧ vk|, ni + pi = |fi ∧ v′
k|,

where |fi ∧ vk| is fi ∧ vk if vk and vi are both in(out) going in the vertex Ua , and equals
−fi ∧ vk otherwise, and similarly with |fi ∧ v′

k|.
If there is more than one stack of D-branes on the edge, say n stacks of them, we also

must include contributions of n(n − 1)/2 massive open strings stretching between the
D-branes. As shown in [22] the effect integrating out these strings is

exp(−
∞∑

m=1

1

m
trUm1 tr U

m
2 ) =

∑

R

(−1)�R TrRU1 TrRtU2. (3.17)

The relative minus sign in the exponent in (3.17) relative to that of [22] arises as follows.
In the problem studied in [22] one had two D-branes intersecting on S1 (the S1 corre-
sponds to the S1 factor in the D-brane world-volumes which are L = S1 × C) and the
ground state was a boson. Here we have two D-branes whose world-volumes are parallel.
There is one normalizable mode of the stretched string supported along an S1, and it
turns out to be a fermion. One way to see this is that, by changing complex structure
which does not affect the A-model amplitudes, we can bring the branes to intersect on
an S1 at the expense of turning one D-brane into an anti-D brane. The ground state of
the string stretching between them is a fermion, as argued in [21].

For example, for stacks of m D-branes, we have
∑

Ri,Q
L
a,i ,Q

R
a,i

CRj ,Rk,Ri⊗m
a=1Q

L
i,a
(−1)s(i)e−L(i)qf (i)CRti⊗m

a=1Q
R
i,a,R

′
j ,R

′
k

×
m∏

a=1

TrQLi,a
Va TrQRi,a

V −1
a , (3.18)

where

L(i) = ti�(Ri)+
m∑

a=1

ra �(Q
L
i,a)+ (ti − ra) �(Q

L
i,a),

f (i) =
m∑

a=1

(
pi κRi⊗QLi,a /2 + (pi + ni) κRti⊗QRi,a /2

)
,
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s(i) = �(Ri)+
m∑

a=1

(
pi �(Ri ⊗QL

i,a)+ (pi + ni) �(R
t
i ⊗QR

i,a)
)
.

4. Chiral Bosonic Oscillator and the Vertex

We have seen that the partition functions of the A-model on local toric 3-folds are com-
putable from a set of gluing rules involving a cubic vertex and the propagator. The gluing
rules are reminiscent of the construction of the partition function of bosons on a Riemann
surface from the “pant diagram” and the tube propagators. We will show that this is not
accidental. In fact, as we will argue, the vertex operator and the propagator we have
obtained can be viewed as construction of the partition function of the mirror B-model
whose geometry, as is well known, is captured by a Riemann surface. Towards this aim
in this section we reformulate the vertex and the propagator we have obtained in terms
of a free chiral boson on a Riemann surface. In particular, we will show that the winding
basis can be identified with the Fock space of the chiral boson. In this connection the
sewing rule gets mapped identically to the propagator of the chiral boson. Moreover
the vertex gets identified with a state in the triple tensor product of the Hilbert space of
the free boson. This vertex is highly non-trivial. Even in the classical limit it is more
complicated than the usual vertex states one gets for a free boson on a Riemann surface
(which is always given by a Bogoliubov transformation and can be represented as the
exponential of quadratic monomials in the oscillator creation operators).

In the next section we explain how to interpret the free chiral boson as the relevant
field for the Kodaira-Spencer theory of gravity [8] in this local context (related ideas
have appeared in [23, 24]).

4.1. Reformulation in terms of a chiral boson. There is a curious similarity between the
winding number �k basis and oscillator states of a free chiral boson. Recall the oscillator
expansion of the chiral boson φ(u),

∂uφ(u) =
∑

m
=0

jme
mu,

where
[jm, jn] = mδm+n,0

so that jm>0 is the annihilation operator and jm<0 the creation operator. The Hilbert
space H of a free chiral boson on a circle is spanned by states of the form

|�k〉 =
∏

m>0

j
km−m|0〉.

We simply identify the vector �k above with the vector of winding numbers. With this
identification we can interpret the sewing as picking out an element P in the two-fold
tensor product of the Hilbert space P ∈ H⊗2, and the vertex as defining a state in the
threefold tensor product Hilbert space C ∈ H⊗3. It is natural to ask what these states
are.

We first turn to the propagator P . We will see that P is the conventional state of
the free chiral boson on a cylinder. The path integral of a free chiral boson on a cylinder
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of length t is a state in the tensor product Hilbert space P ∈ H1 ⊗ H2 (where H1,2 are
associated to the two boundaries) given by

|P 〉 = exp(−t
∑

m>0

1

m
j1
−m j

2
m )|0〉1 ⊗ 〈0|2.

Expanding the exponential we get

∑

�k
e−�(�k)t

(−1)h

z�k
|�k〉 ⊗ 〈�k|,

where
z�k =

∏

m

km!mkm.

This is precisely the gluing rule we had discussed for A-model amplitudes!
We now turn to the vertex C. As we said above, the vertex amplitude, as formulated

in Sect. 3,

Z =
∑

�ki
C�k1�k2�k3

1∏
i zki

T r�k1
V1 T r�k2

V2 T r�k3
V3,

can be written in terms of the state C in H3 of the chiral boson as

Z =
∑

�ki
T r�kV1 T r�kV2 T r�kV3

1∏
i zki

〈�k1| ⊗ 〈�k2| ⊗ 〈�k3|C〉.

Note that, at the level of the answer, |C〉 is given by

|C〉 = exp




∑

�ki
F�k1,�k2,�k3

(gs) j−�k1
j−�k2

j−�k3



|0〉1 ⊗ |0〉2 ⊗ |0〉3,

whereF is identified with the free energy of the topological string, and j±�k = ∏
m>0 j

km±m,
since “evaluating” the amplitude, i.e. performing contractions, amounts to replacing the
creation operators in the free energy with V ′s, trV m ↔ j−m. It is natural to ask what
the meaning of the three point vertexC ∈ H⊗3 is. One may at first think that this may be
related to that of a free boson on a thrice punctured sphere. This is almost true. Namely
it is a state associated with a sphere with three punctures, but the theory is that of a free
scalar theory only to leading order in the oscillator expansion and in the gs → 0 limit.
We will discuss this and its interpretation after we discuss the B-model interpretation of
the chiral boson as describing the quantum field of the Kodaira-Spencer theory on the
Riemann surface. We will explain why there are more oscillator terms in C, including
the existence of non-trivial gs corrections. A full study of the vertexC from the B-model
perspective will be done in [25].

For now, note that, most remarkably, the D-branes can be thought of as coherent
states in the chiral boson theory! The vertex amplitude Z is computed by inserting

〈V | = 〈0| exp

(
∑

m>0

1

m
trV m jm

)

at each of the three punctures that give rise to the vertex state C,

Z = 〈V1| ⊗ 〈V2| ⊗ 〈V3| C〉.
We will explain this below.
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5. Local B-Model Mirror and the Quantum Kodaira-Spencer Theory

We have seen that the vertex is naturally captured by the states of a chiral boson on a
sphere with three punctures. In this section we will identify the chiral boson on each
patch as the quantum field of the Kodaira-Spencer theory on the mirror B-model involv-
ing a Riemann surface. The modes of the chiral boson are affected, as we will explain,
by the degrees of freedom (trV n) on the B-branes. In particular we will explain, from
the B-model perspective, why the open string amplitudes know about the closed string
B-model amplitudes. Moreover we identify the branes in this setup as the fermions asso-
ciated to the chiral bosonsψ(z) = eφ(z). We use this picture to compute leading terms in
the oscillator expansion of the vertex. Extension to the full vertex, from this perspective
will appear elsewhere [25]. Moreover the gluing rules of the vertex can now be directly
interpreted as computations of the Kodaira-Spencer theory in the operator formulation
on the mirror Riemann surface.

The target space of the B-model was interpreted in [8] as describing the quantum
theory of complex deformation of the Calabi-Yau threefold. This in particular applies
to the local Calabi-Yau case at hand. In particular, if we consider the A-model in the
local toric case, as already discussed in Sect. 2, the mirror is given by a hypersurface in
(x, x̃, u, v) ∈ C × C × C∗ × C∗:

xx̃ = F(u, v).

Moreover F(u, v) can be obtained by gluing pant diagrams of the form

eu + ev + 1 = 0. (5.1)

The holomorphic 3-form is given by

� = dxdudv/x.

As is well known in the local context, integration of� over the non-trivial class of three
cycles gets reduced to computation of a 1-form on the Riemann surface. The only non-
trivial 3-cycles are formed by the S1 fibration (identified with (x̃, x) → (eiθ x̃, e−iθ x))
over a domain in the u, v plane bounded by the Riemann surface ( : F(u, v) = 0).
The integral of � over such cycles reduces to integrals of the meromorphic 1-form

λ = udv

on the 1-cycles of the non-compact Riemann surface. Note that λ is not globally well
defined, and it makes sense only patch by patch. In particular if we had considered the u-
patch, integration of the 2-cycle fiber would have resulted in a 1-form −vdu. It is this lack
of global definition ofλwhich lead to non-trivial interactions, to an otherwise free theory.

The variations of the complex structure and the corresponding period integral get
mapped to the variation of the complex structure of and the periods of the correspond-
ing reduced 1-form λ on it. Note that there is a direct relation between changing the
complex structure of  and the choice of λ. In particular suppose we are in the v-patch
defined by being centered at ev = 0; consider the complex deformation

F → F(u, v)+ δF (u, v).

The above derivation for the reduced one form will still go through without any change,

λ = udv

but now u is a different function of v.
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Solving F(u, v) = 0 we would in principle get u = f (v) and under the complex
deformation we have

u = f (v)+ δf

and so the change in the 1-form λ is given by

δλ = δf dv.

Thus, as in [8] the basic quantum field gets identified with this variation. For this to be a
good deformation of complex structure δf should be a meromorphic function of ev , i.e.

∂v δf = 0. (5.2)

To get an ordinary quantum field it is natural to write δf = ∂φv in which case (5.2) gets
mapped to

∂∂φv = 0. (5.3)

In terms of this scalar the variation of the 1-form is given by

δλ = ∂φv, (5.4)

and Eq. (5.3) is sufficient for the condition of integrability of the complex structure,
unlike the generic 3-fold complex structure deformation where the story is more com-
plicated. Thus we have a free boson propagating on each patch.

