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Abstract: We study asymptotic distribution of eigenvalues of the Laplacian on a bounded
domain in R

n. Our main results include an explicit remainder estimate in the Weyl for-
mula for the Dirichlet Laplacian on an arbitrary bounded domain, sufficient conditions
for the validity of the Weyl formula for the Neumann Laplacian on a domain with con-
tinuous boundary in terms of smoothness of the boundary and a remainder estimate in
this formula. In particular, we show that the Weyl formula holds true for the Neumann
Laplacian on a Lipα-domain whenever (d− 1)/α < d , prove that the remainder in this
formula is O(λ(d−1)/α) and give an example where the remainder estimate O(λ(d−1)/α)

is order sharp. We use a new version of the variational technique which does not require
the extension theorem.

Introduction

Let −�N be the Neumann Laplacian on a bounded domain � ⊂ R
d and NN(�, λ)

be the number of its eigenvalues which are strictly smaller than λ2; if the number of
these eigenvalues is infinite or −�N has essential spectrum below λ then we define
NN(�, λ) := +∞. Similarly, let −�D be the Dirichlet Laplacian on � and ND(�, λ)

be the number of its eigenvalues lying below λ2. We shall omit the lower index D or
N and simply write � or N(�, λ) if the corresponding statement refers both to the
Dirichlet and Neumann Laplacian.

According to the Weyl formula,

N(�, λ) − Cd,W µd(�) λ
d = o(λd) , λ → +∞ , (0.1)

where µd(�) is the d-dimensional Lebesgue measure of � and Cd,W is the Weyl
constant (see Subsect. 1.1). If N = ND then the Weyl formula holds for all bounded
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domains [BS]. If, in addition, the upper Minkowski dimension of the boundary is equal
to d1 ∈ (d − 1, d) , then

N(�, λ) − Cd,W µd(�) λ
d = O(λd1) , λ → +∞ . (0.2)

The asymptotic formula (0.2) with N = ND is well known and is proved in many papers,
for instance, in [BLi] and [Sa] where the authors obtained estimates with explicit con-
stants. This formula remains valid for the Neumann Laplacian whenever � has the
extension property (see below). Note that d1 may well coincide with d , in which case
(0.2) is useless.

If N = NN then (0.1) is true only for domains with sufficiently regular boundaries.
In the general case NN does not satisfy (0.1); moreover, the Neumann Laplacian on
a bounded domain may have a nonempty essential spectrum (see, for example, [HSS
or Si]). The necessary and sufficient conditions for the absence of the essential spec-
trum in terms of capacities have been obtained in [M1]. In [BD] the authors proved that
NN(�, λ) is polynomially bounded whenever the Sobolev space W 1,2(�) is embedded
in Lq(�) for some q > 2 . If the log-Sobolev inequality holds on � then NN(�, λ)

is exponentially bounded [Ma].
For domains � with sufficiently smooth boundaries, (0.1) is true for both functions

ND and NN and the remainder (i.e., the right-hand side) is O(λd−1) [Iv1 , Se]. The
proof is based on the study of propagation of singularities for the corresponding evo-
lution equation (see [Iv3 or SV]). If � has a rough boundary then the propagation of
singularities near ∂� cannot be effectively described and one has to invoke the varia-
tional technique.

Let �b
δ and �e

δ be the internal and external δ-neighbourhoods of ∂� respectively.
The classical variational proof of the Weyl formula involves covering the domain by a
finite collection of disjoint cubes {Qj }j∈J and using the Dirichlet–Neumann bracket-
ing. It is convenient to assume that {Qj }j∈J is the subset of the family of Whitney
cubes covering �

⋃
�e
δ (see Theorem 3.3), which consists of the cubes Qj such that

Qj

⋂
� �= ∅ .

In view of the Rayleigh–Ritz variational formula, we have the estimates∑
j∈J0

ND(Qj , λ) � ND(�, λ) �
∑
j∈J NN(Qj , λ) , where {Qj }j∈J0 is the set of

cubes Qj lying inside � . If µd(∂�) = 0 then, estimating ND(Qj , λ) and NN(Qj , λ)

for each j and taking δ = λ−1 , we obtain (0.1) and (0.2) for the Dirichlet Laplacian. It is
possible to get rid of the condition µd(∂�) = 0 but this requires additional arguments.

Similarly, the Rayleigh–Ritz formula implies that
∑
j∈J0

ND(Qj , λ) � NN(�, λ) �
∑
j∈Jmδ NN(Qj , λ)+NN(

⋃
j∈J \Jmδ Qj

⋂
�, λ) , where {Qj }j∈Jmδ is the set of cubes

lying inside � \ �b
mδ . If for some m ∈ N and all sufficiently small positive δ

there exist uniformly bounded extension operators from the Sobolev space W 1,2(�b
mδ)

to W 1,2(�b
mδ

⋃
�e
δ) then NN(

⋃
j∈J \Jmδ Qj

⋂
�, λ) � NN(

⋃
j∈J \Jmδ Qj , Cλ) =

∑
j∈J \Jmδ NN(Qj , Cλ) , where C is a sufficiently large constant.
If, in addition, µd(∂�) = 0 then, estimating the counting functions on the cubes

and taking δ = λ−1 , we obtain (0.1) and (0.2) for NN(�, λ) .
However, the known extension theorems require certain regularity conditions on the

boundary (for instance, it is sufficient to assume that ∂� belongs to the Lipschitz class
or satisfies the cone condition). Domains with very irregular boundaries do not have
the W 1,2-extension property, in which case the above scheme does not work for the
Neumann Laplacian. To the best of our knowledge, in all papers devoted to the Weyl
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formula for NN(�, λ) the authors either implicitly assumed that the domain has the
W 1,2-extension property or directly applied a suitable extension theorem.

The main aim of this paper is to introduce a different technique which does not use
an extension theorem. Instead of disjoint cubes, we cover the domain � by a family of
relatively simple sets Sm ⊂ � . For each of these sets the counting function N(Sm, λ)
can be effectively estimated from below and above. The sets Sm may overlap but, under
certain conditions on � , the multiplicity of their intersection does not exceed a constant
depending only on the dimension d .

This allows us to apply the Dirichlet–Neumann bracketing and obtain the Weyl
asymptotic formula with a remainder estimate for the Neumann Laplacian on domains
without the extension property (Theorem 1.3). The remainder term in this formula may
well be of higher order than the first term. Then our asymptotic formula turns into an
estimate for NN(�, λ) . In particular, this may happen if � ∈ Lipα , that is, if ∂�
coincides with the subgraph of a Lipα-function in a neighbourhood of each boundary
point. We prove that NN(�, λ)−Cd,W µd(�) λd = O(λ(d−1)/α) whenever � ∈ Lipα
and α ∈ (0, 1) (Corollary 1.6) and that this estimate is order sharp (Theorem 1.10).
If (d − 1)/α < d then the right-hand side is o(λd) and we have (0.1), otherwise
NN(�, λ) = O(λ(d−1)/α) .

We also obtain a remainder estimate in (0.1) for the Dirichlet Laplacian (Theorem
1.8). This estimate holds true for all bounded domains and immediately implies (0.2).

For domains with smooth boundaries our variational method only gives the remainder
estimate O(λd−1 log λ) ; in order to obtain O(λd−1) one has to use more sophisticated
results (see above). On the other hand, it can be applied to many other problems and
combined with the technique developed in [BI, Iv3, Iv4, Me, Mi, SV or Z] (see Sect. 5).

1. Definitions and Main Results

1.1. Basic definitions and notation. Throughout the paper we assume that� is a bounded
open connected subset (domain) of the d-dimensional Euclidean space R

d and that
d � 2.

We shall be using the following notation.

• ωd is the volume of the unit ball in R
d and Cd,W := (2π)−d ωd is the standard Weyl

constant.
• If x = (x1, . . . , xd) ∈ R

d then x′ := (x1, . . . , xd−1) so that x = (x′, xd).
• � and ∂� are the closure and the boundary of �.
• µd(�) denotes the d-dimensional volume of � and D� := diam� .
• dist(�1, �2) := inf

x∈�1, y∈�2
|x − y| is the standard Euclidean distance.

• �b
ε := {x ∈ � | dist(x, ∂�) � ε} .

• C is the space of continuous functions.
• If �′ is a (d − 1)-dimensional domain, f ∈ C(�′), b ∈ R and α ∈ (0, 1] then

�f := {x ∈ R
d | xd = f (x′), x′ ∈ �′} ,

Gf := {x ∈ R
d | xd < f (x′), x′ ∈ �′} ,

Gf, b := {x ∈ Gf | xd > b} ,

Osc (f,�′) := 1
2

(
sup
x∈�′

f (x)− inf
x∈�′ f (x)

)
and |f |α := sup

x, y∈�′
|f (x)−f (y)|

|x−y|α .
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• Q
(n)
a is the open n-dimensional cube with edges of length a parallel to the coordinate

axes. If the size or the dimension of the cubeQ(n)
a is not important for our purposes or

evident from the context then we shall omit the corresponding index a or n. However,
we shall always be assuming that the cube is open and that its edges are parallel to
the coordinate axes.

• Lipα is the space of functions f on a cube Q such that |f |α < ∞ and lipα is the
closure of Lip1 in Lipα with respect to the seminorm | · |α .

Definition 1.1. Given a bounded function f on the cube Q(n) and δ > 0, we shall
denote by Vδ(f,Q(n)) the maximal number of disjoint cubes Q(n)(i) ⊂ Q(n) such that
Osc (f,Q(n)(i)) � δ for each i. If Osc (f,Q(n)) < δ then we define Vδ(f,Q(n)) := 1 .

Definition 1.2. If τ is a positive nondecreasing function on (0,+∞) , let BVτ,∞(Q)
be the space spanned by all continuous functions f on Q such that V1/t (f,Q) � τ(t)

for all t > 0 .

We shall briefly discuss the relation between BVτ,∞(Q) and known function spaces
in Subsect. 5.3.

Let X be a space of continuous real-valued functions defined on a cube Q(d−1) .
We shall say that � belongs to the class X and write � ∈ X if for each z ∈ ∂� there
exists a neighbourhood Oz of the point z , a linear orthogonal map U : R

d → R
d , a

cube Q(d−1)
a ⊂ Q(d−1) , a function f ∈ X and b ∈ R such that U(Oz

⋂
�) = {x ∈

Gf, b | x′ ∈ Q(d−1)
a } .

Since ∂� is compact, for every bounded set � ∈ BVτ,∞ there exists a finite collec-
tion of domains �l ⊂ � , l ∈ L , such that

(a) ∂� ⊂ ⋃
l∈L�l ;

(b) for each l we have Ul(�l) = Gfl, bl , where Ul : R
d → R

d is a linear orthogonal

map, fl ∈ BVτ,∞(Q(d−1)
al ) and bl < inf fl ;

(c) al � D� and sup fl − bl � D� for all l ∈ L.

Let us fix such a collection {�l}l∈L and denote n� := #L and

C�, τ :=
∑

l∈L
sup
t>0

(
V1/t (fl,Q

(d−1)
al

)/τ (t)
)
.

Let δ� be the largest positive number such that �b
δ�

⊂ ⋃
l∈L�l , δ� �

√
d al and

2δ� � inf fl − bl for all l ∈ L.

1.2. Main results. Throughout the paper we shall denote byCd various constants depend-
ing only on the dimension d . Constants appearing in the most important estimates are
numbered by an additional lower index; in our opinion, this makes our proofs more
transparent. Their precise (but not necessarily best possible) values are given in Sect. 6.

