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Abstract: We introduce notions of open-string vertex algebra, conformal open-string
vertex algebra and variants of these notions. These are “open-string-theoretic”, “non-
commutative” generalizations of the notions of vertex algebra and of conformal vertex
algebra. Given an open-string vertex algebra, we show that there exists a vertex alge-
bra, which we call the “meromorphic center,” inside the original algebra such that the
original algebra yields a module and also an intertwining operator for the meromorphic
center. This result gives us a general method for constructing open-string vertex algebras.
Besides obvious examples obtained from associative algebras and vertex (super)alge-
bras, we give a nontrivial example constructed from the minimal model of central charge
c = 1

2 . We establish an equivalence between the associative algebras in the braided ten-
sor category of modules for a suitable vertex operator algebra and the grading-restricted
conformal open-string vertex algebras containing a vertex operator algebra isomorphic
to the given vertex operator algebra. We also give a geometric and operadic formulation
of the notion of grading-restricted conformal open-string vertex algebra, we prove two
isomorphism theorems, and in particular, we show that such an algebra gives a projective
algebra over what we call the “Swiss-cheese partial operad.”

0. Introduction

In the present paper, we introduce and study “open-string-theoretic”, “noncommutative”
generalizations of ordinary vertex algebras and vertex operator algebras, which we call
“open-string vertex algebras” and “conformal open-string vertex algebras.” This is a
first step in a program to establish the fundamental and highly nontrivial assumptions
used by physicists in the study of boundary (or open-closed) conformal field theories
as mathematical theorems and to construct such theories mathematically. See [H9] and
[HK2] for definitions of open-closed conformal field theory in the spirit of the definition
of closed conformal field theory first given by Segal [S1, S2, S3] and Kontsevich in 1987
and further rigorized by Hu and Kriz [HK1] recently. More recently, Moore suggested
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in [M3] that in order to generalize a certain formula relating a nonlinear σ model and
theK-theory on its target space to conformal field theories without obvious target space
interpretation, one should define some kind of algebraicK-theory for “open string vertex
operator algebras.” We hope that the notions and results in the present paper will provide
a solid foundation for the formulation and study of such a K-theory.

Vertex (operator) algebras were introduced in mathematics by Borcherds in [B]. They
arose naturally in the vertex operator construction of representations of affine Lie alge-
bras and in the construction and study of the “moonshine module” for the Monster finite
simple group by Frenkel-Lepowsky-Meurman [FLM] and Borcherds [B]. The notion of
vertex (operator) algebra corresponds essentially to the notion of what physicists call
“chiral algebra” in (two-dimensional) conformal field theory, a fundamental physical
theory studied systematically first by Belavin, Polyakov and Zamolodchikov [BPZ].
Vertex operator algebras can be viewed as “closed-string-theoretic” analogues of both
Lie algebras and commutative associative algebras, and they play important roles in a
range of areas of mathematics and physics.

Recently, in addition to the continuing development of (closed) conformal field the-
ories, boundary conformal field theories (open-closed conformal field theories) have
attracted much attention. Boundary conformal field theory was first developed by
Cardy in [C1, C2 and C3] and plays a fundamental role in many problems in condensed
matter physics. It has also become one of the main tools in the study of open strings
and D-branes (certain important nonperturbative objects in string theory). Besides the
obvious problem of constructing and classifying open-closed conformal field theories,
the study ofD-branes in physics and their possible applications in geometry have led to
exciting and interesting mathematical problems. If open-closed conformal field theories
associated to Calabi-Yau manifolds or other geometric objects are constructed even-
tually, they will provide even more powerful tools in geometry than the corresponding
closed conformal field theories (see, for example, the survey [D] by Douglas). The paper
[M3] by Moore mentioned above gave another example of the exciting and interesting
mathematical problems associated to open-closed conformal field theories.

In the framework of topological field theories, boundary topological field theories
(open-closed topological field theories) have been studied in detail by Lazaroiu [L] and
by Moore and Segal [M1, M2, S4]. In this topological case, an open-closed topological
field theory is roughly speaking a (typically noncommutative) Frobenius algebra and a
commutative Frobenius algebra equipped with some other data and satisfying suitable
conditions. The commutative Frobenius algebra is the state space for the closed string
part of the theory and the (typically noncommutative) Frobenius algebra is the state
space for the open string part of the theory.

To construct and study open-closed conformal field theories, one first has to find
the analogues in the conformal case of commutative and noncommutative associative
algebras. Since the corresponding algebras in the conformal case must be infinite-dimen-
sional, their construction and study are much more difficult than the topological ones. In
the conformal case, one lesson we have learned from various methods used by physicists
is that the construction and study of chiral theories are necessary and crucial steps. If chi-
ral theories are constructed, full theories can be constructed using unitary bilinear forms
on substructures of chiral theories called “modular functors.” In fact, it is also the chiral
theories which are more similar to topological theories than full theories. It is clear that
analogues of commutative associative algebras in the chiral conformal case are vertex
(operator) algebras. To construct and study open-closed conformal field theories, one
first has to answer the following question: What are the analogues of noncommutative
associative algebras in the conformal case?
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Assuming the existence of the structure of a modular tensor category on the cat-
egory of modules for a vertex operator algebra and the existence of conformal blocks
with monodromies compatible with the modular tensor category, Felder, Fröhlich, Fuchs
and Schweigert [FFFS] and Fuchs, Runkel and Schweigert [FRS1, FRS2] studied open-
closed conformal field theory using the theory of tensor categories and three-dimensional
topological field theories. They showed the existence of consistent operator product
expansion coefficients for boundary and bulk operators. In particular, special symmetric
Frobenius algebras in the modular tensor categories of modules are proposed as ana-
logues in the conformal case of (typically noncommutative) Frobenius algebras in the
topological case. However, since these works are based on the fundamental assumptions
mentioned above, even in the genus-zero case, the corresponding open-string-theoretic
and noncommutative analogues of vertex operator algebras have not been fully con-
structed and studied, and even chiral open-closed conformal field theories on the disks
(the simplest parts of open-closed conformal field theories) have not been fully con-
structed.

