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Abstract: A class of Z2-graded Lie algebra and Lie superalgebra extensions of the
pseudo-orthogonal algebra of a spacetime of arbitrary dimension and signature is inves-
tigated. They have the form g = g0+g1, with g0 = so(V )+W0 and g1 = W1, where the
algebra of generalized translations W = W0+W1 is the maximal solvable ideal of g, W0
is generated by W1 and commutes with W . Choosing W1 to be a spinorial so(V )-module
(a sum of an arbitrary number of spinors and semispinors), we prove that W0 consists of
polyvectors, i.e.all the irreducible so(V )-submodules of W0 are submodules of ∧V . We
provide a classification of such Lie (super)algebras for all dimensions and signatures.
The problem reduces to the classification of so(V )-invariant ∧kV -valued bilinear forms
on the spinor module S.
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1. Introduction

A superextension of a Lie algebra h is a Lie superalgebra g = g0 + g1 , such that
h ⊂ g0. If the Lie algebra g0 ⊃ h and a g0-module g1 are given, then a superextension
is determined by the Lie superbracket in the odd part, which is a g0-equivariant linear
map

∨2g1 → g0, (1.1)

satisfying the Jacobi identity for X, Y, Z ∈ g1, where ∨ denotes the symmetric tensor
product. Similarly, a Z2-graded extension (or simply Lie extension) of h is a Z2-graded
Lie algebra g, i.e.a Lie algebra with a Z2-grading g = g0 + g1 compatible with the Lie
bracket:

[
gα, gβ

] ⊂ gα+β , α, β ∈ Z/2Z , such that g0 ⊃ h. As above, a Z2-graded
extension is determined by the Lie bracket in g1, which defines a g0-equivariant linear
map,

∧2g1 → g0, (1.2)

satisfying the Jacobi identity. For instance, consider a super vector spaceV0+V1 endowed
with a scalar superproduct g = g0 + g1, i.e. g0 is a (possibly indefinite) scalar product
on V0 and g1 is a nondegenerate skewsymmetric bilinear form on V1. The Lie algebra
h = g0 = so(V0)⊕ sp(V1) of infinitesimal even automorphisms of (V0 + V1, g) has a
natural extension with g1 = V0 ⊗ V1, where the Lie superbracket is given by:

[v0 ⊗ v1, v
′
0 ⊗ v′1] := g1(v1, v

′
1)v0 ∧ v′0 + g0(v0, v

′
0)v1 ∨ v′1 .

This is the orthosymplectic Lie superalgebra osp(V0|V1). One can also define an analo-
gous Lie superalgebra spo(V0|V1), starting from a symplectic super vector space (V0 +
V1, ω = ω0 + ω1), such that spo(V0|V1) = osp(V1|V0).

Similarly, for a Z2-graded vector space V0 + V1 endowed with a scalar product
g = g0+g1 (respectively, a symplectic form ω = ω0+ω1) we have a natural Z2-graded
extension g = g0+g1 = so(V0+V1) (respectively, g = sp(V0+V1)) of the Lie algebra
h = g0 = so(V0)⊕ so(V1) (respectively, of h = sp(V0)⊕ sp(V1)).

For a pseudo-Euclidean space-time V = R
p,q (with p positive and q negative direc-

tions), Nahm [N] classified superextensions g of the pseudo-orthogonal Lie algebra
so(V ) under the assumptions that q ≤ 2, g is simple, g0 is a direct sum of ideals,
g0 = so(V ) ⊕ k , where k is reductive and g1 is a spinorial module (i.e.its irreducible
summands are spinors or semi-spinors). These algebras for q = 2 are usually considered
as superconformal algebras for Minkowski spacetimes, by virtue of the identification
conf(p − 1, 1) = so(p, 2).

In this paper, we shall consider both super and Lie extensions (which we call ε-
extensions) of the pseudo-orthogonal Lie algebra so(V ), with ε= + 1 corresponding
to superextensions and ε= − 1 to Lie extensions. Here V = R

p,q or V = C
n is a

vector space endowed with a scalar product. In the case g0 = so(V )+ V (Poincaré Lie
algebra), ε-extensions g = g0 + g1 such that g1 is a spinorial module and [g1, g1] ⊂ V

were classified in [AC]. In the case ε = −1 such extensions clearly do not respect the
conventional field theoretical spin–statistics relationship. However, in order to classify
super-Poincaré algebras (ε = +1) with an arbitrary number of irreducible spinorial
submodules in g1 we need to classify Lie extensions as well as superextensions with
irreducible g1.

We study Z2-graded Lie algebras and Lie superalgebras, g = g0 + g1, where g0 =
so(V )+W0, g1 = W1, such that so(V ) is a maximal semisimple Lie subalgebra of g and
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W = W0+W1 is its maximal solvable ideal. If W0 contains [W1, W1] and commutes with
W , we call g an ε-extension of translational type. If moreover, W0 = [W1, W1], we call
g an ε-transalgebra. Our main result is the classification of ε-extended polyvector Poin-
caré algebras, i.e.ε-extensions of translational type in the case when W1 = S, the spinor
so(V )-module, or, more generally, an arbitrary spinorial module. Here V is an arbitrary
pseudo-Euclidean vector space R

p,q . We prove that, under these assumptions, any irre-
ducible so(V )-submodule of W0 is of the form ∧kV or ∧m±V , where m = (p + q)/2
and ∧m±V are the eigenspaces of the Hodge star operator on ∧mV .

If g = so(V ) + W0 + S is an ε-transalgebra, then the (super) Lie bracket defines
an so(V )-equivariant surjective map �W0 : S ⊗ S → W0. If K is the kernel of this
map, then there exists a complementary submodule W̃0 such that S ⊗ S = W̃0 + K

and we can identify W̃0 with W0. We note that we can choose W̃0 ⊂ S ∧ S in the Lie
algebra case and W̃0 ⊂ S ∨ S in the Lie superalgebra case. Conversely, if we have a
decomposition S ⊗ S = W0 + K into a sum of two so(V )-submodules and moreover
W0 ⊂ S ∧ S or W0 ⊂ S ∨ S, then the projection �W0 onto W0 with the kernel K defines
an so(V )-equivariant bracket

[, ] : S ⊗ S → W0

[s, t] = �W0(s ⊗ t) (1.3)

which is skewsymmetric or symmetric, respectively. More generally, if A is an endomor-
phism of W0 that commutes with so(V ), then the twisted projection A ◦ �W0 is another
so(V )-equivariant bracket and any bracket can be obtained in this way. Together with the
action of so(V ) on W0 and S, this defines the structure of an ε-transalgebra g = so(V )+
W0 + S, since the Jacobi identity for X, Y, Z ∈ g1 follows from [g1, [g1, g1]] = 0. The
classification problem then reduces essentially to the decomposition of S∧S, S∨S into
irreducible so(V )-submodules and the description of the projection �W0 . In this paper,
we resolve both these matters. In all cases the irreducible so(V )-submodules occurring
in the tensor product S ⊗ S are k-forms ∧kV , with the exception of the case of even
dimensions n = p+q = 2m with signature s = p−q divisible by 4. In the latter case
the m-form module splits into irreducible selfdual and anti-selfdual submodules ∧m±V .
The multiplicities of any irreducible so(V )-submodules of S ⊗ S take values 1,2,4 or 8.
For example if V = C

n , n = 2m+ 1 or if V = R
m,m+1, we have (cf. [OV])

S ⊗ S =
m∑

k=0

∧kV ,

S ∨ S =
[m/4]∑

k=0

∧m−4kV +
[(m−3)/4]∑

k=0

∧m−3−4kV ,

S ∧ S =
[(m−2)/4]∑

k=0

∧m−2−4kV +
[(m−1)/4]∑

k=0

∧m−1−4kV .

The vector space of ε=−1-extensions of translational type of the form g = so(V ) +
∧kV +S is identified with the vector space Bilk−(S)so(V ) := Homso(V )(S ∧S,∧kV ) of
∧kV -valued invariant skewsymmetric bilinear forms on S. Similarly, the vector space of
ε=+1-extensions of translational type of the form g = so(V )+ ∧kV + S is identified
with the vector space Bilk+(S)so(V ) :=Homso(V )(S ∨ S, ∧kV ).
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The main problem is the description of these spaces of invariant∧kV -valued bilinear
forms. For k = 0, 1 this problem was solved in [AC], where three invariants, σ, τ and ι,
were defined for bilinear forms on the spinor module.

Following [AC], a nondegenerate so(V )-invariant (scalar) bilinear form β on the
spinor module S is called admissible if it has the following properties:

1) β is either symmetric or skewsymmetric, β(s, t) = σ(β)β(t, s) , s, t ∈ S , σ (β) =
±1. We define σ(β) to be the symmetry of β.

2) Clifford multiplication by v ∈ V ,

γ (v) : S → S , s �→ γ (v)s = v · s ,

is either β-symmetric or β-skewsymmetric, i.e.

β(vs, t) = τ(β)β(s, vt) , s, t ∈ S ,

with τ(β) = +1 or −1, respectively. We define τ(β) to be the type of β.
3) If the spinor module is reducible, S = S+ + S−, then the semispinor modules S+

and S− are either mutually orthogonal or isotropic. We define the isotropy of β to be
ι(β) = +1 if β(S+, S−) = 0 or ι(β) = −1 if β(S±, S±) = 0.

In [AC], a basis βi of the space Bil(S)so(V ) := Bil0(S)so(V ) of scalar-valued invariant
forms was constructed explicitly, which consists of admissible forms. These are tabu-
lated in the appendix (Table A.3). The dimension N(s) = dimBil(S)so(V ) depends only
on the signature s = p − q of V (see Table A.1 in the Appendix). We associate with a
bilinear form β on S the ∧kV -valued bilinear form �k

β : S ⊗ S → ∧kV , defined by the
following fundamental formula:

〈�k
β(s ⊗ t), v1 ∧ · · · ∧ vk〉=

∑

π∈Sk

sgn(π)β
(
γ (vπ(1)) · · · γ (vπ(k))s, t

)
s, t ∈S, vi ∈V,

which extends the formula given in [AC] from k = 1 to arbitrary k. For k = 0 we have
that �0

β = β.

We shall prove that the map β �→ �k
β is so(V )-equivariant and induces an isomor-

phism

�k : Bil(S)so(V ) ∼→ Bilk(S)so(V )

onto the vector space of ∧kV -valued invariant bilinear forms on S. This was proven for
k = 1 in [AC].

The definitions of the invariants σ, τ, ι make sense for ∧kV -valued bilinear forms as
well. If σ(�k

β) = −1, the form �k
β is skewsymmetric and hence defines a Lie algebra

structure on g = so(V ) + ∧kV + S. If σ(�k
β) = +1, it defines a Lie superalgebra

structure on g = so(V )+ ∧kV + S. We shall prove, for admissible β, that

σ(�k
β) = σ(β)τ(β)k(−1)k(k−1)/2 . (1.4)

In the cases when semi-spinors exist, we shall prove that

ι(�k
β) = ι(β)(−1)k . (1.5)
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For k > 0 the bilinear forms �k
β associated with an admissible bilinear form β have

neither value of the type τ . Clearly, the formulae for the invariants show that σ(�k
β) and

ι(�k
β) depend only on k modulo 4. We tabulate these invariants for �k

βi
for k = 0, 1, 2, 3

in the Appendix.
Let the number Nε

k (s, n) denote the dimension of the vector space Bilkε(S)so(V ) of
ε-extended k-polyvector Poincaré algebra structures on g = so(V ) + ∧kV + S . We
shall see that the sum

Nk(s, n) = N+k (s, n)+N−k (s, n) = N(s) = dim Bil(S)so(V )

depends only on the signature s. We shall also verify the following remarkable shift
formula:

N±k (s, n+ 2k) = N±0 (s, n), (1.6)

which reduces the calculation of these numbers to the case of zero forms. The function
N±(s, n) := N±0 (s, n) has the following symmetries:

a) Periodicity modulo 8 in s and n:

N±(s + 8a, n+ 8b) = N±(s, n) , a, b ∈ Z .