Theorem 1.3. If � ∈ BVτ,∞ and λ � δ−1
� then

|NN(�, λ)− Cd,W µd(�) λ
d | � Cd,9 C�,τ n

1/2
� λ

∫ C� λ

(2D�)−1
t−2 τ(t) dt

+ Cd,10 n� λ
d−1

∫ C� λ

0
µd(�

b
t−1) dt , (1.1)
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where C� := 4Cd,8 n
1/2
� . If, in addition, � ⊂ R

2 then there exists a positive constant
c independent of � such that

|NN(�, λ)− (4π)−1µ2(�) λ
2 | � c C�,τ τ (c n

1/2
� λ)

+ c n� λ

(

D� +
∫ c n

1/2
� λ

0
µ2(�

b
t−1) dt

)

, ∀λ � δ−1
� . (1.2)

Remark 1.4. For each continuous function f on a closed cube there exists a positive
nondecreasing function τ such that f ∈ BVτ,∞ . Therefore Theorem 1.3 allows one to
obtain an estimate of the form (1.1) for every domain � ∈ C . In particular, this implies
the following well known result: if � ∈ C then the essential spectrum of the Neumann
Laplacian on � is empty.

The next two corollaries are simple consequences of Theorem 1.3.

Corollary 1.5. If � ∈ BVτ,∞ then there exists a constant C� such that

|NN(�, λ)− Cd,W µd(�) λ
d |

� C� λ
d−1

∫ C�λ

C−1
�

(
t−1 + t−d τ (t)

)
dt , ∀λ � C� . (1.3)

Corollary 1.6. If α ∈ (0, 1) and � ∈ Lipα then

NN(�, λ) = Cd,W µd(�) λ
d + O

(
λ(d−1)/α

)
, λ → +∞. (1.4)

If α ∈ (0, 1) and � ∈ lipα then

NN(�, λ) = Cd,W µd(�) λ
d + o

(
λ(d−1)/α

)
, λ → +∞. (1.5)

Remark 1.7. If α � 1 − d−1 then the asymptotic formula (1.4) turns into the esti-
mate NN(�, λ) = O

(
λ(d−1)/α

)
. Similarly, if α < 1 − d−1 then (1.5) takes the form

NN(�, λ) = o
(
λ(d−1)/α

)
.

The following estimates for the Dirichlet Laplacian are much simpler. The inequality
(1.6) seems to be new but results of this type are known to experts. Corollary 1.9 is an
immediate consequence of Theorem 1.8; (1.7) also follows from (0.2).

Theorem 1.8. For all λ > 0 we have

|ND(�, λ)− Cd,W µd(�) λ
d | � Cd,11 λ

d−1
∫ λ

0
µd(�

b
t−1) dt . (1.6)

Corollary 1.9. If α ∈ (0, 1) and � ∈ Lipα then

ND(�, λ) = Cd,W µd(�) λ
d + O

(
λd−α

)
, λ → +∞. (1.7)

If α ∈ (0, 1) and � ∈ lipα then

ND(�, λ) = Cd,W µd(�) λ
d + o

(
λd−α

)
, λ → +∞. (1.8)

Note that (d−1)/α > d−α whenever α ∈ (0, 1) . Therefore the remainder estimate
in Corollary 1.9 is better than that in Corollary 1.6. The following theorem shows that
the asymptotic formulae (1.4) and (1.5) are order sharp.
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Theorem 1.10. Let α ∈ (0, 1). Then

(1) there exist a bounded domain � ∈ Lipα and a positive constant C� such that
NN(�, λ) � Cd,W µd(�) λ

d + C−1
� λ(d−1)/α for all λ > C� ;

(2) for each nonnegative function φ on (0,+∞) vanishing at +∞ there exist a bounded
domain � ∈ lipα and a positive constant Cφ,� such that
NN(�, λ) � Cd,W µd(�)λ

d + C−1
φ,� φ(λ) λ

(d−1)/α for all λ > Cφ,� .

Remark 1.11. In [BD] the authors proved that

0 < K�,N(t, x, y) � C� t
−(α+d−1)/(2α) , ∀x, y ∈ �, ∀t ∈ (0, 1], (1.9)

whenever � ∈ Lipα and α ∈ (0, 1) , where K�,N is the heat kernel of the Neumann
Laplacian on � and C� is a constant depending on � . The estimate (1.9) is order sharp
as t → 0 (see [BD], Example 6). Corollary 1.6 implies that there exists a constant C′

�
such that

∫

�

K�,N(t, x, x) dx � C′
� (t

−d/2 + t−(d−1)/(2α)) , ∀t ∈ (0, 1].

In view of Theorem 1.10, this estimate is also order sharp. Since d/2 < (α+d−1)/(2α)
and (d − 1)/(2α) < (α + d − 1)/(2α) , we see that integration of the heat kernel
K�,N(t, x, x) improves its asymptotic properties.

1.3. Further definitions and notation. In the rest of the paper

• #T denotes the number of elements of the set T .
• If {T (i)}i∈I is a finite family of sets T (i) and T := ⋃

i∈I T (i) then

ℵ{T (i)} := sup
x∈T

(#{i ∈ I | x ∈ T (i)}) ,

in other words, ℵ{T (i)} is the multiplicity of the covering {T (i)}i∈I .
• If s ∈ R+ then [s] is the entire part of s .
• supp f and ∇f denote the support and gradient of the function f .

The paper is organised as follows. In the next section we recall some well known
results from spectral theory and estimate the counting function on ‘model’ domains. In
Sect. 3 we discuss partitions of the domain � . In Sect. 4 we deduce the main theorems
from the results of Sects. 2 and 3. In the last section we extend our results to a wider
class of domains and higher order operators and discuss other possible generalizations.

2. Variational Formulae and Related Results

Recall that the Sobolev space W 1,2(�) is the space of functions u ∈ L2(�) such that
∇u ∈ L2(�), endowed with the norm

‖u‖W 1,2(�) = (‖∇u‖2
L2(�)

+ ‖u‖2
L2(�)

)1/2.

If ϒ is a subset of ∂�, let W 1,2
0,ϒ (�) be the closure in W 1,2(�) of the set

{f ∈ W 1,2(�) | supp f
⋂
ϒ = ∅}
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and W 1,2
0 (�) := W

1,2
0,∂�(�). Obviously, W 1,2

0,∅ (�) = W 1,2(�).
Let

NN,D(�,ϒ, λ) := sup(dimEλ), (2.1)

where the supremum is taken over all subspaces Eλ ⊂ W
1,2
0,ϒ (�) such that

‖∇u‖2
L2(�)

< λ2 ‖u‖2
L2(�)

, ∀u ∈ Eλ . (2.2)

In view of the Rayleigh–Ritz variational formula,NN,D(�,ϒ, λ) can be thought of as the
counting function of the Laplacian on the bounded domain� subject to Dirichlet bound-
ary condition onϒ and Neumann boundary condition on the remaining part of the bound-
ary. In particular, NN,D(�,∅, λ) = NN(�, λ) and NN,D(�, ∂�, λ) = ND(�, λ) .
Equivalently, (2.1) can be rewritten as

NN,D(�,ϒ, λ) = inf(codim Ẽλ), (2.3)

where the infimum is taken over all subspaces Ẽλ ⊂ W
1,2
0,ϒ (�) such that

‖∇u‖2
L2(�)

� λ2 ‖u‖2
L2(�)

, ∀u ∈ Ẽλ . (2.4)

Lemma 2.1. Let {�i}i∈I be a countable family of disjoint open sets �j ⊂ � such that
µd(�) = µd(

⋃
i∈I �i). Then

∑

i∈I
ND(�i, λ) � ND(�, λ) � NN(�, λ) �

∑

i∈I
NN(�i, λ)

and NN(�, λ) �
∑
j∈J NN,D(�j , ∂�j \ ∂�, λ) .

Lemma 2.1 is an elementary corollary of the Rayleigh–Ritz formula. The following
lemma is less obvious.

Lemma 2.2. Let {�i}i∈I be a countable family of open sets�j ⊂ � such that µd(�) =
µd(

⋃
i∈I �i) , ϒ be an arbitrary subset of ∂� and ϒj := ∂�j

⋂
ϒ . If ℵ{�j } �

κ < +∞ then NN,D(�,ϒ,κ
−1/2λ) �

∑
j∈J NN,D(�j ,ϒj , λ).

Proof. Denote by Ẽλ,j,� the subspace of functions u ∈ W 1,2
0,ϒ (�) such that ‖∇u‖2

L2(�j )

� λ2 ‖u‖2
L2(�j )

. We have κ ‖∇u‖2
L2(�)

� λ2 ‖u‖2
L2(�)

whenever u ∈ ⋂
j∈J Ẽλ,j,� .

Therefore, by (2.3),

NN(�,κ
−1/2λ) ≤ inf(codim

⋂

j∈J
Ẽλ,j,�) ≤

∑

j∈J
inf(codim Ẽλ,j,�),

where the infimum are taken over all subspaces Ẽλ,j,� satisfying the above condi-
tion. If Ẽλ,j is the intersection of the kernels of linear continuous functionals �k on
W

1,2
0,ϒj

(�k) and Eλ,j,� is the intersection of the kernels of linear continuous function-

als u → �k(u|�j ) on W 1,2
0,ϒ (�) then codim Ẽλ,j � codimEλ,j,� and u|�j ∈ Ẽλ,j

whenever u ∈ Eλ,j,�. This observation and (2.3) imply that inf(codim Ẽλ,j,�) ≤
NN,D(�j ,ϒj , λ). ��
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Remark 2.3. Lemma 2.2 implies that NN(�,κ
−1/2λ) �

∑
j∈J NN(�j , λ) whenever

⋃
j∈J �j ⊂ �, µd(�) = µd(

⋃
i∈I �i) and ℵ{�j } � κ . It may well be the case that,

under these conditions, NN(�, λ) �
∑
j∈J NN(�j , λ) . This conjecture looks plausi-

ble and is equivalent to the following statement: if �1 ⊂ �, �2 ⊂ � and µd(�) =
µd(�1)+ µd(�2) then NN(�1, λ)+NN(�2, λ) � NN(�, λ).

Remark 2.4. The first eigenvalue of the Neumann Laplacian −�N is always equal to 0
and the corresponding eigenfunction is identically equal to constant. Let λ1,N(�) :=
inf{λ ∈ R+ |NN(�, λ) > 1} ; if −�N has at least two eigenvalues lying below its
essential spectrum (or the essential spectrum is empty) then λ1,N(�) coincides with
the smallest nonzero eigenvalue of the operator

√−�N . By the spectral theorem, we
have λ1,N(�) � λ if and only if

∫
�

|u(x)|2 dx � λ−2
∫
�

|∇u(x)|2 dx for all functions
u ∈ W 1,2(�) such that

∫
�
u(x) dx = 0 . Note that

∫
�

|u(x)|2 dx �
∫
�

|u(x)− c|2 dx
for all c ∈ C whenever

∫
�
u(x) dx = 0.

Definition 2.5. Denote by P(δ) the set of all rectangles with edges parallel to the coor-
dinate axes, such that the length of the maximal edge does not exceed δ . If f is a
continuous function on Q(d−1), let V(δ, f ) be the class of domains V ⊂ Gf which

can be represented in the form V = Gf, b(Q
(d−1)
c ) , where Q(d−1)

c ⊂ Q(d−1) , c � δ ,

b = inf f − δ and Osc (f,Q(d−1)
c ) � δ/2 . We shall write V ∈ V(δ) if V ∈ V(δ, f )

for some continuous function f . Finally, let M(δ) be the class of open sets M ⊂ R
d

such that M ⊂ Q
(d)
δ for some cube Q(d)

δ .