The present paper is a first step in a program for establishing the fundamental and
highly nontrivial assumptions mentioned above as mathematical theorems, using the
results on representations of vertex operator algebras and closed conformal field the-
ories. In particular, we solve the problem of constructing open-closed conformal field
theories on the disks satisfying certain differentiability and meromorphicity conditions
by introducing, constructing and studying open-string vertex algebras, conformal open-
string vertex algebras and some other variants. These algebras are the open-string-the-
oretic or noncommutative analogues of vertex (operator) algebras we are looking for
and, as we shall discuss in future publications,D-branes can be formulated and studied
as irreducible modules for suitable open-string vertex algebras. Reducible modules for
such algebras then correspond to more complicated D-brane configurations. Given an
open-string vertex algebra, we show that there exists a vertex algebra, which we call the
“meromorphic center”, inside the open-string vertex algebra such that the open-string
vertex algebra yields a module and also an intertwining operator for the meromorphic
center. In fact, the meromorphic center of an open-string vertex algebra is the maximal
Z-graded vertex algebra contained in the open-string vertex algebra such that the vertex
operators for elements in this vertex algebra and the vertex operators for elements in
the open-string vertex algebra are mutually local to each other (see Remark 2.4). This
relation between open-string vertex algebras and the representation theory of vertex
algebras gives us a general method for constructing open-string vertex algebras. Besides
obvious examples obtained from associative algebras and vertex (super)algebras, we
give a nontrivial one constructed from the minimal model of central charge c = 1

2 .
We establish an equivalence between grading-restricted conformal open-string ver-

tex algebras containing a suitable vertex operator algebra and associative algebras in the
braided tensor category of modules for the vertex operator algebra. Under this equiv-
alence, the meromorphic center of an open-string vertex algebra containing the vertex
operator algebra is in fact contained in the intersection of the left and right centers
(introduced in [O] by Ostrik) of the corresponding associative algebra in the category
(see Remark 4.5). We also give a geometric and operadic formulation of the notion
of grading-restricted conformal open-string vertex algebra, we prove two isomorphism
theorems (establishing the equivalence of geometric notions and algebraic notions), and
in particular, we show that such an algebra gives a projective algebra over what we call
the “Swiss-cheese partial operad.”

Note that in the present paper, we study only algebras corresponding to associative
algebras in a braided tensor category. As is mentioned above, in open-closed topological
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or conformal field theories (see [L] and [M2] for the topological case and [FRS1, FRS2]
for the conformal case), one needs symmetric Frobenius algebras. The additional struc-
tures will be studied in future publications.

Here is the organization of the present paper: In Sect. 1, we introduce the notions of
open-string vertex algebra, conformal open-string vertex algebra and other variants. The
connection between open-string vertex algebras and the representation theory of ver-
tex (operator) algebras is given in Sect. 2. Examples of (conformal) open-string vertex
algebras are presented in Sect. 3. In Sect. 4, we show that for a vertex operator algebra
satisfying certain finiteness and complete reductivity properties, associative algebras in
the braided tensor category of modules for the vertex operator algebra are equivalent to
grading-restricted conformal open-string vertex algebras containing the vertex operator
algebra in their meromorphic centers. The geometric and operadic formulation of the
notion of grading-restricted conformal open-string vertex algebra, the construction of
projective algebras over the Swiss-cheese partial operad and the proof of the correspond-
ing isomorphism theorems are given in Sect. 5.

We shall use C, H, H, Ĥ , R, R
×, R+, Z, Z+ and N to denote the sets (with structures)

of the complex numbers, the open upper half plane, the closed upper half plane, the one
point compactification of the closed upper half plane, the real numbers, the nonzero real
numbers, the positive real numbers, the integers, the positive integers and the nonnega-
tive integers, respectively. For any z ∈ C

× and n ∈ C, we shall always use log z and zn

to denote log |z| + arg z, 0 ≤ arg z < 2π , and en log z, respectively.

1. Definitions and Basic Properties

We introduce the notion of open-string vertex algebra and its variants and discuss some
basic properties of these algebras in this section. We assume that the reader is famil-
iar with the basic notions and properties in the theory of vertex operator algebras as
presented in [FLM] and [FHL].

In the present paper, all vector spaces are over the field C. For a vector space V , we
shall use V − to denote its complex conjugate space, which is characterized by the fact
that V − has the same underlying real vector space as V and, if

√−1 acts as J on the
underlying real vector space of V , then

√−1 acts as −J on the underlying real vector
space of V −. For an R-graded vector space V = ∐

n∈R
V(n) and any n ∈ R, we shall use

Pn to denote the projection from V or V = ∏
n∈R

V(n) to V(n). We give V and its graded
dual V ′ = ∐

n∈R
V ∗
(n) the topology induced from the pairing between V and V ′. We

also give Hom(V , V ) the topology induced from the linear functionals on Hom(V , V )
given by f �→ 〈v′, f (v)〉 for f ∈ Hom(V , V ), v ∈ V and v′ ∈ V ′.
Definition 1.1. An open-string vertex algebra is an R-graded vector space V =∐
n∈R

V(n) (graded by weights) equipped with a vertex map

YO : V × R+ → Hom(V , V )

(u, r) �→ YO(u, r)

or equivalently,

YO : (V ⊗ V )× R+ → V

(u⊗ v, r) �→ YO(u, r)v,

a vacuum 1 ∈ V and an operator D ∈ End V of weight 1, satisfying the following
conditions:
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1. Vertex map weight property: Forn1, n2 ∈ R, there exists a finite subsetN(n1, n2) ⊂
R such that the image of

(∐
n∈n1+Z

V(n) ⊗ ∐
n∈n2+Z

V(n)
) × R+ under YO is in

∏
n∈N(n1,n2)+Z

V(n).

2. Properties for the vacuum: For any r ∈ R+, YO(1, r) = idV (the identity property)
and limr→0 Y

O(u, r)1 exists and is equal to u (the creation property).
3. Local-truncation property for D′: Let D′ : V ′ → V ′ be the adjoint of D. Then for

any v′ ∈ V ′, there exists a positive integer k such that (D′)kv′ = 0.
4. Convergence properties: For v1, . . . , vn, v ∈ V and v′ ∈ V ′, the series

〈v′, YO(v1, r1) · · ·YO(vn, rn)v〉
=

∑

m1,...,mn−1∈R

〈v′, YO(v1, r1)Pm1Y
O(v2, r2) · · ·Pmn−1Y

O(vn, rn)v〉

converges absolutely when r1 > · · · > rn > 0. For v1, v2, v ∈ V and v′ ∈ V ′, the
series

〈v′, YO(YO(v1, r0)v2, r2)v〉
converges absolutely when r2 > r0 > 0.

5. Associativity: For v1, v2, v ∈ V and v′ ∈ V ′,

〈v′, YO(v1, r1)Y
O(v2, r2)v〉 = 〈v′, YO(YO(v1, r1 − r2)v2, r2)v〉

for r1, r2 ∈ R satisfying r1 > r2 > r1 − r2 > 0.
6. d-bracket property: Let d be the grading operator onV , that is, du = mu form ∈ R

and u ∈ V(m). For u ∈ V and r ∈ R+,

[d, YO(u, r)] = YO(du, r)+ r
d

dr
YO(u, r). (1.1)

7. D-derivative property: We still use D to denote the natural extension of D to
Hom(V , V ). For u ∈ V , YO(u, r) as a map From R+ to Hom(V , V ) is differen-
tiable and

d

dr
YO(u, r) = [D,YO(u, r)] = YO(Du, r). (1.2)

Homomorphisms, isomorphisms, subalgebras of open-string vertex algebras are
defined in the obvious way.

We shall denote the open-string vertex algebra by (V , YO, 1,D) or simply V . For
u ∈ V and r ∈ R+, we call the map YO(u, r) : V → V the vertex operator associated
to u and r .