Using this, we can extend the functions N±(s, n) to all integer values of s and n.
b) Symmetry with respect to reflection in signature 3:

N±(−s + 6, n) = N±(s, n) .

c) The mirror symmetries:

N±(s, n+ 4) = N∓(s, n) , (1.7)

N±(s,−n+ 4) = N∓(s, n) . (1.8)

Due to the shift formula (1.6), all these identities yield corresponding identities for
N±k (s, n) for any k. For example the mirror identity (1.8) gives the mirror symmetry for
k=1 (reflection with respect to zero dimension),

N±1 (s,−n) = N∓1 (s, n),

which was discovered in [AC].
In Appendix B, we summarise our results in language more familiar to the physics

community.
Recently, there have been many discussions (e.g. [AI, CAIP, DFLV, DN, FV, Sc,

Sh, V, VV]) of generalizations of spacetime supersymmetry algebras which go beyond
Nahm’s classification. Of particular interest has been the M-theory algebra, which ex-
tends the d=11 super Poincaré algebra by two-form and five-form brane charges. In the
important paper [DFLV], the authors study superconformal Lie algebras and polyvector
super-Poincaré algebras g = so(V )+∧kV +W1, where W1 = S or W1 = S±. They pro-
pose an approach for the classification of such Lie superalgebras g which consists essen-
tially of the following two steps: first describe the space Homso(V C)(S∨S,∧kV C), if the

complex spinor module S is irreducible, and the spaces Homso(V C)(S± ∨ S±,∧kV C)
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and Homso(V C)(S+ ⊗S−,∧kV C) if the complex spinor module S = S+ +S− is reduc-
ible, then describe so(V )-invariant reality conditions. They determine the dimension of
the above vector spaces, which is always zero or one and discuss the second problem.
In the present paper we start from the real spinor module S and, in particular, describe
explicitly the real vector space H =Homso(V )(W1∨W1,∧kV ) for an arbitrary spinorial
module W1. We shall see that even if W1 is an irreducible spinor module S, the dimension
of H can be 0, 1, 2 or 3. Polyvector super-Poincaré algebras were also considered in
[CAIP] for Lorentzian signature (1, q) in the dual language of left-invariant one-forms
on the supergroup of supertranslations.

2. ε-Extensions of so(V )

Let V be a real or complex vector space endowed with a scalar product and W1 an
so(V )-module.

Definition 1. A superextension (ε = +1-extension) of so(V ) of type W1 is a Lie su-
peralgebra g satisfying the conditions

i) so(V ) ⊂ g0 as a subalgebra,
ii) g1 = W1, a g0-module.

A Lie extension (ε = −1-extension) of so(V ) of type W1 is a Z2-graded Lie algebra
g = g0 + g1, also satisfying i) and ii). Further, an ε-extension is called minimal if it
does not contain a proper subalgebra which is also an ε-extension of type W1; more
precisely, if g′ = g′0 + g1 ⊂ g, so(V ) ⊂ g′0, then g′ = g.

The Lie superalgebras classified by Nahm are examples of superextensions of so(Rp,q)

of spinor type W1 = S.
Let g = g0+ g1, be an ε-extension of so(V ), g0 = so(V )+W0, with W0 an so(V )-

submodule that is complementary to so(V ) in g0 and g1 = W1. There are two extremal
classes of such algebras:

E1: g is semi-simple, i.e.does not contain any proper solvable ideal,
E2: g is of semi-direct type, i.e.g is maximally non-semi-simple, in the sense that so(V )

is its largest semi-simple super Lie subalgebra, g = so(V )+W0 +W1 and W =
W0 +W1 is a solvable ideal.

3. Extensions of Translational Type and ε-Transalgebras

Definition 2. Let g = so(V ) +W0 +W1 be an ε-extension of so(V ). If [W0, W ] = 0
and [W1, W1] ⊂ W0 then the extension g = so(V )+W0+W1 is called an ε-extension
of so(V ) of translational type and the (nilpotent) ideal W = W0 +W1 is called the
algebra of generalized translations. If it is minimal, in the sense of Definition 1, then
it is called an ε-transalgebra.

We note that such an extension is automatically of semi-direct type, provided that
dim V ≥ 3, which we assume in this section. We also assume for definiteness that V is a
real vector space. The minimality condition is equivalent to [W1, W1] = W0 and means
that even translations are generated by odd translations. The construction of ε-extensions
of so(V ) of translational type with given so(V )-modules W0 and W1 reduces to the con-
struction of so(V )-equivariant linear maps ∨2W1 → W0 and ∧2W1 → W0. The Jacobi
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identity for the Lie bracket associated to such a map follows from the so(V )-equivariance.
Now we show that the description of ε-extensions of so(V ) of translational type reduces
to that of minimal ones (i.e.transalgebras). Let g = so(V )+W0+W1 be an ε-extension
of so(V ) of translational type. Then g′ := so(V )+ [W1, W1]+W1 is an ε-transalgebra
and g = g′ +a is the semi-direct sum of the subalgebra g′ and an (even) Abelian ideal a,
where a ⊂ W0 is an so(V )-submodule complementary to [W1, W1] ⊂ W0. Conversely,
if g′ = so(V ) + W ′0 + W1 is an ε-transalgebra and a is an so(V )-module then the
semi-direct sum g := g′ + a is an ε-extension of so(V ) of translational type, where
W0 := W ′0 + a.

Proposition 1. Let W1 be an so(V )-module. Then there exists a unique (up to isomor-
phism) ε-transalgebra of maximal dimension with g1 = W1:

gε = gε(W1) = gε
0 + gε

1 = (so(V )+Wε
0 )+W1 ,

where W+0 = ∨2W1 and W−0 = ∧2W1. The Lie (super)bracket [·, ·] : W1 ⊗W1 → Wε
0

is the projection onto the corresponding summand of W1 ⊗ W1 = ∨2W1 ⊕ ∧2W1.
Moreover, any ε-transalgebra with g1 = W1 is isomorphic to a contraction of gε(W1).

Proof. It is clear that gε is a maximal ε-transalgebra. Let g = g0 + g1 be a max-
imal ε-transalgebra with g1 = W1 and g0 = so(V ) + W0. The Lie (super)bracket
[·, ·] : W1 ⊗ W1 → W0 defines an so(V )-equivariant isomorphism from ∨2W1 or
∧2W1 onto W0. This isomorphism extends to an isomorphism gε → g, which is the
identity on so(V ) + W1. Similarly for any ε-transalgebra with g1 = W1 the (super)
Lie bracket [·, ·] : W1 ⊗W1 → W0 defines an so(V )-equivariant epimorphism ϕ from
∨2W1 or ∧2W1 onto W0. The kernel K is an so(V )-submodule of ∨2W1 or ∧2W1,
respectively. Since so(V ) is semi-simple, there exists a complementary submodule W̃0
isomorphic to W0. We can identify the so(V )-module W̃0 with W0 by means of the
isomorphism ϕ|W̃0. Then the Lie bracket corresponds to the projection π+

W̃0
: ∨2W1 =

K + W̃0 → W̃0 or π−
W̃0

: ∧2W1 = K + W̃0 → W̃0. This defines an ε-transalgebra

gε(W1, W̃0) = so(V ) + W̃0 + W1, whose bracket is the above projection πε

W̃0
. The

isomorphism ϕ|W̃0 : W̃0 → W0 of so(V )-modules extends trivially to an isomorphism
gε(W1, W̃0)→ g. This shows that any ε-transalgebra is isomorphic to an ε-transalgebra
of the form gε(W1, W̃0), where W̃0 ⊂ W1 ⊗ W1 is an so(V )-submodule contained in
∨2W1 or ∧2W1 , respectively. Consider now the one-parameter family of Lie brackets
[·, ·]t := t (Id − πε

W̃0
)+ πε

W̃0
. This defines a family of ε-transalgebras (gε(W1), [·, ·]t ).

For t �= 0 they are isomorphic to the original (t = 1) ε-transalgebra. In the limit t → 0
we obtain the ε-transalgebra gε(W1, W̃0) as a contraction of gε(W1). ��
The following proposition describes the structure of extensions of semi-direct type under
the additional assumption that the so(V )-module W1 is irreducible. We denote by ρ :
g0 → gl(W1) the adjoint representation of g0 = so(V )+W0 on W1 and by K the kernel
of ρ|W0 , which is clearly an ideal of g. Thus, ρ is the action of adW0 on W1 and K are
all the generators of W0 that commute with W1.

Proposition 2. Let g = so(V )+W0+W1 be an ε-extension of semi-direct type. Assume
that the so(V )-module W1 is irreducible of dimension at least 3 if it does not admit an
so(V )-invariant complex structure and dimC W1 ≥ 3 if it does and that dim V ≥ 3.
Consider the decomposition of g into a direct sum of so(V )-submodules, g = so(V )+
A+K+W1 , where A is an so(V )-invariant complement to K in W0 = A+K . Then the
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dimension dim A = 0, 1, 2 and the irreducible linear Lie algebraρ(g0) = ρ(so(V ))+Z,
where the centre Z ∼= W0/K is either 0, R·Id or C·Id. Moreover,

[A, A] ⊂ K , [so(V ), A] = 0 , [W1, W1] ⊂ K.

Proof. By assumption, the linear Lie algebra ρ(g0) ⊂ gl(W1) is irreducible and hence
reductive. Since any solvable ideal of a reductive Lie algebra belongs to the centre,
we conclude that the solvable ideal ρ(W0) ⊂ ρ(g0) is in fact Abelian and consists of
operators commuting with so(V ). Now Schur’s Lemma implies that ρ(W0) = 0, R·Id,
or C·Id. The inclusion [A, A] ⊂ K follows from the fact that ρ(A) is in the centre of
g0. Since the restriction of ρ to so(V ) + A is faithful and [ρ(so(V )), ρ(A)] = 0, we
conclude that [so(V ), A] = 0. From the assumptions it follows that there exist three
vectors x, y, z ∈ W1, which are linearly independent over the reals if W1 has no invari-
ant complex structure and over the complex numbers if W1 has an invariant complex
structure J . For any three linearly independent vectors (over R or C) x, y, z ∈ W1, the
Jacobi identity gives

0 = [[x, y], z]+ [[y, z], x]+ [[z, x], y]

= ρ([x, y])z+ ρ([y, z])x + ρ([z, x])y.

Since [W1, W1] ⊂ W0 and ρ(W0) = ρ(A) consists of scalar operators (over R or C),
we have that ρ([x, y]) = 0, i.e. [W1, W1] ⊂ K = ker ρ. ��

Note that g is a transalgebra if and only if A=0.
The following corollary gives sufficient conditions for extensions of semi-direct type

to be transalgebras.

Corollary 1. Under the assumptions of the previous proposition, assume moreover that
g = so(V )+W0+W1 is a minimal extension of type W1. Then g is a transalgebra.

Proof. Minimality implies W0 = [W1, W1] and, by the above proposition, [W1, W1]
commutes withW1. Now the Jacobi identity forx, y ∈ W1 and z ∈ W0 yields [W0, W0] =
0. ��

Instead of minimality we may assume the irreducibility of the so(V )-module W0.

Proposition 3. Let g = so(V ) +W0 +W1 be an ε-extension of semi-direct type, with
dim V ≥ 3. Assume that W0 and W1 are irreducible so(V )-modules. Then either g is of
translational type, i.e. [W0, W ] = 0, or W0 ∼= R (considered as a real Lie algebra) is
the centre of g0 = so(V )+W0 and ad W0 acts on W1 by scalars.

Proof. Let W0, W1 be irreducible so(V ) modules. Since the algebra W = W0 +W1 is
solvable, [W0, W0] is a proper so(V ) submodule of W0, hence [W0, W0] = 0. The kernel
K of the adjoint representation ρ : W0 → gl(W1) is an so(V )-submodule of W0. Hence
K = W0 or 0. In the first case, g is of translational type. In the second case, the rep-
resentation ρ is faithful and ρ(W0) commutes with ρ(so(V )), hence [so(V ), W0] = 0.
On the other hand the so(V )-module W0 is irreducible, so W0 ∼= R. ��
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4. Extended Polyvector Poincaré Algebras and ∧kV -Valued Invariant Bilinear
Forms on the Spinor Module S

In this and the next two sections, we devote ourselves to the classification of ε-transal-
gebras g = g0 + g1 with g1 = W1 = S, the spinor so(V )-module. We take V to be the
pseudo-Euclidean space R

p,q of dimension n = p+q and signature s = p−q. In other
words, we consider (super) Lie algebras g = (so(V )+W0)+ S with

[W0, W0 + S] = 0 , W0 = [S, S].

The (super) Lie bracket defines an so(V )-equivariant surjective map �W0 : S⊗S → W0.
If K is the kernel of this map, then S⊗ S = W̃0+K , where W̃0 is an so(V )-submodule
equivalent to W0 such that W0 ⊂ S ∧ S in the Lie algebra case and W0 ⊂ S ∨ S in
the superalgebra case. Conversely, if we have a decomposition S ⊗ S = W0 + K into
a sum of two so(V )-submodules and moreover W0 ⊂ S ∧ S or W0 ⊂ S ∨ S, then the
projection �W0 onto W0 with the kernel K defines an so(V )-equivariant bracket

[, ] : S ⊗ S → W0

[s, t] = �W0(s ⊗ t) (4.1)

which is skewsymmetric or symmetric, respectively. More generally, if A is an endo-
morphism of W0 which commutes with so(V ), then the twisted projection A◦�W0 is
another so(V )-equivariant bracket and any bracket can be obtained in this way. Together
with the action of so(V ) on W0 and S, this defines the structure of an ε-transalgebra
g = so(V )+W0+S. We therefore have a 1–1 correspondence between ε-transalgebras
of the form g = so(V ) + W0 + S, where W0 is a submodule of S ∨ S (for ε = 1)
or S ∧ S (for ε = −1), and equivariant surjective maps �W0 : S ⊗ S → W0, whose
kernel contains S ∨ S if ε = −1 and S ∧ S if ε = 1. The problem thus reduces to the
description of the decomposition of S ∧S and S ∨S into irreducible so(V )-submodules
and the determination of the twisted projections A◦�W0 . We consider these projections
as equivariant W0-valued symmetric or skewsymmetric bilinear forms on S. In the next
section we show that the irreducible submodules of S ⊗ S are of the form ∧kV or ∧m±V

((anti)selfdual m-forms) if n = 2m and s is divisible by 4. We denote by

Bilk(S) = Hom(S ⊗ S , ∧kV ),

the vector space of ∧kV -valued bilinear forms on S. It can be decomposed, Bilk(S) =
Bilk+(S)⊕ Bilk−(S), into the sum of the vector spaces of symmetric (+) and skewsym-
metric (−) bilinear forms.

