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Abstract: We study asymptotic distribution of eigenvalues of the Laplacian on abounded
domain in R”. Our main results include an explicit remainder estimate in the Weyl for-
mula for the Dirichlet Laplacian on an arbitrary bounded domain, sufficient conditions
for the validity of the Weyl formula for the Neumann Laplacian on a domain with con-
tinuous boundary in terms of smoothness of the boundary and a remainder estimate in
this formula. In particular, we show that the Weyl formula holds true for the Neumann
Laplacian on a Lip,-domain whenever (d —1)/a < d, prove that the remainder in this
formulais O (A (d=1)/ %) and give an example where the remainder estimate O (A (d=1)/ )
is order sharp. We use a new version of the variational technique which does not require
the extension theorem.

Introduction

Let —An be the Neumann Laplacian on a bounded domain  C R? and NN(2, 1)
be the number of its eigenvalues which are strictly smaller than A?; if the number of
these eigenvalues is infinite or —Ay has essential spectrum below A then we define
NN(€2, A) := 4o00. Similarly, let —Ap be the Dirichlet Laplacian on Q2 and Np(£2, A)
be the number of its eigenvalues lying below A%. We shall omit the lower index D or
N and simply write A or N(£2, 1) if the corresponding statement refers both to the
Dirichlet and Neumann Laplacian.

According to the Weyl formula,

N(Q,1) — Cawpna(@) 24 = o9, A — 400, (0.1)

where 4(2) is the d-dimensional Lebesgue measure of € and Cy4 w is the Weyl
constant (see Subsect. 1.1). If N = Np then the Weyl formula holds for all bounded
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domains [BS]. If, in addition, the upper Minkowski dimension of the boundary is equal
tod € (d—1,d),then

N(Q.2) — Cawpa(@2! = 00", A1 — +oo. 0.2)

The asymptotic formula (0.2) with N = Np is well known and is proved in many papers,
for instance, in [BLi] and [Sa] where the authors obtained estimates with explicit con-
stants. This formula remains valid for the Neumann Laplacian whenever 2 has the
extension property (see below). Note that d; may well coincide with d, in which case
(0.2) is useless.

If N = Ny then (0.1) is true only for domains with sufficiently regular boundaries.
In the general case NN does not satisfy (0.1); moreover, the Neumann Laplacian on
a bounded domain may have a nonempty essential spectrum (see, for example, [HSS
or Si]). The necessary and sufficient conditions for the absence of the essential spec-
trum in terms of capacities have been obtained in [M1]. In [BD] the authors proved that
NN(R2, 1) is polynomially bounded whenever the Sobolev space W!-2(R2) is embedded
in L9(2) for some g > 2. If the log-Sobolev inequality holds on € then NN(2, A)
is exponentially bounded [Ma].

For domains 2 with sufficiently smooth boundaries, (0.1) is true for both functions
Np and Ny and the remainder (i.e., the right-hand side) is 041 [Ivl, Se]. The
proof is based on the study of propagation of singularities for the corresponding evo-
lution equation (see [Iv3 or SV]). If @ has a rough boundary then the propagation of
singularities near €2 cannot be effectively described and one has to invoke the varia-
tional technique.

Let Qg and Qf be the internal and external §-neighbourhoods of d<2 respectively.
The classical variational proof of the Weyl formula involves covering the domain by a
finite collection of disjoint cubes {Q};c7 and using the Dirichlet-Neumann bracket-
ing. It is convenient to assume that {Q;};c7 is the subset of the family of Whitney
cubes covering Q| J Q5 (see Theorem 3.3), which consists of the cubes Q; such that
0;NQ#0.

In view of the Rayleigh-Ritz variational formula, we have the estimates
Zjejo Np(Qj,A) < Np(2,2) < Zje._’] Nn(Qj, L), where {Qj}jejo is the set of
cubes Q; lyinginside Q.If 114(9€2) = O then, estimating Np(Q;, A) and Nn(Q, A)
foreach j andtaking § = A~!, we obtain (0.1) and (0.2) for the Dirichlet Laplacian. It is
possible to get rid of the condition ©;(9€2) = O but this requires additional arguments.

Similarly, the Rayleigh—Ritz formula implies that e Np(Qj,A) < Nn(R2,1) <
2 e NN(Qj, MANN(Ujen g, Qi (182, 1), where {Q} je7,, isthe setof cubes
lying inside €\ 9513. If for some m € N and all sufficiently small positive §
there exist uniformly bounded extension operators from the Sobolev space Wl’z(an s)
to Wh2(Qb ) then NN ez, QN2 < MlUjer g, CirCH =
3 FET\Tms Nn(Qj, CA), where C is a sufficiently large constant.

If, in addition, p4(0€2) = O then, estimating the counting functions on the cubes
and taking 8 = A~!, we obtain (0.1) and (0.2) for Nn($2, 1) .

However, the known extension theorems require certain regularity conditions on the
boundary (for instance, it is sufficient to assume that 92 belongs to the Lipschitz class
or satisfies the cone condition). Domains with very irregular boundaries do not have
the W!2-extension property, in which case the above scheme does not work for the
Neumann Laplacian. To the best of our knowledge, in all papers devoted to the Weyl
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formula for NN(€2, 1) the authors either implicitly assumed that the domain has the
W-2_extension property or directly applied a suitable extension theorem.

The main aim of this paper is to introduce a different technique which does not use
an extension theorem. Instead of disjoint cubes, we cover the domain 2 by a family of
relatively simple sets S, C 2. For each of these sets the counting function N (S, 1)
can be effectively estimated from below and above. The sets S,,, may overlap but, under
certain conditions on €2, the multiplicity of their intersection does not exceed a constant
depending only on the dimension d .

This allows us to apply the Dirichlet-Neumann bracketing and obtain the Weyl
asymptotic formula with a remainder estimate for the Neumann Laplacian on domains
without the extension property (Theorem 1.3). The remainder term in this formula may
well be of higher order than the first term. Then our asymptotic formula turns into an
estimate for NN(€2, A). In particular, this may happen if € € Lip, , that is, if 92
coincides with the subgraph of a Lip,-function in a neighbourhood of each boundary
point. We prove that NN(£2, 1) — Cq,w ia (£2) 14 = 0A@=D/*) whenever Q € Lip,,
and o € (0,1) (Corollary 1.6) and that this estimate is order sharp (Theorem 1.10).
If (d —1)/a < d then the right-hand side is o(A?) and we have (0.1), otherwise
Nn(2, 1) = O(Ad—D/ay,

We also obtain a remainder estimate in (0.1) for the Dirichlet Laplacian (Theorem
1.8). This estimate holds true for all bounded domains and immediately implies (0.2).

For domains with smooth boundaries our variational method only gives the remainder
estimate O(\94~1 log ) ; in order to obtain O (24=1) one has to use more sophisticated
results (see above). On the other hand, it can be applied to many other problems and
combined with the technique developed in [BI, Iv3, Iv4, Me, Mi, SV or Z] (see Sect. 5).

1. Definitions and Main Results

1.1. Basic definitions and notation. Throughout the paper we assume that €2 is a bounded
open connected subset (domain) of the d-dimensional Euclidean space R and that
d>2.

We shall be using the following notation.

e wy is the volume of the unit ball in R¢ and Ciw = (271)"’ wy is the standard Weyl
constant.

Ifx = (x1,...,x7) € R thenx” := (x1,...,x4_1) so that x = (x’, x4).

Q and 992 are the closure and the boundary of Q.

14 (82) denotes the d-dimensional volume of 2 and D¢ := diam Q2.

dist(21, Q27) := inf |x — y| is the standard Euclidean distance.
xEQl N yGQz

Qb = (x € Q] dist(x, Q) < &}.
C is the space of continuous functions. o
o If Q' isa (d — 1)-dimensional domain, f € C(€’), b € Rand « € (0, 1] then

Mpi=xeRl|x;=fx), X' e},
Gri={xeR|xs < f(x)), x' €},
Grp:={xeGyrlxqg>b},

Osc (f, ) :=§ (sup f(x) — inf f(x)) and |flq := sup LD=FOL
xeQ xeQ x, ye
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e O E,") is the open n-dimensional cube with edges of length a parallel to the coordinate
axes. If the size or the dimension of the cube QL(,") is not important for our purposes or
evident from the context then we shall omit the corresponding index a or n. However,
we shall always be assuming that the cube is open and that its edges are parallel to
the coordinate axes.

e Lip, is the space of functions f on a cube Q such that |f|, < oo and lip,, is the
closure of Lip; in Lip, with respect to the seminorm | - | .

Definition 1.1. Given a bounded function f on the cube Q™ and § > 0, we shall
denote by Vs(f, Q™) the maximal number of disjoint cubes Q"™ (i) C Q™ such that
Osc (f, Q™ (i) > 8 for each i. If Osc (f, Q™) < & then we define Vs(f, Q™) :=1.

Definition 1.2. If © is a positive nondecreasing function on (0, 400), let BV; oo(Q)

be the space spanned by all continuous functions f on Q suchthat Vy;(f, Q) < t(t)
forallt > 0.

We shall briefly discuss the relation between BV o, (Q) and known function spaces
in Subsect. 5.3.