Lemma 2.6. Let δ be an arbitrary positive number.

(1) If P ∈ P(δ) then NN(P, λ) = 1 for all λ � πδ−1.
(2) If V ∈ V(δ) then NN(V , λ) = 1 for all λ � (1 + 2π−2)−1/2δ−1.
(3) If M ∈ M(δ) , M ⊂ Q

(d)
δ and ϒ := ∂M

⋂
Q
(d)
δ , then we have NN,D(M,ϒ, λ) �

1 for all λ � πδ−1 and NN,D(M,ϒ, λ) = 0 for all λ � (2−1 −2−1δ−dµd(M))1/2
πδ−1 .

Proof. If P is a rectangle then λ1,N = π a−1 , where a is the length of its maximal
edge. This implies (1).

Assume now that V ∈ V(δ, f ) , where f is a continuous function on Q
(d−1)
c

and denote b := inf f − δ and P := Q
(d−1)
c × (b, b + δ) . Clearly, P ∈ P(δ) . Let

u ∈ W 1,2(V ) and c′u the average of u over P . If r ∈ [b, b+δ] and s ∈ [b+δ, f (x′)]
then, by Jensen’s inequality,

|u(x′, s)− u(x′, r)|2 = |
∫ s

r

∂t u(x
′, t) dt |2 � (s − r)

∫ f (x′)

b

|∂t u(x′, t)|2 dt .

Since
∫ b+δ
b

∫ f
b+δ(s − r) ds dr = (δ/2) (f − b − δ) (f − b) and

0 � f − b − δ = f − inf f � 2 Osc (f,Q(d−1)
c ) � δ ,

we have
∫ g(x′)

b

∫ f (x′)

g(x′)
|u(x′, s)− u(x′, r)|2 ds dr � δ3

∫ f (x′)

b

|∂t u(x′, t)|2 dt .
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In view of Remark 2.4 and (1), we also have

∫

P

|u(x)− c′u|2 dx � π−2 δ2
∫

P

|∇u(x)|2 dx. (2.5)

Integrating the inequality

|u(x′, s)− c′u|2 � (1 + γ ) |u(x′, r)− c′u|2 + (1 + γ−1) |u(x′, s)− u(x′, r)|2

over r ∈ [b, b+ δ] , s ∈ [b+ δ, f (x′)] and x′ ∈ �′ and applying these two estimates,
we obtain

δ

∫

V \P
|u(x)− c′u|2 dx � (1 + γ ) π−2 δ3

∫

P

|∇u(x)|2 dx

+(1 + γ−1) δ3
∫

V

|∂xd u(x)|2 dx

for all γ > 0 . Dividing both sides by δ and substituting γ = π2 , we see that∫
V \P |u(x) − c′u|2 dx is estimated by (1 + π−2) δ2

∫
V

|∇u(x)|2 dx . Now (2) follows
from (2.5) and Remark 2.4.

In order to prove (3), let us consider a function u ∈ W 1,2(M) which vanishes near
ϒ and extend it by zero to the whole cube Q(d)

δ . Since u ∈ W 1,2(Q
(d)
δ ) , (1) implies

the first inequality (3). If cu is the average of u over Q(d)
δ then

∫

M

|cu|2 dx � µd(M) δ
−d
(∫

M

|cu|2 dx +
∫

Q
(d)
δ

|u(x)− cu|2 dx

)

. (2.6)

Therefore Remark 2.4 and (1) imply that

∫

M

|u(x)|2 dx � 2
∫

Q
(d)
δ

|u(x)− cu|2 dx + 2
∫

M

|cu|2 dx

� 2

(

1 + µd(M) δ
−d
(

1 − µd(M) δ
−d
)−1

)∫

Q
(d)
δ

|u(x)− cu|2 dx

� 2π−2 δ2
(

1 − µd(M) δ
−d
)−1

∫

M

|∇u(x)|2 dx .

The second identity (3) follows from the above inequality and the Rayleigh–Ritz
formula. ��

Remark 2.7. The second estimate in Lemma 2.6(3) is sufficient for our purposes but is
very rough. One can obtain a much more precise result in terms of capacities (see [M2],
Chap. 10, Sect. 1).

Lemma 2.8. Let δ > 0 . Then for all λ > 0 we have

−Cd,1
(
(δλ)d−1 + 1

)
� N(Q

(d)
δ , λ)− Cd,W (δλ)

d � Cd,1

(
(δλ)d−1 + 1

)
.
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Proof. Changing variables x̃ = δ x, we see that

N(�, δλ) = N(δ�, λ) , where δ� := {x ∈ R
d | δ−1x ∈ �} . (2.7)

Therefore it is sufficient to prove the required estimates only for δ = 1 . If � = �′×�′′ ,
ϒ ′ ⊂ ∂�′ and ϒ ′′ ⊂ ∂�′′ then, separating variables, we obtain

NN,D(�,ϒ, λ) =
∫

NN,D

(
�′, ϒ ′,

√
λ2 − µ2

)
dNN,D(�

′′, ϒ ′′, µ) , (2.8)

where ϒ = (ϒ ′ × ∂�′′)
⋃
(∂�′ × ϒ ′′) and the right-hand side is a Stieltjes integral.

Using (2.8), explicit formulae for the counting functions on the unit interval and the
identities

∫ λ

0
(λ2 − µ2)n/2 dµ = λn+1 ωn+1 (2ωn)

−1 , ∀n = 1, 2, . . . , (2.9)

one can easily prove the required inequality by induction in d . ��
Remark 2.9. Lemma 2.8 is an immediate consequence of well known results on spectral
asymptotics in domains with piecewise smooth boundaries (see, for example, [Iv2 or
F]); a similar result holds true for higher order elliptic operators and operators with var-
iable coefficients [V]. We have given an independent proof in order to find the explicit
constant Cd,1 .

3. Properties of Domains and Their Partitions

3.1. Besicovitch’s and Whitney’s theorems. We shall use the following version of Besi-
covitch’s theorem.

Theorem 3.1. There are two constants Cn � 1 and Ĉn � 1 depending only on the
dimension n, such that for every compact set K ⊂ R

n and every positive function ρ on
K one can find a finite subset Y ⊂ K and a family of cubes {Q(n)

ρ(y)[y]}y∈Y centred on
y, which satisfy the following conditions:

(1) K ⊂ ⋃
y∈Y Q

(n)
ρ(y)[y] ,

(2) ℵ{K⋂Q
(n)
ρ(y)[y]}y∈Y � Cn ;

(3) there exists a subset Ŷ ⊂ Y such that #Y � Ĉn(#Ŷ) and the cubes {Q(n)
ρ(y)[y]}

y∈Ŷ
are mutually disjoint.

Theorem 3.1 is proved in the same way as Besicovitch’s theorem in [G], Chap. 1.

Corollary 3.2. Let f be a continuous function on the closure Q(d−1). Then for every
ε > 0 there exists a finite family of cubes {Q(d−1)(x)}x∈X such that

(1)
⋃
x∈X Q(d−1)(x) = Q(d−1);

(2) ℵ{Q(d−1)(x)} � Cd,2;

(3) #X � Cd,3 Vε(f,Q(d−1));
(4) Osc (f,Q(d−1)(x)) � ε for each x ∈ X .
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Proof. Without loss of generality we can assume that Q(d−1) = (−1, 1)d−1 and Osc
(f,Q(d−1)) > ε. Let us denote by Q(d−1)

t [y] the cube of the size t centred on y , define

ρ(y) := inf{t > 0 | Osc (f,Q(d−1)
⋂
Q
(d−1)
t [y]) = ε} , y ∈ Q(d−1) ,

apply Besicovitch’s theorem to the setK = Q(d−1) and find the sets Y and Ŷ . If y ∈ Y ,
denote P (d−1)[y] := Q(d−1)⋂Q

(d−1)
ρ(y) [y] and assume that

P (d−1)[y] = (a1(y), b1(y))× (a2(y), b2(y))× · · · × (ad−1(y), bd−1(y)) ,

where −1 � aj (y) < bj (y) � 1 . LetQ′(y) be the minimal cube such thatP (d−1)(x) ⊂
Q′(y) ⊂ Q(d−1) and c(y) := maxj (bj (y)− aj (y)). We have

Q′(y) = (a′
1(y), b

′
1(y))× (a′

2(y), b
′
2(y))× · · · × (a′

d−1(y), b
′
d−1(y)) ,

where

(-1) if aj (y) = −1 then a′
j (y) = −1 and b′

j (y) = aj (y)+ c(y);
(0) if aj (y) > −1 and bj (y) < 1 then a′

j (y) = aj (y) and b′
j (y) = bj (y);

(+1) if bj (y) = 1 then a′
j (y) = bj (y)− c(y) and b′

j (y) = 1.

Let us consider the set � = {−1, 0, 1}d−1 of all (d − 1)-dimensional vectors
σ = (σ1, . . . , σd−1) with entries σj equal to −1, 0 or 1. Denote by Ŷσ the set of points
y ∈ Ŷ such that aj (y) and bj (y) satisfy the condition (σj ) for all j = 1, . . . , d−1. Since
ℵ{P (d−1)[y]}

y∈Ŷ = 1, for each σ ∈ � the cubes {Q′(y)}
y∈Ŷσ = 1 are mutually disjoint.

Therefore #Ŷσ � Vε(f,Q(d−1)) for all σ ∈ � (see Definition 1.1) and, consequently,
#Ŷ � (#�)Vε(f,Q(d−1)) � 3d−1 Vε(f,Q(d−1)) . This estimate and Theorem 3.1(3)
imply that #Y � 3d−1 Ĉd−1 Vε(f,Q(d−1)) .

Since Y ⊂ Q(d−1) , we have 1/2 � (bj (y)− aj (y))
−1(bk(y)− ak(y)) � 2 for all

j, k = 1, . . . , d−1 and y ∈ Y . Using this inequality, one can easily show by induction
in d that every rectangle P (d−1)[y] coincides with the union of a finite collection of
cubes {Q(d−1)(x)}x∈Xy

such that #Xy � 2d−1 and ℵ{Q(d−1)(x)}x∈Xy
� 2d−1 .

Let X := ⋃
y∈Y Xy . In view of the first two conditions of Theorem 3.1, the family

{Q(d−1)(x)}x∈X satisfies (1) and (2). The upper bound #Y � 3d−1 Ĉd−1 Vε(f,Q(d−1))

implies (3). Finally, since Osc (f, P (d−1)[y]) = ε and Q(d−1)(x) ⊂ P (d−1)[y] when-
ever x ∈ Xy , we have (4). ��

The following theorem is due to Whitney. It can be found, for example, in [St],
Chap. VI, or [G], Chap. 1.

Theorem 3.3. There exists a countable family of mutually disjoint cubes

{Q(d)

2−i (i, n)}n∈N (i) , i∈I such that � = ⋃
i∈I

⋃
n∈Ni

Q
(d)

2−i (i, n) and

Q
(d)

2−i (i, n) ⊂ {x ∈ � |
√
d 2−i � dist(x, ∂�) � 4

√
d 2−i} . (3.1)

Here I is a subset of Z and Ni are some finite index sets.
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3.2. Auxiliary results. In this subsection we shall prove several technical results con-
cerning domains Gf, b .