For W0 = ∧kV , the space of ε-transalgebras (ε = ±) is identified with the space
Bilkε(S)so(V ) of so(V )-invariant symmetric (ε = +) or skewsymmetric (ε = −) bilinear
forms. Hence:
The classification of ε-transalgebras g = g0+g1 with g1 = S reduces to the description
of the spaces Bilkε(S)so(V ) of∧kV -valued invariant bilinear forms on the spinor module
S.

The following formula associates a ∧kV -valued bilinear form �k
β ∈ Bilk(S) to every

(scalar) bilinear form β ∈ Bil(S):

〈�k
β(s ⊗ t), v1 ∧ · · · ∧ vk〉=

∑

π∈Sk

sgn(π)β
(
γ (vπ(1)) · · · γ (vπ(k))s, t

)
s, t ∈S, vi ∈V,

where the sum is over permutations π of {1, . . . , k}. Our classification is based on the
following theorem.
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Theorem 1. For any pseudo-Euclidean vector space V ∼= R
p,q , the map

�k : Bil(S)→ Bilk(S)

β �→ �k
β

is a Spin(V)-equivariant monomorphism and it induces an isomorphism

�k : Bil(S)so(V ) ∼→ Bilk(S)so(V )

of vector spaces.

Proof. It is known that Clifford multiplication γ : V → End S is Spin(V )–equivariant,
i.e.

γ (gv) = gγ (v)g−1, g ∈ Spin(V ), v ∈ V.

Using this property we now check that the map �k is also Spin(V )–equivariant:

�k
g·β = g · �k

β ,

where (g ·β)(s, t) = β(g−1s, g−1t) and (g ·�k
β)(s, t) = g�k

β(g−1s, g−1t). We calculate

〈�k
g·β(s, t) , v1 ∧ · · · ∧ vk〉 =

∑

π∈Sk

sgn(π)β
(
g−1γ (vπ(1)) · · · γ (vπ(k))s, g

−1t
)

=
∑

π∈Sk

sgn(π)β
(
γ (g−1vπ(1)) · · · γ (g−1vπ(k))g

−1s, g−1t
)

= 〈�k
β(g−1s, g−1t) , g−1v1 ∧ · · · ∧ g−1vk〉

= 〈g�k
β(g−1s, g−1t) , v1 ∧· · · ∧ vk〉

= 〈(g · �k
β)(s, t) , v1 ∧· · · ∧vk〉. (4.2)

Next, we prove that � is injective. For β ∈ Bil(S) the bilinear form �k
β is zero if and

only if

β(
∑

π

sgn(π)γ (vπ(1)) · · · γ (vπ(k))S, S) = 0

or
∑

π

sgn(π)γ (vπ(1)) · · · γ (vπ(k))S ⊂ ker(β)

for any vectors v1, . . . , vk . If the vectors v1, . . . , vk are orthogonal, then the endomor-
phisms γ (v1), . . . , γ (vk) anticommute and the endomorphism

∑
π sgn(π)γ (vπ(1)) . . .

γ (vπ(k)) = k! γ (v1) · · · γ (vk) is invertible. This implies that ker(β) = S and so β = 0.
To complete the proof of the theorem, we need to check that

dim Bilk(S)so(V ) = dim Bil(S)so(V ) =: N(p − q) .

In fact, dim Bilk(S)so(V ) = µ(k) dim C(∧kV ), where µ(k) is the multiplicity of ∧kV

in S ⊗ S and C(M) = Endso(V )(M) denotes the Schur algebra of an so(V )-module
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M . If the signature s = p − q is divisible by 4 and k = m = n/2, then ∧mV =
∧m+V ⊕ ∧m−V is the sum of two inequivalent irreducible so(V )-modules of real type
and hence C(∧mV ) ∼= R ⊕ R. If the signature s is even but not divisible by 4 and
k = m = n/2, then ∧mV is an irreducible so(V )-module of complex type, with the
complex structure defined by the Hodge star operator and hence C(∧mV ) ∼= C. In both
cases

dim Bilm(S)so(V ) = µ(m) dim C(∧mV ) = 2µ(m) = N(s) ,

where the last equation follows from Table A.1 in the appendix. In all other cases, ∧kV

is an irreducible module of real type and C(∧kV ) = R. Therefore, using Table A.1, we
obtain

dim Bilk(S)so(V ) = µ(k) dim C(∧kV ) = µ(k) = N(s) .

��
In the Introduction we defined the three Z/2Z-valued invariants for∧kV -valued bilin-

ear forms on the spinor module: symmetry, type and isotropy. We say that a non-zero
∧kV -valued bilinear form � ∈ Bilk(S), k > 0, is admissible if it is either symmetric or
skewsymmetric and, in the cases when semispinor modules exist, if the two semispinor
modules are either isotropic or mutually orthogonal with respect to �. Recall that in the
case of scalar-valued bilinear forms (k = 0), admissibility requires, in addition, that the
bilinear form has a specific type τ . The invariants of admissible ∧kV -valued bilinear
forms in terms of the invariants of the scalar-valued admissible bilinear forms are given
by:

Proposition 4. Let β ∈ Bil(S) be a an admissible scalar bilinear form and �k
β the asso-

ciated∧kV -valued bilinear form. Then �k
β is admissible and its invariants, the symmetry

σ(�k
β) and the isotropy ι(�k

β), can be calculated as follows:

σ(�k
β) = σ(β)τ(β)k(−1)k(k−1)/2 , (4.3)

ι(�k
β) = ι(β)(−1)k . (4.4)

For k > 0 the bilinear forms �k
β �= 0 have neither type.

Proof. Let s, t ∈ S and e1, . . . , ek ∈ V be orthogonal vectors. We put γi := γei
and

compute

〈�k
β(s ⊗ t), e1 ∧ · · · ∧ ek〉 = k!β(γ1 · · · γks, t)

= k!τ(β)kβ(s, γk · · · γ1t)

= k!τ(β)k(−1)k(k−1)/2β(s, γ1 · · · γkt)

= k!τ(β)k(−1)k(k−1)/2σ(β)β(γ1 · · · γkt, s)

= k!τ(β)k(−1)k(k−1)/2σ(β)〈�k
β(t ⊗ s), e1 ∧ · · · ∧ ek〉 .

This proves Eq. (4.3). Equation (4.4) follows from the fact that Clifford multiplication
γv maps S+ to S− and vice versa. ��
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5. Decomposition of the Tensor Square of the Spinor Module of Spin(V ) into
Irreducible Components: Complex Case

In this section we consider the spinor module S of a complex Euclidean vector space
V = C

n and we derive the decompositions of S ⊗ S, S ∨ S and S ∧ S into inequivalent
irreducible Spin(V )–submodules. These decompositions also yield the corresponding
decompositions for the cases when S is a spinor module of a real vector space V = R

m,m

if n = 2m and V = R
m,m+1 if n = 2m+1.We shall use the well known facts summarised

in the following lemma, see e.g. [OV].

Lemma 1. Let V be an n-dimensional complex Euclidean vector space or a real pseudo-
Euclidean vector space of signature (p, q), p+ q=n, p− q=s. If n = 2m+1, then the
decomposition of ∧V into irreducible pairwise inequivalent so(V )-submodules is given
by

∧V =
n∑

k=0

∧kV =
m∑

k=0

∧kV +
m∑

k=0

∗ ∧k V = 2
m∑

k=0

∧kV . (5.1)

If n = 2m then we have the following decomposition into irreducible pairwise inequiv-
alent so(V )-submodules:

∧V =






2
m−1∑

k=0

∧k V + ∧mV if s/2 is odd

2
m−1∑

k=0

∧k V + ∧m
+V + ∧m

−V if s/2 is even or if V is complex.

(5.2)

Here ∧m±V are selfdual and anti-selfdual m-forms, the ±1-eigenspaces of the Hodge
∗-operator, which acts isometrically on ∧mV , with ∗2 = (−1)m+q = (−1)s/2 = +1 if
s/2 is even .

In particular, the so(V )-module ∧kV is irreducible, unless n = 2m, s/2 is even and
k = m, in which case ∧mV = ∧m+V + ∧m−V , where ∧m+V and ∧m−V are irreducible
inequivalent modules.

Theorem 2. (i) The Spin(V )-module S⊗S contains all modules ∧kV which are irre-
ducible.

(ii) If V is a complex vector space of dimension n = 2m+ 1 or if V is real of signature
(m, m+ 1) then

S ⊗ S =
m∑

k=0

∧kV ,

S ∨ S =
[m/4]∑

i=0

∧m−4iV +
[(m−3)/4]∑

i=0

∧m−3−4iV ,

S ∧ S =
[(m−2)/4]∑

i=0

∧m−2−4iV +
[(m−1)/4]∑

i=0

∧m−1−4iV .
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Proof. (i) Theorem 1 associates a Spin(V )-equivariant linear map

(�k
β)∗ : ∧kV ∼= ∧kV ∗ → S∗ ⊗ S∗ ∼= S ⊗ S

with any invariant bilinear form β on S. In particular, if ∧kV is irreducible and β �= 0
then (�k

β)∗ embeds∧kV into S⊗S as a submodule. It was proven in [AC] that a non-zero

invariant bilinear form β on S always exists. This shows that S ⊗ S ⊃∑m
k=0 ∧kV .

(ii) If n = 2m + 1 then the right-hand side has dimension 1
2 2n = 4m and under the

assumptions on V we have that dim S = 2m. Hence dim S⊗S = 4m, so the inclusion is
an equality. The decompositions of S ∨ S and S ∧ S can either be read off the tables in
[OV] or they follow from Proposition 4 using the invariants of the admissible scalar-val-
ued form, which in this case is unique up to scale [AC] (see the tables in the appendix).
��

Now, we consider the case when V is complex of dimension n = 2m or real of
signature (m, m). In this case, ∧mV = ∧m+V ⊕ ∧m−V and the spinor module splits as
a sum S = S+ + S− of inequivalent irreducible semi-spinor modules S± of dimension
2m−1.

Theorem 3. Let V be complex of dimension n = 2m or real of signature (m, m). Then
the decompositions of the Spin(V )-modules S+ ⊗ S− and S± ⊗ S± into inequivalent
irreducible submodules are given by:

S+ ⊗ S− =
[(m−1)/2]∑

i=0

∧m−1−2iV , (5.3)

S± ⊗ S± = ∧m
±V +

[(m−2)/2]∑

i=0

∧m−2−2iV , (5.4)

S ⊗ S = S+ ⊗ S+ + 2S+ ⊗ S− + S− ⊗ S− = ∧V. (5.5)

Further, for any admissible bilinear form β on S, the equivariant maps �k
β |S±⊗S±

and

�k
β |S+⊗S−

have the following images:

�m
β (S± ⊗ S±) = ∧m

±V , (5.6)

�
m±(2i+2)
β (S± ⊗ S±) = ∧m±(2i+2)V , 0 ≤ i ≤ [m−2

2 ] , (5.7)

�
m±(2i+1)
β (S+ ⊗ S−) = ∧m±(2i+1)V , 0 ≤ i ≤ [m−1

2 ] , (5.8)

�
m±(2i+1)
β (S± ⊗ S±) = 0, 0 ≤ i ≤ [m−1

2 ] , (5.9)

�m±2i
β (S+ ⊗ S−) = 0, 0 ≤ i ≤ [m

2 ]. (5.10)

Proof. To prove the theorem we use the following model for the spinor module of an
even dimensional complex Euclidean space V or of a pseudo-Euclidean space V with
split signature (m, m): V = U ⊕ U∗, where U is an m-dimensional vector space and
the scalar product is defined by the natural pairing between U and the dual space U∗.
Then the spinor module is given by S = ∧U = ∧evU +∧oddU = S+ + S−, where the
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semi-spinor modules S± consist of even and odd forms. The Clifford multiplication is
given by exterior and interior multiplication:

u · s := u ∧ s for u ∈ U, s ∈ S ,

u∗ · s := ι∗us for u∗ ∈ U∗, s ∈ S .