In the classical theory we can of course parameterize the deformation in any way we
want; however for the quantum theory writing the variation this way is more natural.
This is because the Kodaira-Spencer theory in the formulation of [8] has the kinetic term
of the form

1

g2
s

∫

Calabi Yau

ω∂−1∂ω,

whereω is a (2, 1)-form representing the change in the complex structure of Calabi-Yau.
It is natural to write, at least for a patch, ω = ∂χ where χ is a (1, 1) form. In terms of
χ the action would become

1

g2
s

∫

Calabi Yau

∂χ∂χ.

In the local context that we are discussing, χ gets identified with the φv above which is
a scalar on , and we get the free scalar theory

1

g2
s

∫



∂φ∂φ.

Note that the anti-holomorphic piece of φ is a gauge artifact: Shifting φ by an anti-ho-
lomorphic function will not affect ∂φ and so does not change the 1-form λ. So φ should
be viewed as a chiral boson. We can study the Kodaira-Spencer theory patch by patch
by chiral fields φv . We will write the variation of the complex structure as

u = f0(v)+ ∂v φv.
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We can also absorb f0(v) as a classical vev for ∂vφv , which we will sometimes do. In
the v−patch which is cylindrical we can write

∂vφv =
∑

n>0

jn e
−nv + g2

s j−n e
nv, (5.5)

where we have included factors of g2
s to account for the kinetic term of the scalar being

1/g2
s . In the quantum formulation j−n and jn are not independent, and correspond to

creation and annihilation operators. To better understand this we will consider a coherent
set of states given by replacing

jn → tn.

This is natural in this patch because changing the complex structure at the infinity of this
patch corresponds to changing ∂v φv at ev → 0, and that is determined by the negative
powers e−nv above. However now the positive powers of env are determined quantum
mechanically. Let 〈| denote the state created by the rest of the Riemann surface. Let
the coherent states be defined by

|t〉 = exp

(
∑

n>0

1

n
j−n tn

)
|0〉.

Let us denote the partition function of the theory including the tn deformations by Z(t).
Then we have

Z(t) = exp( F (gs, tn)) = 〈 |t〉.
To justify constructing the coherent state in terms of j−m alone, note that if we consider
the expectation value of ∂vφv on the cylinder at infinity where e−v → ∞ then e−nv
terms in (5.5) dominate. This can also be viewed as changing the 1-form λ at infinity by

δλ = dv
∑

n

tne
−nv.

On the other hand if we consider the expectation value of ∂vφv for the positive powers
env it will not be zero. It might at first appear that in the classical limit gs → 0 this
would be zero because of the explicit g2

s dependence in (5.5), but this is not the case.
This is because F(gs, tn) has a 1/g2

s term in the genus zero part given by F0(tn), so
this survives in the limit. This will give us for the expectation value of ∂vφv in the limit
gs → 0,

1

Z
〈| ∂vφv |t〉 =

∑

n>0

tne
−nv + n

∂F0

∂tn
env,

which means that classically we have

∂vφv =
∑

n>0

tne
−nv + n

∂F0

∂tn
env.

Here we need to clarify one important point: F is not an unambiguous function of
tn’s. This depends on how we choose the coordinates on each patch. Changing the coor-
dinates, will give rise to a different function F(ti). The difference between these results
is the same as the Virasoro action. This dependence on the choice of the local coordinates
on the Riemann surface will turn out to be related to the framing ambiguity. For us the
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Riemann surface comes with almost canonical coordinates involving combinations of
u and v with du ∧ dv making sense in the full Calabi-Yau. In a given v-patch we will
have the situation where z = ev → 0, i.e. v → −∞ is on the patch, and u → const.

as z → 0. This almost uniquely fixes the coordinates except for an integer choice: The
du∧ dv is invariant under SL(2,Z). There is a subset of SL(2,Z), indexed by an inte-
ger n, which preserves the conditions we have put on each patch, namely u′ = u and
v′ = v + nu. Note that the coefficient of v in v′ is 1 because we want z′ = O(z) as
z → 0 in order to have a good coordinate. This transformation will give a new one form
λ = u′dv′ and a new coordinate

z′ = ev
′ = enuz,

where eu = ∑∞
i=0 aiz

i . For example consider the pant Riemann surface

e−u + ev + 1 = 0

in the v-patch, which includes v → −∞ (where u → iπ ). If we now change coordinates
v′ = v + nu we will have

z′ = z[(−1)n(1 + z)−n].

So if we compute F in the z patch, in the new coordinate patch we will need to exponen-
tiate an appropriate element of Virasoro algebra which changes the coordinates. Thus
the choices of F is indexed by an integer n in each patch.

In the interest of comparison with our A-model vertex we will now specialize to the
case of the pant diagram, which is mirror to C3, given by the Riemann surface

eu1 + eu2 + eu3 = 0,

where one variable is eliminated by rescaling the equation. This way of writing it,
exhibits the cyclic symmetry between the three patches. A choice of coordinates that
corresponds to the “standard framing of the vertex” discussed before and which pre-
serves the Z3 symmetry is as to let u = u3 − u1 and v = u2 − u3, and w = u1 − u2
then we have

e−u + ev + 1 = 0 λ = vdu u− patch,
e−v + ew + 1 = 0 λ = wdv v − patch,
e−w + eu + 1 = 0 λ = udw w − patch. (5.6)

Note that we also have the relation

u+ v + w = 0.

Changing of the coordinates by framings (n1, n2, n3) is obtained by the choice of the
coordinates

u → u+ n1v,

v → v + n2w,

w → w + n3u.

In each patch we can deform the defining equation by a chiral scalar, as discussed above.
The corresponding scalars we call φu, φv, φw. The equation of the surface gets modified,
when φi 
= 0 by following the deformation discussed in general above, and we get
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e−u + ev+∂uφu + 1 = 0,

e−v + ew+∂vφv + 1 = 0,

e−w + eu+∂wφw + 1 = 0,

where in the classical limit

∂uφu =
∑

n>0

tun e
−nu + n

∂F0

∂tun
enu,

∂vφv =
∑

n>0

tvn e
−nv + n

∂F0

∂tvn
env,

∂wφw =
∑

n>0

twn e
−nw + n

∂F0

∂twn
enw.

If we assume ∂φ’s are small4, we get the following equations:

e−u + ev + 1 + ev∂uφu = 0 (i),

e−v + ew + 1 + ew∂vφv = 0 (ii),

e−w + eu + 1 + eu∂wφw = 0 (iii). (5.7)

If we multiply Eq. (i) by e−v , and use the fact that u+ v = −w we get

ew + 1 + e−v + ∂uφu = 0.

Comparing this with Eq. (ii) we learn that

∂uφu = ew∂vφv.

On the other hand, to leading order we have from Eq. (i),

dv/du = e−u−v = ew,

we thus have

∂uφu = dv

du
∂vφv (5.8)

and by the Z3 cyclic symmetry similar equations with u → v → w → u. This in
particular implies that in the classical limit, and to leading order in oscillators the three
φ’s in the three patches can be viewed as coming from a global φ. This means that
to leading order in the classical limit and in oscillators, the vertex operator should be
the standard one coming from the well known techniques of operator formulation on
Riemann surfaces [26–28] which lead to Bogoliubov transformations.

Here we will digress to review this derivation.

4 This derivation of the small ∂φ limit of the vertex was suggested to us by Robbert Dijkgraaf.
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5.1. Bogoliubov transformation. Consider a chiral boson on a Riemann surface mirror
to C3. The Riemann surface is a sphere with three punctures, and the path integral on
this gives a state in the tensor product of three free Hilbert spaces H1 ⊗ H2 ⊗ H3 cor-
responding to the punctures. Moreover, mirror symmetry provides us with a choice of
complex structure on the punctured Riemann surface, and this gives a canonical choice
of coordinates zi = eui near each puncture at zi = 0 and transition functions relating
them. The transition functions between the patches give rise to Bogoliubov transforma-
tions that relate the three Hilbert spaces and these are sufficient to determine the ray in
the Hilbert space to which the path integral corresponds. To do so we follow [27]. Note
that the path integral of the chiral boson φ has an infinite dimensional group of sym-
metries corresponding to shifting φ → φ + f for any function f which is holomorphic
on the punctured Riemann surface (a meromorphic function whose only poles are at the
punctures). This gives rise to the conserved charge

Q(f ) =
∑

i

∮

zi=0
f (zi)∂φ,

which must annihilate the path integral. In each of the three patches we have a different
expansion for the chiral boson in terms of the local holomorphic coordinate,

φ(zi) =
∑

m
=0

1

m
j
(i)
−mz

m
i .

The three patches are related by (5.6), where we put z1 = eu, z2 = ev and z3 = ew, so
that the three patches are related by

zi+1 + 1

zi
+ 1 = 0.

Then, for example, a meromorphic function f (1)m = zm1 has expansion

zm1 =
∑

n≥m

m

n
On,mz

−n
2 =

∑

m≥n
Om,nz

−n
3 ,

where

Om,n = (−1)m
(
m

n

)
.

The corresponding charge Q(f ) is given by

Q(f (1)m ) = j (1)m +
∑

n≥m
Om,nj

(2)
−n +

∑

n≥m

m

n
On,mj

(3)
−n.

The conditions that Q(f (i)m ) annihilate the path integral suffice to determine it:

|Z〉 = exp




∑

m>0,n≥m

On,m

n

[
j
(1)
−m j

(2)
−n + j

(2)
−mj

(3)
−n + j

(3)
−mj

(1)
−n
]


 |0〉1 ⊗ |0〉2 ⊗ |0〉3.

(5.9)

Here we have suppressed the linear term in the j−m’s corresponding to the fact that
the vacuum |0〉 is not the ordinary vacuum, but ∂φ has a piece corresponding to the
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classical geometry, which we have been shifting away so far. Let us now restore it. The
classical piece of the chiral boson in the u-patch, for example, is ∂φ(u)0 = v(u)du =
log(1 + e−u)du. Shifting this away in the action 1

g2
s

∫
∂φ∂φ gives a surface term

1

gs

∮
φ0∂φ = −

∑

n>0

(−1)n

n2 j
(1)
−n, (5.10)

(after rescaling φ → gsφ), so this shifts the vacuum |0〉1 to

|0〉1 → exp

(
−
∑

n>0

(−1)−n

n2gs
j
(1)
−n

)
|0〉1,

and similarly in the other two patches.
The state we have computed should be accurate to leading order in gs and up to

quadratic terms in j−m = tm. The full vertex will have additional terms both in the
gs corrections as well as in terms involving more tm’s. This is because the derivation
leading to a global chiral boson was valid only in this limit. A full discussion of this
from the B-model perspective will be presented elsewhere [25].