Lemma 3.4. Let f be a continuous function defined on the closure Q(d−1)
a . Then for

every δ > 0 andm ∈ Z+ there exists a finite family of cubes {Q(d−1)(k)}k∈Km
such that

(1)
⋃
k∈Km

Q(d−1)(k) = Q
(d−1)
a ;

(2) Q(d−1)(k) ∈ P(δ) for all k ∈ Km;
(3) ℵ{Q(d−1)(k)}k∈Km

� Cd,2;
(4) Osc (f,Q(d−1)(k)) � 2m−1δ for all k ∈ Km;
(5) #{k ∈ Km | µd−1(Q

(d−1)(k)) � 21−d δd−1} � Cd,3 V2m−1δ(f,Q
(d−1)
a ) .

Proof. Let {Q(d−1)(x)}x∈X be a family of cubes satisfying the conditions of Corol-
lary 3.2 with ε = 2m−1δ. Assume that Q(d−1)(x) = Q

(d−1)
ax with some ax > 0 and

denote byXδ the set of all indicesx ∈ X such thatax � δ. For eachx ∈ X \Xδ , we choose
a positive integer mx such that ax/mx ∈ (δ/2, δ] and split the closed cube Q(d−1)(x)

into the union of md−1
x congruent closed cubes Q(d−1)

ax/mx
(x, j), j = 1, . . . , md−1

x . Let

Q
(d−1)
ax/mx

(x, j) be the corresponding disjoint open cubes and

{Q(d−1)(k)}k∈K := {Q(d−1)(k)}x∈Xδ

⋃
{Q(d−1)

ax/mx
(x, j)}

x∈X \Xδ, j=1,... ,md−1
x
.

Then (2) holds true and (1), (3), (4) and (5) follow from Corollary 3.2(1), Corollary 3.2(2),
Corollary 3.2(4) and Corollary 3.2(3) respectively. ��

Theorem 3.5. Let f be a continuous function on Q(d−1)
a , δ ∈ (0,

√
d a] and b ∈

[−∞, inf f − 2δ] . Then there exist countable families of sets {Pj }j∈J and {Vk}k∈K
satisfying the following conditions:

(1) Pj ⊂ Gf,b and Pj ∈ P(δ) for all j ∈ J ;
(2) Vk ⊂ Gf,b and Vk ∈ V(δ, f ) for all k ∈ K;
(3) ℵ{Pj } � 3Cd,2 + 1 and ℵ{Vk} � Cd,2;
(4) Gf,b ⊂ ⋃

j∈J , k∈K
(
Pj
⋃
Vk
)
;

(5) #{k ∈ K | µd(Vk) � 21−d δd} � Cd,3 Vδ/2(f,Q(d−1)
a ) and

#{j ∈ J | µd(Pj ) � (2
√
d)−d δd} � Cd,3

∑mδ
m=0 2m V2m−1δ(f,Q

(d−1)
a ) ,

where mδ := min {m ∈ Z+ | 2m−1δ � Osc (f,Q(d−1)
a )} .

Proof. Let {Q(d−1)(k)}k∈Km
be the same families of cubes as in Lemma 3.4, ck :=

infx∈Q(d−1)(k) f (x), bk = ck − δ , Vk := Gf,bk (Q
(d−1)(k)) and

Pm,k,n := Q(d−1)(k)× (ck − nδ, ck − nδ + δ) ,

where k ∈ ⋃mKm andn ∈ Z+. DenoteNm := {2m+1, . . . , 2m+2m+1} . Lemma 3.4(4)
implies that

⋃

k∈Km,n∈Nm

Pm,k,n ⊂ {x ∈ Gf | 2mδ � f (x′)− xd � 2m+2δ} , (3.2)

for all m = 0, 1, . . . , mδ . Let K := K0 , J∗ := ⋃mδ
m=0 Km × Nm and {Pj }j∗∈J∗ :=

⋃mδ
m=0{Pm,k,n}k∈Km,n∈Nm

.
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Assume that x ∈ Gf . If f (x′) − xd � 2δ then, by Lemma 3.4(1), we have x ∈
⋃
k∈K

(
Vk
⋃
P0,k,2

)
. If f (x′)− xd > 2mδ+1δ then

dist(x, �f ) � f (x′)− xd − 2 Osc (f,Q(d−1)
a ) � f (x′)− xd − 2mδδ > 2mδδ � δ.

Finally, if 2δ � f (x′) − xd � 2mδ+1δ then 2m+1δ � f (x′) − xd � 2m+1δ + 2mδ for
some nonnegative integer m � mδ and, in view of Lemma 3.4(1) and Lemma 3.4(4),
we have x ∈ ⋃k∈Km,n∈Nm

Pm,k,n. Therefore

{x ∈ Gf | dist(x, �f ) � δ} ⊂
⋃

j∗∈J∗, k∈K

(
Pj∗

⋃
Vk

)
. (3.3)

Let us choose a constant c ∈ (δ/(2√
d), δ/

√
d] in such a way that a/c ∈ N and split

the set Q(d−1)
a × [b,+∞) into the union of congruent closed cubes Q(d−1)

c (i) whose
interiors Q(d−1)

c (i) are mutually disjoint. Let {Pj }j∈J be the collection of all the rect-

angles Pj∗ and all the cubes Q(d−1)
c (i) which are contained in Gf,b . Then (1) and (2)

are obvious. The second inequality (3) and (5) follow from the corresponding statements
of Lemma 3.4. The first inequality (3) is a consequence of (3.2), Lemma 3.4(3) and the
identity ℵ {[2m, 2m+2]

}
i∈Z+ = 3. It remains to prove (4).

Let x ∈ Gf . If dist(x, �f ) � δ then, by (3.3), either x ∈ Vk for some k ∈ K or
x ∈ Pj∗ for some j∗ ∈ J ∗ . Since Pj∗ ∈ P(δ) and b � inf f − 2δ , in the latter case

Pj∗ ⊂ Gf,b . If dist(x, �f ) > δ then the cube Q(d−1)
c (i) , whose closure contains x , is

a subset of Gf,b because its diameter does not exceed δ . Therefore (4) holds true. ��
In the two dimensional case we also have the following, more precise result.

Theorem 3.6. Let the conditions of Theorem 3.5 be fulfilled and d = 2 . Then there
exists countable families of sets {Pj }j∈J and {Vk}k∈K such that

(1) Pj ⊂ Gf,b and Pj ∈ P(δ) for all j ∈ J ;
(2) Vk ⊂ Gf,b and Vk ∈ V(δ, f ) for all k ∈ K;
(3) ℵ ({Pj }j∈J

⋃{Vk}k∈K
)

� 2;
(4) Gf,b ⊂ ⋃

j∈J , k∈K
(
Pj
⋃
Vk
)
;

(5) #{k ∈ K | µ2(Vk) � δ2/2} � Vδ/2(f,Q(1)
a ) and

#{j ∈ J | µ2(Pj ) � δ2/8} � 6 Vδ/2(f,Q(1)
a )+ 12a/δ .

Proof. In the two dimensional case we do not need Besicovitch’s theorem because the
‘cube’ Q(1)

a coincides with an interval of the form (b, b+a) . Given ε > 0 , one can eas-
ily construct a finite family {Q(1)(x)}x∈X of disjoint subintervals Q(1)(x) ∈ (a, a+b)
satisfying the conditions (1)–(4) of Corollary 3.2 with Cd,2 = Cd,3 = 1 . Therefore
Lemma 3.4 remains valid if we substitute Cd,2 = Cd,3 = 1 .

Let k ∈ K := X and bk , Q(1)(k) and Vk = Gf,bk (Q
(1)(k)) be the same as in the

proof of Theorem 3.5. By the above, the first inequality in Theorem 3.5(5) holds true
with Cd,3 = 1 . Therefore #K � Vδ/2(f,Q(1)

a )+2a/δ (the second term is the maximal
number of intervals Q(1)(k) whose length exceeds δ/2 ).

Let Vf := ⋃
k∈K Vk . The set Gf \ Vf is a polygon with edges parallel to coor-

dinate axes which has at most 2 Vδ/2(f,Q(1)
a ) vertices lying on the horizontal lines
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{x | x1 ∈ Q
(1)
a , x2 = bk} . Let us choose a constant c ∈ (δ/2, δ] in such a way that

a/c ∈ N and split the interval Q(1)
a into the union of a/c intervals (al, al+1) of length

c ; if a < δ then we take (a1, a2) := Q
(1)
a . Denote

K′
l := {k ∈ K | [al−2, al+3]

⋂
Q(1)(k) �= ∅} , bk, l := min

k∈K′
l

bk ,

and Pk, l := (al, al+1) × (bk, b
′
k) , where b′

k := min{bk′ | bk′ > bk, k
′ ∈ K′

l} ; we
assume that Pk, l := ∅ whenever bk = max{bk′ | k′ ∈ K′

l} .
We have dist(x, �f ) > δ whenever x1 ∈ [al, al+1] and x2 < bk, l . Therefore

{x ∈ Gf \ Vf | dist(x, �f ) � δ, x1 ∈ [al, al+1]} ⊂
⋃

k∈K′
l

Pk, l

and, consequently, (3.3) holds true with J∗ := ⋃
l K′

l and {Pj∗}j∗∈J∗ := ⋃
l{Pk, l}k∈K′

l
.

For each fixed l the number of rectangles Pk, l does not exceed #K′
l − 1 . We also have

∑
l (#K′

l − 1) � 6 (#K) because each point x1 ∈ Q(1)
a belongs to at most six intervals

[al−2, al+3] . Therefore

#J∗ � 6 (#K) � 6 Vδ/2(f,Q(1)
a )+ 12a/δ .

The rest of the proof repeats that of Theorem 3.5. ��

3.3. General domains. We shall need the following elementary lemma.

Lemma 3.7. Let h be a real-valued function on R+ and 0 < a � b . If the function
th(t) is nondecreasing then

∑

i∈Z | a� 2i � b

h(2i ) � 2
∫ 2b

a

t−1 h(t) dt .

Proof. We have
∑
a� 2i � b h(2

i ) = 2
∑
a� 2i � b(2

−i − 2−i−1) (2i ) h(2i ) . Since the

function h̃(s) = s−1 h(s−1) is decreasing, the right-hand side is estimated by

2
∫ a−1

(2b)−1 s
−1 h(s−1) ds = 2

∫ 2b
a
t−1 h(t) dt . ��

Corollary 3.8. Let � ∈ BVτ,∞. Then for each δ ∈ (0, δ�] there exist families of sets
{Pj }j∈J and {Vk}k∈K satisfying the following conditions:

(1) for each j there exists l ∈ L such that Pj ⊂ �l and Ul(Pj ) ∈ P(δ);
(2) for each k there exists l ∈ L such that Vk ⊂ �l and Ul(Vk) ∈ V(δ);
(3) ℵ{Pj } � n� (3Cd,2 + 1) and ℵ{Vk} � n� Cd,2;
(4) �b

δ0
⊂ ⋃

j∈J , k∈K

(
Pj
⋃
Vk
) ⊂ �b

δ1
,

(5) #K � Cd,3 C�, τ τ (2/δ)+ n� Cd,2 2d−1 δ−d µd(�b
δ1
) and

#J � 4Cd,3C�,τ δ
−1
∫ 4/δ

(2D�)−1
t−2τ(t)dt + n�(3Cd,2 + 1)(2

√
d)d δ−d µd(�b

δ1
) ,

where δ0 := δ/
√
d and δ1 := √

d δ + δ/
√
d .
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Proof. Let �l = U−1
l (Gfl, bl ) be the sets introduced in Subsect. 1.1. Given δ ∈ (0, δ�] ,

we apply Theorem 3.5 for each l ∈ L and denote by {Pj }j∈J (l) and {Vk}k∈K(l) the fam-
ilies of subsets of �l , which satisfy the conditions of Theorem 3.5 in an appropriate
orthogonal coordinate system.