Remark 1.2. Note that in the definition above, the real number r in the vertex operator
YO(u, r) is positive, not in R

×. So a natural question is whether one has natural vertex
operators associated to negative real numbers so that we have a vertex map YO From
(V ⊗ V )× R

× to V . The answer is yes. For any u, v ∈ V and r ∈ −R+, we define

YO(u, r)v = erDYO(v,−r)u. (1.3)

(Note that erDYO(v,−r)u is a well-defined element of V by the local-truncation prop-
erty for D′.) Note that (1.3) resembles the skew-symmetry for vertex operator alge-
bras. We know that the skew-symmetry is analogous to commutativity for commutative
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associative algebras. But (1.3) does not give a skew-symmetry property and is not an
analogue of the commutativity mentioned above. Instead, (1.3) is an analogue of the
relation between the product and the opposite product for an associative algebra. In fact,
for an associative algebra V , we can define an opposite product

(uv)op = vu (1.4)

for u, v ∈ V . We can also define an open-string vertex algebra in terms of a vertex map
of the form V ⊗ V × R

× → V and then (1.3) becomes an axiom. In applications, it is
convenient to have vertex operators associated to negative numbers. For example, since

〈v′, YO(YO(v1, r0)v2, r2)v〉 =
∑

m∈R

〈v′, YO(PmYO(v1, r0)v2, r2)v〉

=
∑

m∈R

〈er2D′
v′, YO(v,−r2)PmYO(v1, r0)v2〉,

the left-hand side (a matrix element of an iterate of vertex operators) is absolutely conver-
gent when r2 > r0 > 0 if and only if the right-hand side (a matrix element of a product
of vertex operators) is. (Note that by the local-truncation property forD′, er2D′

v′ ∈ V ′.)
On the other hand, in Sects. 2, 3, 4 and 5, we shall need in addition the property that for
v1, . . . , vn, v ∈ V and v′ ∈ V ′, the series

〈v′, YO(v1, r1) · · ·YO(vn, rn)v〉
=

∑

m1,...,mn−1∈R

〈v′, YO(v1, r1)Pm1Y
O(v2, r2) · · ·Pmn−1Y

O(vn, rn)v〉

converges absolutely when |r1| > · · · > |rn| > 0. We shall also need the absolute con-
vergence of all the products and iterates of vertex operators associated to real numbers
in natural regions (see the assumption in the beginning of Sect. 2). For details on such
convergence, see [K]. For the skew-symmetry for YO , see Remark 1.6.

We still use d to denote the natural extension of d to an element of Hom(V , V ).

Proposition 1.3. The d-bracket property (1.1) for all u ∈ V and r ∈ R+, is equivalent
to the d-conjugation property

adYO(u, r)a−d = YO(adu, ar) (1.5)

for all u ∈ V , r ∈ R+ and a ∈ R+. We also have 1 ∈ V(0) and D1 = 0.

Proof. If (1.5) holds for all u ∈ V , r ∈ R+ and a ∈ R+, then

esdYO(u, r)e−sd = YO(esdu, esr) (1.6)

for all u ∈ V , r ∈ R+ and s ∈ R. Taking the derivative with respect to s of both sides
of (1.6) and then letting s = 0, we obtain (1.1).

Conversely, assume that (1.1) holds for all u ∈ V and r ∈ R+. Let u, v ∈ V and
v′ ∈ V ′ be homogeneous. We have

〈v′, [d, YO(u, r)]v〉 = 〈d′v′, , YO(u, r)v〉 − 〈v′, , YO(u, r)dv〉
= (wt v′ − wt v)〈w, YO(u, r)v〉, (1.7)
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where d′ is the adjoint of d. On the other hand,
〈

v′,
(

YO(du, r)+ r
d

dr
YO(u, r)

)

v

〉

=
(

wt u+ r
d

dr

)

〈v′, YO(u, r)v〉. (1.8)

By (1.1), (1.7) and (1.8), we see that f (r) = 〈v′, YO(u, r)v〉 satisfies the differential
equation

r
df (r)

dr
= (wt v′ − wt u− wt v)f (r).

Any solution of this equation is of the form Crwt w−wt u−wt v for some C ∈ C. In
particular, 〈v′, YO(u, r)v〉 is of this form. Therefore,

〈v′, adYO(u, r)a−dv〉 = 〈adv′, YO(u, r)a−dv〉
= awt v′−wt v〈v′, YO(u, r)v〉
= Cawt v′−wt vrwt w−wt u−wt v

= Cawt u(ar)wt w−wt u−wt v

= 〈v′, YO(adu, ar)v〉.
Since such u, v span V and such v′ spans V ′, we obtain (1.5).

The identity property, the creation property and (1.1) imply d1 = 0 which means
1 ∈ V(0). The identity property and the D-derivative property imply D1 = 0. �


The d-conjugation property also has the following very important consequence:

Proposition 1.4. For u ∈ V , there exist u+
n ∈ End V of weights wt u− n− 1 for n ∈ R

such that for r ∈ R+,

YO(u, r) =
∑

n∈R

u+
n r

−n−1. (1.9)

Proof. For homogeneous u ∈ V and n ∈ R, let u+
n ∈ End V be defined by

u+
n v = Pwt u−n−1+wt vY

O(u, 1)v

for homogeneous v ∈ V . Then by the d-conjugation property, for any homogeneous
u, v ∈ V ,

YO(u, r)v = rdYO(r−du, 1)r−dv

= r−wt u−wt vrd
∑

n∈R

Pwt u−n−1+wt vY
O(u, 1)v

=
∑

n∈R

Pwt u−n−1+wt vY
O(u, 1)vr−n−1

=
∑

n∈R

u+
n vr

−n−1.

�
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Remark 1.5. In the proposition above, (1.9) holds only for r ∈ R+. In fact, there are also
u−
n ∈ End V of weights wt u− n− 1 for n ∈ R such that for r ∈ −R+,

YO(u, r) =
∑

n∈R

u−
n r

−n−1.

But in general u−
n �= u+

n . In this paper, we shall not use u−
n , n ∈ R.

From Proposition 1.4, we see that for any u ∈ V , there is a formal-variable vertex
operator

Yf (u, x) =
∑

n∈R

u+
n x

−n−1 ∈ (End V )[[x, x−1]],

where x is a formal variable. We shall also use the notation Yf (u, z) to denote the vertex
operator associated to u ∈ V and a nonzero complex number z, that is,

Yf (u, z) =
∑

n∈R

u+
n z

−n−1.

(Note that by our convention, for z ∈ C
×, z−n−1 = e(−n−1) log z for n ∈ R, where

log z = log |z| + i arg z, 0 ≤ arg z < 2π .) Thus for u ∈ V , YO(u, r) = Yf (u, r) for
r ∈ R+ but in general YO(u, r) �= Yf (u, r) for r ∈ −R+.