Let X be a space of continuous real-valued functions defined on a cube Q@1 .
We shall say that 2 belongs to the class X and write 2 € X if for each z € 92 there
exists a neighbourhood O, of the point z, a linear orthogonal map U : RY — R, a

cube Qédfl) C QYD afunction f € X and b € R such that U(O, N ={x¢e

Grplx'e Qi V).
Since 92 is compact, for every bounded set 2 € BV, o there exists a finite collec-
tion of domains ; C Q, [ € L, such that
@ 92 C Uper U
(b) for each I we have U;(€2) = G, p, , where U : R? — R? is a linear orthogonal
map, fi € BVr.0o(QY ") and by < inf f; ;
(¢) a; < Dg and sup fi — b < Dg foralll € L.

Let us fix such a collection {2;};c, and denote ng := #L£ and

Ca.r = Y sup (Vip(fi, 0~ ")/r(0) .

IE£1>0

Let 8o be the largest positive number such that Qgg C Uer S, 8o < Vda; and
28q <inf f; — by foralll € L.

1.2. Mainresults. Throughout the paper we shall denote by C; various constants depend-
ing only on the dimension d. Constants appearing in the most important estimates are
numbered by an additional lower index; in our opinion, this makes our proofs more
transparent. Their precise (but not necessarily best possible) values are given in Sect. 6.

Theorem 1.3. If Q € BV, o and A > 851 then

Cao A
| Nn (9, 2) — Caw ma(@) 24| < Cao Carenlln / 22 () dt
(2Dg)~!

Cao A
+ Cannar®™ [ @ ar, (1.1
0
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where Cq :=4Cy 3 ”;2/ z If, in addition, Q C R? then there exists a positive constant

¢ independent of 2 such that

_ 1/2
| NN(R, 1) — @m) ' ua(@) 22 < ¢Cartlend )
1/2,

cnﬂ
+cng ) | Dg +/
0

Remark 1.4. For each continuous function f on a closed cube there exists a positive
nondecreasing function 7 such that f € BV; o . Therefore Theorem 1.3 allows one to
obtain an estimate of the form (1.1) for every domain 2 € C . In particular, this implies
the following well known result: if € € C then the essential spectrum of the Neumann
Laplacian on €2 is empty.

/Q(Q}’Jdt) . Yazagt. (1.2)

The next two corollaries are simple consequences of Theorem 1.3.

Corollary 1.5. If Q@ € BV; o then there exists a constant Cg such that

| NN(2, 4) — Caw 11a(2) 24 |

< Cde—lf
cg!

Col

(z—l 41 t(t)) dr.  VYa>Cq. (1.3)

Corollary 1.6. If o € (0, 1) and Q € Lip,, then

NN(Q,2) = Cawpa(@ AL + 0 (N*”/“) . Ao 400, (14)
If « € (0,1) and Q € lip, then

NN, A = Cawpa(@)2? + o(k(d_l)/“), A — +00. (1.5)

Remark 1.7.1f o < 1 —d~! then the asymptotic formula (1.4) turns into the esti-
mate NN(22,2) = O (A4=D/®). Similarly, if @ < 1 —d~! then (1.5) takes the form
NN(Q, A) = o (Ad=D/e),

The following estimates for the Dirichlet Laplacian are much simpler. The inequality
(1.6) seems to be new but results of this type are known to experts. Corollary 1.9 is an
immediate consequence of Theorem 1.8; (1.7) also follows from (0.2).

Theorem 1.8. For all A > 0 we have
| Np(2,2) — Caw a(@ 2| < Cga1 2! /0A 1a(QP)dr . (1.6)
Corollary 1.9. If o € (0, 1) and Q2 € Lip,, then
Np(R,%) = Cawpa(@rd + 0 (Ad_“) . A > +oo. (1.7)
If a € (0,1) and Q2 € lip, then
Np(Q, %) = Caw pa(@rd + o(x"*“), A= 400, (1.8)
Note that (d—1)/a > d —oa whenever « € (0, 1) . Therefore the remainder estimate

in Corollary 1.9 is better than that in Corollary 1.6. The following theorem shows that
the asymptotic formulae (1.4) and (1.5) are order sharp.
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Theorem 1.10. Let a € (0, 1). Then

(1) there exist a bounded domain Q2 € Lip, and a positive constant Cg such that
NN(2,2) = Caw g (@) 24 + Cq' 24D/ forall ). > Cq;

(2) for each nonnegative function ¢ on (0, +00) vanishing at +00 there exist a bounded
domain Q € lip, and a positive constant Cy g such that

NN(2, 1) = Caw pna(14 + C;}Q ¢ AV forall > Cyq.
Remark 1.11. In [BD] the authors proved that
0 < Kon(t,x,y) < Cqt~@Hd=D/C0 = vy yeQ, Vre(01], (1.9

whenever @ € Lip, and « € (0, 1), where Kq N is the heat kernel of the Neumann
Laplacianon 2 and Cg is a constant depending on €2 . The estimate (1.9) is order sharp
as t — 0 (see [BD], Example 6). Corollary 1.6 implies that there exists a constant C /Q
such that

/ Kon(t, x,x)dx < Cq (1742 4 4=@=D/Ca)y vt € (0, 1].
Q

In view of Theorem 1.10, this estimate is also order sharp. Since d/2 < (¢+d—1)/(2x)
and (d — 1)/Q2a) < (¢ +d — 1)/(2x), we see that integration of the heat kernel
Kq N(t, x, x) improves its asymptotic properties.

1.3. Further definitions and notation. In the rest of the paper

e #T denotes the number of elements of the set T.
o If {T(i)};er is afinite family of sets 7'(i) and T := (J;o7 T (i) then

R{TO)}:=sup#Hi €eL|xeT3H))}),
xeT
in other words, R{7 (i)} is the multiplicity of the covering {7 (i)};c7 .
e If s € Ry then [s] is the entire part of s .
e supp f and V f denote the support and gradient of the function f.

The paper is organised as follows. In the next section we recall some well known
results from spectral theory and estimate the counting function on ‘model’ domains. In
Sect. 3 we discuss partitions of the domain €2 . In Sect. 4 we deduce the main theorems
from the results of Sects. 2 and 3. In the last section we extend our results to a wider
class of domains and higher order operators and discuss other possible generalizations.

2. Variational Formulae and Related Results

Recall that the Sobolev space W12(Q) is the space of functions u € L%(Q) such that
Vu € L*(S2), endowed with the norm
w2y = (IVulF, @) + lulfag) "

If Y is a subset of 9€2, let W&’%(Q) be the closure in W1-2(Q) of the set

{f ew Q)| supp f( )Y =0}
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and Wy>() := Wy’ (). Obviously, Wy (@) = Wh3(<).
Let '

NND(2, Y, 1) = sup(dim E}), 2.1)
where the supremum is taken over all subspaces E; C W(},’% (£2) such that
IVulZo < ¥ lullfag . — VueEs. (2.2)

In view of the Rayleigh—Ritz variational formula, Nn p (€2, Y, A) can be thought of as the
counting function of the Laplacian on the bounded domain €2 subject to Dirichlet bound-
ary condition on Y" and Neumann boundary condition on the remaining part of the bound-
ary. In particular, NN p(€2,4,1) = Nn(R2,A) and Nnp(2,092,1) = Np(R2,A).
Equivalently, (2.1) can be rewritten as

Nnp(R2, T, 1) = inf(codim Ej), (2.3)
where the infimum is taken over all subspaces E » C W&’%(Q) such that

VUl = % lul?s Vu € Ej . (2.4)

(D%

Lemma 2.1. Let {Q2;};c7 be a countable family of disjoint open sets Q2 ; C 2 such that
1a(R2) = wa(U;ez Q). Then

D ONp(Qi,A) < Np(Q,2) < NN(R,4) < ) NN, 1)
ieZ i€l

and Nn(2,2) > Y e 7 NNp(Q. 92, \ 92, 1)

Lemma 2.1 is an elementary corollary of the Rayleigh—Ritz formula. The following
lemma is less obvious.

Lemma 2.2. Let {Q2;};c7 be a countable family of open sets Q2 ; C 2 such that g (2) =
wa(Ujez ), Y be an arbitrary subset of 0Q and Y; 1= dQ; (Y. If R{Q;} <
% < 400 then Nxp(R, 1, 27120) < X250 7 NNp(Rj, Tj, 4.

Proof. Denote by E x,j,e the subspace of functions u € Wol’%(Q) such that ||Vu||iz(9i)

> A2 ||“||2LZ(Q,) . We have %||Vu||%2(9) > A2 ”“”2LZ(Q) whenever u € (;c7 Exja-

Therefore, by (2.3),
Nn(Q, > 21) < inf(codim ﬂ Ejjq) < Zinf(codim Ey o),
jeJ jed
where the infimum are taken over all subspaces E a,j,@ satisfying the above condi-
tion. If £, ; is the intersection of the kernels of linear continuous functionals Ay on
Wé’%j () and E) j o is the intersection of the kernels of linear continuous function-
als u — Ak(Mle) on Woly’%(Q) then codim E;L,j > codim £, j o and M|Qj € E;L,j

whenever u € E; jq. This observation and (2.3) imply that inf(codim E,x, i) =<
Nnp(2;,7;,0). O
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Remark 2.3. Lemma 2.2 implies that Ny (€2, x> 12)) < Zjej NN(€2j, A) whenever
Ujej Q; C Q2 na(R2) = na(U;er i) and R{2;} < ». It may well be the case that,
under these conditions, NN (€2, L) < Z/ej NN(£2j, A) . This conjecture looks plausi-

ble and is equivalent to the following statement: if Q1 C 2, Q2> C Q and uy(RQ) =
ma(S21) + pa(£22) then NN(21, A) + NN(S22, A) = NN(2, A).