Let J ′(l) := {j ∈ J (l) | dist(Pj , ∂�) � δ0} ,

{Pj }j∈J :=
⋃

l∈L
{Pj }j∈J ′(l) and {Vk}k∈K :=

⋃

l∈L
{Vk}k∈K(l) .

Then each of the conditions (1)–(3) is a consequence of the corresponding condition in
Theorem 3.5.

If x �∈ ⋃
l∈L�l then dist(x, ∂�) � δ� > δ0 . If x ∈ �l

⋂
�b
δ0

then, by Theo-

rem 3.5(4), we have x ∈ ⋃
j∈J (l), k∈K(l)

(
Pj
⋃
Vk
)
. In this case x ∈ ⋃

j∈J ′(l), k∈K(l)(
Pj
⋃
Vk
)

because diam Pj �
√
d δ .Therefore�b

δ0
is a subset of

⋃
j∈J , k∈K

(
Pj
⋃
Vk
)
.

The estimates supx∈Vk dist(x, ∂�) �
√
d δ and diam Pj �

√
d δ imply the second

inclusion (4).
In order to prove (5), let us denote by Mδ the smallest positive integer such that

2Mδ−1δ � D� . By Theorem 3.5(5), we have

#{j ∈
⋃

l∈L
J (l) | µd(Pj ) � 21−d δd} � Cd,3 C�, τ

Mδ∑

m=0

2m τ((2m−1δ)−1) .

Since 2Mδ−1δ � 2D� , applying Lemma 3.7 with a = (2D�)−1δ , b = 2 and h(t) =
t−1 τ(δ−1t) , we obtain

#{j ∈
⋃

l∈L
J (l) | µd(Pj ) � 21−d δd} � 4Cd,3 C�, τ δ

−1
∫ 4/δ

(2D�)−1
t−2 τ(t) dt .

Now the second estimate (5) follows from the first inequality (3) and the second inclu-
sion (4). Similarly, the first estimate (5) is a consequence of the second inequality (3),
the second inclusion (4) and the first inequality in Theorem 3.5(5). ��
Corollary 3.9. Let � ∈ BVτ,∞ and � ∈ R

2 . Then for each δ ∈ (0, δ�] there exist
families of sets {Pj }j∈J and {Vk}k∈K satisfying the conditions (1), (2) and (4) of Cor-
ollary 3.8 such that

(3′) ℵ ({Pj }j∈J
⋃{Vk}k∈K

)
� 2 n� ;

(5′) #K � C�,τ τ (2/δ)+ 2 n� δ−2 µ2(�
b
δ1
) and

#J � 6C�,τ τ (2/δ) + 12D�/δ + 16 n� δ−2 µ2(�
b
δ1
) .

Proof. The corollary is proved in the same way as Corollary 3.8, with the use of Theo-
rem 3.6 instead of Theorem 3.5. ��

Our proof of Theorem 1.8 is based on the following simple lemma.

Lemma 3.10. Let � be an arbitrary domain. Then for every δ > 0 there exists a family
of sets {Mk}k∈K satisfying the following conditions:

(1) Mk ⊂ � and Mk ∈ M(δ) for each k ∈ K ;
(2) ℵ{Mj } = 1 ;
(3) �b

δ0
⊂ ⋃

k∈K
Mk ⊂ �b

δ1
, where δ0 := δ/

√
d and δ1 := √

d δ + δ/
√
d .
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Proof. Consider an arbitrary cover of R
d by closed cubes Q(d)

δ (k) with disjoint interi-

ors Q(d)
δ (k) and define {Mk}k∈K := {�⋂Q

(d)
δ (k)}k∈K , where K is the set of indices

k such that �b
δ0

⋂
Q
(d)
δ (k) �= ∅ . ��

4. Spectral Asymptotics

4.1. Estimates of the counting function. In this section we shall always assume that
δ0 := δ/

√
d , δ1 := √

d δ + δ/
√
d and denote

R�(λ, δ1) := 3 (4
√
d)Cd,1

∫ ∞

δ1

(
s−1λd−1 + s−d

)
d(µd(�

b
s )) , (4.1)

where
∫ (
s−1λd−1 + s−d

)
d(µd(�b

s )) is understood as a Stieltjes integral.

Theorem 4.1. If � ∈ R
d is an arbitrary domain and δ > 0 then

N(�, λ)− Cd,W µd(�) λ
d � −R�(λ, δ1)− Cd,W µd(�

b
4δ1
) λd , ∀λ > 0 , (4.2)

and

ND(�, λ)− Cd,W µd(�) λ
d � R�(λ, δ1) + ((4d)d + 2) δ−d µd(�b

4δ1
) (4.3)

for all λ � δ−1 . If � ∈ BVτ,∞ and δ ∈ (0, δ�] then

NN(�, λ) − Cd,W µd(�) λ
d � R�(λ, δ1) + (4d)d δ−d µd(�b

4δ1
)

+ Cd,6 n� δ
−d µd(�b

δ1
) + 8Cd,3 C�, τ δ

−1
∫ 4/δ

(2D�)−1
t−2 τ(t) dt (4.4)

for all λ � min{1, C1/2
d,9 n

−1/2
� } δ−1 .

Proof. Let Q(d)

2−i (i, n) be the Whitney cubes introduced in Theorem 3.3,

I−
δ := {i ∈ I |

√
d 2−i � δ0/4} , I+

δ := {i ∈ I |
√
d 2−i > δ1} ,

I0
δ := I \ (I+

δ

⋃ I−
δ ) and �σδ := ⋃

i∈Iσδ
⋃
n∈Ni

Q
(d)

2−i (i, n), where σ = + , σ = 0

or σ = − . The set �σδ are mutually disjoint and � = �+
δ

⋃
�0
δ

⋃
�−
δ . By virtue of

(3.1),

�−
δ ⊂ �b

δ0
, �0

δ ⊂ �b
4δ1

\�b
δ0/4 , � \�b

4δ1
⊂ �+

δ ⊂ � \�b
δ1

(4.5)

and

#Ni � 2i d
(
µd(�

b
4
√
d 2−i )− µd(�

b√
d 2−i )

)
, ∀i ∈ I . (4.6)

In view of the second inclusion (4.5), we have
∑

i∈I0
δ

#Ni � (4
√
d δ−1

0 )d µd(�
b
4δ1
) = (4d)d δ−d µd(�b

4δ1
) . (4.7)
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Since ℵ{ [
√
d 2−i , 4

√
d 2−i] }i∈Z = 3 and �b

s = �b
D�

for all s � D� , the inequalities
(4.6) imply that

∑

i∈I+
δ

((2i )1−dλd−1 + 1) #Ni � 3 (4
√
d)

∫ ∞

δ1

(s−1λd−1 + s−d) d(µd(�
b
s )) (4.8)

for all λ > 0 .
By Lemma 2.1,

N(�, λ)− Cd,W µd(�) λ
d � −Cd,W µd(� \�+

δ ) λ
d

+
(
ND(�

+
δ , λ)− Cd,W µd(�

+
δ ) λ

d
)
, (4.9)

ND(�, λ)− Cd,W µd(�) λ
d � NN,D(� \�+

δ , ∂�, λ)

+
(
NN(�

+
δ , λ)− Cd,W µd(�

+
δ ) λ

d
)

(4.10)

and

NN(�, λ)− Cd,W µd(�) λ
d � NN(� \�+

δ , λ)

+
(
NN(�

+
δ , λ)− Cd,W µd(�

+
δ ) λ

d
)
. (4.11)

Lemma 2.1 implies that
∑

n∈Ni , i∈I+
δ

(
ND(Q

(d)

2−i (i, n), λ)− Cd,W (2
−iλ)d

)
� N(�+

δ , λ)− Cd,W µd(�
+
δ ) λ

d

�
∑

n∈Ni , i∈I+
δ

(
NN(Q

(d)

2−i (i, n), λ)− Cd,W (2
−iλ)d

)
.

In view of Lemma 2.8, the right- and left-hand sides are estimated from below and above
by ±Cd,1

∑
i∈I+

δ

(
(2i )1−dλd−1 + 1

)
#Ni . Therefore, by (4.8),

|N(�+
δ , λ)− Cd,W µd(�

+
δ ) λ

d | � R�(λ, δ1) , ∀λ > 0 . (4.12)

Since � \�b
4δ1

⊂ �+
δ , the lower bound (4.2) is an immediate consequence of (4.9) and

(4.12).
Assume that λ � δ−1 . Let {Mk}k∈K be the family of sets introduced in Lemma 3.10

and
{Sm}m∈MD := {Q(d)

2−i (i, n)}n∈Nj , i∈I0
δ

⋃
{Mk}k∈K .

Lemma 3.10(3) and (4.5) imply that
⋃
m∈MD

Sm = �\�+
δ . In view of Lemma 3.10(2),

we have ℵ{Sm}m∈MD � 2 . Consequently, by Lemma 2.2,

NN,D(� \�+
δ , ∂�, λ) �

∑

m∈MD

NN,D(Sm,ϒm,
√

2 λ) ,

where ϒm = ∂Sm
⋂
∂� . Since each set Sm belongs either to P(d−1/2δ1) or to M(δ) ,

Lemma 2.6 implies that NN(Sm,ϒm,
√

2 λ) � 1 . Moreover, if Sm ∈ M(δ) then, in
view of Lemma 2.6(3), NN(Sm,ϒm,

√
2λ) > 0 only if µd(Sm) � δd − 4π−2 δd+2λ2 .
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By Lemma 3.10(3), the number of sets M ∈ {Mk}k∈K satisfying this estimate does not
exceed (

1 − 4π−2 δ2λ2
)−1

δ−d µd(�b
δ1
) � 2 δ−d µd(�b

δ1
).

Taking into account (4.7), we obtain

NN,D(� \�+
δ , ∂�, λ) � (4d)d δ−d µd(�b

4δ1
)+ 2 δ−d µd(�b

δ1
) .

This estimate, (4.10) and (4.12) imply (4.3).
In order to prove (4.4), let us consider the family of sets {Pj }j∈J and {Vk}k∈K con-

structed in Corollary 3.8 and define

{Sm}m∈MN := {Q(d)

2−i δ(i, n)}n∈Nj , i∈I0
δ

⋃
{Pj }j∈J

⋃
{Vk}k∈K .

Corollary 3.8(4) and (4.5) imply that
⋃
m∈M Sm = �\�+

δ . In view of Corollary 3.8(3),
we have ℵ{Sm}m∈M � n� C

2
d,4 . Consequently, by Lemma 2.2,

NN(� \�+
δ , λ) �

∑

m∈MN

NN(Sm, n
1/2
� Cd,4 λ) .

Since each set Sm belongs either to V(δ) or to P(d−1/2δ1) , Lemma 2.6 implies that
NN(Sm, n

1/2
� Cd,4 λ) = 1 whenever n1/2

� Cd,4 λ � Cd,5 δ
−1 . Estimating #M with the

use of (4.7) and Corollary 3.8(5) and applying the inequalities

(δ/4) τ (δ/2) = τ(δ/2)
∫ 4/δ

2/δ
t−2 dt �

∫ 4/δ

2/δ
t−2 τ(t) dt �

∫ 4/δ

(2D�)−1
t−2 τ(t) dt ,

we see that

NN(� \�+
δ , λ) � 8Cd,3 C�, τ δ

−1
∫ 4/δ

(2D�)−1
t−2 τ(t) dt

+ (4d/δ)d µd(�
b
4δ1
) + Cd,6 n� δ

−d µd(�b
δ1
) (4.13)

for all λ � Cd,7 n
−1/2
� δ−1 . Now (4.4) follows from (4.11) and (4.12). ��

4.2. Two dimensional domains. If d = 2, τ(t) = t and δ � λ−1 then the first term
on the right-hand side of (4.13) coincides with c λ log λ , where c is some constant.
On the other hand, for two dimensional domains with smooth boundaries we have
NN(�

b
λ−1 , λ) ∼ λ as λ → ∞ (see, for example, [SV]). The following lemma gives

a refined estimate for NN(� \�+
δ , λ) , which does not contain the logarithmic factor.