From the B-model perspective if we know what the path-integral gives for the
pant-diagram, then we can obtain any other amplitude by gluing. This is because the
Kodaira-Spencer equation implies that in each patch φ is a chiral boson with the stan-
dard propagator. However we have to make sure that in the gluing the coordinate choices
match–this is the same as making sure that the framings are compatible in the A-model
computation of the vertex. Independently of how one computes this trivalent vertex, the
knowledge of

F =
∑

g

Fg(t
u
n , t

v
n , t

w
n )(gs)

2g−2 (5.11)

will capture arbitrary B-model local amplitudes, as everything can be obtained from this
by gluing, as discussed in Sect. 2. We thus appear to have a system involving closed
strings on the pant-diagram, in the operator formalism, capturing arbitrary local models.
On the other hand we have given, motivated from the A-model considerations a similar
gluing rule and a vertexC involving amplitudes of theA-branes on C3, which is mirror to
the pant diagram. To complete the circle of ideas we have to connect these two facts. The
mirror of A-branes are B-branes, which on the Riemann surface get mapped to points
on the pant diagram [19]. So the question, posed in a purely B-model context, is the
following: What is the relation of the B-branes with the closed string Kodaira-Spencer
amplitudes? We will explain how this works in the next section.

5.2. B-branes and closed string B-model. We will now argue how F defined in (5.11)
in terms of operator formulation of closed string target theory, i.e. the quantum Kodaira-
Spencer theory, can be equivalently phrased in terms of open string B-model amplitudes.
To this end we will have to understand the effect of the B-brane on the closed string
B-model. We will show that the insertion of a B-brane at the point z is equivalent, for
the reduced Kodaira-Spencer theory, to the insertion of the fermionic field ψ(z) = eφ .
In other words, fermions, which are usually viewed as a soliton of a chiral scalar can
also be viewed as the B-branes, i.e., the soliton of the Kodaira-Spencer theory.
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Consider a B-model in the local patch given by v where ev → 0 is part of the patch.
Consider placing many branes at the circumference of the cylinder given by v = vi � 0.
We ask how putting B-branes back reacts on the gravity B-model? In other words, how
does the complex structure get modified by the B-branes? To answer this question we
consider adding an extra brane, viewing it as a probe, and place it at v in this patch. We
are interested in what the effect of many branes are on the probe. If the probe is placed
at v � 0 then the effect is simply given by summing over all the open strings stretching
between them. This is the mirror of the computation of [22] and was discussed in the
mirror setup in [29]. The effect on the free energy of the probe at v upon integrating out
the stretched strings between branes at vi and the probe is

δF = ∂φ =
∑

i,n>0

1

n
e−n(v−vi ) =

∑

n>0

1

n
trV ne−nv, (5.12)

where we have used the fact that evi are the eigenvalues of V . Note that for v � 0
there is no contribution from the rest of the surface to the free energy of the probe. On
the other hand we can ask which deformed geometry will give rise to this free energy
probed by the brane. This is given by the computation in [19] where

gsF =
∫ v

λ =
∫ v

∂vφ = φ(v)+ const, (5.13)

where λ is the deformed 1-form on the surface and we have absorbed back into φ the
classical piece of the 1-form. Thus placing a brane at v affects the Kodaira-Spencer
action by the addition of φ(v). Let us consider how F changes for v � 0. Let us call
this singular part of φ by φ−. In particular the deformed one form λ− which dominates
for v � 0 gets identified with

φ−(v) = gsF.

We thus see that the free energy felt by the probe brane (5.12) is reproduced by the
deformation

φ−(v) =
∑

n>0

1

n
trV ne−nv

which leads to the identification
tn = trV n.

This explains the observation we made before about the role of the chiral boson in the
vertex we had obtained from A-model considerations.

This suggests the following interpretation: To have a brane at the point v we add to
the KS action the operator φ(v)/gs , or to the path integral the operator

exp(φ(v)/gs)

(the 1/gs there is to remind us that the disk amplitude is proportional to 1/gs). This leads
to the same response in the free energy. We can redefine φ/gs → φ, which gets rid of
the 1/g2

s in the kinetic term. We are thus led to identify the operator inserting the brane
at z with the insertion in the path-integral of

ψ(z) = eφ(z),

i.e. the fermion operator! (We have absorbed an i in the definition of φ in comparison
with the conventional description of bosonization.) Connection between fermions and
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the D-branes was anticipated a while back [30] and this result makes this concrete. The
anti-branes get identified with

ψ†(z) = e−φ(z).
This is because the free energy will change sign for an anti-brane. As a check of this
statement, note that the coherent state involving the branes at vi can be viewed as the
state

∏

i

exp(φ(vi))|0〉 = exp




∑

i,n>0

1

n
envi j−n



 |0〉 = |ti〉

with tn = ∑
i exp(nvi). Note that in this expression we have normal ordered the opera-

tor. Not normal ordering it would have also led to the effect of the branes on each other,
i.e. the result of integrating out the open string stretched between them. We will now
present an additional argument why the fermion field is the B-brane operator.

Consider a general Calabi-Yau threefold. Consider wrapping N B-branes over a
(compact or non-compact) holomorphic curve C in Calabi-Yau. This curve is of real
codimension 4 in the Calabi-Yau and is surrounded by a 3-cycle FC . Consider the inte-
gral

IN =
∫

FC

�N,

where �N is the holomorphic 3-form, corrected by the fact that there are N B-branes
on C. Then we claim

IN − I0 = Ngs.

This is related to the mirror of the Chern-Simons/topological strings duality of [2]. For
example consider N B-branes wrapping the P1 in O(−1)+ O(−1) → P1. Then there
is an S3 surrounding P1 and the claim is that

∫

S3
�N = Ngs.

In particular under the large N duality this is consistent with the size of the S3 being
given by Ngs . This statement should hold for compact or non-compact branes as it is
a local question and it is our definition of the B-brane in terms of its coupling to the
gravitational Kodaira-Spencer theory.

In the context of the local model we are considering here, the B-brane wraps over
a non-compact plane, which intersects the Riemann surface at a point. The integral of
the holomorphic three-form around it reduces to the integral of the 1-form λ around this
intersection point. So if we denote by B(z) the field creating a D-brane at point z on the
Riemann surface, then

∮

z

λ(z′) B(z) = gs

∮

z

∂z′φ(z
′)B(z)dz′ = gs.

This is indeed the correct OPE defining the fermionic field and we get the identification

B(z) = ψ(z) = eφ(z).

Thus the trivalent topological vertex can be viewed as computing
〈
∏

i

ψ(ui)
∏

j

ψ(vj )
∏

k

ψ(wk)

〉
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in the closed string mirror formulation of the problem. It is then clear why the amplitudes
involving brane can lead to a full reconstruction of the closed string amplitudes: This
is simply the familiar bosonization! We can also consider mixed amplitudes with some
branes left over in a closed string background. In the B-model all we need to do is to
add certain fermion operators. Note that the framing ambiguity for the B-branes gets
mapped to the fact the ψ(z) is a half-differential and so the amplitudes will depend on
the coordinates chosen.

6. The Derivation of the Vertex Amplitude

In this section we will provide a derivation of the three-point vertex in the A-model. It
turns out to be more convenient to switch back to the representation basis in deriving the
cubic vertex CR1,R2,R3 . We will derive this vertex using the large N topological duality
[2] relating large N Chern-Simons amplitudes with those of closed topological strings.
We will be able to compute the full vertex to all orders in gs and for arbitrary oscillator
numbers. This will allow us to confirm, in Sect. 8, that this agrees, in the gs → 0 limit,
with the linear and quadratic pieces of oscillators which we have computed from the
perspective of the B-model in the previous section.

As was conjectured in [2] and proven in [31], the topological open string A-model
of N D-branes on S3 in Y = T ∗S3 is the same as the topological A-model closed string
theory on X = O(−1) ⊕ O(−1) → P1. The large N duality is a geometric transition
where the S3 and the D-branes disappear and get replaced by the P1 [2]. The string
coupling constant is the same in both theories, and the size t of the P1 is identified with
the ’t Hooft coupling t = Ngs . The open string theory, as was shown in [32], is the same
as U(N) Chern-Simons theory on S3, where the level k of the Chern-Simons is related
to the string coupling as gs = 2πi

k+N . Various aspects of this duality have been studied in
[22, 33–35], in particular in [22] the duality was studied in the presence of non-compact
D-branes. A variant of this is what we need here.

Consider then T ∗S3 with N D-branes on the S3, but in addition N2 D-branes on
one leg wrapping the Lagrangian L2, and N1 and N3 D-branes on the other, wrap-
ping L1 and L3 respectively, as depicted in Fig. 9. In the dual theory we end up with
Y = O(−1) ⊕ O(−1) → P1. The D-branes wrapping the compact cycle have disap-
peared, but the D-branes on the non-compact cycles are pushed through the transition.
The resulting configuration is shown in the second picture in Fig. 9. The amplitude cor-
responding to D-branes on Y can easily be calculated using solvability of Chern-Simons
theory and the large N transition. In the limit where N → ∞, the size of the P1 in Y
grows, and zooming in on the vertex with the D-branes, we are left with C3 and the three
D-branes. This is not exactly the configuration of D-branes that gives the three-point
vertex, but it turns out to be close enough; we need to move theL1 Lagrangian D-branes
through the vertex and put it on the other leg of C3. We will explain below how this can
be achieved.