Remark 2.4. The first eigenvalue of the Neumann Laplacian — Ay is always equal to 0
and the corresponding eigenfunction is identically equal to constant. Let A N(£2) :=
inf{A € Ry |Nn(R2,A) > 1}; if —AN has at least two eigenvalues lying below its
essential spectrum (or the essential spectrum is empty) then A; N(€2) coincides with
the smallest nonzero eigenvalue of the operator +/—An . By the spectral theorem, we
have A1 N(2) > A ifand only if [, [u(x)[*dx < 272 [ [Vu(x)[*dx for all functions
u € W2(Q) such that [, u(x)dx = 0. Note that [, |u(x)[>dx < [, lu(x) — c[*dx
for all ¢ € C whenever [, u(x)dx = 0.

Definition 2.5. Denote by P(8) the set of all rectangles with edges parallel to the coor-
dinate axes, such that the length of the maximal edge does not exceed §. If f is a

continuous function on Q@=V, let V(8, f) be the class of domains V. C Gy which
can be represented in the form V = Gf,h(di_l)), where Qg,d_l) c 0Y-D <35,
b=inf f — & and Osc (f, 0¥™V) < 8/2. We shall write V € V(8) if V € V(8, f)
for some continuous function f. Finally, let M(8) be the class of open sets M C R
such that M C di) for some cube Qfsd).

Lemma 2.6. Let § be an arbitrary positive number.

(1) If P € P(8) then Nn(P, 1) =1 forall » < ms "

Q) IfV € V(8) then NN(V, A) =1 forall » < (1 +2rx~2)~1/2571,

G)If M eM©), M C Q) and Y := M (" Q\, then we have Nx.p(M, Y, %) <
1 forall » < w8~ and Nxp(M, Y, %) =0 forall A < 271 —27184 puy(M))'/?
L

Proof. If P is arectangle then AjN = 7 a~!, where a is the length of its maximal
edge. This implies (1).

Assume now that V € V(§, f), where f is a continuous function on difl)

and denote b :=inf f — 8 and P := Q" x (b, b + 8). Clearly, P € P(5). Let
ue W-2(V) and c,, the average of u over P . If r € [b, b+6] and s € [b+3, f(x')]
then, by Jensen’s inequality,

s f&x)
WG, ) —ux, PP = |/ du, ndi? < (s—r>/ 9w, P dr
r b

since [ [/ s(s —r)dsdr = (8/2) (f —b—8) (f —b) and

0<f—b—8=f—inf f<20sc(f, Q¥ V)<s,

we have

g(x) pfE) f&)
/ f lu(x’,s) —u(x', r))?dsdr < 83/ 10, u(x’, 1)|*dr .
b g(x") b
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In view of Remark 2.4 and (1), we also have

/ lu(x) —cl|*dx < n*232/ |Vu(x)|* dx. (2.5)
P P
Integrating the inequality

u(x',s) —c, > < A+ lue’,r) =P+ A +y HluE',s) —u@, rf?

over r € [b,b+38], s € [b+86, f(x')] and x’ € ' and applying these two estimates,
we obtain

5/ lu(x) —ch|?dx < (1+y)n—233/ |Vu(x)|? dx
V\P P
#1478 [ fautnp ds
\%4

for all y > 0. Dividing both sides by § and substituting y = 72, we see that
Jyp lux) = ¢, |>dx is estimated by (1 + 77282 [}, |[Vu(x)|*dx . Now (2) follows
from (2.5) and Remark 2.4.

In order to prove (3), let us consider a function u € W!2(M) which vanishes near
T and extend it by zero to the whole cube Q((Sd) . Since u € W1*2(Q§d)) , (1) implies

the first inequality (3). If ¢, is the average of u over di) then

f|cu|2dx < pa(M)s™ /|cu|2dx+f lu(x) — cu*dx | . (2.6)
M M Q(d)

)

Therefore Remark 2.4 and (1) imply that

f|u(x>|2dx < 2/ |u(x>—cu|2dx+2/ el dx
M o\ M

< 2<1+ud<M)8—d (1—,U«d(M)3_d)_l)/ lu(x) — cu|? dx
0

fgd)
242 —a\7! 2
<2728 (l—ud(M)S ) /|Vu(x)| dx .
M

The second identity (3) follows from the above inequality and the Rayleigh—Ritz
formula. O

Remark 2.7. The second estimate in Lemma 2.6(3) is sufficient for our purposes but is
very rough. One can obtain a much more precise result in terms of capacities (see [M2],
Chap. 10, Sect. 1).

Lemma 2.8. Let § > 0. Then for all > > 0 we have

—Ca (G0 +1) < NS 1) = Caw 62! < Can (G0 +1).
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Proof. Changing variables x = § x, we see that
N(R,8%) = N(Q,A), where 8Q:={xeR?|57'x € Q}. 2.7)

Therefore it is sufficient to prove the required estimates only for § = 1.1f @ = Q' x Q"
Y c aQ and Y C 9Q” then, separating variables, we obtain

NN (2,7, 2) = f N (2.7 ViZ = 12) (@ ). 28)

where T = (Y x 9Q") [ J(0 x Y”) and the right-hand side is a Stieltjes integral.
Using (2.8), explicit formulae for the counting functions on the unit interval and the
identities

A
/ A=) dp = Mo Qo)™ Yn=1,2,..., (2.9)
0

one can easily prove the required inequality by inductionin d. O

Remark 2.9. Lemma 2.8 is an immediate consequence of well known results on spectral
asymptotics in domains with piecewise smooth boundaries (see, for example, [Iv2 or
F]); a similar result holds true for higher order elliptic operators and operators with var-
iable coefficients [V]. We have given an independent proof in order to find the explicit
constant Cy 1 .

3. Properties of Domains and Their Partitions

3.1. Besicovitch’s and Whitney’s theorems. We shall use the following version of Besi-
covitch’s theorem.

Theorem 3.1. There are two constants C, > 1 and én > 1 depending only on the
dimension n, such that for every compact set K C R" and every positive function p on

K one can find a finite subset Y C K and a family of cubes {Q
v, which satisfy the following conditions:

(1) K € Uyey iyl

@) MK N Q40 Y lyey < Ca

(3) there exists a subset Y C Y such that #Y < C (#J)) and the cubes {Q
are mutually disjoint.

p(v) Yl}yey centred on

p())[ Myey

Theorem 3.1 is proved in the same way as Besicovitch’s theorem in [G], Chap. 1.

Corollary 3.2. Let f be a continuous function on the closure Q@Y. Then for every
e > 0 there exists a finite family of cubes { QY= (x)},cx such that

(D) Ugex Q9=D(x) = QU@-D;

(2) RV ()} < Cas

(3) #X < Ca3 Ve(f, QUD);

(4) Osc (f, 09=V(x)) < e foreach x € X.
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Proof. Without loss of generality we can assume that 0@-D = (—=1,1)?"! and Osc

(f, 0¥=1D) > ¢ Letus denote by Qfd_l)[y] the cube of the size ¢ centredon y, define

p(y) :=inf{t > 0| Osc (£, @ V(0" "y =¢e}, yeQ@D,

apply Besicovitch’s theorem to the set K = Q@—1) and find the sets ) and VIfye),
denote PU~D[y]:= QU-D N Q;d(;)l)[y] and assume that
PU V] = (@1(), b1(3) x (@2(), b2(y)) X -+ X (@a-1(), ba-1(»)) .

where —1 < a;(y) <b;(y) <1.Let Q’(y) be the minimal cube suchthat PY—D(x)
0'(y) C Q(d_l) and ¢(y) := max; (bj(y) —a;(y)). We have

Q' (y) = (@) (y), b1 (») x (ay(y), b5(y)) x -+ x (ay_; (¥), by_ (),
where

(-1) ifaj(y) = —1thenaj(y) = —1 and b;(y) = a;(y) + c();
(0) ifa;(y) > —land b;(y) < 1 then a}(y) =a;(y) and b;(y) =b;();
(+1) if bj(y) =1 then a}(y) =b;(y) —c(y) and b;-(y) =1.

Let us consider the set & = {—1,0, 1}4~! of all (d — 1)-dimensional vectors
o = (01, ... ,04-1) with entries o equal to —1, 0 or 1. Denote by JAJ,, the set of points
y € )A) suchthata;(y) and b;(y) satisfy the condition (o) forall j =1, ... ,d—1.Since
N{P(d_l)[y]}yejj = 1,foreacho € X the cubes {Q/(y)}yef)a = 1 are mutually disjoint.

Therefore #)A)g < Ve(f, QU=D) for all o € ¥ (see Definition 1.1) and, consequently,
#Y < #Z) Ve(f, 09@-D) < 3971V, (f, 0@-D) . This estimate and Theorem 3.1(3)
imply that #Y < 3971 Cy_1 Ve(f, Q@-D) .