Remark 1.6. As we have discussed in Remark 1.2, (1.3) has nothing to do with skew-
symmetry. In fact, if Yf satisfies

Yf (u, x)v = exL(−1)Yf (v, y)u
∣
∣
∣
∣
yn=enπixn, n∈R

for u, v ∈ V , then we say that YO has skew-symmetry. (For simplicity, in the remaining
part of this paper, we shall use Yf (v,−x)u to denote Yf (v, y)u|yn=enπixn, n∈R.) Note
that skew-symmetry for YO gives a relation between YO(u, r)v and its analytic exten-
sion to the negative real line foru, v ∈ V and r ∈ R+ while (1.3) gives a relation between
YO(u, r)v and YO(v,−r)u for u, v ∈ V and r ∈ R+. Clearly, these two relations are
in general different.

Proposition 1.7. The d-bracket and D-derivative properties hold for Yf , that is, (1.1)
and (1.2) hold when YO is replaced by Yf and r is replaced by the formal variable x.
We also have the following d- and D-conjugation properties: For u ∈ V and y another
formal variable,

ydYf (u, x)y−d = Yf (ydu, yx),

and

Yf (u, x + y) = eyDYf (u, x)e−yD = Yf (eyDu, x). (1.10)

In particular, these conjugation formulas also hold when we substitute suitable complex
numbers for x and y such that both sides of these formulas make sense as (or converges
to) maps From V to V .



Open-String Vertex Algebras, Tensor Categories and Operads 441

Proof. The d-bracket formula and D-derivative property follow from the definition of
the formal-variable vertex operators and the corresponding properties for the defining
vertex map. The d-conjugation property for the formal vertex operator follows immedi-
ately from (1.5). The D-conjugation property follows from the D-derivative property.
�


We have the following easy consequence of Proposition 1.7:

Corollary 1.8. For any u ∈ V ,

Yf (u, x)1 = exDu. (1.11)

Proof. By the creation property, we see that for any r ∈ R+ and any u ∈ V ,

YO(u, r)1 =
∑

n∈(−R+−1)∪{−1}
u+
n 1r−n−1

and u+
−11 = u. But by the D-derivative property,

lim
r→0

dk

drk
YO(u, r)1 = lim

r→0
YO(Dku, r)1

= Dku

for k ∈ N. Thus we see that

YO(u, r)1 =
∑

n∈−Z+

u+
n 1r−n−1.

So Yf (u, x)1 is a power series in x and limx→0 Yf (u, x)1 = u. By these properties,
D1 = 0 and the D-conjugation property for Yf , we obtain

Yf (u, y)1 = lim
x→0

Yf (u, x + y)1

= lim
x→0

eyDYf (u, x)e−yD1

= lim
x→0

eyDYf (u, x)1

= eyDu,

proving (1.11). �

Proposition 1.9. The formal vertex operator map Yf has the following properties:

1. Convergence: The series

〈v′,Yf (v1, z1)Yf (v2, z2)v〉, (1.12)

〈v′,Yf (v2, z2)Yf (v1, z1)v〉, (1.13)

〈v′,Yf (Yf (v1, z1 − z2)v2, z2)v〉, (1.14)

〈v′,Yf (Yf (v2, z2 − z1)v1, z1)v〉 (1.15)

are absolutely convergent in the regions |z1| > |z2| > 0, |z2| > |z1| > 0, |z2| >
|z1 − z2| > 0, |z1| > |z1 − z2| > 0, respectively.
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2. Associativity: For v1, v2, v ∈ V and v′ ∈ V ′, (1.12) and (1.14) are equal in the
region |z1| > |z2| > |z1 − z2| > 0, and (1.13) and (1.15) are equal in the region
|z2| > |z1| > |z1 − z2| > 0.

Proof. By definition, (1.12), (1.13), (1.14) and (1.15) converge absolutely when z1, z2 ∈
R+ satisfying z1 > z2 > 0, z2 > z1 > 0, z2 > z1−z2 > 0 and z1 > z1−z2 > 0, respec-
tively. Consequently, (1.12),(1.13), (1.14) and (1.15) converge absolutely for z1, z2 ∈ C

satisfying |z1| > |z2| > 0, |z2| > |z1| > 0, |z2| > |z1 − z2| > 0 |z1| > |z1 − z2| > 0,
respectively. The convergence is proved.

In particular, (1.12) and (1.14) give (possibly multivalued) analytic functions defined
on the regions |z1| > |z2| > 0 and |z2| > |z1 − z2| > 0, respectively. By associativity
for YO , (1.12) and (1.14) are equal for z1, z2 ∈ R+ satisfying z1 > z2 > z1 − z2 > 0.
By the basic properties of analytic functions, (1.12) and (1.14) are equal for z1, z2 ∈ C

satisfying |z1| > |z2| > |z1−z2| > 0 (the intersection of the regions |z1| > |z2| > 0 and
|z2| > |z1 − z2| > 0 on which the analytic functions (1.12) and (1.14) are defined). The
second part of the associativity for Yf can be obtained From the first part by substituting
v2, v1, z2 and z1 for v1, v2, z1 and z2. �

Definition 1.10. A grading-restricted open-string vertex algebra is an open-string
vertex algebra satisfying the following conditions:

8. The grading-restriction conditions: For all n ∈ R, dim V(n) < ∞ (the finite-
dimensionality of homogeneous subspaces) and V(n) = 0 when n is sufficiently
negative (the lower-truncation condition for grading).

A conformal open-string vertex algebra is an open-string vertex algebra equipped
with a conformal element ω ∈ V satisfying the following conditions:

9. The Virasoro relations: For any m, n ∈ Z,

[L(m),L(n)] = (m− n)L(m+ n)+ c

12
(m3 −m)δm+n,0,

where L(n), n ∈ Z are given by

YO(ω, r) =
∑

n∈Z

L(n)r−n−2

and c ∈ C.
10. The commutator formula for Virasoro operators and formal vertex operators

(or component operators): For v ∈ V , Yf (ω, x)v involves only finitely many
negative powers of x and

[Yf (ω, x1),Yf (v, x2)] = Res0x
−1
2 δ

(
x1 − x0

x2

)

Yf (Yf (ω, x0)v, x2).

11. The L(0)-grading property and L(−1)-derivative property: L(0) = d and
L(−1) = D.

A grading-restricted conformal open-string vertex algebra or open-string ver-
tex operator algebra is a conformal open-string vertex algebra satisfying the grading-
restriction condition.
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We shall denote the conformal open-string vertex algebra defined above by
(V , YO, 1, ω) or simply V . The complex number c in the definition is called the central
charge of the algebra. Note that the grading-restriction conditions imply the local-trun-
cation property for D′.
Proposition 1.11. Let V be a grading-restricted open-string vertex algebra. Then for
u, v ∈ V , u+

n v = 0 if n is sufficiently negative.

Proof. This follows immediately from the lower-truncation condition for grading and
the fact that the weights of u+

n for n ∈ R is wt u− n− 1. �


2. Intertwining Operators and Open-String Vertex Algebras

In this section, we establish a connection between open-string vertex algebras and inter-
twining operator algebras. We assume that the reader is familiar with the basic notions
and properties in the representation theory of vertex operator algebras and we also assume
that the reader is familiar with the notion of intertwining operator algebra. See [FHL,
H7 and H8] for details.