Lemma 4.2. Let � ⊂ R
2 , � ∈ BVτ,∞ , δ ∈ (0, δ�] and �+

δ be defined as in Sub-

sect. 4.1. Then for all λ �
√

2
3 n

−1/2
� δ−1 we have

NN(� \�+
δ , λ) � 7C�,τ τ (2/δ)+ (64 + 18 n�) δ

−2 µ2(�
b
4δ1
)+ 12D�/δ . (4.14)

Proof. Applying the same arguments as in the proof of Theorem 4.1 but using Corol-
lary 3.9 instead of Corollary 3.8, one obtains (4.14) instead of (4.13). ��
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4.3. Proof of Theorems 1.3, 1.8 and Corollary 1.5. Integrating by parts in the Stieltjes
integral and changing variables s = t−1 , we obtain

∫ ∞

ε

(s−1λd−1 + s−d) d(µd(�
b
s )) + (ε−1λd−1 + ε−d) µd(�b

ε)

=
∫ ε−1

0
(λd−1 + d td−1) µd(�

b
t−1) dt , ∀ε > 0 . (4.15)

Therefore
(
(4δ1)

−1λd−1 + (4δ1)
−d)µd(�b

4δ1
) � (λd−1 + d δ1−d

1 )
∫ δ−1

1
0 µd(�

b
t−1) dt

and
∫∞
δ1
(s−1λd−1 + s−d) d(µd(�b

s )) � (λd−1 + d δ1−d
1 )

∫ δ−1
1

0 µd(�
b
t−1) dt . Applying

these inequalities and the estimates (4.2)–(4.4) with δ−1
1 = λ or δ−1 = Cd,8 n

1/2
� λ ,

we obtain (1.1) and (1.6). The estimate (1.2) is proved in the same manner, using (4.14)
instead of (4.13). Finally, since

∫ b
a
t−2 τ(t) dt � bd−2

∫ b
a
t−d τ (t) dt , (1.3) is a conse-

quence of (1.1) and the following lemma.

Lemma 4.3. If � ∈ BVτ,∞ then

µd(�
b
ε) � Cd,2 3d n� D

d−1
� ε + Cd,3 3d C�, τ ε

d τ (ε−1) , ∀ε > 0 .

Proof. Assume first that f is a continuous function on the closed cube Q(d−1)
a . Let

{Q(d−1)(x)}x∈X be the same family of cubes as in Corollary 3.2, �f (x) := {z ∈
�f | z′ ∈ Q(d−1)(x)} and Xε := {x ∈ X |Q(d−1)(x) ∈ P(ε)}.

If dist(y, �f ) � ε then dist(y, �f (x)) � ε for some x ∈ X . Therefore

µd

(
{y ∈ Q(d−1)

a | dist(y, �f ) � ε}
)

�
∑

x∈X
µd

(
{y ∈ Q(d−1)

a | dist(y, �f (x)) � ε}
)
.

The set {y ∈ Q(d−1)
a | dist(y, �f (x)) � ε} lies in the ε-neighbourhood of the rectangle

Q(d−1)(x)×(infz∈Q(d−1)(x) f (z) , supz∈Q(d−1)(x) f (z)
)

. In view of Corollary 3.2(4), the
measure of this ε-neighbourhood does not exceed 3ε (ax + 2ε)d−1 , where ax is the
length of the edge of Q(d−1)(x). Therefore

µd

(
{y ∈ Q(d−1)

a | dist(y, �f ) � ε}
)

� 3d εd (#Xε)+
∑

x∈X \Xε

3d ε ad−1
x .

Now the obvious inequality
∑
x∈X ad−1

x � ad−1 ℵ{Q(d−1)(x)}x∈X and Corollary 3.2(3)
imply that

µd({y ∈ R
d | dist(y, �f ) � ε}) � Cd,2 3dε ad−1 + Cd,3 3dεd Vε(f,Q(d−1)

a ) .

Since �b
ε = ⋃

l∈L{x ∈ � | dist(x, �fl ) � ε}, where fl are the functions introduced in
Subsect. 1.1, the lemma follows from this inequality. ��
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4.4. Proof of Corollaries 1.6 and 1.9. Let � ∈ Lipα , fl be the functions introduced in
Subsect. 1.1 and |�|α := maxl |fl |α , where |·|α is the seminorm defined in Subsect. 1.1.
If x ∈ Gfl and dist(x, (y′, fl(y′)) � δ then

fl(x
′)− xd � |xd − fl(y

′)| + |fl(y′)− fl(x
′)| � δ + δα |fl |α . (4.16)

Therefore {x ∈ Gfl | dist(x, �fl ) � δ} ⊂ {x ∈ Ggl | fl(x′) − xd � δ + δα |fl |α}
and, consequently µd({x ∈ Gfl | dist(x, �fl ) � δ}) � ad−1 (δ + δα |fl |α) . This
immediately implies the following lemma.

Lemma 4.4. If � ∈ Lipα and δ � δ� then µd(�b
δ) � n� D

d−1
� (δ + δα |�|α) .

If Q(d−1)
c ⊂ Q

(d−1)
al then diamQ

(d−1)
c = d1/2 c and

2 Osc (f,Q(d−1)
c ) � sup

x′,y′∈Q(d−1)
c

|fl(x′)− fl(y
′)| � dα/2 cα |f |α . (4.17)

Therefore cd−1 � d(1−d)/2 |f |(1−d)/α
α δ(d−1)/α whenever Osc (f,Q(d−1)

c ) � δ/2 and,
consequently,

Vδ/2(f,Q(d−1)
a ) � d(d−1)/2 ad−1 |f |(d−1)/α

α δ(1−d)/α + 1 . (4.18)

The inequality (4.18) implies the following result.

Lemma 4.5. If � ∈ Lipα and

τ(t) = 2(1−d)/α d(d−1)/2Dd−1
� |�|(d−1)/α

α t(d−1)/α + 1, (4.19)

then � ∈ BV∞,τ and C�,τ � n� .

Clearly, (1.4) follows from (1.1) and Lemma 4.5. Similarly, (1.6) and Lemma 4.4
imply (1.7). It remains to prove (1.5) and (1.8).

Assume that � ∈ lipα . Then for each ε > 0 we can find functions f
(ε)
l, 1 ∈

Lip1 and f
(ε)
l, 2 ∈ Lipα such that fl = f

(ε)
l, 1 + f

(ε)
l, 2 and |f (ε)l, 2 |α � ε . Obviously,

Vδ(f (ε)l, 1 + f
(ε)
l, 2 ,Q) � Vδ/2(f (ε)l, 1 ,Q) + Vδ/2(f (ε)l, 2 ,Q) . Therefore (4.18) implies that

Vδ(fl,Q(d−1)
al

) � d(d−1)/2Dd−1
�

(
ε(d−1)/α δ(1−d)/α + Cd−1

ε δ1−d
)

+ 2

� ε(d−1)/α τε(δ
−1) , (4.20)

where Cε := maxl |f (ε)l, 2 |1 , and

τε(t) := d(d−1)/2Dd−1
�

(
t (d−1)/α + Cε,� ε

(1−d)/α td−1
)

+ 2 ε(1−d)/α .

We also have

|fl(x′)− fl(y
′)| � ε |x′ − y′|α + |f (ε)l, 2 |1 |x′ − y′| , ∀x′, y′ ∈ Q(d−1)

al
.

Therefore, instead of (4.16), we obtain fl(x′)− xd � δ+ δ |f (ε)l, 2 |1 + δα ε . This implies

that µd(�b
δ) � n� D

d−1
� (δ + Cε δ + δα ε) whenever δ � δ� .
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In view of (4.20), we have � ∈ BV∞,τε and C�,τε � ε(d−1)/α n� . Choosing a
sufficiently large constant C and applying (4.2)–(4.4) with δ = C λ−1 and τ = τε ,
we see that

|NN(�, λ)− Cd,W µd(�) λ
d | � ε(d−1)/α C′

� λ
(d−1)/α + C′

�,ε λ
d−1 ,

|ND(�, λ)− Cd,W µd(�) λ
d | � ε C′

� λ
d−α + C′

�,ε λ
d−1

for all λ > 1 , where C′
� is a constant depending only on the domain � and C′

�,ε
is a constant depending on � and ε . Since ε can be made arbitrarily small, these
inequalities imply (1.5) and (1.8). ��

4.5. Proof of Theorem 1.10. Let Q(d−1)
1 = (0, 1)d−1 , α ∈ (0, 1) and p be a

sufficiently large positive integer. In particular, we shall be assuming that
p � max{α−1, (1 − α)−1} and, consequently,

21−αp � 1 ,
(
1 − 2−αp)−1 � 2 ,

(
1 − 2(1−α) p

)−1
� 2 (4.21)

and
(

2(1−α) (n+1)p − 1
) (

2(1−α) p − 1
)−1

� 21+(1−α) np , ∀n = 1, 2, . . . . (4.22)

Given j ∈ Z+ , let us denote by Kj the set of nonnegative integer vectors k =
(k1, . . . , kd−1) ∈ Z

d−1
+ such that maxi ki � 2jp − 1 and consider the (d − 1)-dimen-

sional cubes

Q(j,k) := {x′ ∈ R
d−1 | 2jpx′ − k ∈ Q(d−1)

1 } , k ∈ Kj

with edges of length 2−jp . For each fixed j ∈ Z+ and k ∈ Kj the cubes Q(j,k) are

disjoint and Q(d−1)
1 = ⋃

k∈Kj
Q(j,k) .

Let ψ ∈ Lip1 be a nonnegative Lipschitz function on Q
(d−1)
1 vanishing on the

boundary ∂Q
(d−1)
1 , aψ := supψ and bψ,p := √

d 23−(1−α)p (|ψ |1 + aψ) . We shall
be assuming that p is large enough so that aψ > bψ,p . Let us extend ψ by 0 to the
whole space R

d−1 and define

gj (x
′) :=

∑

k∈Kj

ψ(2jpx′ − k) , fn(x
′) :=

n∑

j=0

εj 2−α jp gj (x′)

and f (x′) := limn→∞ fn(x
′) = ∑∞

j=0 εj 2−αjp gj (x′) , where {εj } is a nonincreasing
sequence such that εj ∈ [0, 1] and

2(1−α)([j/2]−j)p � ε[j/2] � 2 εj , ∀j = 1, 2, . . . . (4.23)

Note that the condition (4.23) is fulfilled whenever {εj } is a sufficiently slowly decreas-
ing sequence.

Lemma 4.6. We have

(1) gj = 0 on ∂Q(j,k) for all k ∈ Kn and j � n ;
(2) 0 � f (x′)− fn(x

′) � 2 εn+1 2−α (n+1)p aψ � εn+1 2−α np aψ ;
(3) |fn|β � 21+(β−α)np (|ψ |1 + aψ) for all β ∈ [α, 1] ;
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(4) f ∈ Lipα and |f |α � 2 (|ψ |1 + aψ) ;
(5) f ∈ lipα whenever εj → 0 as j → ∞ ;
(6) 2 Osc (fn−1,Q(n,k)) � εn 2−α np bψ,p for all k ∈ Kn .