There exist exactly two independent admissible bilinear forms f and fE = f (E· , ·) on
the spinor module, where E|S± = ±Id, and the form f is given by

f (∧iU , ∧jU) = 0, if i + j �= m ,

f (s, t) vol U = (−1)i(i+1)/2s ∧ t, s ∈ ∧iU, t ∈ ∧m−iU, (5.11)

where vol U ∈ ∧mU is a fixed volume form of U∗. We note that the symmetry, type and
isotropy of the admissible basis (f, fE) of Bil(S)so(V ) are given by

σ(f ) = (−1)m(m+1)/2 , σ (fE) = (−1)m(m−1)/2 ,

τ (f ) = −1 , τ (fE) = +1 , ι(f ) = ι(fE) = (−1)m .

From this and Proposition 4 it follows that

σ(�k
f ) = (−1)(m(m+1)+k(k+1))/2 , σ (�k

fE
) = (−1)(m(m−1)+k(k−1))/2 , (5.12)

ι(�k
f ) = ι(�k

fE
) = (−1)m+k . (5.13)

The formulae (5.7)-(5.10) and the fact that �m
β (S± ⊗ S±) �= 0 follow from the formulae

for the isotropy of �k
f and �k

fE
.

To prove (5.6) we first show that for any admissible form β, the image �m
β (S+⊗S+)

contains ∧m+V and the image �m
β (S− ⊗ S−) does not contain ∧m+V . For this we need

to show that for any a ∈ ∧m+V there exist spinors s, t ∈ S+ = ∧evU such that the
scalar product 〈�m

β (s ⊗ t), a〉 �= 0, and that there exists an element a ∈ ∧m+V such that

〈�m
β (s ⊗ t), a〉 = 0 for any s, t ∈ S− = ∧oddU . Since ∧+V is an irreducible so(V )-

module, it follows that if a single element a of ∧m+V is contained in the so(V )-module
�β(S+ ⊗ S−), then all of ∧m+V is contained in it. Therefore, it will suffice to prove the
first statement for just one choice of a.

We shall use the following lemma.

Lemma 2. Let V = U ⊕ U∗ as above. Then ∧mU ⊂ ∧m+V .

Proof. Let (u1, . . . , um) be a basis of U and (u∗1, . . . , u
∗
m) the dual basis of U∗. Then, up

to a sign factor, the volume form is given by vol= u1 ∧ · · · ∧ um ∧ u∗1 ∧ · · · ∧ u∗m. Now,
using the definition of the Hodge star operator, 〈∗α, β〉vol = α∧β, we may immediately
check that ∗ (u1 ∧ · · · ∧ um) = u1 ∧ · · · ∧ um. ��
Let us consider a = volU . By the lemma, a ∈ ∧m+V . Then for s = t = 1 ∈ S+ we have

〈�m
β (s ⊗ t), a〉 = β (a ∧ s , t) = β (a , 1) = ±1 �= 0 .

Similarly, for any s, t ∈ S−,

〈�m
β (s ⊗ t), a〉 = β (a ∧ s , t) = 0 ,
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since deg(a ∧ s) > m = dim U and hence a ∧ s = 0. This proves both the above
statements and hence �m

β (S+ ⊗ S+) = ∧m+V . Since the image �m
β (S− ⊗ S−) is non-

zero and does not contain ∧m+V , we also have �m
β (S− ⊗ S−) = ∧m−V . This proves

(5.6).
We now prove (5.3). By (5.8), we have the inclusion

∑[(m−1)/2]
i=0 ∧m−1−2iV ⊂

S+ ⊗ S−. To prove equality we compare dimensions. Using the identity
( 2m
m−1−2i

) =
( 2m−1
m−1−2i

)+ ( 2m−1
m−2−2i

)
, we calculate:

dim




[(m−1)/2]∑

i=0

∧m−1−2iV



 =
[(m−1)/2]∑

i=0

(
2m

m− 1− 2i

)
=

m−1∑

i=0

(
2m− 1

i

)
(5.14)

= 1
2

2m−1∑

i=0

(
2m− 1

i

)
= 22m−2 = dim(S+ ⊗ S−)(5.15)

since dim S± = 2m−1. This proves (5.3).

Similarly, by (5.6) and (5.7), we have S± ⊗ S± ⊃ ∧m±V +∑[(m−2)/2]
i=0 ∧m−2i−2V .

To prove (5.4) we compare dimensions:

dim



∧m
±V +

[(m−2)/2]∑

i=0

∧m−2i−2V



 =
[m/2]∑

i=0

(
2m

m− 2i

)
− 1

2

(
2m

m

)

=
[m/2]∑

i=0

((
2m− 1

m− 2i

)
+

(
2m− 1

m− 2i − 1

))

×− 1

2

(
2m

m

)

=
m∑

i=0

(
2m− 1

m− i

)
− 1

2

(
2m

m

)

= 1

2

2m−1∑

i=0

(
2m− 1

i

)
= 22m−2 = 2m−1 · 2m−1

= dim(S± ⊗ S±) .

This proves (5.4) and (5.5). ��

Corollary 2. (i) Let V be either complex of even dimension or real of signature (m, m)

and β an admissible bilinear form on the spinor module S = S++S−. Then for all
k the image of �k

β restricted to S+ ⊗ S+, S− ⊗ S− and S+ ⊗ S− is an irreducible
Spin(V )-module and the Spin(V )-module S ⊗ S is isomorphic to ∧V .

(ii) Let V be either complex of odd dimension or real of signature (m, m + 1) and
β an admissible bilinear form on the spinor module S. Then for all k the im-
age �k

β(S ⊗ S) is irreducible and the Spin(V )-module 2S ⊗ S is isomorphic to
∧V .
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Corollary 3. Let V be complex of dimension n = 2m or real of signature (m, m). Then
we have

S± ∨ S± = ∧m
±V +

[(m−4)/4]∑

i=0

∧m−4−4iV , (5.16)

S± ∧ S± =
[(m−2)/4]∑

i=0

∧m−2−4iV . (5.17)

Proof. These decompositions follow from (5.4) and (5.12). ��

6. Decomposition of the Tensor Square of the Spinor Module of Spin(V ) into
Irreducible Components: Real Case

In this section we describe the decompositions of S⊗S, S∨S and S∧S into inequivalent
irreducible Spin(V )–submodules, where S is the spinor module of a pseudo-Euclidean
vector space V = R

p,q of arbitrary signature s = p− q and dimension n = p+ q. We
obtain these decompositions in two steps: First, we describe the complexification SC of
the spinor module S. Second, using the decomposition of the tensor square S⊗ S of the
complex spinor module S, we decompose SC⊗SC into complex irreducible Spin(V C)–
submodules and then we take real forms. We recall that the complex spinor module S

associated to the complex Euclidean space V = V C = V ⊗C = C
n is the restriction to

Spin(V) of an irreducible representation of the complex Clifford algebra Cl(V).
Depending on the signature s ≡ p − q (mod 8), the complexification SC of the

spinor module S is given by either

i) SC = S, where we denote by S the spinor module of the complex Euclidean space
V = V C = V ⊗ C = C

n, or
ii) SC = S+ S, where S is the complex conjugated module of S.

In the latter case S admits a Spin(V )-invariant complex structure J and S is identified
with the complex space (S, J ) and S with (S,−J ). In the next lemma we specify the
signatures for which the cases i) or ii) occur. For this we use Table 1, in which we have
collected important information about the real and complex Clifford algebras and spinor
modules.

Now, we define the notion of TypeCl0(V )(S, S±) used in Table 1. If s is odd, then the
complex spinor module S is irreducible (as a complex module of the real even Clifford
algebra Cl0(V )). In this case we define TypeCl0(V )(S) := K ∈ {R, H} if the Cl0(V )-
module S is of real or quaternionic type, i.e.it admits a real or quaternionic structure
commuting with Cl0(V ). For even s the complex spinor module S = S+ + S− and S±
are irreducible complex Cl0(V )-modules. We put TypeCl0(V )(S, S±) = (lK, K

′), where
K and K

′ are the types of S and S±, respectively, further l = 1 if S is irreducible and
l = 2 if S+ and S− are not equivalent as complex Cl0(V )-modules. Note that if the
semispinor modules are of complex type (s = 2, 6), then they are complex-conjugates
of each other: S± ∼= S∓. If S± are of real (s = 0) or quaternionic (s = 4) type, then
they are selfconjugate: S± ∼= S±.

We now explain how Table 1 has been obtained. The first two columns have been
extracted from [LM] and imply the third column. Passing to the complexification of the
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Table 1. Clifford Modules Clp,q , their even parts Cl0p,q , the Schur algebra C = End Cl0(V )(S), the

complex Spinor Module S, the complex Semispinor Modules S±, the Type of these Cl0(V )-modules and
physics terminology: M stands for Majorana, W for Weyl and Symp for symplectic (i.e.quaternionic)
spinors; s = p − q mod 8, n = p + q, N = 2[n/2]. Note that p is the number of negative eigenvalues
of the product of two gamma matrices, and q the number of positive eigenvalues, see Appendix B.1

s Clp,q Cl0p,q C S S± TypeCl0(V )(S, S±) Name

0 R(N) 2R(N/2) 2R S ⊗ C S± ⊗ C (2R, R) M-W
1 C(N) R(N) R(2) S = S± ⊗ C R M
2 H(N/2) C(N/2) C(2) S = S± ⊗ C S± (2C, C) M, W
3 2H(N/2) H(N/2) H S H Symp
4 H(N/2) 2H(N/4) 2H S S± (2H, H) Symp-W
5 C(N) H(N/2) H S H Symp
6 R(N) C(N/2) C S ⊗ C S (R, C) M, W
7 2R(N) R(N) R S ⊗ C R M

Clifford algebras we have: Cl(V )⊗ C = Cl(V ⊗ C) and Cl0(V )⊗ C = Cl0(V ⊗ C).
From this we can describe the complex spinor module S and semispinor modules S±
and determine the relation between S, S± and S, S±. This gives the fourth, fifth and sixth
columns of the table. Using this table we prove the following lemma, which describes
the complex Spin(V)–module SC:

Lemma 3.

SC =
{

S+ S if s = p − q ≡ 1, 2, 3, 4, 5 (mod 8)

S if s ≡ 6, 7, 8 (mod 8).

Proof. According to Table 1, if s ≡ 6, 7, 8 (mod 8) we have S = S ⊗ C. In all other
cases there exists a Spin(V )-invariant complex structure J and the complex space (S, J )

is identified with S. Then SC = S+ S. ��

Remark 1. We note that a Spin(V )–invariant real or quaternionic structure ϕ on S (i.e.an
antilinear map with ϕ2 = +1 or −1, respectively) defines an isomorphism ϕ : S→ S.
From Table 1 it follows that if s ≡ 1, 2 (mod 8), then there exists a Spin(V )–invariant
real structure and if s ≡ 3, 4, 5 (mod 8), then there exists a Spin(V )–invariant quatern-
ionic structure on S.

Now, using the results of the previous section for the complex case, we decompose
SC ⊗ SC into complex irreducible Spin(V)–submodules. If SC ⊗ SC =∑

Wi and all
submodules Wi are of real type (i.e.complexifications of irreducible real Spin(V )–sub-
modules Wi), then S ⊗ S =∑

Wi is the desired decomposition. In odd dimensions all
modules Wi = ∧i

V are of real type. This is also the case in even dimensions n = 2m,
with one exception: the modules ∧m±V ⊂ SC ⊗ SC are not of real type if ∗2 = −1,
i.e.if s/2 is odd. Then, ∧m

V = ∧m+V+ ∧m−V is the complexification of the irreducible
Spin(V )–module ∧mV , which has the Spin(V )–invariant complex structure ∗.

The decompositions of S∨S and S∧S can be obtained using the same method. Using
this approach, we describe in detail all these decompositions for any pseudo-Euclidean
vector space V = R

p,q in the next three subsections.
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6.1. Odd dimensional case: dim V = 2m+ 1. We now describe the decomposition of
S⊗ S = S ∨ S + S ∧ S for all signatures s = 1, 3, 5, 7 (mod 8) in the odd dimensional
case.