The open string theory on the S3 is U(N) Chern-Simons theory with some matter
fields coming from the three non-compact Lagrangians L1,2,3. As shown in [3], there
are bifundamental strings stretching between the S3 and L1,2,3, and in addition there are
strings between L1 and L3. The ground state of all of these strings in the topological
A-model is a bifundamental matter field, and integrating it out corresponds to inserting
an annulus operator (3.17).
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Q3

L1 L3

L2

t

L2

2Q

S3

L1 L3

Q1
Q

Fig. 9. The figure on the left corresponds to Chern-Simons theory on S3 with three source D-branes.
Q1,2,3,Q denote the bifundamental strings. In the largeN limit, the S3 undergoes a geometric transition.
The figure on the right depicts the large N dual geometry, with Lagrangians L1,2,3, after the transition.
The local patch where the D-branes are is a C3

Keeping track of the orientations, we have that

Z(V1, V2, V3) = 1

S00

∑

Q1,Q2,Q3,Q

(−1)�(Q1) 〈TrQ2U TrQt1⊗Qt3U〉

× TrQ1V1 TrQt V
−1
1 TrQ2V2 TrQ⊗Q3V3, (6.1)

where we have put the 1/S00 in front to compute the contribution to the partition func-
tion due to the branes, noting that S00 is the partition function of topological string on
O(−1)⊕O(−1) → P1. In the equation above theVi is related to the holonomy on the ith

stack of non-compact D-branes and U is holonomy on the S3. The vacuum expectation
value in (6.1) corresponds to a Hopf link with one of its components replaced by two
unlinked unknots, as in Fig. 10, and evaluated on the S3. The unnormalized expectation
value is given by [18]

〈TrQ2U TrQt1⊗Qt3U〉 = SQt1⊗Qt3Q2
,

Q

Q

Q
2

1

3

t

t

Fig. 10. This is a three-component link which is obtained from the Hopf link by “doubling” one of its
components, i.e. by replacing it with two unlinked unknots. The labels denote representations, and the
Chern-Simons invariant associated to the link is SQ2 Q

t
1⊗Qt2/S00
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where S is the S-matrix of the U(N)k WZW model. On the other hand, it is well known
that SQi⊗QjQl = SQiQl

SQjQl
/S0Ql

[36, 18]. Using this, we arrive at the following
expression for (6.1):

Z(V1, V2, V3) =
∑

Q1,Q2,Q3,Q

(−1)�(Q1)
SQt1Q2

SQt3Q2

S00S0Q2

× TrQ1V1 TrQt V
−1
1 TrQ2V2TrQ⊗Q3V3. (6.2)

By large N -duality the above amplitude is computed by the topological strings on X
with three stacks of D-branes, as in [3], corresponding to the right figure in Fig. 7. In the
limit where we send N or equivalently t = Ngs to infinity, Y becomes a C3, and this is
the limit we are interested in. All the N dependence in (6.2) is in the S−matrices, and
in the following we will use WQiQj to mean the limit of the matrix S-matrix as N goes
to infinity, WQiQj = limt→∞ SQjQi

/S00 which was introduced in [3]. So, in the limit

where Y becomes C3 the amplitude in (6.2) simply becomes

Z(V1, V2, V3) =
∑

Q1,Q2,Q3,Q

(−1)�(Q1)
WQ2Q

t
1
WQ2Q

t
3

WQ20

× TrQ1V1 TrQt V
−1
1 TrQ2V2TrQ⊗Q3V3. (6.3)

Our main interest is in the amplitude where the D-brane on L1 is on the first leg of
C3. This we will do by a suitable “analytic continuation”. The only part of the amplitude
in (6.2) that can be affected by moving the D-brane there involves the representation
labeled by Q1, as this representation corresponds to the world-sheet instanton strings
which may become massless in the process. The only other representation that could have
been affected is the one labeled by Q, however the action of the corresponding strings
is growing in the process, and as far as they are concerned, the above expressions are
getting more and more reliable. At any rate, we will provide, in the following sections,
strong evidence that this is correct. With this assumption, we only need to know what
the transition means for the part of amplitude corresponding to WQ1Q2 . To answer this,
we may well study a simpler problem where we have only two stacks of D-branes, one
wrapping L2 and one on L1, to start with, as in Fig. 11. Now notice that this amplitude
equals precisely

Z(V1, V2) =
∑

Q1,Q2

WQ2Q
t
1
(−1)�(Q1) TrQ1V1 TrQ2V2.

By using the definition of the three-point vertex, and keeping track of framing,
WQ2Q

t
1
(−1)�(Q1) should equal

C
0,0,−1
0,Q2,Q1

= C0,Q2,Q1(−1)�(Q1)q−κQ1/2,

from which we conclude that

C0,Q2,Q1 = WQ2Q
t
1
qκQ1/2. (6.4)

From this we can immediately find the amplitude corresponding to the second phase
in Fig. 11. From the definition of the three-point vertex alone, this is CQ1,Q20, but by
cyclic symmetry (3.9) of the vertex and (6.4),CQ1,Q2,0 is the same asWQt2Q1

qκQ2/2 (the
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L1

L

L

L2 2

1
Q

Q
Q

Q2

1

2

1

Fig. 11. The left- and the right-hand side of the figure describe two D-brane configurations in C3, the
latter obtained by moving the D-brane L1. The amplitude corresponding to the configuration on the left
is C0,0,−1

0,Q2,Q1
and on the right it is C0,0,0

Q1,Q2,0

reader should recall that S, and henceW is symmetric). We conclude that in going from
the left- to the right-hand side of Fig. 11 we must replace

WQ2Q
t
1

TrQ1V1 TrQ2V2 → WQt2Q1
qκQ2/2 TrQ1V

−1
1 TrQ2V2,

in (6.3). The strings ending on the L1 D-brane in this new phase, are labeled with Q1
and will naturally have the same charge on the D-brane as the strings labeled with Q
since now moving the D-brane affects both of their masses in the same way (recall that
V is a phase of a complex field), and this is why we replace V1 by V −1

1 in the above
formula. RedefiningV1 → V −1

1 and collecting the coefficient of TrR1V1 TrR2V2 TrR3V3

in the partition function we compute C0,0,−1
R1,R2,R3

. Correspondingly, we get the following
expression for the three-point vertex in the canonical framing CR1,R2,R3 :

CR1,R2,R3 =
∑

Q1,Q3

N
R1R

t
3

Q1Q
t
3
qκR2/2+κR3/2

WRt2Q1
WR2Q

t
3

WR20
, (6.5)

where N
R1R

t
3

Q1Q
t
3

counts the number of ways representations Q1 and Qt
3 go into R1 and

Rt3:

N
R1R

t
3

Q1Q
t
3

=
∑

Q

N
R1

QQ1
N

Rt3
QQt3

.

One must be careful to note that N Rk
RiRj

in the formula above are the ordinary tensor

product coefficients, and not the Verlinde coefficients5.
We conjecture that the above expression (6.5) is the exact trivalent vertex ampli-

tude. Here we have motivated this result based on the largeN topological string duality,
combined with certain plausible assumptions. As we discussed in Sect. 3 on general
grounds, the vertex amplitude has a Z3 cyclic symmetry (3.9) and transforms simply

5 The careful reader should note that in writing (6.1) and (6.5), we have used the freedom to scale V
to absorb a factor of (−1)�(R), into TrRV .
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under exchanges of pairs of indices (3.12). Moreover, in the previous section, we have
computed the leading piece of the vertex amplitude, corresponding to genus zero with
up to two holes. The expression (6.5) has none of the symmetries of the vertex ampli-
tude manifest, and checking agreement with (5.9) is highly involved. Nevertheless, the
expression (6.5) passes all these checks. We will explicitly demonstrate this in Sect. 8.

7. Review of Chern-Simons and Topological String Amplitudes

In order to work out some examples of closed and open string amplitudes from the
three-point vertex, we need a more precise definition of the quantities appearing in (6.5).
In this section we review these ingredients, as well as the integrality properties of open
and closed string amplitudes.

7.1. Review of necessary Chern-Simons theory ingredients. In the evaluation of the
amplitudes we will need the Chern-Simons invariants of the Hopf link in arbitrary rep-
resentations of U(N). In this section we collect some formulae for these invariants.
Recall that in terms of Chern-Simons variables,

q = exp(gs) = exp

(
2πi

k +N

)
, λ = qN . (7.1)

In the duality with topological string theory [2], we have that t = Ngs , so λ = et .
As a warmup, consider WR ≡ WR0, which is related to the Chern-Simons invariant of
the unknot in an arbitrary representation R. The invariant of the unknot is given by the
quantum dimension of R:

S0R

S00
= dimqR. (7.2)

The explicit expression for dimqR is as follows. LetR be a representation corresponding
to a Young tableau with row lengths {µi}i=1,...,d(µ), with µ1 ≥ µ2 ≥ · · · , and where
d(µ) denotes the number of rows. Define the following q-numbers:

[x] = q
x
2 − q− x

2 ,

[x]λ = λ
1
2 q

x
2 − λ− 1

2 q− x
2 . (7.3)

Then, the quantum dimension of R is given by

dimqR =
∏

1≤i<j≤d(µ)

[µi − µj + j − i]

[j − i]

d(µ)∏

i=1

∏µi−i
v=−i+1[v]λ∏µi

v=1[v − i + d(µ)]
. (7.4)

The quantum dimension is a Laurent polynomial in λ± 1
2 whose coefficients are rational

functions of q± 1
2 .

We are interested in the leading power of λ in (7.4). As explained in [3], this power
is �/2, where � = ∑

i µi is the total number of boxes in the representation R, and the

coefficient of this power is the rational function of q± 1
2 ,

WR = qκR/4
∏

1≤i<j≤d(µ)

[µi − µj + j − i]

[j − i]

d(µ)∏

i=1

µi∏

v=1

1

[v − i + d(µ)]
, (7.5)

where κR is the framing factor introduced in Eq. (3.7).
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Let us now consider the Hopf link with linking number 1. Its invariant for represen-
tations R1, R2, WR1R2 = SR1R2

/S00 is given by

(WR1R2)U(N) = q�1�2/N (WR1R2)SU(N), (7.6)

where �i is the total number of boxes in the Young tableau of Ri , i = 1, 2. The prefactor
q�1�2/N in (7.6) is a correction which was pointed out in [20], and is due to the fact
that the vev WR1,R2 has to be computed in the theory with gauge group U(N). The
expression we will use for this invariant is the one obtained by Morton and Lukac in
[37, 38]. Their formula is as follows. Let µ be a Young tableau, and let µ∨ denote its
transposed tableau (remember that this tableau is obtained from µ by exchanging rows
and columns). The Schur polynomial in the variables (x1, . . . , xN) corresponding to µ
(which is the character of the diagonal SU(N)matrix (x1, . . . , xN) in the representation
corresponding to µ), will be denoted by sµ. They can be written in terms of elementary
symmetric polynomials ei(x1, . . . , xN), i ≥ 1, as follows [39]:

sµ = detMµ, (7.7)

where
Mij
µ =

(
eµ∨

i +j−i
)
,

Mµ is an r× r matrix, with r = d(µ∨). To evaluate sµ we put e0 = 1, ek = 0 for k < 0.
The expression (7.7), known sometimes as the Jacobi-Trudy identity, can be formally
extended to give the Schur polynomial sµ(E(t)) associated to any formal power series
E(t) = 1 +∑∞

n=1 ait
i . To obtain this, we simply use the Jacobi-Trudy formula (7.7),

but where ei denote now the coefficients of the series E(t), i.e. ei = ai . Morton and
Lukac define the series E∅(t) as follows:

E∅(t) = 1 +
∞∑

n=1

cnt
n, (7.8)

where the coefficients cn are defined by

cn =
n∏

i=1

1 − λ−1qi−1

q2 − 1
. (7.9)

They also define a formal power series associated to a tableau µ, Eµ(t), as follows:

Eµ(t) = E∅(t)
d(µ)∏

j=1

1 + qµj−j t
1 + q−j t

. (7.10)

One can then consider the Schur function of the power series (7.10), sµ(Eµ′(t)), for any
pair of tableauxµ,µ′, by expandingEµ′(t) and substituting its coefficients in the Jacobi-
Trudy formula (7.7). It turns out that this Schur function is essentially the invariant we
were looking for. More precisely, one has

WR1,R2(q, λ) = (dimqR1)(λq)
�2
2 sµ2(Eµ1(t)), (7.11)

where µ1,2 are the tableaux corresponding to R1,2, and �2 is the number of boxes of µ2.
More details and examples can be found in [37]. It is easy to see from (7.11) that the
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leading power in λ of WR1,R2 is (�1 + �2)/2, and its coefficient is given by the leading

coefficient of the quantum dimension, (7.5), times a rational function of q± 1
2 that is

given by:

WR1R2(q) = WR1q
�2
2 sµ2

(
Elead
µ1
(t)
)
, (7.12)

where

Elead
µ (t) = Elead

∅ (t)

d(µ)∏

j=1

1 + qµj−j t
1 + q−j t

(7.13)

and

Elead
∅ (t) = 1 +

∞∑

n=1

tn∏n
i=1(q

i − 1)
. (7.14)

The above results are for knots and links in the standard framing. The framing can
be incorporated as in [20], by simply multiplying the Chern-Simons invariant of a link
with components in the representations R1, . . . , RL, by the factor

(−1)
∑L
α=1 pα�αq

1
2

∑L
α=1 pακRα , (7.15)

where pα , α = 1, . . . , L are integers labeling the choice of framing for each component.