Since Y € Q@-D , we have 1/2 < (b;(y) —a; ()" (bx(y) — ax()) < 2 forall
J.k=1,...,d—1 and y € ). Using this inequality, one can easily show by induction
in d that every rectangle P“~D[y] coincides with the union of a finite collection of
cubes {Q“~V(x)}yex, such that #X, <2971 and R{QW"V (x)}ren, <2971,

Let X = yey Xy . In view of the first two conditions of Theorem 3.1, the family
{0 (x)} ex satisfies (1) and (2). The upper bound #Y < 3971 Cy_; Vi (f, QW@-D)
implies (3). Finally, since Osc (f, P(d’])[y]) =¢ and Q(d’l)(x) C P(d’l)[y] when-
ever x € X , wehave (4). O

The following theorem is due to Whitney. It can be found, for example, in [St],
Chap. VI, or [G], Chap. 1.

Theorem 3.3. There exists a countable family of mutually disjoint cubes
d) ;. oy d) .
(050G, Mwenry iex such that @ = Uz Upen; Q50 G n) and

0\ (i,n) C {x € Q| Va2 <dist(x, 8Q) < 4V/d 277} (3.1)

Here T is a subset of Z and N; are some finite index sets.
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3.2. Auxiliary results. In this subsection we shall prove several technical results con-
cerning domains G 7, .

Lemma 3.4. Let f be a continuous function defined on the closure Qfld_l). Then for
every § > 0 andm € Z there exists a finite family of cubes {Q(d_l)(k)}kelcm such that

(1) Ugex,, 09Dy = 077,

(2) 0=V (k) € P(8) forallk € K;

3) ROV k) ek, < Ca:

(4) Osc (f, 09=D(k)) < 2" 18 forall k € K,n;

(5) #{k € K | 1ta—1(Q9=V (k) < 2'798971) < Ca3 Vam1(f, 0871,

Proof. Let {Q(d_l)()c)}xE x be a family of cubes satisfying the conditions of Corol-
lary 3.2 with ¢ = 2m=15. Assume that QWD (x) = ,(ff_l) with some a, > 0 and
denote by X the setof allindices x € X suchthata, < §.Foreachx € X'\ Xs, we choose
a positive integer m, such that a,/m, € (§/2, 8] and split the closed cube Q@1 (x)
d—1 (d—1)

by ay/my

Q((;f;l& (x, j) be the corresponding disjoint open cubes and

(0D Ohkek = Q™ W} re, QL) 06 N yerv iy, jt mi- -

Then (2) holds true and (1), (3), (4) and (5) follow from Corollary 3.2(1), Corollary 3.2(2),
Corollary 3.2(4) and Corollary 3.2(3) respectively. O

into the union of m congruent closed cubes Q x, 0, j=1,... ,mz_l. Let

Theorem 3.5. Let f be a continuous function on Q;d_l), § € (0, \/Ha] and b €
[—oo, inf f — 28]. Then there exist countable families of sets {Pj} ;e and {Vi}iek
satisfying the following conditions:
(1) P C Gypand Pj € P(8) forall j € J;
@ Vk CGygpand Vi € V(, f) forallk € K;
B) R{Pj} <3Cypn+ 1and R{V} < Cyo;
@ G CUjeg ke (P U Vi)
(5) #{k € K | pa(Vi) <2759} < Ca3 Vapa(f, 05 ") and
#(j € T | ma(P) < QVd) 87} < Ca3 Ym0 2" Vanois(f. Q5 7D),
where mg = min {m € Z, | 2"~1§ > Osc (f, 0¥~ V)}.

<
<

Proof. Let {0“=D(k)}kerc. be the same families of cubes as in Lemma 3.4, ¢; :=

m

infer(d—l)(k) f(.x), bk = Ck — ) 5 Vk = Gf,bk(Q(dil)(k)) and
Posen = Q"D (k) x (ck —nd, ck —nd +38),

where k € |, Kn andn € Z;.Denote Ny, = {2"+1, ... ,2"+2"+1} Lemma3.4(4)
implies that

Puin C {x € Gy |2M8 < f(x) —xq < 2"F25), (3.2)
keK,neNy
forallm =0,1,... ,ms.Let K :=Ko, T := U, o Km x Ny and {Pj}j,e7, =
Uﬁio{Pm,k,n}keKm,neNm .
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Assume that x € Gy. If f(x’) — x4y < 28 then, by Lemma 3.4(1), we have x €
Ukek (Vku PO,k,2) I f(x') — xg > 2118 then

dist(x, Tf) = f(x") —xg —20sc (f, Q@7 D) > f(x) —xg —2™8 > 2™§ > 6.

Finally, if 28 < f(x") — xg < 2+18 then 27118 < f(x)) — xg < 2"H18 4+ 276 for
some nonnegative integer m < ms and, in view of Lemma 3.4(1) and Lemma 3.4(4),
we have x € Uk, nenr, Prmk.n- Therefore

weGrldsrp<sic U (BUW). (3.3)
Jx€Tx, kel

Let us choose a constant ¢ € (8/(2\/3), 8/\/3] in such a way that a/c € N and split

the set Q(d b x [b, +00) into the union of congruent closed cubes Ld 1)(z) whose
interiors Qc (i ) are mutually disjoint. Let {P;};c 7 be the collection of all the rect-
angles P;, and all the cubes QEd 1)(1) which are contained in G f,, . Then (1) and (2)
are 0bv10us The second inequality (3) and (5) follow from the corresponding statements
of Lemma 3.4. The first inequality (3) is a consequence of (3.2), Lemma 3.4(3) and the
identity ¥ {[2", 2’”“]}1.€Z+ = 3. It remains to prove (4).

Let x € Gy . If dist(x ['s) < & then, by (3.3), either x € Vi for some k € KC or
X € P for some j* € J*.Since P;, € P(8) and b < inf f — 2§, in the latter case

Pj, C Gyp . If dist(x,I'y) > & then the cube di 1)(1) , whose closure contains x , is
asubset of Gy because its diameter does not exceed & . Therefore (4) holds true. O

In the two dimensional case we also have the following, more precise result.

Theorem 3.6. Let the conditions of Theorem 3.5 be fulfilled and d = 2. Then there
exists countable families of sets {P;} ;e and {Vi}kexc such that

(D) P CGyp and P € P(8) for all j € J;
Q) Vi CGyppand Vi e V(, f) forallk € K;
©OR ({Pj}jej U{Vk}kelC) <2
“) Gy C UjeJ, kel (FUVk)’
(5) #k € K | 1a(Ve) < 82/2) < Vspa(f. OF) and
#j € T | na(Pj) < 82/8) < 6Vspa(f, ) +12a/5.

Proof. In the two dimensional case we do not need Besicovitch’s theorem because the
‘cube’ Q‘(ll) coincides with an interval of the form (b, b+a) . Given ¢ > 0, one can eas-
ily construct a finite family {Q" (x)},cx of disjoint subintervals Q" (x) € (a, a+b)
satisfying the conditions (1)—(4) of Corollary 3.2 with C42 = C43 = 1. Therefore
Lemma 3.4 remains valid if we substitute Cg2 = Cy3 =1.

Let k € K:= X and by, QV(k) and V} = Gf;;,k(Q(l)(k)) be the same as in the
proof of Theorem 3.5. By the above, the first inequality in Theorem 3.5(5) holds true
with Cy 3 = 1. Therefore #/C < Vs (f, Q(a )) +2a/é (the second term is the maximal
number of intervals Q! (k) whose length exceeds §/2).

Let Vi := {Upexc V- The set G\ V¢ is a polygon with edges parallel to coor-

dinate axes which has at most 2 Vs, (f, Qél)) vertices lying on the horizontal lines
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{x | x € Qfll), x» = bi}. Let us choose a constant ¢ € (6/2, §] in such a way that
a/c € N and split the interval le) into the union of a/c intervals (a;, a;4+1) of length
c;if a < § then we take (ai, az) := le) . Denote

Kp = {k e K |laa, a3l VK #0}, bii:= ;n}él, b,
€~

and Py := (ai, a;41) x (b, by), where b} := min{by | by > by, k' € K}}; we
assume that Py ; := ¢} whenever by = max{by | k' € K}}.
We have dist(x, ') > § whenever x1 € [a;, aj4+1] and x2 < by ;. Therefore

{x € Gp\ Vy | dist(x, ) <8, x1 € [ar,arpnl} € | Prs
kekC;

and, consequently, (3.3) holds true with 7, := | J, K] and {P},};,c7, := Uz{Pk,l}keIC; .
For each fixed / the number of rectangles Py ; does not exceed #IC; — 1. We also have

> (#IC; — 1) < 6 (#K) because each point x| € Q,(}) belongs to at most six intervals
[a;—2, aj+3] . Therefore

#J. < 6(#K) < 6Vspn(f. V) +12a/5.

The rest of the proof repeats that of Theorem 3.5. O

3.3. General domains. We shall need the following elementary lemma.

Lemma 3.7. Let h be a real-valued function on Ry and 0 < a < b. If the function
th(t) is nondecreasing then

_ 2b
> K@) < 2/ = h@)dr.

i€Z|a<2<b

Proof. We have Y, i<, h(2) = 23, <0<, (271 = 27771) 2) h(27) . Since the

function i(s) = s 'h(s~') is decreasing, the right-hand side is estimated by
-1

2 &5 s hds =2 2 h@ndr. O

Corollary 3.8. Let Q@ € BV; . Then for each § € (0, 8q] there exist families of sets
{Pj}jeg and {Vilrex satisfying the following conditions:

(1) for each j there exists | € L such that P; C Q; and U;(P;) € P(§);

(2) for each k there exists | € L such that Vi C 2 and Uj(Vy) € V(5);

(3) R{P;} < ng (3Cdi+ 1)_and R{Vi} <ngCyoas

@y c U (PFUW%) c o,

jed, kek

(5) #K < Ca3Cq,r T(2/8) +nq Ca2 297167 ua(Q}) and

4/8
#7 < 4cd,3cg,r<s—1/ 172 1(1)dt +neBCaz + DRV §7 1a(23)

(2Dg)~!

where 8¢y := 8/«/3 and 81 := /d 8 + 8/\/2.
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Proof. Let Q; = Ul_l(Gf,,bl) be the sets introduced in Subsect. 1.1. Given § € (0, 5],
we apply Theorem 3.5 for each / € £ and denote by {P;};c 7¢) and { Vi }kexc () the fam-
ilies of subsets of €2;, which satisfy the conditions of Theorem 3.5 in an appropriate
orthogonal coordinate system.