Theorem 4. Let V = R
p,q be a pseudo-Euclidean vector space of dimension n =

p + q = 2m+1. Then the decompositions of the Spin(V )-modules S ⊗ S, S ∨ S and
S ∧ S into inequivalent irreducible submodules is given by the following:
If the signature s = p−q ≡ 1, 3, 5 (mod 8), we have

S ⊗ S = 2(∧V ) = 4
m∑

i=0

∧iV , (6.1)

S ∨ S = 3
[m/4]∑

i=0

∧m−4iV + 3
[(m−3)/4]∑

i=0

∧m−3−4iV

+
[(m−2)/4]∑

i=0

∧m−2−4iV +
[(m−1)/4]∑

i=0

∧m−1−4iV , (6.2)

S ∧ S = 3
[(m−2)/4]∑

i=0

∧m−2−4iV + 3
[(m−1)/4]∑

i=0

∧m−1−4iV

+
[m/4]∑

i=0

∧m−4iV +
[(m−3)/4]∑

i=0

∧m−3−4iV . (6.3)

If the signature s ≡ 7 (mod 8), we have

S ⊗ S =
m∑

i=0

∧iV , (6.4)

S ∨ S =
[m/4]∑

i=0

∧m−4iV +
[(m−3)/4]∑

i=0

∧m−3−4iV , (6.5)

S ∧ S =
[(m−2)/4]∑

i=0

∧m−2−4iV +
[(m−1)/4]∑

i=0

∧m−1−4iV . (6.6)

Moreover,S is an irreducible Spin(V )-module for s = 3, 5, 7 and for s = 1,S = S++S−
is the sum of two equivalent semi-spinor modules.

Proof. The signature s ≡ 7 (mod 8) corresponds to R
m,m+1, which was already dis-

cussed in Theorem 2.
For s ≡ 1, 3, 5 (mod 8), the spinor module S has an invariant complex structure J

and (S, J ) is identified with the complex spinor module S. We denote by S = (S,−J )

the module conjugate to S. According to Lemma 3 and Remark 1, S and S are equivalent
as complex modules of the real spin group Spin(V ) and S

C = S+ S = 2S. Hence,

(S ⊗R S)C = SC ⊗C SC = 4S⊗C S ,

(∨2S)C = ∨2(S+ S) = ∨2(2S) = 3 ∨2
S+ ∧2

S ,

(∧2S)C = 3 ∧2
S+ ∨2

S .
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This implies the theorem. For example,

(S ⊗R S)C = 4S⊗C S = 4
m∑

i=0

∧i
V = 4

m∑

i=0

(∧iV )C ,

by virtue of Theorem 2 and the real part gives (6.1). ��

6.2. Even dimensional case: dim V = 2m. In this subsection, we describe the decom-
position of S ⊗ S = S ∨ S + S ∧ S for all signatures s = 0, 2, 4, 6 (mod 8) in the even
dimensional case.

Theorem 5. Let V = R
p,q be a pseudo-Euclidean vector space of dimension n =

p + q = 2m. Then the decompositions of the Spin(V )-module S ⊗ S into inequivalent
irreducible submodules is given by the following:
If the signature s = p−q ≡ 2, 4 (mod 8), we have

S ⊗ S = 4(∧V ) =






8
m−1∑

i=0

∧i V + 4 ∧m V if s = 2 (mod 8)

8
m−1∑

i=0

∧i V + 4 ∧m
+ V + 4 ∧m

− V if s = 4 (mod 8).

(6.7)

If the signature s ≡ 0, 6 (mod 8), we have

S ⊗ S = ∧V =






2
m−1∑

i=0

∧i V + ∧m
+V + ∧m

−V if s = 0 (mod 8)

2
m−1∑

i=0

∧i V + ∧mV if s = 6 (mod 8).

(6.8)

Proof. Similarly to the odd dimensional case, we have

(S ⊗R S)C = S⊗C S = ∧V = 2
m∑

i=0

∧i
V+ ∧m

+V+ ∧m
−V . (6.9)

Now we note that (∧mV )C = ∧m
V and ∗2|∧mV = (−1)s/2. If s/2 is even, then ∧mV =

∧m+V + ∧m−V , where ∧m±V are irreducible submodules, which are ±1–eigenspaces of

∗. Then,
(∧m±V

)C = ∧m±V. In this case, the real part of (6.9) gives the first part of (6.8).
If s/2 is odd, then ∗ is a complex structure on ∧mV , which is irreducible since it has
complex structure and its complexification ∧m

V has only two irreducible components
∧m±V. In this case the real part of (6.9) gives the second part of (6.8). ��

The decompositions of S∨S and S∧S for the cases when semispinor modules exist,
in particular for s = 0, 2, 4 (mod 8), will be given in the next subsection. Therefore it
is now sufficient to determine these decompositions for s = 6 (mod 8).
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Corollary 4. Let S be the spinor module of a pseudo-Euclidean vector space V of sig-
nature s ≡ 6 (mod 8) and dimension n = 2m. Then we have

S ∨ S = ∧mV + 2
[(m−4)/4]∑

i=0

∧m−4−4iV +
[(m−1)/2]∑

i=0

∧m−1−2iV , (6.10)

S ∧ S = 2
[(m−2)/4]∑

i=0

∧m−2−4iV +
[(m−1)/2]∑

i=0

∧m−1−2iV . (6.11)

Proof. This follows by complexification of Eq. (6.8), using Lemma 3, Eq. (5.3) and
Corollary 3. ��

6.3. Decomposition of tensor square of semi-spinors. According to Table 1, semi-spinor
modules S± exist if the signature s ≡ 0, 1, 2, 4 (mod 8). More precisely, we list below
whether S± are equivalent Spin(V )–modules and we give SC± .

s S± SC±
0 inequivalent S± ⊗ C = S±
1 equivalent S± ⊗ C = S

2 equivalent S± ⊗ C = S

4 inequivalent S± + S± = 2S±

For s ≡ 1, 2, 4 (mod 8) we have S = S, whereas for s ≡ 0 (mod 8) we have S = SC.
We also note that for s ≡ 2 (mod 8), although the Spin(V )–modules S± are equivalent,
the Spin(V)–modules S+ and S− = S+ are not equivalent. For s = 4, S± = S± admits
a Spin(V )-invariant quaternionic structure.

Using the above description for SC± and the decompositions of the tensor squares of
complex spinor and semi-spinor modules, we obtain the following:

Theorem 6. Let S = S++S− be the spinor module of a pseudo-Euclidean vector space
V of signature s ≡ 0, 1, 2, 4 (mod 8) and dimension n = 2m or n = 2m + 1. Then
we have the following decomposition of Spin(V )–modules S± ⊗ S± and S+ ⊗ S− into
inequivalent irreducible submodules:
For s ≡ 0 (mod 8):

S+ ⊗ S− =
[(m−1)/2]∑

i=0

∧m−1−2iV ,

S± ⊗ S± = ∧m
±V +

[(m−2)/2]∑

i=0

∧m−2−2iV ,

S± ∨ S± = ∧m
±V +

[(m−4)/4]∑

i=0

∧m−4−4iV ,

S± ∧ S± =
[(m−2)/4]∑

i=0

∧m−2−4iV .
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For s ≡ 1 (mod 8):

S± ⊗ S± = S+ ⊗ S− =
m∑

i=0

∧iV ,

S± ∨ S± =
[m/4]∑

i=0

∧m−4iV +
[(m−3)/4]∑

i=0

∧m−3−4iV ,

S± ∧ S± =
[(m−2)/4]∑

i=0

∧m−2−4iV +
[(m−1)/4]∑

i=0

∧m−1−4iV .

For s ≡ 2 (mod 8):

S± ⊗ S± = S+ ⊗ S− = ∧mV + 2
m−1∑

i=0

∧iV ,

S± ∨ S± = ∧mV + 2
[(m−4)/4]∑

i=0

∧m−4−4iV +
[(m−1)/2]∑

i=0

∧m−1−2iV ,

S± ∧ S± = 2
[(m−2)/4]∑

i=0

∧m−2−4iV +
[(m−1)/2]∑

i=0

∧m−1−2iV .

For s ≡ 4 (mod 8):

S+ ⊗ S− = 4
[(m−1)/2]∑

i=0

∧m−1−2iV ,

S± ⊗ S± = 4 ∧m
± V + 4

[(m−2)/2]∑

i=0

∧m−2−2iV ,

S± ∨ S± = 3 ∧m
± V + 3

[(m−4)/4]∑

i=0

∧m−4−4iV +
[(m−2)/4]∑

i=0

∧m−2−4iV ,

S± ∧ S± = 3
[(m−2)/4]∑

i=0

∧m−2−4iV + ∧m
±V +

[(m−4)/4]∑

i=0

∧m−4−4iV .

Proof. The case s = 0 (mod 8) follows from the complex case (see Theorem 3 and
Corollary 3). For s = 1, 2 (mod 8) the modules S+ and S− are isomorphic. Hence
S = S+ + S− = 2S+ and S ⊗ S = 4S+ ⊗ S+. Since S ⊗ S = 4

∑m
i=0 ∧iV we have

S+ ⊗ S+ = S− ⊗ S− = S+ ⊗ S− =
m∑

i=0

∧iV .

The splitting into symmetric and skew parts of these tensor products follows that in the
complex cases, see Theorem 2 and Corollary 3. For s = 4 (mod 8) the semi-spinor
modules S± are not equivalent but SC± = S = S+ + S−. The result follows from the
decomposition in the complex case (Theorem 3 and Corollary 3) on taking the real parts.
��
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7. N -Extended Polyvector Poincaré Algebras

In the previous sections we have classified ε-transalgebras of the form g = g0 + g1,
g0 = so(V ) + W0, with g1 = W1 = S the spinor module. As in [AC] we can easily
extend this classification to the case where W1 is a general spinorial module, i.e.W1 =
NS = S ⊗ R

N , if S is irreducible, or W1 = N+S+ ⊕ N−S− = S+ ⊗ R
N+ ⊕ S− ⊗ R

N−
if semi-spinors exist. An ε-extension of translational type of the above form is called an
N -extended polyvector Poincaré algebra if W1 = NS and an (N+, N−)-extended
polyvector Poincaré algebra if W1 = N+S+⊕N−S−. Consider first the case W1 = NS.
As before, the classification reduces to the decomposition of ∨2W1 and ∧2W1 into irre-
ducible submodules. These decompositions follow from the decompositions of∨2S and
∧2S obtained in the previous sections, together with the decompositions

∨2W1 = ∨2S ⊗∨2
R

N ⊕∧2S ⊗∧2
R

N ,

∧2W1 = ∧2S ⊗∨2
R

N ⊕∨2S ⊗∧2
R

N .

In particular, this implies that the multiplicities µ+(k, N) and µ−(k, N) of the module
∧kV in ∨2W1 and ∧2W1, respectively, are given by

µ+(k, N) = µ+(k)
N(N + 1)

2
+ µ−(k)

N(N − 1)

2
,

µ−(k, N) = µ−(k)
N(N + 1)

2
+ µ+(k)

N(N − 1)

2
,

where µ+(k) and µ−(k) are the multiplicities of∧kV in∨2S and∧2S, respectively. The
vector space of N-extended polyvector Poincaré ε-algebra structures with W0 = ∧kV is
identified with the space Bilkε(W1)

so(V ) of invariant ∧kV -valued bilinear forms on W1.
Its dimension is given by

dim Bilkε(W1)
so(V ) = µε(k, N) dim C(∧kV ) ,

where the Schur algebra C(∧kV ) = R, R ⊕ R or C, see the proof of Theorem 1. Any
element �ε ∈ Bilkε(W1)

so(V ) can be represented as

�+ =
∑

i

�k

βi+
⊗ bi
+ +

∑

j

�k

β
j
−
⊗ b

j
− ,

�− =
∑

i

�k

βi−
⊗ bi
+ +

∑

j

�k

β
j
+
⊗ b

j
− ,

where βi± ∈ Bilk±(S)so(V ) and bi+ and bi− are, respectively, symmetric and skewsym-
metric bilinear forms on R

N . We note also that there exists a unique minimal (i.e.W0 =
[W1, W1]) N -extended polyvector Poincaré ε-algebra with W0 = µε(k, N) ∧k V . The
Lie (super)bracket is given, up to a twist by an invertible element of the Schur algebra of
W0, by the projection onto the corresponding maximal isotypical submodule of ∨2W1
or ∧2W1, respectively.