7.2. Integrality of closed string amplitudes. In this and the following subsection we
recall certain integrality properties that the topological A-model amplitudes possess on
general grounds [40]. This allows one to formulate our answers in terms of certain
integers which capture BPS degeneracies.

The topological A-model free energy F(X) has the following structure:

F(X) =
∞∑

g=0

g
2g−2
s Fg(t).

Here,Fg(t) is the free energy at genus g. It can be computed as a sum over two-homology
classes of worldsheet instantons of genus g,

Fg(t) =
∑

Q

Ng,Qe
−Q·t ,

where the vector Q ∈ H2(X,Z) labels the homology class, t is a vector of Kähler
parameters, and Ng,Q are Gromov-Witten invariants. The free energy F(X) can be
related to counting of certain BPS states on the Calabi-Yau manifold associated to D2
branes wrapping holomorphic curves in X [40]. The relation follows from the embed-
ding of the topological A-model in type IIA string theory onX and its further embedding
in M-theory. Moreover it relies on the target string interpretation of topological string
amplitudes [8, 41]. This implies that the free energy has the following form [40]:

F(X) =
∞∑

n=1

∑

Q∈H2(X)

∞∑

g=0

n
g
Q(2 sinh(ngs/2))

2g−2 e
−nQ·t

n
. (7.16)
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In this formula, q = egs , g is related to an SU(2)L ⊂ SO(4) quantum number denoting
the spin representation of the particle in 4 + 1 dimensions, Q · t is the mass of the BPS
state and ngQ is an integer which counts the number of BPS states with quantum numbers
Q and g.

7.3. Integrality of open string amplitudes. The free energy of open stringsF(V ) is given
by the logarithm of a partition function with the structure

Zopen(V1, . . . , VL) =
∑

R1,...,RL

Z(R1,...,RL)

L∏

α=1

TrRαVα. (7.17)

We define the generating function f(R1,...,RL)(q, λ) through the following equation:

F(V ) =
∞∑

n=1

∑

R1,...,RL

1

n
f(R1,...,RL)(q

n, e−nt )
L∏

α=1

TrRαV
n
α , (7.18)

where Rα denote representations of U(M) and we are considering the limit M → ∞.
In this limit we can exchange the basis consisting of the product of traces of powers in
the fundamental representation, with the trace in arbitrary representations. It was shown
in [22], following similar ideas in the closed string case [40], that the open topologi-
cal strings compute the partition function of BPS domain walls in a related superstring
theory. This led to the result that F(V ) has an integral expansion structure. This result
was further refined in [34] where it was shown that the corresponding integral expansion
leads to the following formula for f(R1,...,RL)(q, λ):

f(R1,...,RL)(q, λ) = (q
1
2 − q− 1

2 )L−2

×
∑

g≥0

∑

Q

∑

R′
1,R

′′
1 ,...,R

′
L
,R′′
L

L∏

α=1

CRα R′
α R

′′
α
SR′

α
(q)N(R′′

1 ,...,R
′′
L
),g,Q(q

1
2 − q− 1

2 )2ge−Q·t . (7.19)

In this formula Rα,R′
α, R

′′
α label representations of the symmetric group S�, which can

be labeled by a Young tableau with a total of � boxes. CRR′ R′′ are the Clebsch-Gordon
coefficients of the symmetric group, and the monomials SR(q) are defined as follows.
If R is a hook representation

(7.20)

with � boxes in total, and with �− d boxes in the first row, then

SR(q) = (−1)dq− �−1
2 +d , (7.21)

and it is zero otherwise. Finally, N(R1,...,RL),g,Q are integers associated to open string
amplitudes. They compute the net number of BPS domain walls of chargeQ and spin g
transforming in the representations Rα of U(M), where we are using the fact that repre-
sentations of U(M) can also be labeled by Young tableaux. It is also useful to introduce
a generating functional for these degeneracies as in [34]:

f̂(R1,...,RL)(q, λ) =
∑

g≥0

∑

Q

N(R1,...,RL),g,Q

(
q

1
2 − q− 1

2

)2g
e−Q·t . (7.22)
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We then have the relation:

f(R1,...,RL)(q, λ) = (q
1
2 − q− 1

2 )L−2
∑

R′
1,...,R

′
L

MR1,...,RL;R′
1,...,R

′
L
(q)f̂(R1,...,RL)(q, λ),

(7.23)

where the matrix MR1,...,RL;R′
1,...,R

′
L
(q) is given by

MR1,...,RL;R′
1,...,R

′
L
(q) =

L∏

α=1

∑

R′′
α

CRα R′
α R

′′
α
SR′′

α
(q)

and it is invertible [34]. Finally, it is also useful sometimes to write BPS degeneracies
in the winding number basis:

n
(�k(1),...,�k(L)),g,Q =

∑

R1,...,RL

L∏

α=1

χRα (C(
�k(α)))N(R1,...,RL),g,Q. (7.24)

Notice that the BPS degeneracies N(R1,...,RL),g,Q in the representation basis are more
fundamental than the degeneracies in the winding number basis, as emphasized in [34].

The f(R1,...,RL) introduced in (7.18) can be extracted from Z(R1,...,RL) through a
procedure spelled out in detail in [33, 34, 42]. One has, for example,

f , = Z , − Z ,·Z·, . (7.25)

It is also convenient to introduce the quantities

Z
(�k(1),...,�k(L)) =

∑

Rα

L∏

α=1

χRα (
�k(α))Z(R1,...,RL), (7.26)

in such a way that

Zopen(V1, . . . , VL) =
∑

�k(1),...,�k(L)
Z
(�k(1),...,�k(L))

L∏

α=1

1

z�k(α)
ϒ�k(α) (Vα). (7.27)

We can now write the total free energy as:

F(V ) =
∞∑

g=0

∑

�k(α)
g

2g−2+h
s F

g,�k(α) (t)
L∏

α=1

ϒ�k(α) (Vα), (7.28)

where h = ∑
α hα is the total number of holes. We have then that

∞∑

g=0

F
g,�k(α) (t)g

2g−2+h
s = 1

∏L
α=1 z�k(α)

Z
(c)

�k(α) , (7.29)

where (c) denotes the connected piece.
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8. The Vertex Amplitude

In this section we use the apparatus developed above to calculate some values of the
vertex amplitude. This will provide highly non-trivial checks that the vertex amplitude
derived in Sect. 6 using large N-dualities is in fact the correct expression.

As discussed in the previous section, we can extract the free energy of the vertex
amplitude with fixed winding numbers as the connected part of C�k1�k2�k3

:

F
(n1,n2,n3)

�k(1),�k(2),�k(3) (gs) = 1
∏3
α=1 z�k(α)

(C(c))
(n1,n2,n3)

�k(1),�k(2),�k(3) .

Consider the part of this amplitude corresponding to a single hole on each of the three
stacks of D-branes. Since only the winding numbers remain to be specified, we can
simply denote this by Fk,l,m, corresponding to �k(i), i = 1, 2, 3 with a single nonzero
entry in positions k, l, m, respectively. Then, one has the following formulae:

F
(n,0,0)
k,0,0 = 1

k

[k + nk − 1]!

[k]![nk]!
,

F
(0,0,0)
k,l,0 = (−1)l+1

kl

[kl]

[k]

[
k

l

]
,

where the q-number is [x] = q
x
2 − q− x

2 , the q-factorial is given by

[x]! = [x][x − 1] · · · [1], (8.1)

and finally the q-combinatorial number is defined as
[
x

y

]
= [x]!

[x − y]![y]!
. (8.2)

Note that the leading gs terms Fk,0,0 and Fk,m,0 are

F
(n,0,0)
g=0;k,0,0 = 1

gsk

(k + nk − 1)!

(k)!(nk)!
,

F
(0,0,0)
g=0;k,l,0 = (−1)l+1

k

(
k

l

)
,

and these agree with (5.10) and (5.9) respectively up to a choice of coordinate, T rV mi →
(−1)mT rV mi and the over-all sign of the free energy!

Let us now look at some explicit values of the vertex (6.5) which we can easily
compute using the explicit expressions for WR1R2 , that we gave in the previous section.
Using explicit evaluation of C one can verify that at least for a small number of boxes
the highly non-trivial symmetry predictions (3.9) and (3.12) are indeed satisfied.

We give here a list of values for the trivalent vertex up to five boxes in total. For the
sake of space, we mostly list values which are not related by symmetries, although we
have included some to make manifest the properties that we derived in Sect. 3. The dot
· stands for the trivial representation.