Proof. (1) is obvious and (2) immediately follows from (4.21). In order to prove (3),
let us fix β ∈ [α, 1] , denote n′ := max{j | 2−jp � |x′ − y′|} , n′′ := min{n, n′} and
estimate

n∑

j=0

|gj (x′)− gj (y
′)|

2αjp |x′ − y′|β =
n′′
∑

j=0

|gj (x′)− gj (y
′)|

2αjp |x′ − y′|β +
n∑

j=n′′+1

|gj (x′)− gj (y
′)|

2αjp |x′ − y′|β

� |ψ |1
n′′
∑

j=0

2(1−α)jp |x′ − y′|1−β + aψ

n∑

j=n′′+1

2−αjp |x′ − y′|−β .

In view of (4.22), the first term on the right-hand side is estimated by |ψ |1
∑n′′
j=0

2(1−α)jp+(1−β)np � 21+(β−α)np|ψ |1 . If n � n′ then the second term on the right-hand
side vanishes; if n > n′ then, by (4.21), it does not exceed 2 aψ 2−α(n′′+1)p|x′−y′|−β �
2 aψ 2(β−α)(n′′+1)p � 21+(β−α)npaψ . Thus,

n∑

j=0

|gj (x′)− gj (y
′)|

2αjp |x′ − y′|β � 21+(β−α)np (|ψ |1 + aψ) . (4.24)

This estimate immediately implies (3) and (4). The inclusion (5) is also a consequence

of (4.24) because |f − fn|α � εn+1 supx′,y′
∑∞
j=0

|gj (x′)−gj (y′)|
2αjp |x′−y′|α .

Finally, in view of (4.23) and (4.24), we have

(|ψ |1 + aψ)
−1|fj |1 � 21+(1−α)[j/2]p + ε[j/2] 21+(1−α)jp � εj 23+(1−α)jp .

(4.25)

Since diamQ(n,k) = √
d 2−np , (4.25) with j = n− 1 implies (6). ��

Let � := Gf, 0 , �n,k := {x ∈ � | x′ ∈ Q(n,k) , xd ∈ (fn−1(x
′), f (x′))} ,

ϒn ,k := ∂�n,k \ ∂� and �n−1 be the interior of � \ (⋃k∈Kn
�n,k

)
.

Denote an,k := sup
x′∈Q(n,k)

fn−1(x
′) and consider the function

un,k(x) :=
{

sin
(
2α np(xd − an,k)/εn

)
, xd � an−1,k ,

0 , xd < an−1,k ,

on �n,k . We have un,k(x) ∈ W 1,2(�n,k) and, in view of Lemma 4.6(1), un,k = 0
on ϒn,k . Applying Lemma 4.6(2) and Lemma 4.6(6), we see that
∫

�n,k

|∇un,k(x)|2 dx = ε−2
n 22α np

∫

Q(n,k)

∫ f (x′)−an,k

0
cos2 (2α np xd/εn

)
dxd dx′

� ε−2
n 22α np

∫

Q(n,k)

∫ εn 2−α np(gn(x′)+aψ )

0
cos2 (2α npxd/εn

)
dxd dx′

= ε−1
n 2α np 2−(d−1) np

∫

Q
(d−1)
1

∫ ψ(x′)+aψ

0
cos2 xd dxd dx′
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and
∫

�n,k

|un,k(x)|2 dx =
∫

Q(n,k)

∫ f (x′)−an,k

0
sin2 (2α npxd/εn

)
dxd dx′

�
∫

Q(n,k)

∫ εn2−α np(gn(x′)−bψ,p)

0
sin2 (2α npxd/εn

)
dxd dx′

= εn 2−α np 2−(d−1) np
∫

Q
(d−1)
1

∫ ψ(x′)−bψ,p

0
sin2 xd dxd dx′ .

Therefore
∫
�n,k

|∇un,k(x)|2 dx � c2
ψ,p ε

−2
n 22αnp

∫
�n,k

|un,k(x)|2 dx , where

cψ,p :=






∫
Q
(d−1)
1

∫ ψ(x′)+aψ
0 cos2 xd dxd dx′

∫
Q
(d−1)
1

∫ ψ(x′)−bψ,p
0 sin2 xd dxd dx′






1/2

.

This implies that NN,D(�n,k, ϒn,k, λ) � 1 whenever λ � cψ,p ε
−1
n 2αnp .

Assume that λ ∈
[
cψ,p ε

−1
n 2αnp, cψ,p ε

−1
n+1 2α(n+1)p

)
and, using Lemma 2.1, esti-

mate

NN(�, λ) � ND(�n−1, λ) +
∑

k∈Kn

NN,D(�n,k, ϒn,k, λ) .

By the above, the second term on the right hand side is not smaller than #Kn =
2(d−1) np � (cψ,p 2αp)(1−d)/α ε(d−1)/α

n+1 λ(d−1)/α . On the other hand, in view of The-
orem 1.8, Lemma 4.4 and Lemma 4.6(3) with β = α , we have

ND(�n−1, λ) � Cd,W µd(�n−1) λ
d − Cd (|ψ |1 + aψ + 1) λd−α

for all sufficiently large λ . Finally, by Lemma 4.6(2),

µd(�) λ
d − µd(�n−1) λ

d � εn 2−α (n−1)paψ λ
d � aψ cψ,p (εn/εn+1) 22αp λd−1 .

Since εn � ε[(n+1)/2] � 2 εn+1 , the above estimates imply that

NN(�, λ) � Cd,W µd(�n) λ
d + (cψ,p 2αp)(1−d)/α ε(d−1)/α

n+1 λ(d−1)/α

− Cd (|ψ |1 + aψ + 1) λd−α − Cd,W aψ cψ,p 22αp+1 λd−1 (4.26)

for all λ ∈
[
cψ,p ε

−1
n 2αnp, cψ,p ε

−1
n+1 2α(n+1)p

)
.

By Lemma 4.6(4), � ∈ Lipα and we have (d − 1)/α > d − α > d − 1 . Therefore
taking ε0 = ε1 = · · · = 1 , we obtain a domain satisfying the conditions of Theo-
rem 1.10(1). If φ is a nonnegative function on (0,+∞) and φ(λ) → 0 as λ → ∞
then we can choose a sequence εn converging to zero and satisfying (4.23) in such a
way that the function φ(λ) λ(d−1)/α and the last two terms in (4.26) are estimated by

(cψ,p 2αp)(1−d)/α ε(d−1)/α
n+1 λ(d−1)/α for all λ ∈

[
cψ,p ε

−1
n 2αnp, cψ,p ε

−1
n+1 2α(n+1)p

)

and all sufficiently large n . In view of Lemma 4.6(5), this proves Theorem 1.10(2). ��
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5. Remarks and Generalisations

5.1. Poincaré inequality. According to the Poincaré inequality,
∫

�

|u|2 dx � c�

∫

�

|∇u|2 dx whenever u ∈ W 1,2(�) and
∫

�

u dx = 0, (5.1)

where c� is a positive constant. By Remark 2.4, the Poincaré inequality (5.1) on a
domain � holds true if and only if the zero eigenvalue of the Neumann Laplacian is
isolated and c� � λ−2

1,N(�) .

Lemma 5.1. Let � satisfy (5.1) and �̃ ⊂ R
d . If there exist an invertible map F : � →

�̃ and a constant CF such that |F(x) − F(y)| � CF |x − y| for all x, y ∈ � and
|F−1(x) − F−1(y)| � CF |x − y| for all x, y ∈ �̃ then �̃ also satisfies (5.1) with a
positive constant c�̃ = Cd C

2d+2
F c� .

Proof. Let v ∈ W 1,2(�̃), u(x) := v(F−1(x)) and cu := ∫
�
u(x) dx. Under the condi-

tions of the lemma the maps F and F−1 are differentiable almost everywhere. Changing
variables and estimating the Jacobians, we obtain

∫

�̃

|v(y)− cu|2 dy � Cd C
d
F

∫

�

|u(x)− cu|2 dx

and ∫

�̃

|∇v(y)|2 dy � Cd C
−d−2
F

∫

�

|∇u(x)|2 dx .

These two estimates and the Poincaré inequality (5.1) imply that
∫

�̃

|v(y)|2 dy �
∫

�̃

|v(y)− cu|2 dy � Cd C
2d+2
F c�

∫

�̃

|∇v(y)|2 dy

whenever
∫
�̃
v dy = 0. ��

Lemma 5.1 allows one to extend Theorem 1.3 to more general domains.

Theorem 5.2. Assume that there exists a finite collection of domains �l ⊂ � such that

(a) ∂� ⊂ ⋃
l �l ;

(b′) for each l there exists an invertible map Fl : R
d → R

d satisfying the condi-
tions of Lemma 5.1 such that Fl(�l) = Gfl, bl , where fl ∈ BVτ,∞(Q(d−1)

al ) and
bl < inf fl ;

(c) al � D� and sup fl − bl � D� for all l ∈ L.

Then (1.1) holds true.

Proof. Let CFl be the constant introduced in Lemma 5.1 and C := maxl CFl . Under
conditions of the theorem, Corollary 3.8 remains valid if we replace Ul with Fl and take
δn := C−1 δn . Since (5.1) is equivalent to the identity NN(�, c

−2
� ) = 1 , Lemma 2.6

and Lemma 5.1 imply that NN(Sm, λ) = 1 for all λ � c′� δ
−1 , where Sm are the same

sets as in the proof of Theorem 4.1 and c′� is a constant depending on the domain � .
Therefore, using the same arguments as in Subsect. 4.1, we obtain the estimates (4.2)
and (4.4) with some other constants (which may depend on � ). In the same way as in
Subsect. 4.3, these estimates imply (1.1). ��
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The following example shows that Theorem 5.2 is not just a formal generalization of
Theorem 1.3.

Example 5.3. Let f be a nowhere differentiable Lipα-function on the interval [0, 1] .
Assume that f > 1 and consider the domain

� := {(ϕ, r) ∈ R
2 | ϕ ∈ (0, 1) , 1 < r < f (ϕ)} ,

where (ϕ, r) are the polar coordinates on R
2 . If y1 = r sin ϕ and y2 = r cosϕ are

the standard Cartesian coordinates on R
2 then the map which takes the point with polar

coordinates (ϕ, r) into the point with Cartesian coordinates (y1, y2) = (ϕ, r) satisfies
the conditions of Lemma 5.1. Therefore, by Theorem 5.2, we have (1.1).

On the other hand, if (x1, x2) are arbitrary Cartesian coordinates on R
2 then

x1(ϕ, r) = r sin(ϕ + ϕ0) and x2(ϕ, r) = r cos(ϕ + ϕ0) for some ϕ0 ∈ [0, 2π) . For
every subinterval (a, b) ⊂ (0, 1) there exist at least two different points ϕ1, ϕ2 ∈ (a, b)
such that x1(ϕ1, f (ϕ1)) = x1(ϕ2, f (ϕ2)) (otherwise the function x1(ϕ, f (ϕ)) would
be monotone on (a, b) and, by Lebesgue’s theorem, almost everywhere differentia-
ble). Since x2(ϕ1, f (ϕ1)) �= x2(ϕ2, f (ϕ2)) , we see that the set {r = f (ϕ)} cannot be
represented as the graph of a continuous function in Cartesian coordinates.

Nowhere differentiable functions f ∈ Lipα do exist. For instance, the function
f (t) :=∑∞

n=0 10−n dist(10nt,Z) is not differentiable at each t ∈ R(see [W or RS-N] ,
Chap. 1, Sect. 1) but f ∈ Lipα(R) for all α ∈ (0, 1) .