In the remaining part of the paper, we shall consider only those open-string vertex
algebras such that all the products and iterates of vertex operators associated to complex
numbers are absolutely convergent in natural regions. See [K] for details.

Let V be an open-string vertex algebra and S a subset of V . Then the open-string
vertex subalgebra of V generated by S is the smallest open-string vertex subalgebra of
V containing S.

Proposition 2.1. Let V be a conformal open-string vertex algebra and 〈ω〉 the open-
string vertex subalgebra of V generated by ω. Then 〈ω〉 is in fact a vertex operator
algebra. In particular, V is a module for the vertex operator algebra 〈ω〉.
Proof. All the axioms for a vertex operator algebra are satisfied by 〈ω〉 obviously except
for the commutativity or equivalently the commutator formula. But theVirasoro relations
imply the commutator formula for the vertex operators for 〈ω〉. �


More generally, we have the following generalization: Let V be an open-string vertex
algebra and let

C0(V ) =
{

u ∈
∐

n∈Z

V(n)

∣
∣
∣ Yf (u, x) ∈ (End V )[[x, x−1]],

Yf (v, x)u = exDYf (u,−x)v, ∀v ∈ V
}

.

In particular, for elements of C0(V ), skew-symmetry holds. Clearly C0(V ) is not zero
since by (1.11), 1 ∈ C0(V ).

For an open-string vertex algebraV , the formal vertex operator map Yf forV induces
a map from C0(V )⊗ C0(V ) to V [[x, x−1]]. We denote this map by Yf |C0(V ). We first
need:

Proposition 2.2. Let v1 ∈ C0(V ), v2, v ∈ V and v′ ∈ V ′. Then there exists a (possibly
multivalued) analytic function on

M2 = {(z1, z2) ∈ C
2 | z1, z2 �= 0, z1 �= z2}

such that it is single valued in z1 and is equal to the (possibly multivalued) analytic exten-
sions of (1.12), (1.13), (1.14) and (1.15) in the regions |z1| > |z2| > 0, |z2| > |z1| > 0,



444 Y.-Z. Huang, L. Kong

|z2| > |z1 − z2| > 0 and |z1| > |z1 − z2| > 0, respectively. Moreover, if v2 is in
C0(V ), then this analytic function is single valued in both z1 and z2. If V satisfies the
grading-restriction condition, then this analytic function is a rational function with the
only possible poles z1, z2 = 0 and z1 = z2.

Proof. By Proposition 1.9, (1.12), (1.13) and (1.14) are absolutely convergent in the
regions |z1| > |z2| > 0, |z2| > |z1| > 0, |z2| > |z1 − z2| > 0, respectively, and the
associativity for Yf holds.

Since v1 ∈ C0(V ), by definition, Yf (v1, x)v2 ∈ V [[x, x−1]] and we have the skew-
symmetry

Yf (v1, x)v2 = exDYf (v2,−x)v1,

Yf (v2, x)v1 = exDYf (v1,−x)v2.

In [H7] it was proved that commutativity for intertwining operators follows from asso-
ciativity and skew-symmetry for intertwining operators. For the reader’s convenience,
here we give a proof of commutativity in the special case in which we are interested.

By associativity, (1.12) and (1.14) are equal in the region |z1| > |z2| > |z1 −z2| > 0.
By associativity also, (1.13) and (1.15) converge absolutely to analytic functions defined
on the regions |z2| > |z1| > 0 and |z1| > |z1 −z2| > 0, respectively, and are equal in the
region |z2| > |z1| > |z1 − z2| > 0. By skew-symmetry and the D-derivative property,
for z1, z2 ∈ C satisfying |z1| > |z1 − z2| > 0 and |z2| > |z1 − z2| > 0, we have

〈v′,Yf (Yf (v1, z1 − z2)v2, z2)v〉
= 〈v′,Yf (e(z1−z2)DYf (v2,−(z1 − z2))v1, z2)v〉
= 〈v′,Yf (Yf (v2, z2 − z1)v1, z2 + (z1 − z2))v〉
= 〈v′,Yf (Yf (v2, z2 − z1)v1, z1)v〉,

that is, in the region given by |z1| > |z1 − z2| > 0 and |z2| > |z1 − z2| > 0, (1.14) and
(1.15) are equal. Since (1.12) is equal to (1.14) in the region |z1| > |z2| > |z1 −z2| > 0,
(1.14) is equal to (1.15) in the region given by |z1| > |z1−z2| > 0 and |z2| > |z1−z2| >
0, and (1.15) is equal to (1.13) in the region |z2| > |z1| > |z1 − z2| > 0, we see that
(1.12) and (1.13) are analytic extensions of each other. So commutativity is proved.

Now we prove the existence of the function stated in the proposition. By skew-sym-
metry, we have

Yf (v, z)1 = ezDYf (1,−z)v = ezDv

for any v ∈ C0(V ). Thus by definition, for v1 ∈ C0(V ), v2, v ∈ V and v′ ∈ (C0(V ))
′,

〈v′,Yf (v1, z1)Yf (v2, z2)e
z3Dv〉 = 〈v′,Yf (v1, z1)Yf (v2, z2)Yf (v, z3)1〉

converges absolutely for z1, z2, z3 ∈ R
× satisfying |z1| > |z2| > |z3| > 0. Conse-

quently it also converges absolutely for z1, z2, z3 ∈ C satisfying |z1| > |z2| > |z3| > 0.
Now the same proof as the one for Lemma 4.1 in [H7] shows that there exists a (possi-
bly multivalued) analytic function on M2 such that it is equal to (possibly multivalued)
analytic extensions of (1.12), (1.13), (1.14) and (1.15) in the regions |z1| > |z2| > 0,
|z2| > |z1| > 0, |z2| > |z1 − z2| > 0 and |z1| > |z1 − z2| > 0, respectively. Since
(1.12), (1.13) and (1.14) give analytic functions which are all single valued in z1, this
function as the analytic extension of these functions must also be single valued in z1.
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If v2 is inC0(V ), then by definition, Yf (v2, x)v ∈ V [[x, x−1]] and thus (1.12), (1.13)
and (1.15) give analytic functions which are also single valued in z2. So their analytic
extension is also single valued in both z1 and z2. If V satisfies the grading-restriction
condition, then the singularities z1, z2 = 0,∞ and z1 = z2 of this analytic extension
are all poles and this analytic extension is therefore a rational function in z1 and z2 with
the only possible poles z1, z2 = 0 and z1 = z2. �

Theorem 2.3. Let V be a grading-restricted open-string vertex algebra. Then the image
ofC0(V )⊗C0(V ) under Yf |C0(V ) is inC0(V )[[x, x−1]] and the image ofC0(V ) under
D is in C0(V ). Moreover,

(C0(V ),Yf |C0(V ), 1,D)

is a grading-restricted vertex algebra, V is a C0(V )-module and Yf is an intertwining
operator of type

(
V
VV

)
for the vertex algebra C0(V ).