Similarly, in the case when the spinor module S = S+ ⊕ S− is reducible, we can
reduce the description of all (N+, N−)-extended polyvector Poincaré ε-algebras g =
so(V )+∧kV+W1 such that W1 = N+S++N−S− to the chiral cases (N+, N−) = (1, 0)

or (0, 1) and to the isotropic case: (N+, N−) = (1, 1) and [S+, S+] = [S−, S−] = 0.
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Table A.1. The numbers (N+(s, n), N−(s, n)) of independent symmetric and skewsymmetric bilinear
forms on S

s\n 0 1 2 3 4 5 6 7 N(s) µ(k) = µ(0) µ(m)

0 2,0 1,1 0,2 1,1 2 2 1*
1 3,1 1,3 1,3 3,1 4 4
2 6,2 4,4 2,6 4,4 8 8 4
3 3,1 1,3 1,3 3,1 4 4
4 6,2 4,4 2,6 4,4 8 8 4*
5 3,1 1,3 1,3 3,1 4 4
6 2,0 1,1 0,2 1,1 2 2 1
7 1,0 0,1 0,1 1,0 1 1

Let β be an admissible bilinear form on S = S+ ⊕ S− and �k
β ∈ Bilkε(S)so(V ) the

corresponding admissible∧kV -valued bilinear form. Its restriction to S+ (or S−) defines
a (1, 0)-extended (respectively, (0, 1)-extended) k-polyvector Poincaré ε-algebra if and
only if ι(�k

β) = +1. If ι(�k
β) = −1 then we obtain an isotropic (1, 1)-extended k-poly-

vector Poincaré ε-algebra, i.e.[S+, S+] = [S−, S−] = 0. The values of the invariants
σ(�k

β) = ε and ι(�k
β) can be read off Tables A.3–A.6 in Appendix A.
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A. Admissible ∧kV -Valued Bilinear Forms on S

In Table A.1 we give the numbers (N+(s, n), N−(s, n)) of independent symmetric (+)
and skewsymmetric (−) invariant bilinear forms onS, i.e.N±(s, n) = dim Bil±(S)so(V ).
They were computed in [AC] and are periodic with period 8 in the signature s = p − q

and in the dimension n = p+q of V = R
p,q . The entry N(s) = N+(s, n)+N−(s, n) is

the total number of invariant bilinear forms and µ(k) is the multiplicity of the irreducible
submodule ∧kV in S⊗S. For k �= n/2, it does not depend on k, i.e.µ(k) = µ(0). In the
case n = 2m the multiplicities µ(m) with a ∗ indicate that the module∧mV is reducible
as ∧m+V + ∧m−V .

From Table A.1, we note the following symmetries:

a) Modulo 8-symmetry:

N±(s + 8a, n+ 8b) = N±(s, n) , a, b ∈ Z .

b) Reflection with respect to the horizontal line s = 3,

N±(−s + 6, n) = N±(s, n)

and reflection with respect to the vertical line n = 0,

N±(s, n) = N±(s,−n) .
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c) The reflection with respect to the vertical line n = 2 is a mirror symmetry, i.e.it
interchanges N+ and N−:

N±(s, n) = N∓(s,−n+ 4) .

It is the same as the mirror symmetry with respect to n = 6. We note that the
composition of reflections in n = 0 and n = 2 gives the translation n �→ n+ 4:

N±(s, n) = N∓(s, n+ 4) .

More generally, we consider the dimension

Ñ±k (p, q) := N±k (s, n) := dim Bilk±(S)so(V )

of the vector space of invariant∧kV -valued bilinear forms on S. By Theorem 1, the sum
Nk(s, n) = N+k (s, n)+N−k (s, n) = N(s, n) does not depend on k. From Table A.1, we
see that it depends only on the signature s. As a corollary of Proposition 4, the numbers
Ñ±k (p, q) are periodic modulo 4 in k:

Ñ±k (p, q) = Ñ±k+4(p, q) .

Moreover, we have the following periodicities in (p, q):

Ñ±k (p, q) = Ñ±k (p + 8, q) = Ñ±k (p, q + 8) = Ñ±k (p + 4, q + 4) .

In fact, it was proven in [AC] that, for any given symmetry σ0, type τ0 and isotropy ι0 (if
defined), the number of bilinear forms β with σ(β) = σ0, τ(β) = τ0 and ι(β) = ι0 in
a basis (βi) of Bil(S)so(V ) consisting of admissible forms is (8, 0)-, (0, 8)- and (4, 4)-
periodic in (p, q). By Proposition 4, this implies that for any given symmetry σ ′0 and
isotropy ι′0 (if defined), the number of∧kV -valued bilinear forms �k

βi
with σ(�k

βi
) = σ ′0,

and ι(�k
βi

) = ι′0 is (8, 0)-, (0, 8)- and (4, 4)-periodic in (p, q).
Finally, we have the following shift formula:

N±k (s, n+ 2k) = N±0 (s, n) := N±(s, n) ,

which we can write also as

Ñ±k (p + k, q + k) = Ñ±0 (p, q) .

This shift formula follows from the tables below.

In Table A.3 we describe a basis of Bil(S)so(V ), which consists of admissible forms
and indicate the values of the three invariants σ , τ and ι. In the three following tables
we give the invariants σ and ι for the corresponding bases of Bilk(S)so(V ), k = 1, 2, 3
modulo 4, denoted for simplicity by the same symbols. Due to the above periodicity
properties, we can calculate, from these tables, the values of the invariants for the cor-
responding bases of Bilk(S)so(V ) for all k ∈ N and V = R

p,q .
For any V = R

p,q an explicit basis of Bilk(S)so(V ) consisting of admissible forms
was constructed for k = 0 and k = 1, in terms of appropriate models of the spinor mod-
ule in [AC]. It was proven there that any admissible V -valued bilinear form on S is of the
form �1

β , where β is a linear combination of admissible scalar-valued forms. By Theorem

1 and Proposition 4, this result extends to k > 1, namely any admissible ∧kV -valued
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bilinear form is of the form �k
β , where β is a linear combination of admissible scalar-

valued forms. This provides a basis of the vector space Bilk(S)so(V ) ∼= Bil(S)so(V )

consisting of admissible forms. The dimension of this space is equal to the dimension
of the Schur algebra C(S), which depends only on the signature s = p − q modulo 8,
see [AC].

In the tables below we use the notation of [AC]. We use the fact that any pseudo-
Euclidean vector space can be written as V = V1⊕V2, where V1 = R

r,r and V2 = R
0,k

or V2 = R
k,0. Then [LM]

Cl(V ) ∼= Cl(V1) ⊗̂ Cl(V2) ,

where ⊗̂ denotes the Z/2Z-graded tensor product. Let S1 be the spinor module of
Spin(V1) and S2 the spinor module of Spin(V2). Then we always have that S1 = S+1 +S−1
is a Z/2Z-graded module of the Z/2Z-graded algebra Cl(V1). The spinor module S of
Spin(V ) can be described in terms of S1 and S2 as follows, see Proposition 2.3 of [AC].
Consider first the case when S2 = S+2 + S−2 is reducible. In this case S2 is a Z/2Z-
graded Cl(V2)-module and the spinor module S = S1 ⊗̂ S2 of Spin(V ) is obtained as
the Z/2Z-graded tensor product of the modules S1 and S2. It is again Z/2Z-graded with
even part S+ = S+1 ⊗ S+2 + S−1 ⊗ S−2 and odd part S− = S+1 ⊗ S−2 + S−1 ⊗ S+2 . If S2 is
an irreducible Spin(V )-module, then the spinor module of Spin(V ) is given by

S = S1 ⊗̂ S2 = S+1 ⊗ S2 + S−1 ⊗ S2

with the action

(a ⊗̂ b) · (s±1 ⊗ s2) = (−1)deg(s±1 )deg(b)as±1 ⊗ bs2 ,

where a ∈ Cl(V1), b ∈ Cl(V1), s±1 ∈ S±1 , s2 ∈ S2, deg(s+1 ) = 0 and deg(s−1 ) = 1. In
this case S is an irreducible Spin(V )-module.

As discussed in Sect. 5, for the case of split signature, V = R
r,r , there exist two

independent admissible bilinear forms f and fE = f (E· , ·) on the spinor module,
where E|S± = ±Id. Their invariants are given in Table A.3. If V is positive or negative
definite, then there exists a unique (up to scale) Pin(V )-invariant scalar product g on
the spinor module S and any admissible, hence invariant, bilinear form on S is of the
form gA = g(A·, ·), where A is an admissible element of the Schur algebra C(S). The
admissibility of A means that A is either symmetric or skewsymmetric with respect to
g, that it either commutes or anticommutes with the Clifford multiplication γv and that
it preserves or interchanges S+ and S− if they exist [AC].

Returning to the general case V = R
p,q = V1 ⊕ V2, S = S1 ⊗̂ S2, as above,

the admissible bilinear forms on S can be described as follows. Let (gAi
) be a basis

of Bil(S2)
so(V2) consisting of admissible elements. Inspection of Table A.3 shows that

for any gAi
there exists a unique element φi ∈ {f, fE} which satisfies the condition

τ(φi) = ι(gAi
)τ (gAi

). By virtue of Proposition 3.4 of [AC], the tensor products φi⊗gAi

provide a basis of Bil(S)so(V ) consisting of admissible elements. The corresponding
basis �k

φi⊗gAi
of Bilk(S)so(V ) and its invariants are tabulated below. For simplicity the

symbols �k and ⊗ are omitted.
We use the following bases for the Schur algebra C(S) (see TableA.2). If the signature

s = 0, 1, 2 or 4, then S = S+⊕S−, and we put E = diag(IdS+ , IdS−). In the cases s = 1
and s = 6 we denote by I the standard complex structure in C(S) = R(2) and C(S) = C,
respectively. In fact, in the case s = 1, S = C

N = R
N ⊕ R

N has a Cl(V )-invariant
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Table A.2. Standard bases for the Schur algebras C(S)

s C(S) basis of C(S)

0 2R Id, E
1 R(2) Id, E, I, EI
2 C(2) Id, I, J, K, E, EI, EJ, EK
3 H Id, I, J, K
4 2H Id, I, J, K, E, EI, EJ, EK
5 H Id, I, J, K
6 C Id, I
7 R Id

complex structure. In the cases s = 2, 3, 4 and 5, we denote by I, J, K = IJ ∈ C(S)

the canonical Cl0(V )-invariant hypercomplex structure of S (3 anticommuting complex
structures). In fact, in the case s = 4, S = H

N/2 = H
N/4⊕H

N/4 has a Cl(V )-invariant
hypercomplex structure.

B. Reformulation for Physicists

In this appendix, we reformulate our results in a language that may be more familiar to
physicists. It is useful first to review some properties of Clifford algebras, in particular
those that concern the real Clifford algebras.

B.1. Complex and real Clifford algebras. We use here the terminology of Clifford alge-
bras, spinors and gamma matrices as used in physics. Results for the real case are
dependent on the signature. We remark that in the main text Clifford algebras have been
taken with a minus sign:

γ aγ b + γ bγ a = −2ηab . (B.1)

The signature s has been introduced as p − q modulo 8, where p and q are the number
of +1, respectively −1 eigenvalues of the metric ηab. Thus,

p = number of negative eigenvalues of
(
γ aγ b + γ bγ a

)
,

q = number of positive eigenvalues of
(
γ aγ b + γ bγ a

)
,

s = p − q mod 8 , n = p + q . (B.2)

This is important in order to interpret Table 1.
The bilinear form β corresponds to the charge conjugation matrix C, or for spinors s

and t , we have β(s, t) = sT Ct . If v = ea , a basis vector, then the operation γ (v) is the
gamma matrix γ (v = ea) = γ a . The invariant σ(C) indicates the symmetry of C, while
τ(C) indicates the symmetry of Cγ a :

CT = σ(C) C ,
(
Cγ a

)T = τ(C) Cγ a . (B.3)
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Table A.3. Admissible bilinear forms β on S and their invariants (σ, τ, ι)

p\q 0 1 2 3

0 f +−+ g ++ fg −− fEg −+
fE +++ fEgI ++ fEgI ++

fEgJ −−
fEgK −−

1 g +−+ f −−− g −− fEg −+
gE +++ fE ++− fgI −−
gI −−−
gIE ++−

2 g +−+ fEg ++− f −−+ g −+
gI −−+ fEgI −++ fE −++
gJ −−− fgE −−−
gK −−− fgIE −−+
gE +++
gIE −++
gJE ++−
gKE ++−

3 g +− fEg ++− fg −−+ f +−−
gI −− fEgI −+− fgI +−− fE −+−
gJ −− fEgJ −++ fEgE −++
gK −− fEgK −++ fEgIE −+−

fgE −−−
fgIE +−−
fgJE −−+
fgKE −−+

4 g +−+ fEg ++ fg −−+ fEg −+−
gI −−+ fEgI −+ fgI +−+ fEgI +++
gJ −−+ fEgJ −+ fgJ +−− fgE +−−
gK −−+ fEgK −+ fgK +−− fgIE +−+
gE +++ fEgE −++
gIE −++ fEgIE +++
gJE −++ fEgJE −+−
gKE −++ fEgKE −+−

5 g +− fEg ++− fg −− fEg −+−
gI −− fEgI −+− fgI +− fEgI ++−
gJ −+ fEgJ −+− fgJ +− fEgJ +++
gK −+ fEgK −+− fgK +− fEgK +++

fgE −−− fgE +−−
fgIE +−− fgIE −−−
fgJE +−− fgJE +−+
fgKE +−− fgKE +−+

6 g +− fEg ++ fg −−+ fEg −+
gI −+ fEgI −+ fgI +−+ fEgI ++

fg +− fgJ +−+ fEgJ ++
fgI +− fgK +−+ fEgK ++

fEgE −++
fEgIE +++
fEgJE +++
fEgKE +++

7 g +− fEg ++ fg −− fEg −+−
fgI +− fgI +− fEgI ++−

fEg ++ fEgJ ++−
fEgI ++ fEgK ++−

fgE +−−
fgIE −−−
fgJE −−−
fgKE −−−
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Table A.4. ∧kV -valued admissible bilinear forms on S and their invariants (σ, ι) for k≡1(4)

p\q 0 1 2 3

0 f −− g + fg + fEg −
fE +− fEgI + fEgI +

fEgJ +
fEgK +

1 g −− f ++ g + fEg −
gE +− fE ++ fgI +
gI ++
gIE ++

2 g −− fEg ++ f +− g −
gI +− fEgI −− fE −−
gJ ++ fgE ++
gK ++ fgIE +−
gE +−
gIE −−
gJE ++
gKE ++