5.2. Higher order operators. Let us consider, instead of the Laplacian, a homogeneous
elliptic nonnegative operator A(Dx) of degree 2m with real constant coefficients and
denote by QA its quadratic form (we use the standard notation Dx := −i ∂x) . As-
sume that QA[u] �

∑
|α|=m ‖∂αu‖2

L2(�)
for all u ∈ C∞(�). Let Wm,2(�) be the

Sobolev space, Wm,2
0 (�) be the closure of C∞

0 in Wm,2(�) and AN and AD be the
self-adjoint operators in the space L2(�) generated by the quadratic form QA with
domains Wm,2(�) and Wm,2

0 (�) respectively. Then the results of Sect. 2 remain valid
with the following modifications:

(i) In the definitions of NN,D , NN , ND and in Lemma 2.2 we replace the Dirichlet
form

∫
�

|∇u|2 dx with QA , W 1,2(�) with Wm,2(�) , λ2 with λ2m , and κ
−1/2

with κ
−1/(2m) .

(ii) The kernel of the operator AN is the space Pm(�) of all polynomials on � whose
degree is strictly smaller than m . Therefore we have

∫
�

|u(x)|2 dx � λ−2m QA[u]
for all u ∈ W 1,2(�)� Pm(�) if and only if λ1,N(�) � λ , where λ1,N(�) is the
first nonzero eigenvalue of AN . If pu is the projection of u ∈ L2(�) onto the
subspace Pm(�) then ‖u − pu‖L2(�) � ‖u − p‖L2(�) for all p ∈ Pm(�) (cf.
Remark 2.4).

(iii) Let CA,W := (2π)−d µd{ξ ∈ R
d : A(ξ) < 1} . Then there exists a constant CA,Q

such that

−CA,Q (δλ)d−1 � N(Q
(d)
δ , λ)− CA,W (δλ)

d � CA,Q (δλ)
d−1, ∀λ > δ−1 ,

for all δ > 0 (see Remark 2.9).
(iv) Instead of Lemma 2.6 we have the following result.

Lemma 5.4. There exists a constant cA depending only on the operator A and the
dimension d such that the following statements hold true:
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(1) If P ∈ P(δ) then NN(P, λ) = dim Pm for all λ � cA δ
−1.

(2) If V ∈ V(δ) then NN(V , λ) = dim Pm for all λ � cA δ
−1.

(3) If M ∈ M(δ) , M ⊂ Q
(d)
δ and ϒ := ∂M

⋂
Q
(d)
δ then NN,D(M,ϒ, λ) � dim Pm

for all λ � cA δ
−1 and NN,D(M,ϒ, λ) = 0 for all λ � (1 − c−1

A δ−dµd
(M))

1/(2m)
+ cA δ

−1 .

Proof. We shall denote by C various constants depending only on A and d.
It is sufficient to prove the lemma assuming that A(Dx) = Am(Dx) :=

∑d
j=1 D

2m
xj

. Then (1) is easily obtained by separation of variables. If u ∈ Wm,2(Q
(d)
δ ) ,

u ≡ 0 outside M and pu is the projection of u onto the subspace Pm(M) then
∫

M

|pu|2 dx � µd(M) sup
x∈Q(d)δ

|pu(x)|2 � C µd(M) δ
−d
∫

Q
(d)
δ

|pu|2 dx

= C µd(M) δ
−d
(∫

M

|pu|2 dx +
∫

Q
(d)
δ

|u− pu|2 dx

)

.

Applying (ii) and this estimate instead of Remark 2.4 and (2.6), we obtain (3) in the
same way as Lemma 2.6(3).

In order to prove (2), let us assume that V = Gf, b(Q
(d−1)
c ) with c � δ , b =

inf f−δ and Osc f � δ/2 and consider a function u ∈ Wm,2(V ) . Let pu; r, k(x′) be the
projection of the function ∂kxd u(x

′, r) ∈ L2(Q
(d−1)
c ) onto the subspace Pm−k(Q(d−1)

c ) ,

pu; r (x) := ∑m−1
k=0

1
k! (xd−r)k pu; r, k(x′) and vr(x) := ∑m−1

k=0
1
k! (xd−r)k ∂kxd u(x′, r) ,

where r ∈ [b, b + δ] and xd ∈ [b, f (x′)] . We have

|u(x)− pu; r (x)|2 � 2 |u(x)− vr(x)|2 + 2 |vr(x)− pu; r (x)|2 . (5.2)

Since |xd − b| � 2δ , Jensen’s inequality implies that

|u(x)− vr(x)|2 = ((m− 1)!)−2 |
∫ xd

r

(xd − t)m−1 ∂mxd u(x
′, t) dt |2

� ((m− 1)!)−2 |xd − r|
∫ xd

r

(xd − t)2m−2 |∂mxd u(x′, t)|2 dt

� ((m− 1)!)−2 (2δ)2m−1
∫ f (x′)

b

|∂mxd u(x)|2 dxd .

In view of (ii) and (1), we also have

∫

Q
(d−1)
c

|∂kxd u(x)− pu; r, k(x′)|2 dx′ � C δ2m−2k QA′
m−k [∂

k
xd
u(x)]

for all k = 0, . . . , m−1 , where A′
m−k(Dx′) := ∑d−1

j=1 D
2m−2k
xj

and QA′
m−k is the qua-

dratic form of A′
m−k with domain Wm−k, 2(Q

(d−1)
c ) . Therefore, integrating (5.2) over

r ∈ [b, b+ δ] , xd ∈ [b, f (x′)] , x′ ∈ Q(d−1)
c and estimating |xd − r| � 2δ , we obtain
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δ−1
∫ b+δ

b

∫

|u(x)− pu; r (x)|2 dx dr

� C δ2m
∫

V

|∂mxd u(x)|2 dx + C δ2m
m−1∑

k=0

∑

|α|=m

∫

P

|∂αx u(x)|2 dx ,

where P = Q
(d−1)
c × (b, b+ δ) . Since the L2-norms of the mixed derivatives ∂αx u(x)

on a rectangle are estimated by the L2-norms of the derivatives ∂mxj , this estimate and
(ii) imply (2). ��

Applying the same arguments as in Sect. 4 and using (iii) and Lemma 5.4, we obtain
the following result.

Theorem 5.5. If NN(λ,�) and ND(λ,�) denote the number of eigenvalues of the
corresponding self-adjoint operator lying below λ2m then Theorems 1.3, 1.8 and Cor-
ollaries 1.5, 1.6, 1.9 hold true with Cd,W := CA,W .

5.3. Other function spaces. Let Bαp,q be the Besov space and BVβ,∞ := BVτβ,∞ ,
where τβ(t) = (tβ + 1) and β ∈ (0,+∞). Lemma 4.5 implies that Bα∞,∞ = Lipα ⊂
BV(d−1)/α,∞ . Estimating the norm of the embedding Bαp,∞(Q

(d−1)
a ) ↪→ C(Q

(d−1)
a )

for αp > d − 1 and a > 0 , one can also show that Bαp,∞ ⊂ BV(d−1)/α,∞ whenever
αp > d − 1 .

5.4. Open problems.

5.4.1. The spaces BVτ,∞. The space BVβ,∞ or BVτ,∞ (under certain conditions on
the function τ ) is a Banach space with respect to an appropriate norm. Similar spaces
have been considered in the dimension one, but we could not find references in the
multidimensional case. It would be interesting to find a more constructive description
of these spaces and to investigate their properties.

5.4.2. More general domains. The crucial point in our proof of Theorem 1.3 is the
construction of the families {Sm}M such that

(i) �b
δ ⊂ ⋃

m Sm ⊂ � ,
(ii) ℵ{Sm}M � C ,

(iii) NN(Sm, λ) � C′ whenever λ � C′′δ−1 ,

where C , C′ and C′′ are some constants independent of δ ∈ R+ .
The remainder estimate in the Weyl formula for the Neumann Laplacian depends on

the behaviour of #M as δ → 0 . In this paper we were assuming that � is the union of
subgraphs of continuous functions, used Lemma 2.6 in order to prove (iii) and applied
Corollary 3.2 in order to estimate ℵ{Sm} and #M . Theorem 3.1 allows one to construct
families of open sets Sm satisfying (i)–(iii) for many other domains � . It should be
possible to find less restrictive sufficient conditions which guarantee the existence of
such families and imply an asymptotic formula for NN(�, λ) .

5.4.3. Operators with variable coefficients. Our main goal was to estimate the contri-
bution of ∂� to the Weyl formula. In the interior part of � we used the old fashioned
variational technique based on the Whitney decomposition and Dirichlet–Neumann
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bracketing. There are much more advanced methods of studying the asymptotic behav-
iour of the spectral function at the interior points (see the monographs [Iv3 , SV] or the
recent papers [BI , Iv4] ), which are applicable to operators with variable coefficients.

Freezing the coefficients at an arbitrary point x ∈ Sm , we see that (iii) remains valid
for a uniformly elliptic operator A with variable coefficients, provided that the corre-
sponding quadratic form is homogeneous, the coefficients are uniformly continuous, δ
is sufficiently small and diam Sm � c δ with some constant c independent of δ . Using
this observation and applying a more powerful technique in the interior of � , one can
try to extend our results to operators with variable coefficients.

5.4.4. Reminder estimate for the Dirichlet Laplacian. It is not difficult to construct a
bounded domain � such that limδ→0 |δ−α µd(�b

δ)| = C′ and

ND(�, λ)− Cd,W µd(�) λ
d � −C−1 λd−α , ∀λ > C , (5.3)

where C and C′ are some positive constants. For example, it can be done by consid-
ering a cube with a sequence of ‘cracks’ converging to the outer boundary, which get
denser as the outer boundary is approached (similar domains were studied in [LV and
MV]). For such a domain the estimate (1.7) is order sharp. It would be interesting find a
domain � ∈ Lipα satisfying (5.3) (cf. Theorem 1.10). Note that in the known examples
disproving the so-called Berry conjecture (see, for instance, [BLe or LV] ) the domain
does not belong to the class Lipα .

6. Constants

Throughout the paper Cd,W is the Weyl constant (see Subsect. 1.1),

Cd,1 :=
d−1∑

n=0

n! (d − n)!

d!
Cn,W , C0,W := 1 ,

Cd,2 = 2d−1 Cd−1 and Cd,3 = 6d−1 Ĉd−1 , where Cd−1 and Ĉd−1 are the constants
introduced in Theorem 3.1,

Cd,4 := (4Cd,2 + 2)1/2 , Cd,5 := min
{
(1 + 2π−2)−1/2, π(1 + d−1)−1

}
,

Cd,6 := 2d−1 Cd,2 + (3Cd,2 + 1) (2
√
d)d , Cd,7 := C−1

d,4 Cd,5 ,

Cd,8 := max{1, C−1/2
d,7 } , Cd,9 := 8Cd,3 Cd,8 ,

Cd,10 := (d + 1)
(

12
√
d Cd,1 + 4Cd,W + (4ddd + Cd,6) (4d

1/2 + 4d−1/2)d
)
,

Cd,11 := (d + 1)
(

12
√
d Cd,1 + 4Cd,W + (4ddd + 2) (4d1/2 + 4d−1/2)d

)
.

Remark 6.1. If ρ is continuous then Theorem 3.1 holds true with Cn = 2n and Ĉn = 4n

(see [G]). Since the function ρ in the proof of Corollary 3.2 is continuous, all our results
remain valid for Cd,2 = 4d−1 and Cd,3 = 24d−1.

Acknowledgements. The authors are very grateful to M. Solomyak and E.B. Davies for their valuable
comments.
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