Let J'(1) :={j € J() | dist(P}, 3Q) < do},

(Pi}jes == IPiYjeray and (Vidiex = |JVidkerca) -
lel lel

Then each of the conditions (1)—(3) is a consequence of the corresponding condition in
Theorem 3.5.

If x & Ujep S then dist(x, Q) > 8q > 8. If x € QlﬂQg’o then, by Theo-
rem 3.5(4), we have x € U;c74) keko) (P; U Vk). In this case x € Ujea ). keka)
(Pj U Vi) because diam P; <+/d § . Therefore QF isasubsetof ;.7 e (Pj U Vi)
The estimates sup,.cy, dist(x, 3€2) < Jd§ and diam P; < Jds imply the second
inclusion (4).

In order to prove (5), let us denote by Ms the smallest positive integer such that
2Ms=1s > Dg . By Theorem 3.5(5), we have

M
#ie|JIO I na(P) <2796 < CanCar Y 2" (@™ 1) ).
lel m=0

Since 2M5=15 < 2Dgq , applying Lemma 3.7 with a = (2Dg)~ '8, b =2 and h(r) =
1 r(S’It) , we obtain

4/8
#j e JTW | na(Pp) <2'748% < 4cd,3csz,f8-1/ () de .
lel (ZDQ)_I

Now the second estimate (5) follows from the first inequality (3) and the second inclu-
sion (4). Similarly, the first estimate (5) is a consequence of the second inequality (3),
the second inclusion (4) and the first inequality in Theorem 3.5(5). O

Corollary 3.9. Let Q € BV; « and Q € R2. Then for each § € (0, 8q] there exist
families of sets {P}} je7 and {Vi}iex satisfying the conditions (1), (2) and (4) of Cor-
ollary 3.8 such that
(3) R ({Pj}jeg UVidkek) < 2ng;
(5') #K < Ca.r T(2/8) +2nq 872 12(Qf ) and
#7 < 6CqorT(2/8) + 12Dg/s + 16n08™> na(}).

Proof. The corollary is proved in the same way as Corollary 3.8, with the use of Theo-
rem 3.6 instead of Theorem 3.5. O

Our proof of Theorem 1.8 is based on the following simple lemma.

Lemma 3.10. Let 2 be an arbitrary domain. Then for every § > 0 there exists a family
of sets {My}reic satisfying the following conditions:

(1) My C Q and My € M(8) for eachk € IC;
Q)R{M;}=1;

B} c U My C Q) , where 8y :=58/~d and 8, := Vd s +5/V/d.
kelkC
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Proof. Consider an arbitrary cover of R? by closed cubes Ql(sd) (k) with disjoint interi-
ors 03 (k) and define {M}rex == (R QL (k)}rek » where K is the set of indices
k such that @¢ MO (k) #0. O

4. Spectral Asymptotics

4.1. Estimates of the counting function. In this section we shall always assume that

80 :=8//d, 81 :=/d 5+ 8/+/d and denote
o
Ro(A,81) = 3(4«/2)051,1/

6 (s*b\‘H +s*d) dua(@). @1
!
where f (s_lkd_l + s_d) d(/Ld(QE)) is understood as a Stieltjes integral.
Theorem 4.1. If Q € R? is an arbitrary domain and § > 0 then

N(Q, 1) = Caw a1 > = Ra(h,81) — Caw na(@hs) A, VA >0, (42)
and

Np(Q. 1) = Caw (A" < Ra(A,81) + (4D +2) 5 pa(2hs)  (4.3)

forall A <87V If Q € BV, oo and § € (0, 8q] then

NN(Q,2) = Caw a2 < Ra(h.81) + (4d)? 674 pa(Qhs)
4/5
+ Caonad ™ pna(2) + 8Ca3 CQ,,a—lf 172 7(t) dr (4.4)
(2Dg)~!

1/2 71/2

forall A <min{l, C, ys~L.

Proof. Let Q(d) (i, n) be the Whitney cubes introduced in Theorem 3.3,
Iy =i €T |Vd27 <80/4), I =(ieT|Vd2™" >4},

70 =T\ (Z; UZ;) and QF := UieIg Unen; Q;{),»(i, n), where 0 =+, 0 =0

or 0 = —. The set QF are mutually disjoint and Q= Q_;Ug_g UQ_S_ By virtue of
(3.1),
Q C an’ QO C 9451 \930/4’ 9\9431 C Qg‘ C Q\le (45)
and
NG < 2 (a0 — ma(REy, ) . VieT, (4.6)

In view of the second inclusion (4.5), we have

DN < @Va s pa(@ls) = @ 5 pa(2hs). @)
ieI{?
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Since R{[v/d 27!, 4/d 271 }jez = 3 and Qb Qb forall s > Dg , the inequalities
(4.6) imply that

@)+ N < 3@V [ 6T s da@d) @)
81

ieTy
forall A > 0.
By Lemma 2.1,
N(®.2) = Caw na(@ A > = Caw na(@\ 25) 2
+ (N %) = Caw na(@)27) . (4.9)
No(S, ) = Caw ma(@ A < Nyp(R\ 9,92, 2)
+ (M@ ) = Caw ma(@)) ) (4.10)

and
NN(Q.2) = Caw ta (@) 1) < NN(Q\ Q7. 4)
+ (M@ ) = Caw (@27 . (.11)

Lemma 2.1 implies that

> (M@ G 1) = Caw Q) < N2 = Caw (@) 4
ne]\/’,-,iel's

< X (M@ am. ) - Caw @)
ne/\fi,iel'5

In view of Lemma 2.8, the right- and left-hand sides are estimated from below and above
by +Ca1 Yiezr (21792971 + 1) #M;. Therefore, by (4.8),

INQF 1) — Caw na(@) 2] < Ra(,81),  YA>0. (412

Since 2\ QR 5, C Q7 , the lower bound (4.2) is an immediate consequence of (4.9) and
4.12).

Assume that A < 87! . Let {My}rex be the family of sets introduced in Lemma 3.10
and

d) ;.
Submery = (055G men, jezo U Midkex
Lemma 3.10(3) and (4.5) imply that Ume./\/lD Sm o= Q\ Q;‘ . In view of Lemma 3.10(2),
we have R{S,,},,cpp < 2. Consequently, by Lemma 2.2,

NND(Q\ QF, 02,0 < ) NS, Tny V21),
meMp

where Y, = Sy, () 9€2. Since each set S,, belongs either to P(d~1/28)) orto M(8),
Lemma 2.6 implies that NN(Sy, Vs \/ik) < 1. Moreover, if S, € M(§) then, in
view of Lemma 2.6(3), NN(Sy, Yo, ¥/24) > 0 only if pg(Sy) > 8¢ — 4n =2 891232
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By Lemma 3.10(3), the number of sets M € {Mj}rexc satisfying this estimate does not
exceed

-1
(1 —4n2 52,\2) 57 ua(3) < 2674 pa(@}).
Taking into account (4.7), we obtain
Nap(Q\ QF, 02,0 < @) 87 pa (@) +267 1a(Q}) .

This estimate, (4.10) and (4.12) imply (4.3).
In order to prove (4.4), let us consider the family of sets {P;}jc 7 and {Vi}iex con-
structed in Corollary 3.8 and define

Submery = (035G Mhens, ez P jeg UWVidkex -

Corollary 3.8(4) and (4.5) imply that (J,,c v Sm = 2\ Q; . In view of Corollary 3.8(3),
we have R{S;,}em < ng Cﬁ 4 - Consequently, by Lemma 2.2,

1/2
NN\ QD) <Y NN(Swang” Caah).
meMnN

Since each set S, belongs either to V(§) or to P(d —1/251), Lemma 2.6 implies that
NN(Smy 1> Caqr) = 1 whenever n* Cgq ) < Cq58) . Estimating #M with the

use of (4.7) and Corollary 3.8(5) and applying the inequalities

4/8 4/8 4/8
(8/4)1(8/2) = z(a/z)/ 172dr < / T2 dr < / 12 z(t)dr,
2/8 2

/8 (2Dg)"!
we see that
4/8
NN(Q\ QT 0) < 8Cys CQ,,(S*I/ 1727 (r)de
(2Dg)"!
+ (4d/8) na(Rs) + Caenad ™ na(Q) (4.13)

forall A < Cy7ng/?8~1. Now (4.4) follows from (4.11) and (4.12). O
s Q

4.2. Two dimensional domains. If d = 2, t(t) =t and § =< A~! then the first term
on the right-hand side of (4.13) coincides with ¢ A log A, where ¢ is some constant.
On the other hand, for two dimensional domains with smooth boundaries we have

NN(QK_1 ,A) ~ A as A — oo (see, for example, [SV]). The following lemma gives

a refined estimate for NN(2 '\ Qf, A), which does not contain the logarithmic factor.