3 g − fEg ++ fg +− f −+
gI + fEgI −+ fgI −+ fE −+
gJ + fEgJ −− fEgE −−
gK + fEgK −− fEgIE −+

fgE ++
fgIE −+
fgJE +−
fgKE +−

4 g −− fEg + fg +− fEg −+
gI +− fEgI − fgI −− fEgI +−
gJ +− fEgJ − fgJ −+ fgE −+
gK +− fEgK − fgK −+ fgIE −−
gE +− fEgE −−
gIE −− fEgIE +−
gJE −− fEgJE −+
gKE −− fEgKE −+

5 g − fEg ++ fg + fEg −+
gI + fEgI −+ fgI − fEgI ++
gJ − fEgJ −+ fgJ − fEgJ +−
gK − fEgK −+ fgK − fEgK +−

fgE ++ fgE −+
fgIE −+ fgIE ++
fgJE −+ fgJE −−
fgKE −+ fgKE −−

6 g − fEg + fg +− fEg −
gI − fEgI − fgI −− fEgI +

fg − fgJ −− fEgJ +
fgI − fgK −− fEgK +

fEgE −−
fEgIE +−
fEgJE +−
fEgKE +−

7 g − fEg + fg + fEg −+
fgI − fgI − fEgI ++

fEg + fEgJ ++
fEgI + fEgK ++

fgE −+
fgIE ++
fgJE ++
fgKE ++
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Table A.5. ∧kV -valued admissible bilinear forms on S and their invariants (σ, ι) for k≡2(4)

p\q 0 1 2 3

0 f −+ g − fg + fEg +
fE −+ fEgI − fEgI −

fEgJ +
fEgK +

1 g −+ f +− g + fEg +
gE −+ fE −− fgI +
gI +−
gIE −−

2 g −+ fEg −− f ++ g +
gI ++ fEgI ++ fE ++
gJ +− fgE +−
gK +− fgIE ++
gE −+
gIE ++
gJE −−
gKE −−

3 g − fEg −− fg ++ f −−
gI + fEgI +− fgI −− fE +−
gJ + fEgJ ++ fEgE ++
gK + fEgK ++ fEgIE +−

fgE +−
fgIE −−
fgJE ++
fgKE ++

4 g −+ fEg − fg ++ fEg +−
gI ++ fEgI + fgI −+ fEgI −+
gJ ++ fEgJ + fgJ −− fgE −−
gK ++ fEgK + fgK −− fgIE −+
gE −+ fEgE ++
gIE ++ fEgIE −+
gJE ++ fEgJE +−
gKE ++ fEgKE +−

5 g − fEg −− fg + fEg +−
gI + fEgI +− fgI − fEgI −−
gJ + fEgJ +− fgJ − fEgJ −+
gK + fEgK +− fgK − fEgK −+

fgE +− fgE −−
fgIE −− fgIE +−
fgJE −− fgJE −+
fgKE −− fgKE −+

6 g − fEg − fg ++ fEg +
gI + fEgI + fgI −+ fEgI −

fg − fgJ −+ fEgJ −
fgI − fgK −+ fEgK −

fEgE ++
fEgIE −+
fEgJE −+
fEgKE −+

7 g − fEg − fg + fEg +−
fgI − fgI − fEgI −−

fEg − fEgJ −−
fEgI − fEgK −−

fgE −−
fgIE +−
fgJE +−
fgKE +−
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Table A.6. ∧kV -valued admissible bilinear forms on S and their invariants (σ, ι) for k≡3(4)

p\q 0 1 2 3

0 f +− g − fg − fEg +
fE −− fEgI − fEgI −

fEgJ −
fEgK −

1 g +− f −+ g − fEg +
gE −− fE −+ fgI −
gI −+
gIE −+

2 g +− fEg −+ f −− g +
gI −− fEgI +− fE +−
gJ −+ fgE −+
gK −+ fgIE −−
gE −−
gIE +−
gJE −+
gKE −+

3 g + fEg −+ fg −− f ++
gI − fEgI ++ fgI ++ fE ++
gJ − fEgJ +− fEgE +−
gK − fEgK +− fEgIE ++

fgE −+
fgIE ++
fgJE −−
fgKE −−

4 g +− fEg − fg −− fEg ++
gI −− fEgI + fgI +− fEgI −−
gJ −− fEgJ + fgJ ++ fgE ++
gK −− fEgK + fgK ++ fgIE +−
gE −− fEgE +−
gIE +− fEgIE −−
gJE +− fEgJE ++
gKE +− fEgKE ++

5 g + fEg −+ fg − fEg ++
gI − fEgI ++ fgI + fEgI −+
gJ + fEgJ ++ fgJ + fEgJ −−
gK + fEgK ++ fgK + fEgK −−

fgE −+ fgE ++
fgIE ++ fgIE −+
fgJE ++ fgJE +−
fgKE ++ fgKE +−

6 g + fEg − fg −− fEg +
gI + fEgI + fgI +− fEgI −

fg + fgJ +− fEgJ −
fgI + fgK +− fEgK −

fEgE +−
fEgIE −−
fEgJE −−
fEgKE −−

7 g + fEg − fg − fEg ++
fgI + fgI + fEgI −+

fEg − fEgJ −+
fEgI − fEgK −+

fgE ++
fgIE −+
fgJE −+
fgKE −+
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When we can define chiral spinors, called semi-spinors here, the invariant ι indicates
whether the charge conjugation matrix maps between spinors of equal chirality ι(β) = 1
or different chirality ι(β) = −1.

For complex gamma matrices, there are many references, and one can compare
e.g.with [VP]. The invariants σ and τ and ι are related to the two numbers ε and η

of [VP] as

σ(C) = −ε , τ (C) = −η . (B.4)

The main results depend on the dimension n. For n odd, there is one charge conjugation
matrix (i.e.1 bilinear form C) and

n = 1 mod 8 : σ(C) = 1 , τ (C) = 1 ,

n = 3 mod 8 : σ(C) = −1 , τ (C) = −1 ,

n = 5 mod 8 : σ(C) = −1 , τ (C) = 1 ,

n = 7 mod 8 : σ(C) = 1 , τ (C) = −1 . (B.5)

For even n we can define a charge conjugation matrix for either sign of τ . We define

γ∗ ≡ (−i)n/2+pγ1 . . . γn , γ∗γ∗ = 1 . (B.6)

Now, if C is a good charge conjugation matrix, then C′ = Cγ∗ is a charge conjugation
matrix as well, with τ(C′) = −τ(C). The value of σ is

n = 0 mod 8 : σ(C) = 1 , n = 2 mod 8 : σ(C) = τ(C) ,

n = 4 mod 8 : σ(C) = −1 , n = 6 mod 8 : σ(C) = −τ(C) . (B.7)

Using (1± γ∗)/2, we can define chiral spinors in this case, and we find

ι(C) =←n≡ (−1)n(n−1)/2 . (B.8)

Here,
←
n is the sign change on reversing n indices of an antisymmetric tensor.

In this paper we more often make use of real Clifford algebras. Explicit results on
real Clifford algebras can be found in [O]. Here we give some key results. Only in the
cases s = 0, 6, 7, can the matrices of the complex Clifford algebra (of dimension 2[n/2],
where the Gauss bracket [x] denotes the integer part of x) be chosen to be real. This is
called the normal type.

In the other cases, we can get real matrices of dimension twice that of the complex
Clifford algebra. Many representations contain only pure real or pure imaginary gamma
matrices. A simple way to obtain real matrices of double dimension is to use the matrices

�a = γ a ⊗ 2 if γ a is real , �a = γ a ⊗ σ2 if γ a is imaginary . (B.9)

In the cases s = 1, 5, called the almost complex type, there is one matrix that commutes
with all gamma matrices. It is

J ≡ �1 . . . �n , J 2 = − . (B.10)

Note that in the complex case the product of all the γ a’s is proportional to the identity
for odd dimensions, but this is not so for these larger and real �a’s. (For s = 3, 7 the
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product of all real gamma matrices is also ± ). In this case there is always a charge
conjugation matrix C with1

σ(C) = σ(C) , τ (C) = −1 , (B.11)

where C indicates the charge conjugation matrix for the complex case. There is also a
matrix D that satisfies the properties

D�a + �aD = 0 , DT = CDC−1 ,
D2 = if s = 1 ,

D2 = − if s = 5 .
(B.12)

In the remaining cases, s = 2, 3, 4, called the quaternionic type, there are 3 matrices,
which commute with all the �a’s, denoted Ei for i = 1, 2, 3. They satisfy

[Ei, �
a] = 0 , EiEj = −δij + εijkEk , ET

i = −CEiC
−1 , (B.13)

where a charge conjugation matrix C is used that satisfies

σ(C) = −σ(C) , τ (C) = τ(C) . (B.14)

With these properties, we can obtain the following consequences for bilinear forms:

s = 0, 6. We have the normal type. The two charge conjugation matrices of the complex
Clifford algebra can be used (possibly multiplied by i to make them real, but an overall
factor is not important), having opposite values of τ . For σ one can use (B.7). For s = 0
there is no imaginary factor in (B.6), and thus γ∗ is a real matrix that can be used to define
real chiral spinors (Majorana-Weyl spinors). The value of ι is then as in the complex
case, see (B.8). For s = 6 there is no projection possible in this real case. The fact that
the Clifford algebra is real reflects that the irreducible spinors are Majorana spinors.

s = 7. The real Clifford representation is also of the normal type. With the odd dimen-
sion there is only one charge conjugation matrix, and no chiral projection. The values
of σ and τ are as in (B.5). Again, the reality reflects the property of Majorana spinors.

s = 1, 5. The real Clifford representation is of the ‘almost complex type’. We have 4
choices for the charge conjugation matrix: C, CJ , CD and CDJ . We can derive from
the given properties that

σ(C) = σ(C) = − ←n σ(CJ ) = σ(CD) =←n σ(CDJ),

τ (C) = τ(CJ ) = −1 , τ (CD) = τ(CDJ) = 1 . (B.15)

If s = 1 then (B.12) says that 1
2 ( ±D) are good projection operators, and can be used

to define semispinors. These (real) semispinors have the same dimension as the original
complex ones and are the Majorana spinors. It is straightforward to check that

ι(C) = ι(D) = 1 , ι(CJ ) = ι(CDJ) = −1 . (B.16)

1 In this explanation of properties of real Clifford algebras, we will always denote by C a specific
choice of charge conjugation matrix for the real Clifford algebra, and by C the one for the complex
gamma matrices. In general we use C for any choice of charge conjugation matrix.
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If s = 5 no such projection is possible. The size of the spinor representation is dou-
bled by the procedure (B.9), and this reflects the fact that we have symplectic-Majorana
spinors.

s = 2, 4. The real Clifford representation is of the quaternionic type. With dimension
even, we start from the two charge conjugation matrices of the complex case. For each of
them, we can construct 3 extra ones by multiplying with the imaginary units Ei , bringing
the total to 8 invariant bilinear forms. From (B.13) and (B.14) it follows that

σ(C) = −σ(C) = σ(CEi),

τ (C) = τ(C) = τ(CEi) . (B.17)

The definition of chiral spinors as in the complex case is only possible if γ∗ in (B.6)
is real. Thus if 1

2n + p is even, i.e.s = 4, the product of all the �a’s is a good chiral
projection operator. The projected spinors are the components of symplectic Majorana-
Weyl spinors. If γ∗ is imaginary, i.e.s = 2, the product of all the �a’s squares to − .
Using one of the complex structures, say E1, then gives chiral projections of the form
1
2 ( ± i�∗E1). In this case

ι(C) = ι(CE1) = −ι(C) , ι(CE2) = ι(CE3) = ι(C) . (B.18)

The projected spinors are the components of Majorana spinors.

s = 3. Here also, the real Clifford algebra is of the quaternionic type, but since the dimen-
sion is odd, there is only one charge conjugation matrix in the complex Clifford algebra.
For this, (B.17) applies. There is no chiral projection, and the components correspond
to symplectic Majorana spinors.

The results can be seen in Table A.3 (though the names for the different bilinear forms
are unrelated to what has been explained here). Table A.1 gives the number of solutions
for charge conjugation matrices that have β = 1, β = −1.