Proof. Let v1, v2 be homogeneous elements of C0(V ). We would like to show that
Yf(v1, x)v2 ∈C0(V )[[x, x−1]]. First of all, sincev1 ∈C0(V ),Yf(v1, x)v2 ∈V [[x, x−1]].
Since v1, v2 ∈ C0(V ), wt v1,wt v2 ∈ Z. Thus by Proposition 1.4, Yf (v1, x)v2 ∈(∐

n∈Z
V(n)

)
[[x, x−1]]. By Proposition 2.2, the analytic extension of (1.14) to M2 is

a single-valued analytic function. In particular, (1.14) gives a single-valued analytic
function in z1 and z2. Thus

Yf (Yf (v1, x)v2, x2)v ∈ (V [[x2, x
−1
2 ]])[[x, x−1]].

For v ∈ V , v′ ∈ V ′ and z1, z2 ∈ R+ satisfying z1 > z2 > z1 − z2 > 0,

〈v′,Yf (Yf (v1, z1 − z2)v2, z2)v〉 = 〈v′,Yf (v1, z1)Yf (v2, z2)v〉
= 〈v′,Yf (v1, z1)e

z2DYf (v,−z2)v2〉. (2.1)

The right-hand side of (2.1) is well defined when z1, z2 ∈ C and |z1| > |z2| > 0 and is
equal to

〈v′, ez2DYf (v1, z1 − z2)Yf (v,−z2)v2〉
= 〈v′, ez1DYf (Yf (v,−z2)v2,−(z1 − z2))v1〉
= 〈v′, ez1DYf (v,−z1)Yf (v2,−(z1 − z2))v1〉
= 〈v′, ez1DYf (v,−z1)e

−(z1−z2)DYf (v1, z1 − z2)v2〉 (2.2)

when z1, z2 ∈ R+ and z1 > z1 − z2 > z2 > 0. The right-hand side of (2.2) is well
defined when z1, z2 ∈ C and |z1| > |z1 − z2| > 0 and is equal to

〈v′, ez2DYf (v,−z2)Yf (v1, z1 − z2)v2〉 (2.3)

when z1, z2 ∈ C and |z1| > |z2| > |z1 − z2| > 0. From (2.1)–(2.3), we see that the
left-hand side of (2.1) and the right-hand side of (2.3) are analytic extensions of each
other. Since both the left-hand side of (2.1) and the right-hand side of (2.3) are well
defined single-valued analytic functions on the region |z2| > |z1 − z2| > 0, they are
equal when |z2| > |z1 − z2| > 0. Thus we obtain

Yf (Yf (v1, x)v2, x2)v = ex2DYf (v,−x2)Yf (v1, x)v2,

wherex andx2 are two commuting formal variables. SoYf (v1, x)v2 ∈ C0(V )[[x, x−1]].
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Let u be a homogeneous element of C0(V ). Then wt u ∈ Z. Since D has weight 1,
Du ∈ ∐

n∈Z
V(n). By the D-derivative property, we see that

Yf (Du, x) = d

dx
Yf (u, x) ∈ (End V )[[x, x−1]].

For any v ∈ V , using the D-derivative property and the D-bracket formula, we obtain

Yf (Du, x)v = d

dx
Yf (u, x)v

= d

dx
exDYf (v,−x)u

= exDDYf (v,−x)u− exDYf (Dv,−x)u
= exDYf (v,−x)Du.

So Du ∈ C0(V ).
To show that C0(V ) is a vertex algebra, we need only verify commutativity, associa-

tivity and rationality since all the other axioms are clearly satisfied. But associativity,
commutativity and rationality have been proved in Proposition 2.2. The proof of the fact
that V is a C0(V )-module and Yf is an intertwining operator of type

(
V
VV

)
for C0(V ) is

completely the same. �

We shall call the grading-restricted vertex algebra (C0(V ),Yf |C0(V ), 1,D) the mero-

morphic center of V .

Remark 2.4. In fact, using the relationship between skew-symmetry and locality (or com-
mutativity), it is easy to see that the meromorphic center of an open-string vertex algebra
is the maximal Z-graded vertex algebra contained in the open-string vertex algebra such
that the vertex operators for elements in this vertex algebra and the vertex operators for
elements in the open-string vertex algebra are mutually local to each other.

Proposition 2.5. Let V be a conformal open-string vertex algebra. Then ω ∈ C0(V ).

Proof. By definition, ω ∈ ∐
n∈Z

V(n) and Yf (ω, x) ∈ (End V )[[x, x−1]]. For any
v ∈ V , the commutator formula for ω and formal vertex operators implies the commu-
tativity for Yf (ω, z1) and Yf (v, z2). In particular, for any v′ ∈ V ′,

〈v′,Yf (ω, z1)Yf (v, z2)1〉 (2.4)

and

〈v′,Yf (v, z2)Yf (ω, z1)1〉 (2.5)

are absolutely convergent in the regions |z1| > |z2| > 0 and |z2| > |z1| > 0, respec-
tively, and are analytic extensions of each other. Also by associativity we know that

〈v′,Yf (Yf (ω, z1 − z2)v, z2)1〉 (2.6)

and

〈v′,Yf (Yf (v, z2 − z1)ω, z1)1〉 (2.7)

are absolutely convergent in the region |z2| > |z1 − z2| > 0 and |z1| > |z1 − z2| > 0,
respectively, and are equal to (2.4) and (2.5), respectively, in the region |z1| > |z2| >
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|z1 − z2| > 0 and |z2| > |z1| > |z1 − z2| > 0, respectively. Thus (2.6) and (2.7) are
also analytic extensions of each other. Note that by (1.10),

〈v′,Yf (e(z1−z2)L(−1)Yf (v, z2 − z1)ω, z2)1〉
= 〈e(z1−z2)L

′(−1)v′,Yf (Yf (v, z2 − z1)ω, z2)1〉 (2.8)

is absolutely convergent in the region |z2| > |z1 − z2| > 0 and is equal to (2.7) in the
region |z1|, |z2| > |z1 − z2| > 0. So (2.6) and the left-hand side of (2.8) are analytic
extensions of each other.

We know that both (2.6) and the left-hand side of (2.8) are convergent absolutely in
the region |z2| > |z1 − z2| > 0 and, moreover, we know that (2.4), (2.5), (2.6) and (2.7)
give single-valued analytic functions in z1 and z2. Thus in the region |z2| > |z1−z2| > 0,
(2.6) and the left-hand side of (2.8) are equal, that is,

〈v′,Yf (Yf (ω, z1 − z2)v, z2)1〉 = 〈v′,Yf (e(z1−z2)L(−1)Yf (v, z2 − z1)ω, z2)1〉.
(2.9)

By taking coefficients of z1 − z2 and z2 in both sides of (2.9) and then taking the
generating functions of these coefficients, we obtain

〈v′,Yf (Yf (ω, x)v, y)1〉 = 〈v′,Yf (exL(−1)Yf (v,−x)ω, y)1〉, (2.10)

where x and y are commuting formal variables. Since v′ ∈ V ′ is arbitrary, (2.10) gives

Yf (Yf (ω, x)v, y)1 = Yf (exL(−1)Yf (v,−x)ω, y)1. (2.11)

Taking the formal limit y → 0 (that is, taking the constant term of the series in y) of
both sides of (2.11), we obtain

Yf (ω, x)v = exL(−1)Yf (v,−x)ω.
So we conclude that ω ∈ C0(V ). �


One immediate consequence of this result is the following:

Corollary 2.6. Let V be a grading-restricted conformal open-string vertex algebra.
Then the vertex operator algebra 〈ω〉 is a subalgebra of C0(V ).