Lemmad.2. Let @ C R?, Q € BV; o, 8 € (0,80] and Q be defined as in Sub-
sect. 4.1. Then for all ) < ‘/75 nél/zé’l we have

NN\ QF, 1) < 7Cqr1(2/8) + (64 + 18n9)8_2u2(925])+12DQ/8. (4.14)

Proof. Applying the same arguments as in the proof of Theorem 4.1 but using Corol-
lary 3.9 instead of Corollary 3.8, one obtains (4.14) instead of (4.13). O
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4.3. Proof of Theorems 1.3, 1.8 and Corollary 1.5. Integrating by parts in the Stieltjes
integral and changing variables s = ¢!, we obtain

f oo<s—w’—1 + 57N d(ua(@D) + (AT p e (D)
—1

&
=/ AT d T g dr,  Ye > 0. (4.15)
0

—dy 57!
Therefore ((481) 'A%~ + (481) ) ua(R55) < 47 +d 817 [y pa(QP))dt

-1
and (s 457 d(na(@D) < T+ dsli=9 f(fl 1a(QP_) dt . Applying
these inequalities and the estimates (4.2)—(4.4) with 81_1 =xrord!= Cis ng 2 ,
we obtain (1.1) and (1.6). The estimate (1.2) is proved in the same manner, using (4.14)
instead of (4.13). Finally, since [”+2¢(t)dr < b?2 [*1=9 ¢(r)dr, (1.3) is a conse-
quence of (1.1) and the following lemma.

Lemma 4.3. [f Q € BV o then

1a(20) < Cun3'ng DL e +Ca339Cq el te™), Ves>o0.

Proof. Assume first that f is a continuous function on the closed cube Q‘(,d_l). Let
{0“=D(x)} ex be the same family of cubes as in Corollary 3.2, ['s(x) = {z €

Iyl7 € Q¥ Dx)}and X, := {x € X| QYD (x) e P(e)}.
If dist(y, ') < & thendist(y, I (x)) < & for some x € &". Therefore

na (1y € QU= | dist(y,Ty) < e})

< Y ma(ty e Q7Y | dist(y, Tp(0) <e}).

xeX

Theset {y € Q,(ld_l) | dist(y, I'f(x)) < ¢} liesin the e-neighbourhood of the rectangle
0D (x) x (inf e g-1 () £ (2) » SUP,c o1y f(2)) . In view of Corollary 3.2(4), the
measure of this e-neighbourhood does not exceed 3¢ (a, + 26)4=1 | where ay is the
length of the edge of 0= (x). Therefore

na (v e QD 1 dist(y, Tp) <e}) <376l X+ Y. 3ead™!
xeX\ X,

Now the obvious inequality ) .y af’l < a7 R{Q“D(x)},cx and Corollary 3.2(3)
imply that

paly € RY | dist(y, Ty) < &) < Caa3%ea?™' +Ca33%ed Ve(f, 0997Y).

Since Q? = Ujepfx € Q| dist(x, ') < ¢}, where f; are the functions introduced in
Subsect. 1.1, the lemma follows from this inequality. O
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4.4. Proof of Corollaries 1.6 and 1.9. Let Q € Lip, , fi be the functions introduced in
Subsect. 1.1 and |2|, := max; | fi|o , Where |-|, isthe seminorm defined in Subsect. 1.1.
If x € Gy, and dist(x, (y', fi(y")) < & then

i) =xa < xa = i+ /O = i) < 8+8 | fila- (4.16)

Therefore {x € G, | dist(x,Tp) < 8} C {x € Gg | fi(x") —xq4 < 8+ 8%|fila}
and, consequently pq({x € Gy | dist(x,I'p) < §}) < a?=1 (8 4+ 8| filo) . This
immediately implies the following lemma.

Lemma 4.4. If Q € Lip, and § < 8q then 1g(22) < ng DI (8 45 Q).

If Q(d D Q(d D then diam Q(d D'~ q12¢ and

20sc(f, Q™) < sup A = OGN < A | fla. (4.17)
¥,y

Therefore ¢4~ > g(U=/2 | f|1=D/% sd=D/a whenever Osc (£, 0 V) > §/2 and,
consequently,

Va/z(f, an'—l)) < d(d—l)/Z ad—l |f|((xd—1)/a 8(1—d)/oz +1. (4.18)
The inequality (4.18) implies the following result.
Lemma 4.5. If Q € Lip, and
t(r) = 20=d/a gd=D/2 pd=1|q|d=D/e (@d=Dja 4 (4.19)
then Q € BV r and Cq . < ng.

Clearly, (1.4) follows from (1.1) and Lemma 4.5. Similarly, (1.6) and Lemma 4.4
imply (1.7). It remains to prove (1.5) and (1.8).

Assume that Q € lip, . Then for each ¢ > 0 we can find functions fl(e)

Lip; and fl € Llpa such that fi = f()+ f(2 and |f1’2|(x < ¢. Obviously,
Vs () + fl(” < Vsp(f), 0) + Vsa(f'9. Q). Therefore (4.18) implies that

Vs(fi, Q{(;lzfl)) < d@-n/2 Dg—l (8((171)/01 s=d/e 4 ngfl 81*") )
< ed=D/e g 571, (4.20)
where C, := max; |flf82)|1 ,and
() = d¥@-D/? Dgz—l (t(d—l)/a + Coqel=d/e td—l) +og=d)/e
We also have
G = AONI<eld =y + 19 =Y. vy e @D,

Therefore, instead of (4.16), we obtain f;(x") —xg < 8§+6| fl(a) |1 + 8% & . This implies
that 114(2D) < ng DL (8 + C. 8 + 8% ) whenever § < 8q .
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In view of (4.20), we have Q@ € BV, and Cq . < gd=D/epo Choosing a
sufficiently large constant C and applying (4.2)—(4.4) with 6 = C 2 land 7 =7,
we see that

| NN(R2,4) = Caw pta(@) 24| < e/ cpald=ble 4 g -t
| Np(Q, ) — Ca,w a(@) 24| < &Co2~ +Cq 247!
forall A > 1, where Cg, is a constant depending only on the domain Q and CQ .

is a constant dependmg on Q and €. Since & can be made arbitrarily small, these
inequalities imply (1.5) and (1.8). O

4.5. Proof of Theorem 1.10. Let Q'"" = (0,1)"!, a € (0,1) and p be a
sufficiently large positive integer. In particular, we shall be assuming that
p > max{a~!, (1 —a)~!} and, consequently,

—1
21, (-2 <2, (1-2070r) <2 @2
and
(2(1701) (n+l)p _ 1) (2(170()]) _ 1)_1 < 21+(170()np , Vn=1,2,.... (4.22)

Given j € Z4, let us denote by K; the set of nonnegative integer vectors k =
ki, ..., kg_1) € Zi_l such that max; k; < 2/ — 1 and consider the (d — 1)-dimen-
sional cubes

03,k = (X eRI 2Py —ke 0"Vy, kek;
with edges of length 27/ . For each fixed j € Z and k € K j the cubes Q(j, k) are
disjoint and Q(d b = Ukex, Q0. K).

Let € Lip; be a nonnegative Lipschitz function on vanishing on the

boundary 8Q(d b , :=supy and by , := Vd 23=0=9r (1yr | + ay) . We shall
be assuming that pis large enough so that ay > by , . Let us extend ¥ by O to the
whole space R?~! and define

d—1
Q( )

gi(x) == Y vy -k, fuld) =) e 274 gi(x)
kele j=0

and f(x") :=lim,_ o fr(x) = Z?io gj 2-aip gj(x’), where {¢;} is a nonincreasing
sequence such that ¢; € [0, 1] and

U=WRIZDP  gpiny < 265, Vji=1,2,.... (4.23)
Note that the condition (4.23) is fulfilled whenever {g;} is a sufficiently slowly decreas-
ing sequence.
Lemma 4.6. We have
(1) gj=00n00(j,Kk) forall k e K, and j > n
) 0< f() = fuld) <2601 27 DPay <1279y, ;
B) 1 fulp <2ME=O" (|y|y + ay) forall B € [a,1];
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(4) f eLip, and |fla <2(¥11 +ay);
(5) f € lip, whenever ¢; — 0 as j — 00,

(6) 20sc (fu—1, 0, K)) <, 27%"P by, forall k e K.