The map �k
β in the main text corresponds to the mapping from two spinors s and t to

the form with components sT C�a1...ak
t (where C denotes now any choice as explained in

footnote 1), and the number σ(�k

C
) gives the symmetry of this bispinor (for commuting

spinors) under interchange of s and t , while ι(�k

C
) tells whether s and t have the same

chirality. They are related to σ(C), τ(C) and ι(C) by (1.4) and (1.5):

σ(�k

C
) = σ(C)τ k(C)

←
k , ι(�k

C
) = (−)kι(C) . (B.19)

For real Clifford algebras they are given explicitly in Tables A.4– A.6.

B.2. Summary of the results for the algebras. This paper treats algebras that consist of
an even sector g0 = so(p, q) +W0, and an odd sector g1 = W1 consisting of a repre-
sentation of so(p, q). The group so(p, q) is denoted as so(V ), and V denotes its vector
representation. We consider either the usual case where the odd generators are fermionic
(ε = 1, and we have a superalgebra), or they can be bosonic (ε = −1, and we have a
‘Z2-graded Lie algebra’). We will use the word ‘commutator’ in all cases, though this is
obviously an anticommutator for [W1, W1] in the superalgebra case. These algebras are
called ε-extensions of so(V ). We use the following terminologies for special cases:
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Poincaré superalgebras or Lie algebras: W0 are the translations in n dimensions (n =
p + q), which are denoted by V [and thus g0 = so(V ) + V ] and W1 is a spinorial
representation.

Algebra of translational type: all generators in [W1, W1] belong to W0:

[W1, W1] ⊂ W0 , [W1, W0] = 0 , [W0, W0] = 0 . (B.20)

This part W0 +W1 is called the ‘algebra of generalized translations’.

Transalgebra: algebra of translational type where all the generators of W0 appear in
[g1, g1], i.e.

[W1, W1] = W0 . (B.21)

ε-extended polyvector Poincaré algebras: Algebra of translational type where W1 is
a (possibly reducible) spinorial representation (includes chiral and extended super-
symmetry).

There are 2 extreme cases: one in which the full g is semisimple, which is the case of
the Nahm superalgebras, and the algebras of semi-direct type, where so(p, q) is its
largest semisimple subalgebra.

Apart from degenerate cases where n ≤ 2, any transalgebra is of semi-direct type.
Transalgebras are minimal cases of algebras of translational type in the sense that

there are no proper subalgebras, see Definition 1. In fact, any algebra of translational
type can be written as g = g′ + a, where a ⊂ W0 is an so(p, q) representation, which
is irrelevant in the sense that all its generators commute with all of W1 and W0 and do
not appear in [W1, W1]. The algebra g′ is a transalgebra.

For any choice of W1 there is a unique transalgebra where W0 has all the so(p, q) rep-
resentations that appear in the (anti)symmetric product of W1 with itself. The (anti)com-
mutators of W1 are then

[W1, W1] =
∑

all r

W
(r)
0 . (B.22)

Here r labels all representations that appear in the symmetric product for ε = 1, i.e.su-
peralgebras, and in the antisymmetric product for ε = −1, i.e. for Lie algebras.

Any other transalgebra can be obtained by removing an arbitrary number of terms in
(B.22). We can consider these to be contractions of this basic transalgebra, where the
representations to be removed are multiplied by some parameter t and the limit t → 0
is taken.

Any ε-extension of semi-direct type with W1 irreducible and of dimension at least 3,
is of the following form:

W0 = A+K , [K, W1] = 0 , [A, W1] = ρW1 ,

[so(V ), A] = 0 , [A, A] ⊂ K , [W1, W1] ⊂ K , (B.23)

where ρ = 0 or R·Id or C·Id. This is thus a transalgebra iff A = 0. Also, if the algebra
is minimal, then [W1, W1] = W0 and it is a transalgebra.



Polyvector Super-Poincaré Algebras 419

Table B.1. The values of k in (B.24) for the case of complex spinors. n is the dimension of the vector
space. i can be 0, 1, . . . limited by the fact that obviously k ≥ 0. For the even-dimensional case, we split
the (anti)commutator between spinors of different and equal chirality. For equal chirality, the k = m
generator is either selfdual or antiselfdual

Superalgebra: σ = +1 Lie algebra: σ = −1

n = 2m+ 1 k = m− 4i k = m− 1− 4i
k = m− 3− 4i k = m− 2− 4i

n = 2m
[S±, S±] k = m− 4− 4i k = m− 2− 4i

k = m (anti)selfdual
[S+, S−] k = m− 1− 2i k = m− 1− 2i

Also, if W0 and W1 are irreducible so(p, q) representations, then either the algebra
is of translational type, i.e.[W0, W ] = 0, or W0 is an abelian generator and [W0, W1] =
a W1, where a is a number.

We now restrict ourselves to transalgebras where W1 = S, the irreducible spinor
representation of so(p, q). Then the representations that appear in the right-hand side
of (B.22) are either k-forms or, in the case that s = p − q is divisible by 4, also (anti-)
selfdual (n/2)-forms. Thus, the unique maximal transalgebra has (anti)commutators

[
Sα, Sβ

] =
∑

k

(C�a1...ak )αβWk
0 a1...ak

, (B.24)

where α, β denote spinor indices. The classification of transalgebras with W1 = S

reduces to the description of all the charge conjugation matrices C and the specification
of the range of the summation over k. The relevant issue is the symmetry for a particular
k, i.e.the σ(�k

C
) of the previous subsection. When there are chiral spinors involved, the

chirality should be respected, which is related to ι(�k

C
).

First, in Sect. 5, the complex case is discussed. That means that there are no reality
conditions on bosonic or fermionic generators. When the dimension is odd, the result is
given in Theorem 2. There is only one charge conjugation matrix, and the result can be
understood from (B.19) and (B.5). For even dimensions the result is given in Theorem 3.
This depends mainly on (B.7) and (B.8). Here the spinors can be split into chiral spinors,
and we can separately consider the commutators between spinor generators of the same
and of opposite chirality. The result for allowed values of k in (B.24) can be found also
in Table B.1.

As an example we may check that in 11 dimensions we can indeed have P , Zab and
Za1...a5 generators in W0, as is the case of the M-algebra, and the classification implies
that we can consistently put any one of these to zero.

For the case of real generators, it is important to note that (anti)selfdual tensors in
even dimensions are only consistent for s/2 even. We now discuss the algebras according
to the 8 different values of s. The results are shown in Table B.2.

s = 0 (Majorana-Weyl spinors). There are chiral spinors and we can split the commuta-
tors. The k values that appear in TablesA.3–A.6 with ι = 1 can appear in commutators of
equal chirality. The value of σ indicates whether they appear in superalgebras (σ = 1) or
in Lie algebras (σ = −1). Those with ι = −1 appear in the same way in commutators of
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Table B.2. The values of k in (B.24) for the case of real spinors. n is the dimension of the vector space.
i can be 0, 1, . . . limited by the fact that obviously k ≥ 0 (and k ≤ n for s = 2, 6). In cases where there
are real Weyl spinors, we split the (anti)commutator between spinors of different and equal chirality, and
the k = m generator is either selfdual or antiselfdual. When there are symplectic spinors, the right-hand
side of (B.24) contains for some k’s triplets of the automorphism group su(2), and singlets for other
k’s. The types of real spinors, Majorana (M), symplectic-Majorana (SM), or symplectic Majorana-Weyl
(SMW) are indicated

Superalgebra : σ = +1 Lie algebra : σ = −1

n = 2m+ 1
s = 1, 7(M) k = m− 4i k = m− 1− 4i

k = m− 3− 4i k = m− 2− 4i
s = 3, 5(SM) k = m− 4i triplet k = m− 4i singlet

k = m− 3− 4i triplet k = m− 3− 4i singlet
k = m− 1− 4i singlet k = m− 1− 4i triplet
k = m− 2− 4i singlet k = m− 2− 4i triplet

n = 2m
s = 0(MW)
[S±, S±] k = m− 4− 4i k = m− 2− 4i

k = m (anti)selfdual
[S+, S−] k = m− 1− 2i k = m− 1− 2i
s = 2, 6(M) k = m− 4i, m+ 4+ 4i k = m− 1− 4i, m+ 3+ 4i

k = m− 3− 4i, m+ 1+ 4i k = m− 2− 4i, m+ 2+ 4i
s = 4(SMW)
[S±, S±] k = m− 4− 4i triplet k = m− 2− 4i triplet

k = m (anti)selfdual triplet k = m (anti)selfdual singlet
k = m− 2− 4i singlet k = m− 4− 4i singlet

[S+, S−] k = m− 1− 2i 2× 2 k = m− 1− 2i 2× 2

different chirality. The (anti)selfdual tensors appear in the commutators between spinors
of the same chirality.

s = 1 (Majorana spinors). The two projections to semispinors mentioned above (B.16),
lead to equivalent spinors. We thus consider only the commutator between these irre-
ducible spinors (including the others is contained in the ‘extended algebras’ discussed
below). In Tables A.3– A.6 we thus consider the ι = 1 cases. We can check that ι = −1
always allows both σ = 1 and σ = −1 as this concerns commutators between unrelated
but equivalent spinors.

s = 2 (Majorana spinors). The two projections to semispinors lead to equivalent spinors.
We thus consider only the commutator between these irreducible spinors. Note that in the
table we indicate here also forms with k > m. These are dual to k < m forms, and this
duality has been used in the formulation of the s = 2 part of Theorem 6. The formulation
here shows the gamma matrices completely, e.g. the appearance of �abc = εabcdγ5γ

d

in 4 dimensions.

s = 3, s = 5 (Symplectic-Majorana spinors). The symplectic spinors are in a doublet of
su(2). According to the value of σ for a particular k we find either a triplet or a singlet
of generators in the superalgebra or in the Lie algebra.

s = 4 (Symplectic Majorana-Weyl spinors). In the commutators between generators of
equal chirality (which are again doublets of su(2)), we find either triplets (symmetric)
or singlet (antisymmetric) generators. For commutators between generators of different
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chirality no symmetry or antisymmetry can be defined, and the generators allowed by
the chirality (ι = −1) appear in the superalgebra as well as in the Lie algebra.

s = 6 (Majorana spinors). This case is straightforward from the tables and the spinors
are just real and not projected. Remark that the result is then the same as for the projected
ones of s = 2. The same remark about showing tensors with k > m holds here too.
These are dualized in the formulation in Corollary 4.

s = 7 (Majorana spinors). Here also, the tables straightforwardly lead to the same result
as for the projected spinors of s = 1.

We remark that the result is the same for s and for −s, which shows that the con-
ventional choices discussed at the beginning of Sect. B.1. do not influence the final
algebras.

Finally, in Sect. 7, results are obtained for N -extended polyvector Poincaré alge-
bras. This means that W1 consists of N copies of the irreducible spinor S. In cases
where there are two inequivalent copies (complex even dimensional, or real with s = 0
or s = 4) we have (N+, N−)(N+, N−)-extended polyvector Poincaré algebras.

The results are straightforward from the above tables and this shows why it has been
useful to include the Lie algebra case. The generators in W1 are in an N -representation
of the automorphism algebra that acts on the copies of S.
For the complex odd-dimensional case and real s = 1, 2, 6, 7 (Majorana): We just have
to split the N ×N representations into the symmetric and antisymmetric ones.

for superalgebras: N(N+1)
2 copies of the σ = 1 generators

+N(N−1)
2 copies of the σ = −1 generators ,

for Lie algebras: N(N−1)
2 copies of the σ = 1 generators

+N(N+1)
2 copies of the σ = −1 generators . (B.25)

For the complex even-dimensional case and real s = 0 (Weyl): We have (N+, N−)

algebras. We use the above rule separately for the commutators between the N+ chiral
generators and between the N− antichiral ones. Furthermore there are N+N− copies of
the generators that appear in [S+, S−] in Tables B.1 and B.2. As an example, the (2, 1)

superalgebra in 8-dimensional (4,4) space contains: three selfdual 4-forms, and one an-
tiselfdual 4-form, four 0-forms (three in [2S+, 2S+] and one in [S−, S−], one 2-form (in
[2S+, 2S+]) and two 3-forms and 1-forms in [2S+, S−].

For the symplectic real case s = 3, 5: The automorphism algebra is already sp(2) =
su(2) for the simple algebras discussed above. For the extended algebras it is sp(N)

where N is even. The simple case is thus similar to (B.25) with N = 2, and the ‘triplet’
and ‘singlet’ indications in Table B.2 reflect this. Therefore for higher N (always even)
we replace in Table B.2 the ‘triplet’ by N(N + 1)/2 and the ‘singlet’ by N(N − 1)/2.

For the symplectic Majorana-Weyl case s = 4: We merely need to combine the remarks
above for the symplectic case and the Weyl case. Extended algebras are of the form
(N+, N−) where both numbers are even. The ‘triplet’ indication in Table B.2 is replaced
by N+(N+ + 1)/2 and N−(N− + 1)/2 and ‘singlet’ is replaced by N+(N+ − 1)/2 and
N−(N− − 1)/2. The mixed commutators are multiplied by N+N−.
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