Recall the following main theorem in [H8]:

Theorem 2.7. Let V be a vertex operator algebra satisfying the following conditions:

1. Every generalized V -module is a direct sum of irreducible V -modules.
2. There are only finitely many inequivalent irreducibleV -modules and these irreducible
V -modules are all R-graded.

3. Every irreducible V -module satisfies the C1-cofiniteness condition.

Then the direct sum of all (inequivalent) irreducible V -modules has a natural structure
of an intertwining operator algebra. In particular, the following associativity for inter-
twining operators holds: For any V -modulesW0,W1,W2,W3 andW4, any intertwining
operators Y1 and Y2 of types

(
W0
W1W4

)
and

(
W4
W2W3

)
, respectively,

〈w′
(0),Y1(w(1), z1)Y2(w(2), z2)w(3)〉 (2.12)
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is absolutely convergent when |z1| > |z2| > 0 for w′
(0) ∈ W ′

0, w(1) ∈ W1, w(2) ∈ W2

andw(3) ∈ W3, and there exist the V -moduleW5 and intertwining operators Y3 and Y4

of types
(
W5
W1W2

)
and

(
W0
W5W3

)
, respectively, such that

〈w′
(0),Y4(Y3(w(1), z1 − z2)w(2), z2)w(3)〉

is absolutely convergent when |z2| > |z1−z2| > 0 forw′
(0) ∈ W ′

0,w(1) ∈ W1,w(2) ∈ W2

and w(3) ∈ W3 and is equal to (2.12) when |z1| > |z2| > |z1 − z2| > 0.

Theorems 2.3 and 2.7 suggest a method to construct a conformal open-string vertex
algebra: We start with a vertex operator algebra (V , Y, 1, ω) satisfying the conditions in
Theorem 2.7 and look for a module W , an intertwining operator Yf of type

(
W
WW

)
and

elements 1W and ωW such that if we define

YO : (W ⊗W)× R+ → W

(w1 ⊗ w2, r) �→ YO(w1, r)w2

by

YO(w1, r)w2 = Yf (w1, r)w2 (2.13)

for r ∈ R+, then (W, YO, 1W,ωW) is a conformal open-string vertex algebra. When
the vertex operator algebra (V , Y, 1, ω) is simple, W must contain V .

We give more details here. Let (V , Y, 1, ω) be a vertex operator algebra satisfying the
conditions in Theorem 2.7. For simplicity, we assume that V is simple. Let A be the set
of equivalence classes of irreducible V -modules and, for a ∈ A, let Wa be a represen-
tative in a. Then by Theorem 2.7,

∐
a∈A Wa has a natural structure of an intertwining

operator algebra. Let W = ∐
a∈A Ea ⊗Wa , where Ea for a ∈ A are vector spaces to

be determined. We give W the obvious V = C ⊗ V -module structure. We also let

Yf ∈ Hom(W ⊗W,W {x})
=

∐

a1,a2,a3∈A
Hom(Ea1 ⊗ Ea2 , Ea3)⊗ Hom(Wa1 ⊗Wa2 ,Wa3{x})

be given by

Yf =
∑

a1,a2,a3∈A

N a3
a1a2∑

i=1

Ca3;i
a1a2

⊗ Ya3;i
a1a2

,

where for a1, a2, a3 ∈ A, N a3
a1a2 is the fusion rule of type

(
Wa3

Wa1Wa2

)
,Ca3;i

a1a2 ∈ Hom(Ea1 ⊗
Ea2 , Ea3) for i = 1, . . . ,N a3

a1a2 are to be determined, and Ya3;i
a1a2 for i = 1, . . . ,N a3

a1a2 is
a basis of the space Va3

a1a2 of intertwining operators of type
(

Wa3

Wa1Wa2

)
.

Let e be the equivalence class of irreducible V -modules containing V . Note that N a
ea

for a ∈ A are always one-dimensional. We choose the basis Ya;1ea for a ∈ A to be the
vertex operator for the V -module Wa . In particular, Ya;1ea (1, x)wa = wa for a ∈ A and
wa ∈ Wa . We also choose the basis Ya;1ae for a ∈ A to be the ones given by

Ya;1ae (w
a, x)u = exL(−1)Ya;1ea (u,−x)w
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for u ∈ V and wa ∈ Wa . Thus we have limx→0 Ya;1ae (w
a, x)1 = wa for a ∈ A and

wa ∈ Wa .
We would like to choose Ea for a ∈ A and Ca3;i

a1a2 for a1, a2, a3 ∈ A and i =
1, . . . ,N a3

a1a2 such that the map YO given by (2.13) in terms of Yf satisfies the associa-
tivity

YO(w1, r1)Y
O(w2, r2)w3 = YO(YO(w1, r1 − r2)w2, r2)w3 (2.14)

for r1, r2 ∈ R+ satisfying r1 > r2 > r1 − r2 > 0 and w1 ∈ W1, w2 ∈ W2, w3 ∈ W3.
Note that both sides of (2.14) are well-defined since

∐
a∈A Wa is an intertwining operator

algebra. The left-hand side of (2.14) gives
∑

a1, a2, a3
a4, a; i, j

(Ca4;i
a1a

◦ (idEa1 ⊗ C
a;j
a2a3))⊗ Ya4;i

a1a
(w1, r1)Ya;ja2a3(w2, r2)w3

=
∑

a1, a2, a3
a4, a; i, j

(Ca4;i
a1a

◦ (idEa1 ⊗ C
a;j
a2a3))

⊗
∑

a5;k,l
F ij ;kl
a;a5

(a1, a2, a3; a4)Ya4;l
a5a3

(Ya5;k
a1a2

(w1, r1 − r2)w2, r2)w3,

where for any a ∈ A, idEa is the identity onEa and F ij ;kl
a;a5

(a1, a2, a3; a4), for a, a1, . . . ,

a5 ∈ A, i = 1, . . . ,N a4
a1a , j = 1, . . . ,N a

a2a3
, k = 1, . . . ,N a5

a1a2 and l = 1, . . . ,N a4
a5a3 ,

are the matrix elements of the corresponding fusing isomorphisms. (In the formulas
above and below, for simplicity, we omit the ranges over which the sums are taken, since
these are clear and some of them have been given above.) The right-hand side of (2.14)
gives

∑

a1, a2, a3
a4, a5; k, l

(Ca4;l
a5a3

◦ (Ca5;k
a1a2

⊗ idEa3 ))⊗ Ya4;l
a5a3

(Ya5;k
a1a2

(w1, r1 − r2)w2, r2)w3.