Proof. (1) is obvious and (2) immediately follows from (4.21). In order to prove (3),
let us fix B € [a, 1], denote n’ := max{j | 27/7 > |x' — y'|}, n” := min{n, n'} and
estimate

n n”

Zlgj(X’)—gj(y’)l :Zlgj(x’)—gj(y’)l N X": lgj(x") — g; (NI

= 29Jp |x! — y/|ﬂ = 20ip |x! — y/|ﬂ Pl 20jp |x! — y/|,3
n'” n
< Yl Y 200 =y ey Y 27—y
j=0 j=n"+1

In view of (4.22), the first term on the right-hand side is estimated by |v|; Z?;o
20=a)jp+(=Fnp < p1+B=np |1 If n < n’ then the second term on the right-hand
side vanishes; if n > n’ then, by (4.21), it does not exceed 2 ay, 2—“("”+1)p|x/_y/|—ﬁ <
2ay 2 (B—a)(n"+1)p < 21+('3_°‘)"1’a¢ . Thus,

2”: lg;(x) — g; ()]

20jp |x! — y/|B < 2! (F-emp (Il +ay) . 4.24)

j=0
This estimate immediately implies (3) and (4). The inclusion (5) is also a consequence
of (4.24) because | f — fula < ens1 SUPy 30 %ﬁfﬁ”

Finally, in view of (4.23) and (4.24), we have

(v + aw)_l|fj|1 < 2 I+(1=a)Lj/2]p + &2 2 I+(-a)jp < g 23+(1-a)jp
4.25)

Since diam Q(n, k) = ~/d27", (4.25) with j =n — 1 implies (6). O

Let Q := Gyfo, Q= {x € Q| x' € Qn,K), xg € (f-1(x), fFG&N},
Yy ok =02,k \ 02 and Q,_; be the interior of @\ (Uyex, @n.k) -

Denote a, k := sup fn—1(x’) and consider the function
x'eQ(n,k)
sin (2anp(xd —dn k)/en) s Xd Z an—1k >
un,k(x) = ’ ’
0, Xd < dp—1,k >

on 2, k. We have u, k(x) € Wl’z(Qn,k) and, in view of Lemma 4.6(1), u, x = 0
on Y, k.Applying Lemma 4.6(2) and Lemma 4.6(6), we see that

f(x,)_an,k
/ |Vitn, k (x)|* dx = g, 2 22" / cos? (2% xq/€n) dxq dx’
Q. x 0

< 8,1_2 22051112/
Q(n.k)

I Y (x)+ay
= g loanpp—(d=Dnp cos” xg dxg dx’
n di—l) 0

O(n.k)

en 2741 (gy (-x/)+a\[/) 2
/ cos” (2%"Pxgq/y) dxq dx’
0
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and

2 f(x/)_an,k 5
/ [up k(x)]"dx = / / sin® (2" x4 /€y ) dxg dx’
Qp k Q(n,k) JO
Enzianp(gn(x/)_bw,p) 3
2/ / sin® (2" x4 /€y ) dxg dx’
0n.k) Jo
w(x/)*bz//,p
= g, 279" p=(d=Dnp / / sin® xg dxg dx’ .
Q(ld_l) 0

Therefore [, k|vun,k(x)|2dx <3 e 2% o k|u,l,k(x)|2dx,where
n, n,

v.p
, 1/2
fQ(d—l) OW(X T 052 xg dxg dx’
1
Cy,p = b
fQ(d—l) Ow(x) "7 sin? x4 dxg dx’
1

This implies that NN p(2,,k, Yn,k, A) = 1 whenever A > ¢y, 8;] 20np
Assume that A € [CI/,,,, sn_l 29 ey p 5;11 2"‘(”‘“)”) and, using Lemma 2.1, esti-
mate
NN(R.2) = Np(Qu-1.2) + Y NND(Qn ks Ta ko A
kelC,

By the above, the second term on the right hand side is not smaller than #/C, =

2@=Dnp > (¢, ,20p)d=d)/a er(i_ll)/a A@=D/® On the other hand, in view of The-
orem 1.8, Lemma 4.4 and Lemma 4.6(3) with § = «, we have

Np(Qu-1.4) > Caw ta(Qu-D) 1" — Ca(I¥]1 +ay + 1A
for all sufficiently large A . Finally, by Lemma 4.6(2),
na( A" = pa( Qo)A < e, 27y 0t < ay ey p (en/entn) 227 2070

Since &, < €[(n+1)/2] < 2&n+1, the above estimates imply that

_ d—1 _
NN(Q, ) = Caw ma (@) 24 + (cy,p 207D/ gD/, @=D/a
— Ca(IWh +ay + DA™ — Caway cy, 2203471 (4.26)

forall A € |:C1/,’p 8;1 294mp Cy.p Sn_-il 2a(n+l)p) )

By Lemma 4.6(4), Q2 € Lip, and we have (d —1)/a > d — o > d — 1. Therefore
taking ¢9 = &1 = --- = 1, we obtain a domain satisfying the conditions of Theo-
rem 1.10(1). If ¢ is a nonnegative function on (0, +00) and ¢(A) — 0 as A — o0
then we can choose a sequence &, converging to zero and satisfying (4.23) in such a
way that the function ¢ (1) A@=D/2 and the last two terms in (4.26) are estimated by
(Cy,p 20p)(1-d)/e sr(i_ll)/a =D/ for all A € Cyr,p 8;1 297P ey p en_il 20 +Dp

and all sufficiently large n . In view of Lemma 4.6(5), this proves Theorem 1.10(2). O
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5. Remarks and Generalisations

5.1. Poincaré inequality. According to the Poincaré inequality,
f lu)? dx < CQ/ |Vu|?>dx  whenever u € W?(Q) and / udx =0, (5.1)
Q Q Q

where cq is a positive constant. By Remark 2.4, the Poincaré inequality (5.1) on a
domain €2 holds true if and only if the zero eigenvalue of the Neumann Laplacian is
isolated and cq > )‘1_,%\1(9)~

Lemma 5.1. Let 2 satisfy (5.1) and Q C R? . If there exist an invertible map F : Q —
Q and a constant Cg such that |F(x) — F(y)| < Cr|x — y| forall x,y € Q and
|F~1(x) — F_l(y)| < Crlx —y| forallx,y € Q then Q also satisfies (5.1) with a
positive constant cg = Cq Clz,,d"' cQ.

Proof. Letv € W“(Q), ux) ;= v(F~'(x)) and ¢, := fQ u(x) dx. Under the condi-
tions of the lemma the maps F and F~! are differentiable almost everywhere. Changing
variables and estimating the Jacobians, we obtain

/§Z|v<y>—cu|2dy < cdc§/S2|u<x>—cu|2dx

and
/~ Vo Pdy > CgCri= / Va2 dx.
Q Q

These two estimates and the Poincaré inequality (5.1) imply that
[oitay < [0 - alay < Cacieq [ 1vom)Pay
Q Q Q

whenever [ vdy =0. O

Lemma 5.1 allows one to extend Theorem 1.3 to more general domains.

Theorem 5.2. Assume that there exists a finite collection of domains 2 C 2 such that

(a) 3@ c U,

(V') for each | there exists an invertible map F; : R? — RY satisfying the condi-
tions of Lemma 5.1 such that Fi(2;) = Gy, p,, where f; € BVT,OO(Q,(SI_D) and
b; < inf f;;

(c) aj < Dq and sup fi — by < Dq foralll € L.

Then (1.1) holds true.

Proof. Let Cp, be the constant introduced in Lemma 5.1 and C := max; Cg, . Under
conditions of the theorem, Corollary 3.8 remains valid if we replace U; with F; and take
8y := C~18,. Since (5.1) is equivalent to the identity Nn(€2, cg_zz) =1, Lemma 2.6
and Lemma 5.1 imply that NN(S;,, A) = 1 forall A < C/Q 8~1 where S,, are the same
sets as in the proof of Theorem 4.1 and cg, is a constant depending on the domain €.
Therefore, using the same arguments as in Subsect. 4.1, we obtain the estimates (4.2)
and (4.4) with some other constants (which may depend on €2 ). In the same way as in
Subsect. 4.3, these estimates imply (1.1). O
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The following example shows that Theorem 5.2 is not just a formal generalization of
Theorem 1.3.

Example 5.3. Let f be a nowhere differentiable Lip,-function on the interval [0, 1].
Assume that f > 1 and consider the domain

Q= {(g.reR|pe0 1), 1<r< flp),

where (¢, r) are the polar coordinates on R?. If y; = rsing and y, = rcosg are
the standard Cartesian coordinates on R? then the map which takes the point with polar
coordinates (¢, r) into the point with Cartesian coordinates (y, y2) = (@, r) satisfies
the conditions of Lemma 5.1. Therefore, by Theorem 5.2, we have (1.1).

On the other hand, if (x1,x2) are arbitrary Cartesian coordinates on R? then
x1(p,r) = rsin(p + ¢9) and x3(@, r) = rcos(¢ + ¢o) for some ¢y € [0, 27) . For
every subinterval (a, b) C (0, 1) there exist at least two different points ¢1, @2 € (a, b)
such that x1 (1, f(¢1)) = x1(p2, f(¢2)) (otherwise the function x(¢, f(¢)) would
be monotone on (a, b) and, by Lebesgue’s theorem, almost everywhere differentia-
ble). Since x2(¢1, f(@1)) # x2(¢2, f(¢2)), we see that the set {r = f(¢)} cannot be
represented as the graph of a continuous function in Cartesian coordinates.

Nowhere differentiable functions f € Lip, do exist. For instance, the function
f@):= ZZO:O 107" dist(10"¢, Z) is not differentiable at each ¢t € R(see [W or RS-N],
Chap. 1, Sect. 1) but f € Lip, (R) forall « € (0, 1).