C ·· = 1

q
1
2 − q− 1

2

,
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C · = q2 − q + 1

(q − 1)2
, C ·· = q2

(q − 1)(q2 − 1)
,

C ·· = q

(q − 1)(q2 − 1)
,

C = q4 − q3 + q2 − q + 1

q
1
2 (q − 1)3

, C · = q
3
2 (q3 − q2 + 1)

(q − 1)2(q2 − 1)
,

C · = q3 − q2 + 1

q
1
2 (q − 1)2(q2 − 1)

, C ·· = q
9
2

(q − 1)(q2 − 1)(q3 − 1)
,

C ·· = q
5
2

(q − 1)2(q3 − 1)
, C ·· = q

3
2

(q − 1)(q2 − 1)(q3 − 1)
,

C = q6 − q5 + q3 − q + 1

(q − 1)3(q2 − 1)
, C = q6 − q5 + q3 − q + 1

q(q − 1)3(q2 − 1)
,

C · = q2(q4 − q2 + 1)

(q − 1)2(q2 − 1)2
, C · = q(q6 − q5 − q4 + 2q3 − q + 1)

(q − 1)2(q2 − 1)2
,

C · = q6 − q5 + 2q3 − q2 − q + 1

q(q − 1)2(q2 − 1)2
, C · = q4 − q2 + 1

(q − 1)2(q2 − 1)2
,

C · = q4(q4 − q3 + 1)

(q − 1)2(q2 − 1)(q3 − 1)
, C · = q(q4 − q3 + q2 − q + 1)

(q − 1)3(q3 − 1)
,

C · = q4 − q + 1

q(q − 1)2(q2 − 1)(q3 − 1)
,

C ·· = q8

(q − 1)(q2 − 1)(q3 − 1)(q4 − 1)
, C ·· = q5

(q − 1)2(q2 − 1)(q4 − 1)
,

C ·· = q4

(q − 1)2(q2 − 1)(q4 − 1)
, C ·· = q3

(q − 1)2(q2 − 1)(q4 − 1)
,

C
··

= q2

(q − 1)(q2 − 1)(q3 − 1)(q4 − 1)
,

C = q
1
2 (q8 − q7 + q5 − q4 + q3 − q + 1)

(q − 1)3(q2 − 1)2
,

C = q9 − q8 − q7 + 2q6 − q4 + q3 − q + 1

q
1
2 (q − 1)3(q2 − 1)2

,

C = q9 − q8 + q6 − q5 + 2q3 − q2 − q + 1

q
3
2 (q − 1)3(q2 − 1)2

,

C = q8 − q7 + q5 − q4 + q3 − q + 1

q
3
2 (q − 1)3(q2 − 1)2

,

C = q
3
2 (q8 − q7 + q4 − q + 1)

(q − 1)3(q2 − 1)(q3 − 1)
,

C = q8 − 2q7 + 3q6 − 3q5 + 3q4 − 3q3 + 3q2 − 2q + 1

q
1
2 (q − 1)4(q3 − 1)

,
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C = q8 − q7 + q4 − q + 1

q
3
2 (q − 1)3(q2 − 1)(q3 − 1)

,

C · = q
9
2 (q5 − q3 + 1)

(q − 1)2(q2 − 1)2(q3 − 1)
,

C · = q
7
2 (q8 − q7 − q6 + q5 + q4 − q2 + 1)

(q − 1)2(q2 − 1)2(q3 − 1)
,

C · = q
1
2 (q7 − q6 + q4 − q + 1)

(q − 1)3(q2 − 1)(q3 − 1)
,

C · = q
1
2 (q7 − q6 + q3 − q + 1)

(q − 1)3(q2 − 1)(q3 − 1)
,

C · = q8 − q6 + q4 + q3 − q2 − q + 1

q
5
2 (q − 1)2(q2 − 1)2(q3 − 1)

,

C · = q5 − q2 + 1

q
1
2 (q − 1)2(q2 − 1)2(q3 − 1)

,

C · = q
15
2 (q5 − q4 + 1)

(q − 1)2(q2 − 1)(q3 − 1)(q4 − 1)
,

C · = q
7
2 (q5 − q4 + q2 − q + 1)

(q − 1)3(q2 − 1)(q4 − 1)
,

C · = q
5
2 (q4 − q2 + 1)

(q − 1)2(q2 − 1)2(q3 − 1)
,

C · = q
1
2 (q5 − q4 + q3 − q + 1)

(q − 1)3(q2 − 1)(q4 − 1)
,

C
·
= q5 − q + 1

q
3
2 (q − 1)2(q2 − 1)(q3 − 1)(q4 − 1)

,

C ·· = q
25
2

(q − 1)(q2 − 1)(q3 − 1)(q4 − 1)(q5 − 1)
,

C ·· = q
17
2

(q − 1)2(q2 − 1)(q3 − 1)(q5 − 1)
,

C ·· = q
13
2

(q − 1)2(q2 − 1)(q3 − 1)(q4 − 1)
,

C ·· = q
11
2

(q − 1)2(q2 − 1)2(q5 − 1)
,

C ·· = q
9
2

(q − 1)2(q2 − 1)(q3 − 1)(q4 − 1)
,

C
··

= q
7
2

(q − 1)2(q2 − 1)(q3 − 1)(q5 − 1)
,

C
··

= q
5
2

(q − 1)(q2 − 1)(q3 − 1)(q4 − 1)(q5 − 1)
.
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Note for example that:
C = q3C ,

while on the other hand k = 6, so that this precisely agrees with (3.12).
The vertex amplitude, being an open string amplitude, has to satisfy strong integrality

requirements that we have reviewed in Sect. 6. In order to check this, we can compute
the generating functionals for BPS states f̂R1R2R3 for arbitrary framings in the legs. If

we denote z = (q
1
2 − q− 1

2 )2, one finds, for example:

f̂ , , = (−1)n1+n2+n3 ,

f̂ , , = −(−1)n2+n3

(
q
n1
2 − q− n1

2

q
1
2 − q− 1

2

)2

= −(−1)n2+n3n2
1 − 1

12
(−1)n2+n3n2

1(n
2
1 − 1)z+ · · · ,

f̂ , , = −(−1)n2+n3

(
q
n1+1

2 − q− n1+1
2

q
1
2 − q− 1

2

)2

= −(−1)n2+n3(1 + n1)
2 − 1

12
(−1)n2+n3n1(n1 + 1)2(n1 + 2)z+ · · · ,

f̂ , , = (−1)n3

4

(
2n2(n2 − 1)+ n1(n

2
2 − 3n2 + 2)+ n2

1(3n
2
2 − n2 + 2)

)
+ · · · ,

f̂
, ,

= (−1)n3

4

(
n1n2(n2 − 1)+ 2n2(1 + n2)+ n2

1(3n
2
2 + 5n2 + 4)

)
+ · · · ,

f̂
, ,

= (−1)n3

4

(
4 − 6n2 + 6n2

2 + n1(7n
2
2 − 5n2 + 6)+ n2

1(3n
2
2 − n2 + 2)

)
+ · · · ,

f̂
, ,

= (−1)n3

4

(
4 + 6n2 + 6n2

2 + n1(7n
2
2 + 9n2 + 8)+ n2

1(3n
2
2 + 5n2 + 4)

)
+ · · · ,

This passes the integrality check.

9. Examples of Open and Closed String Amplitudes From the Vertex

In this section we compute various closed and open string amplitudes using the triva-
lent vertex. In the examples below we have made many checks of the vertex against
amplitudes of closed and open string calculations using other means.

In the closed string case the vertex can be checked, in principle to all genera, by
comparison with mirror B-model calculations using holomorphic anomaly [8], see [43,
44, 29], as well as against A-model localisation calculations using the techniques of [16,
45, 46]. More directly one can compare the vertex with open string amplitudes. B-model
calculations for the open string were so far only available for the disk following [19,
11]. A-model localization calculations for all genus open string amplitudes with a single
stack of D-branes have been introduced in [47, 45]. At the operational level this is a
minor modification of the localization procedure of the closed string case, and we pro-
vide a computer program which computes this for general toric configurations6. Due to
the extended combinatorics of the graphs indexing the fixed points of the torus action on

6 This program can be distributed on request. It requires the evaluation of 2d gravity correlation
functions, which were implemented in Maple by Carel Faber, see also [48].
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the moduli space of stable maps [16, 45, 46], the computer calculation is very slow com-
pared with the techniques developed in the present paper, in particular for amplitudes
with higher genus and larger degree (w.r.t the compact Kähler classes). A-model calcu-
lations provide, on the other hand, expressions which describe all windings. While the
results of the calculations have been checked for many cases, see in particular [45], the
procedure has not been established rigorously and leaves interesting conceptual issues to
be developed, in particular in regards to multiple stacks of branes. It should be possible
to derive within the localization approach general expressions for the vertex for general
windings and framings. Some attempts in this directions have already been made [7].

To begin with, it is useful to see how the vertex works in a few simple examples
where the complete amplitudes are known.

9.1. Example I. The closed string amplitude in Fig. 12 can be written in terms of six
trivalent vertices glued together. Two of them are of the kind we have already discussed.
Using an SL(2,Z) transformation, we find the differently oriented trivalent vertex cor-
responding to Fig. 12.

From this, and using the gluing rules above, we find that the closed string amplitude
can be written as

Z =
∑

R1,··· ,R5

(−1)
∑
i �(Ri) C··R1 e

−�(R1)t1C·Rt1R2
e−�(R2)r1 CRt2·R3

×e−�(R3)t2 C·Rt3R4
e−�(R4)r2 CRt4·R5

e−�(R5)t3C·Rt5·. (9.1)

Note that to get the all genus answer up to degree n in any one of the five classes, we only
need to perform the sum over the corresponding representation with up to n boxes. It is
not difficult to check that this is the correct A-model amplitude onX, which is known to
all genera. For example, one way to calculate the amplitude is to use mirror symmetry

r2t2

r1
1t

3t

R

R
R

R
R

1

2
3

4
5

Fig. 12. The left-hand side is the graph � of a geometry containing a chain of P1’s with five independent
classes inH2. The right-hand side depicts a decomposition of this graph in terms of three-point vertices.
All the vertices are obvious repetitions of the first two, moreover, all the vertex amplitudes equalCR1R2R3
with representation ordered cyclically, counter-clockwise. Some of the representations are set to be triv-
ial, as corresponding legs are non-compact. The small figure in the upper left corner is the corresponding
graph �̂
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to calculate the genus zero amplitude, and integrality to fix the full free energy. This is
possible as there are no curves in X with genus higher than zero, so we find

Z = exp

[∑

n

N �Q e
−n �Q·�t

n(2 sinh(ngs/2))2

]
,

where N �Q are the degeneracies of BPS states corresponding to a P1 in class �Q in X

whose values are as follows. First, there can be no BPS states corresponding to P1 ’s
which are disconnected. For the chains of connected P1’s we have that: N �Q = −1 if
�Q corresponds to the class of an odd number of connected P1’s in X (e.g. BPS states

with masses r1, r1 + t2 + r2 and t1 + r1 + t2 + r2 + t3 all have N �Q = −1), N �Q = 1

if �Q corresponds to a class of an even number of connected P1’s (e.g. r2 + t2 and
r1 + t2 +2 +t3).