5.2. Higher order operators. Let us consider, instead of the Laplacian, a homogeneous
elliptic nonnegative operator A(Dy) of degree 2m with real constant coefficients and

denote by Q4 its quadratic form (we use the standard notation Dy := —i dy). As-
sume that Qalul > Y, ||8°‘u||iz(9) for all u € C®(R). Let W™2(Q) be the

Sobolev space, W(')"’Z(Q) be the closure of C§° in W™2() and Ax and Ap be the
self-adjoint operators in the space L?(2) generated by the quadratic form Q4 with

domains W’”*Z(Q) and Wé" ’2(52) respectively. Then the results of Sect. 2 remain valid
with the following modifications:

(1) In the definitions of Ny p, NN, Np and in Lemma 2.2 we replace the Dirichlet
form [, |Vul>dx with 04, Wh2(Q) with W™2(Q), A% with A*" ,and 5~ !/2
with s~ 1/@m)

(i1) The kernel of the operator Ay is the space Py, (€2) of all polynomials on € whose
degree is strictly smaller than m . Therefore we have fQ |u(x)|2 dx < A72m Oalul
forall u € WH2(Q) © P, (Q) if and only if A1 N(R2) > A, where A N() is the
first nonzero eigenvalue of An.If p, is the projection of u € L(£2) onto the
subspace P, (€2) then |u — pull;2q) < lu — plip2g) forall p € Pp(S2) (cf.
Remark 2.4).

(iii) Let Ca,w := Qn)~? pug{e € R? : A(&) < 1}. Then there exists a constant Ca0
such that

—Cap (NS NWOW M) — Caw 309 < Cap (M), VA >687",

for all § > 0 (see Remark 2.9).
(iv) Instead of Lemma 2.6 we have the following result.

Lemma 5.4. There exists a constant c4 depending only on the operator A and the
dimension d such that the following statements hold true:
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(1) If P € P(8) then Nn(P, 1) = dim Py, forall A < cad~ L.

() If V € V(8) then Nn(V, 1) = dim P,, forall » < ca8 L.

G)If M eM©), M C O and ¥ := oM QY then Nxp(M, Y, %) < dim P,
for all » < cqp 5~ and NnpM,Y,A) = 0 forall » < (1 — czl 6_‘1#,1
M) cast

Proof. We shall denote by C various constants depending only on A and d.

It is sufficient to prove the lemma assuming that A(D,) = A,(Dy) =
Z?:l Df;,” . Then (1) is easily obtained by separation of variables. If u € W’”’2(Q§d)) ,
u =0 outside M and p, is the projection of u onto the subspace P,, (M) then

/ Ipul?dx < pa(M) sup |pu(x)* < Cud(M)S_d/ | pul® dx
M erfg(l) Qfsd)

= Cpa(M)s™ (/ |pu|2dx+f(d) |u—pu|2dx) :
M Q
)

Applying (ii) and this estimate instead of Remark 2.4 and (2.6), we obtain (3) in the
same way as Lemma 2.6(3).

In order to prove (2), let us assume that V = Gf,h(QEd_l)) with ¢ < §, b =
inf f—8and Osc f < 8/2 and consider a function u € W™2(V) . Let Pu: r.k(x") bethe

projection of the function 8§d ulx',r) e L2(Q£d71)) onto the subspace Pm,k(Qg‘Fl)),

Pusr () 1= S0 & a=r)F pusr k() and v (x) i= Ypny & Ga—r)F 3K u(x' ),
where r € [b, b + 8] and x4 € [b, f(x')]. We have
u(x) = pusr O < 200 (x) — 0, () + 20, (x) = pus » (012 (5.2)

Since |x4; — b| < 28, Jensen’s inequality implies that

) = v, (0 = (on— 1>!>—2|/”(xd—r>’”‘1 O e, 1) dr 2

Xd
< ((m— DY |xg —r| / (xa — O[30 u(x', 1)|* dt
r

f
< ((m—DH~* 5! /b |97 u(x)|* dxg -
In view of (ii) and (1), we also have

fQ oy 185, 0) = pu k(P Y < €80 [0, ()]

forall k =0,... ,m—1,where A) _,(Dy):= Z?;} D%;”_zk and QA;HC is the qua-
dratic form of A) _, with domain wm—k. 2(di_l)) . Therefore, integrating (5.2) over
relb,b+38], xg€lb, f(x)], x' € 0D and estimating |x; — r| < 28, we obtain
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b+6
8—1/ /|u(x)—pu;r<x>|2dxdr
b

m—1
< c(sz'"/ 07 u()Pdx +C8*" Y Y / 10%u(x)|? dx
VvV P

k=0 |a|=m

where P = Edfl) x (b, b+ ) . Since the Ly-norms of the mixed derivatives 92 u(x)

on a rectangle are estimated by the L»-norms of the derivatives 8;’; , this estimate and
(i) imply (2). O '

Applying the same arguments as in Sect. 4 and using (iii) and Lemma 5.4, we obtain
the following result.

Theorem 5.5. If NN(A, Q) and Np(A, Q2) denote the number of eigenvalues of the
corresponding self-adjoint operator lying below 2> then Theorems 1.3, 1.8 and Cor-
ollaries 1.5, 1.6, 1.9 hold true with Cy,w := Ca,w .

5.3. Other function spaces. Let B;’,"q be the Besov space and BVg oo = BV o0,
where 15(f) = (t? + 1) and B € (0, +00). Lemma 4.5 implies that B%,.o = Lip, C

BV(_1)/a,00 - Estimating the norm of the embedding Bg,oo(Qédfl)) — C(Q,(,dfl))
for ap > d —1 and a > 0, one can also show that By ,, C BV(4—1)/a,0c Whenever
ap >d—1.

5.4. Open problems.

5.4.1. The spaces BV; oo. The space BVg o or BV; o (under certain conditions on
the function 7) is a Banach space with respect to an appropriate norm. Similar spaces
have been considered in the dimension one, but we could not find references in the
multidimensional case. It would be interesting to find a more constructive description
of these spaces and to investigate their properties.

5.4.2. More general domains. The crucial point in our proof of Theorem 1.3 is the
construction of the families {S,,}r¢ such that

(i L clU,S»ce,
(i) N{S.}m <C,
(iii) NN(Sp, A) < C’ whenever A < C"87 1,

where C, C’ and C” are some constants independent of § € R, .

The remainder estimate in the Weyl formula for the Neumann Laplacian depends on
the behaviour of #M as § — 0. In this paper we were assuming that €2 is the union of
subgraphs of continuous functions, used Lemma 2.6 in order to prove (iii) and applied
Corollary 3.2 in order to estimate R{S),} and #M . Theorem 3.1 allows one to construct
families of open sets S, satisfying (i)—(iii) for many other domains €2. It should be
possible to find less restrictive sufficient conditions which guarantee the existence of
such families and imply an asymptotic formula for Nn(€2, 1) .

5.4.3. Operators with variable coefficients. Our main goal was to estimate the contri-
bution of 92 to the Weyl formula. In the interior part of 2 we used the old fashioned
variational technique based on the Whitney decomposition and Dirichlet-Neumann
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bracketing. There are much more advanced methods of studying the asymptotic behav-
iour of the spectral function at the interior points (see the monographs [Iv3 , SV] or the
recent papers [BI , Iv4] ), which are applicable to operators with variable coefficients.

Freezing the coefficients at an arbitrary point x € S, , we see that (iii) remains valid
for a uniformly elliptic operator A with variable coefficients, provided that the corre-
sponding quadratic form is homogeneous, the coefficients are uniformly continuous, §
is sufficiently small and diam S, < ¢§ with some constant ¢ independent of § . Using
this observation and applying a more powerful technique in the interior of €2, one can
try to extend our results to operators with variable coefficients.

5.4.4. Reminder estimate for the Dirichlet Laplacian. It is not difficult to construct a
bounded domain €2 such that limg_.o [§7¢ pLd(Qg)l = (C’ and

Np(Q.2) — Caw pa(2? > —Cc 27, va>cC, (5.3)

where C and C’ are some positive constants. For example, it can be done by consid-
ering a cube with a sequence of ‘cracks’ converging to the outer boundary, which get
denser as the outer boundary is approached (similar domains were studied in [LV and
MV]). For such a domain the estimate (1.7) is order sharp. It would be interesting find a
domain 2 € Lip, satisfying (5.3) (cf. Theorem 1.10). Note that in the known examples
disproving the so-called Berry conjecture (see, for instance, [BLe or LV] ) the domain
does not belong to the class Lip,, .

6. Constants

Throughout the paper C, w is the Weyl constant (see Subsect. 1.1),

d—1
n!(d —n)!
Ca = ZTcn,Wa Cow:=1,
n=0 :

Cin = 24=1¢, | and Ciz = 641 (fd_l , where C4y_1 and (fd_l are the constants
introduced in Theorem 3.1,

Ciai=(@4Caa+2)"2, Cqs:=min {(1 120 )2 pd a7 } :
Cap:=2""Ca2+BCan+ 1) @Vd)?', Caq7:=Cy}Cus.
Cas :=max{1,C; 5%}, Ca0:=8Cy3Cus.

Cato:=(d+1) (12JE Cat +4Caw + @9d9 + Cyg) 4d"? + 4d—1/2)d) ,

Cani=(d+1) (12«/3Cd,1 L 4Caw + (4%d7 +2) (4d' +4d—‘/2)d) .

Remark 6.1. If p is continuous then Theorem 3.1 holds true with C, = 2" and én = 4"
(see [G]). Since the function p in the proof of Corollary 3.2 is continuous, all our results
remain valid for Cy = 49! and Cy3 = 24971

Acknowledgements. The authors are very grateful to M. Solomyak and E.B. Davies for their valuable
comments.
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