9.2. Example II. It is also easy to see that our rules reproduce the O(−3) → P2 ampli-
tudes computed in [3]. In [3], the all genus amplitude was computed using a quiver-type
Chern-Simons theory with three nodes G = U(N1) × U(N2) × U(N3) and bifunda-
mental matter-fields, in the Ni → ∞ limit.

Using SL(2,Z) transformations and adjusting framings appropriately, it is easy to
see that the amplitude corresponding to the graph in Fig. 13, when there are no branes
in the outer legs, can be written as

ZP2 =
∑

R1,R2,R3

(−1)
∑
i �(Ri)e−

∑
i �(Ri)t q

∑
i κRi C·R2R

t
3
C·R1R

t
2
C·R3R

t
1
, (9.2)

where t is the Kähler parameter of O(−3) → P2. Using the fact that, e.g.

C·R2R
t
3

= WR2R3q
−κR3/2,

the amplitude (9.2) precisely equals the amplitude obtained in [3] by related, but different
methods.

(−2)R2

R 3
(−2)

R1
(−2)

Q Q

Q1

3 2

Fig. 13. The trivalent vertices for gluing to O(−3) → P2 amplitude (with D-branes on external legs).
The superscript on the representations give the framing n in the corresponding propagator
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Q1

Q2 R(0)

Fig. 14. This shows O(−1)+ O(−1) → P1 with D-branes on external legs

9.3. Example III. Another example where we can use the full vertex amplitude is shown
in Fig. 14: two D-branes on the outer legs of O(−1)+ O(−1) → P1. According to the
gluing rules we have

Z(V1, V2) =
∑

R,Q1,Q2

CQ1Q2Rt (−1)�(R)e−�(R)tCR·· TrQ1V1 TrQ2V2. (9.3)

On the other hand, this amplitude corresponds to a Hopf link inside S3 with linking
number −1, therefore we should have

Z(V1, V2) =
∑

Q1,Q2

λ− �Q1
+�Q2
2 SQ1Q2

TrQ1V1TrQ2V2, (9.4)

where λ = e−t . One can check that indeed (9.3) and (9.4) agree. Namely, we have that

SQ1Q2
= WQ1Q2(q, λ)S00(λ),

where WQ1Q2 is the invariant calculated in (7.11), and S00 is the partition function of
CS on S3, which can be written as7 [2]

S00(e
−t ) = exp



−
∞∑

k=1

e−kt

k
(
q
k
2 − q− k

2

)2



 . (9.5)

For example, for Q1 = R = , agreement requires that

C Q = WQ W − W
(1)
Q

W
, (9.6)

where W(1)
Q1Q2

is defined by the expansion

WQ1Q2(q, λ) = λ
�Q1

+�Q2
2 WQ1Q2(q)+ λ

�Q1
+�Q2
2 −1W

(1)
Q1Q2

(q)+ · · · . (9.7)

7 There are pieces in the free energy which are finite polynomials in t which encode certain topolog-
ical data in the compact case. In the non-compact case at hand they are ambiguous and in our vertex
amplitudes we have naturally set them to zero.
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Using the explicit formula (7.11), we find that

C Q = qκQ/2
W QtW Q

WQ

+WQ, (9.8)

in agreement with (6.5).

9.4. Example IV. Another non-trivial configuration involving the full trivalent vertex
for which we have an immediate prediction is O(−3) → P2 with “outer” D-branes on
the external legs. This corresponds to the amplitude (9.2) but where we allow non-trivial
external representations on the trivalent vertices:

ZP2(V1, V2, V3) =
∑

Ri,Qi

CQ3R2R
t
3
CQ1R1R

t
2
CQ2R3R

t
1
(−1)

∑
i �(Ri)

× e−
∑
i �(Ri)t q

∑
i κRi TrQ1V1 TrQ2V2 TrQ3V3. (9.9)

This amplitude is the product of the closed string amplitude ZP2 given in (9.2), and the
open string amplitude properly speaking, so we will write

Zopen(V1, V2, V3) = ZP2(V1, V2, V3)

ZP2

=
∑

Qi

Z(Q1,Q2,Q3)(q, e
−t )TrQ1V1 TrQ2V2 TrQ3V3.

Notice that the amplitudes are completely symmetric in Q1,Q2,Q3, as they should be
by the symmetry of the geometry.

The generating functions f̂(Q1,Q2,Q3) are computed from Z(Q1,Q2,Q3). Let us denote

z = (q
1
2 − q− 1

2 )2, y = e−t , so that

f̂(Q1,Q2,Q3) =
∑

g,Q

N(R1,R2,R3),g,Qz
gyQ,

whereN(R1,R2,R3),g,Q are the degeneracies of BPS states with the corresponding charges.
We find, for the first few representations and up to degree five in the Kähler parameter,
the following results:

f̂ ,·,· = 1 − 2 y + 5 y2 − (32 + 9 z) y3 + (286 + 288 z+ 108 z2 + 14 z3) y4

−(3038 + 6984 z+ 7506 z2 + 4519 z3 + 1542 z4 + 276 z5 + 20 z6) y5 + · · · ,
f̂ , ,· = −y + 4 y2 − (35 + 8 z) y3 + (400 + 344 z+ 112 z2 + 13 z3) y4

−(5187 + 10504 z+ 10036 z2 + 5434 z3 + 1691 z4 + 280 z5 + 19 z6) y5 + · · · ,
f̂ ,·,· = 7 y3 − (110 + 68 z+ 12 z2) y4

+(1651 + 2938 z+ 2353 z2 + 992 z3 + 212 z4 + 18 z5) y5 + · · · ,
f̂

,·,· = y − 4 y2 + (28 + 8 z2) y3 − (290 + 276 z+ 100 z2 + 13 z3) y4

+(3536 + 7566 z+ 7683 z2 + 4442 z3 + 1479 z4 + 262 z5 + 19 z6) y5 + · · · ,
f̂ , , = 3 y2 − (36 + 7 z) y3 + (531 + 396 z+ 114 z2 + 12 z3) y4

−(8472 + 15210 z+ 13026 z2 + 6399 z3 + 1830 z4 + 282 z5 + 18 z6) y5 + · · · , (9.10)

and so on. For representations involving only one nontrivial representation, the degen-
eracies obtained above agree with the ones obtained in B-model computations [11] (see
also [49]) and in A-model computations through localization [45, 50].
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One can also compute the amplitudes in nontrivial framings, just by framing the
trivalent vertex in the appropriate way. For a single nontrivial representation with framing
n, we find N( ,·,·),g,d (n) = (−1)nN( ,·,·),g,d (0), and

f̂ ,·,·(n) = 1

8

(
1 − (−1)n − 2 n2

)
+ 1

96

(
−3 + 3(−1)n + 8 n2 − 2 n4

)
z+ · · ·

+
(
n2 + 1

12
n2(n2 − 1) z+ · · ·

)
y +

(
1

4
(−1 + (−1)n − 14 n2)

+ 1

48
(3 − 3(−1)n + 8n2 − 14n4) z+ · · ·

)
y2 + · · · ,

f̂ ,·,·(n) = 1

8

(
−1 + (−1)n − 4n− 2 n2

)

+ 1

96

(
3 − 3 (−1)n + 8 n− 4 n2 − 8 n3 − 2 n4

)
z+ · · ·

+
(
(n+ 1)2 + 1

12
n(1 + n)2(n+ 2) z+ · · ·

)
y

+
(

1

4
(−15 − (−1)n − 28 n− 14 n2)

+ 1

48
(−3 + 3 (−1)n − 40 n− 76 n2 − 56 n3 − 14 n4) z+ · · ·

)
y2 + · · · .

(9.11)

9.5. Example V. So far we have considered open string amplitudes where D-branes were
sitting on outer edges, but our formalism also allows to compute amplitudes with branes
in inner edges, as we saw in (3.16). A simple example of such a situation is local P2 with
an inner and an outer brane, as depicted in Fig. 15. The framings are as in Fig. 13. The

Fig. 15. The O(−3) → P2 with an outer brane and another brane in an inner edge
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prediction for this amplitude is

Z(V1, V2) =
∑

Ri,Qi

(−1)s(Ri ,Qi) qf (Ri ,Qi) e−L(Ri,Qi) CQ1R2R3⊗Q2

C·Rt3⊗Q3R
t
1
C·R1R

t
2

TrQ1V1 TrQ2V2 TrQ3V
−1
2 ,

where

L(Ri,Qi) =
∑

i

�(Ri)t + +�(Q1)r1 + �(Q2)r2 + �(Q3)(t − r2),

f (Ri,Qi) = κR1 + κR2 + nκQ1/2 + pκR3⊗Q2/2 + (p + 2)κRt3⊗Q3
/2,

s(Ri,Qi) =
∑

i

�(Ri)+ n�(Q1)+ p�(R3 ⊗Q2)+ (p + 2)�(Rt3 ⊗Q3).

The integers p and n correspond to the framing of the inner brane and the outer branes,
respectively. p is related to the framing p′ in the B-model of [11] by p = −1 − p′.
We can again compute the generating functionals f̂ for degeneracies of BPS states for
different representations. We present some results corresponding to p = −1, and n = 0
(for the inner brane, this is the zero framing of [11]) where we absorb e−ri in Vi :

f̂·, ,· = −1 + y − (5 + z) y2 + (40 + 31 z+ 9 z2 + z3) y3

−(399 + 743 z+ 648 z2 + 322 z3 + 94 z4 + 15 z5 + z6) y4

+(4524 + 16146 z+ 29256 z2 + 33523 z3 + 26079 z4 + 14151 z5 + 5364 z6

+1390 z7 + 234 z8 + 23 z9 + z10) y5 + · · · ,
f̂·,·, = −1 + 2 y − (12 + 3 z) y + (104 + 96 z+ 33 z2 + 4 z3) y3

−(1085 + 2328 z+ 2334 z2 + 1315 z3 + 423 z4 + 72 z5 + 5 z6) y4

−(12660 + 50874 z+ 103683 z2 + 133002 z3 + 114732 z4 + 68040 z5 + 27711 z6

+7590 z7 + 1332 z8 + 135 z9 + 6 z10) y5 + · · · ,
f̂ , ,· = −1 + y − (6 + z) y2 + (59 + 39 z+ 10 z2 + z3) y3

−(706 + 1152 z+ 895 z2 + 403 z3 + 108 z4 + 16 z5 + z6) y4

+(9372 + 29927 z+ 48964 z2 + 51169 z3 + 36663 z4 + 18485 z5 + 6561 z6 + 1603 z7

+256 z8 + 24 z9 + z10) y5 + · · · ,
f̂·, , = 2 y2 − (46 + 30 z+ 5 z2) y3 + (852 + 1682 z+ 1285 z2 + 536 z3 + 111 z4 + 9 z5) y4

−(14848 + 55104 z+ 101054 z2 + 113629 z3 + 83274 z4 + 40375 z5 + 12800 z6

+2544 z7 + 287 z8 + 14 z9) y5 + · · · , (9.12)

and so on. The results for f̂·,R,· and f̂·,·,R correspond to inner branes with positive
and negative winding numbers, respectively, and they agree with the B-model results
of [11] in the case of disc amplitudes. For higher genus and/or number of holes, our
results agree with those obtained through localization in [50]. The amplitudes with two
nontrivial representations can also be obtained through localization, and in all cases we
have found perfect agreement with the above results.

9.6. Example VI. We now consider more complicated examples of closed string
amplitudes. Consider for example the toric diagram in Fig. 16. There are three Kähler
parameters involved, s, t1 and t2, as indicated in the figure. The amplitude is symmet-
ric in t1, t2. When, say, t2 is taken to infinity, the resulting geometry is that of a local
Hirzebruch surface F1, where s corresponds to the Kähler parameter of the base in local
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(1,0)
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(1)
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(−2)

(1)

(−1)

(0)

(−2)

Fig. 16. There are three Kähler parameters in the problem. The size of leg corresponding to R0 is s, and
the sizes of R3 and R2 correspond to t1, t2, respectively

F1, while t1 corresponds to the fiber. The amplitude for Fig. 16 can be computed by
using our rules in Sect. 3, and the result is:

Z(X) =
∑

R0...6

(−1)�(R0)+�(R1)+�(R4)qκR1CRt1·Rt2q
−κR2/2CR2R3R

t
0
qκR3/2CRt3·Rt4

q−κR4CR4·Rt5q
−κR5/2CR5R6R0q

κR6/2CRt6·R1
e−L(Ri), (9.13)

where we wrote

L(Ri) = (�(R0)+ �(R1)+ �(R4))s + (�(R2)+ �(R6))t1 + (�(R3)+ �(R5))t2.

(9.14)

Notice that when t2 → ∞, (9.13) becomes the amplitude for local F1, which was com-
puted from Chern-Simons theory in [5, 6] with the techniques of [3]. We will write the
answer in terms of a generating functional Fg of BPS degeneracies at genus g, as

Fg(s, t1, t2) =
∞∑

�=0

e−�sFg
� (t1, t2),

where
Fg
� (t1, t2) =

∑

d1,d2

n
g
�,d1,d2

q
d1
1 q

d2
2 ,
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and we have written qi = e−ti (these shouldn’t be confused with the Chern-Simons
variable introduced before). We then find, up to order four in qi , the following results
(symmetrization w.r.t. q1, q2 is understood):

F0
0 (t1, t2) = −2q1 − 2q1q2 + · · · ,

F0
1 (t1, t2) = −1 − 3q1 − 5q2

1 − 7q3
1 − 9q4

1 − 4q1q2 − 8q1q
2
2 − 12q1q

3
2 − 16q1q

4
2 − 9q2

1q
2
2

−15q2
1q

3
2 − 21q2

1q
4
2 − 16q3

1q
3
2 − 24q3

1q
4
2 − 25q4

1q
4
2 + · · · ,

F0
2 (t1, t2) = −6q2

1 − 32q3
1 − 110q4

1 − 10q1q
2
2 − 70q1q

3
2 − 270q1q

4
2 − 32q2

1q
2
2 − 126q2

1q
3
2

−456q2
1q

4
2 − 300q3

1q
3
2 − 784q3

1q
4
2 − 1584q4

1q
4
2 + · · · ,

F1
2 (t1, t2) = 9q3

1 + 68q4
1 + 16q1q

3
2 + 144q1q

4
2 + 21q2

1q
3
2 + 204q2

1q
4
2 + 59q3

1q
3
2

+297q3
1q

4
2 + 684q4

1q
4
2 + · · · ,

F2
2 (t1, t2) = −12q4

1 − 22q1q
4
2 − 30q2

1q
4
2 − 36q3

1q
4
2 − 94q4

1q
4
2 + · · · ,

F0
3 (t1, t2) = 27q3

1 + 286q4
1 + 64q1q

3
2 + 800q1q

4
2 + 25q2

1q
2
2 + 266q2

1q
3
2 + 1998q2

1q
4
2

+1332q3
1q

3
2 + 6260q3

1q
4
2 + 21070q4

1q
4
2 + · · · ,

F1
3 (t1, t2) = −10q3

1 − 288q4
1 − 18q1q

3
2 − 688q1q

4
2

−64q2
1q

3
2 − 1404q2

1q
4
2 − 516q3

1q
3
2 − 4372q3

1q
4
2 − 18498q4

1q
4
2 + · · · ,

F2
3 (t1, t2) = 108q4

1 + 224q1q
4
2 + 375q2

1q
4
2 + 49q3

1q
3
2 + 1168q3

1q
4
2 + 6837q4

1q
4
2 + · · · ,

F3
3 (t1, t2) = −14q4

1 − 26q1q
4
2 − 36q2

1q
4
2 − 114q3

1q
4
2 − 1196q4

1q
4
2 + · · · ,

F4
3 (t1, t2) = 81q4

1q
4
2 + · · · .

These numbers agree with the results obtained with localization8. Notice that at genus
0 and for t2 → ∞, the above results coincide with the results for local F1 presented for
example in [43].

One can find a similar result for the A2 fibration over P1. In this case, the amplitude
reads

Z(X) =
∑

R0...6

q5κR1/2CRt1·Rt2q
−κR2/2CR2R3R

t
0
qκR3/2+3κR0/2CRt3·Rt4

qκR4/2CR4·Rt5q
−κR5/2CR5R6R0q

κR6/2CRt6·R1
e−L(Ri), (9.15)

where now

L(Ri) = (�(R0)+ �(R1)+ �(R4))s

+(4�(R1)+ �(R2)+ �(R6))t1 + (2�(R0)+ 2�(R1)+ �(R3)+ �(R5))t2.

Here, s corresponds to the Kähler parameter of the base of the fibration, and t1, t2 cor-
respond to the Kähler parameters of the fibers. Denoting the generating functional as
before, we obtain in this case,

F0
0 (t1, t2) = −2q1 − 2q2 − 2q1q2,

F0
1 (t1, t2) = −1 − 2q2 − 4q2

2 − 6q3
2 − 8q4

2 − 2q1q2 − 6q1q
2
2

−10q1q
3
2 − 14q1q

4
2 − 6q2

1q
2
2 − 12q2

1q
3
2 − 18q2

1q
4
2

−4q3
1q

2
2 − 12q3

1q
3
2 − 20q3

1q
4
2 − 6q4

1q
2
2 − 10q4

1q
3
2 − 20q4

1q
4
2 + · · · ,

F0
2 (t1, t2) = −6q3

2 − 32q4
2 − 10q1q

3
2 − 70q1q

4
2 − 12q2

1q
3
2 − 96q2

1q
4
2

−12q3
1q

3
2 − 110q3

1q
4
2 − 10q4

1q
3
2 − 112q4

1q
4
2 + · · · ,

F1
2 (t1, t2) = 9q4

1 + 16q1q
4
2 + 21q2

1q
4
2 + 24q3

1q
4
2 + 25q4

1q
4
2 + · · · ,

8 In order to compare with the results using localization and mirror symmetry, we have redefined
gs → igs and therefore ngQ → (−1)g−1n

g
Q.
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and so on, again in agreement with the results for genus zero in [43]. We have also
checked some of these results at higher genus with localization techniques.
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33. Labastida, J.M.F., Mariño, M.: Polynomial invariants for torus knots and topological strings. Com-

mun. Math. Phys. 217, 423 (2001)
34. Labastida, J.M.F., Mariño, M., Vafa, C.: Knots, links and branes at large N . JHEP 11, 007 (2000)
35. Ramadevi, P., Sarkar, T.: On link invariants and topological string amplitudes. Nucl. Phys. B 600,

487 (2001)
36. Verlinde, E.: Fusion rules and modular transformations in 2-D conformal field theory. Nucl. Phys.

B 300, 360 (1988)
37. Morton, H.R., Lukac, S.G.: The HOMFLY polynomial of the decorated Hopf link. J. Knot Theory

Ramif. 12, 395–416 (2003)
38. Lukac, S.G.: HOMFLY skeins and the Hopf link. Ph.D. Thesis, University of Liverpool, 2001
39. Macdonald, I.G.: Symmetric functions and Hall polynomials. 2nd edition, Oxford: Oxford

University Press, 1995
40. Gopakumar, R., Vafa, C.: M-theory and topological strings, II. http://arxiv.org/abs/hep-th/9812127,

1998
41. Antoniadis, I., Gava, E., Narain, K.S., Taylor, T.R.: Topological amplitudes in string theory. Nucl.

Phys. B 413, 162 (1994)
42. Labastida, J.M.F., Mariño, M.: A new point of view in the theory of knot and link invariants. J. Knot

Theory Ramif, 11, 173 (2002)
43. Chiang, T.M., Klemm, A., Yau, S.T., Zaslow, E.: Local mirror symmetry: Calculations and interpre-

tations. Adv. Theor. Math. Phys. 3, 495 (1999)
44. Hosono, S.: Counting BPS states via holomorphic anomaly equations. http://arxiv.org/abs/

hep-th/0206206, 2002
45. Graber, T., Zaslow, E.: Open-string Gromov-Witten invariants: calculations and a mirror ‘theorem’.

http://arxiv.org/abs/hep-th/0109075, 2001
46. Klemm, A., Zaslow, E.: Local mirror symmetry at higher genus. In: Winter School on Mirror Symme-

try, Vector bundles and Lagrangian Submanifolds, Providence, RI: American Mathematical Society,
2001, p. 183

47. Katz, S., Liu, C-C.: Enumerative geometry of stable maps with Lagrangian boundary conditions and
multiple covers of the disc. Adv. Theor. Math. Phys. 5, 1 (2002)

48. Faber, C.: Algorithms for computing intersection numbers of curves, with an application to the class
of the locus of Jacobians. In: New trends in algebraic geometry, Cambridge: Cambridge Univ. Press,
1999

49. Lerche, W., Mayr, P.: On N = 1 mirror symmetry for open type II strings. http://arxiv.org/abs/
hep-th/0111113, 2001; Govindarajan, S., Jayaraman, T., Sarkar, T.: Disc instantons in linear sigma
models. Nucl. Phys. B 646, 498 (2002)

50. Mayr, P.: Summing up open string instantons and N = 1 string amplitudes. http://arxiv.org/abs/
hep-th/0203237, 2002

Communicated by N. Nekrasov