It is clear that in this case Ya4;l
a5a3(Y

a;k
a1a2(·, r1 − r2)·, r2) · for a1, a2, a3, a4, a5 ∈ A are

linearly independent. Thus (2.14) gives
∑

a;i,j
F ij ;kl
a;a5

(a1, a2, a3; a4)(C
a4;i
a1a

◦(idEa1 ⊗Ca;ja2a3))=Ca4;l
a5a3

◦(Ca5;k
a1a2

⊗idEa3 ) (2.15)

for a1, a2, a3, a4, a5 ∈ A, k = 1, . . . ,N a5
a1a2 and l = 1, . . . ,N a4

a5a3 .
We need a vacuum for W . Let 1e ∈ Ee. If we want the vacuum to be of the form

1W = 1e ⊗ 1, then we must have the following identity property and creation property:

YO(1W, r)(αa ⊗ wa) = αa ⊗ wa, (2.16)

lim
r→0

YO((αa ⊗ wa), r)1W = αa ⊗ wa (2.17)

for a ∈ A, αa ∈ Ea and wa ∈ Wa . Equations (2.16) and (2.17) together with the
properties of intertwining operators for V gives

Ca;1ea (1
e ⊗ αa) = αa, (2.18)

Ca;1ae (α
a ⊗ 1e) = αa (2.19)

for a ∈ A and αa ∈ Ea .
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Let 1W = 1e ⊗ 1 and ωW = 1e ⊗ ω. Then we have just proved the following:

Proposition 2.8. Let V be a simple vertex operator algebra satisfying the conditions in
Theorem 2.7 and let A, e andWa for a ∈ A be as above. If we choose the vector spaces
Ea for a ∈ A,Ca3;i

a1a2 ∈ Hom(Ea1 ⊗Ea2 , Ea3) for a1, a2, a3 ∈ A, i = 1, . . . ,N a3
a1a2 , and

1e ∈ Ee such that (2.15), (2.18) and (2.19) hold, then the quadruple (W, YO, 1W,ωW)
is a grading-restricted conformal open-string vertex algebra.

3. Examples

In this section, we give some examples of open-string vertex algebras. Examples can
also be constructed using the main results in Sects. 4 and 5.

First of all, we have the following examples for which the axioms are trivial to verify:

1. Associative algebras.
2. Vertex (super)algebras.
3. Tensor products of algebras above, for example, A ⊗ V , where A is an associative

algebra and V a vertex (super)algebra.

The examples above are trivial to construct because they satisfy some much stronger
axioms than those in the definition of open-string vertex algebra. Nontrivial examples of
open-string vertex algebras can be constructed from the direct sum of a vertex algebra
and an R-graded module for the vertex algebra in the same ways as in the construction of
the example of vertex operator algebras in Example 3.4 in [H3] and as in the conceptual
construction of the vertex operator algebra structure on the moonshine module in [H5],
except that here the module does not have to be Z-graded. Note that in the construction
of the vertex operator algebra structure on the moonshine module in [H5], the hard part
is to prove the duality properties, which follow from the duality properties of a larger
intertwining operator algebra. If we start with a vertex operator algebra satisfying the
conditions in Theorem 2.7, then the construction becomes very easy because the duality
properties have been established by Theorem 2.7.

We now give an example constructed using a different method. It is an example
constructed from modules for the minimal Virasoro vertex operator algebra of central
charge c = 1

2 . This example is nontrivial because it is not an associative algebra, a
vertex (super)algebra or a tensor product of these algebras. Here we describe the data.
For the details, we refer the reader to the second author’s thesis [K]. For the minimal
Virasoro vertex operator algebras, their representations, intertwining operators and chiral
correlation functions, see, for example, [DF, BPZ, W, H4, FRW and DMS].

Let L( 1
2 , 0) be the minimal Virasoro vertex operator algebra of central charge 1

2 . It
has three inequivalent irreducible modules W0 = L( 1

2 , 0), W1 = L( 1
2 ,

1
2 ) and W2 =

L( 1
2 ,

1
16 ). It is well known that the fusion rules N k

ij = NWk
WiWj

for i, j, k = 0, 1, 2 are
equal to 1 for

(i, j, k) = (0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (0, 2, 2),

(2, 0, 2), (2, 2, 0), (1, 2, 2), (2, 1, 2), (2, 2, 1)

and are equal to 0 otherwise. It was proved in [H4] that the direct sum of W0, W1 and
W2 has a structure of an intertwining operator algebra. When N k

ij = 1, we choose a

basis Ykij of Vkij . Given i, j, k, l ∈ {0, 1, 2}, m ∈ {0, 1, 2} is said to be coupled with
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n ∈ {0, 1, 2} through (i, j, k; l) if V lim, Vmjk , Vnij and V lnk are all nonzero. We use the

notation m �li,j,k n to denote the fact that m is coupled with n through (i, j, k; l).
For i, j, k, l ∈ {0, 1, 2}, the matrix elements Fm;n(i, j, k; l) form, n = 0, 1, 2 of the

fusing isomorphisms

F(i, j, k; l) :
2∐

m=0

V lim ⊗ Vmjk →
2∐

n=0

Vnij ⊗ V lnk

are determined by the following associativity relations (see [H7]):

〈w′
l ,Y lim(wi, z1)Ymjk(wj , z2)wk〉
=

∑

m�l
i,j,kn

Fm;n(i, j, k; l)〈w′
l ,Y lnk(Ynij (wi, z1 − z2)wj , z2)wk〉

for i, j,m = 0, 1, 2, z1, z2 ∈ R satisfying z1 > z2 > z1 − z2 > 0 and wi ∈ Wi ,
wj ∈ Wj , wk ∈ Wk , where the sum is over all k, l, n = 0, 1, 2 such thatm �li,j,k n. For

simplicity, we use F̃(i, j, k; l) for i, j, k, l = 0, 1, 2 to denote matrices whose entries
F̃mn(i, j, k; l) for m, n = 0, 1, 2 are the symbol DC (meaning decoupled) if m is not
coupled with n through (i, j, k; l) and is Fm;n(i, j, k; l) if m is coupled with n through
(i, j, k; l). We call these matrices the fusing-coupling matrices. For m, n = 0, 1, 2, we
use ±Emn to denote the 3 × 3 matrices with the entry in themth row and the nth column
being ±1 and the other entries being DC.

Proposition 3.1. For i, j, k = 0, 1, 2 such that N k
ij = 1, there exists a basis Ykij of Vkij

such that

F̃(0, 0, 0, 0) = F̃(1, 1, 1, 1) = E00,

F̃(1, 1, 0, 0) = F̃(0, 0, 1, 1) = E01,

F̃(1, 0, 0, 1) = F̃(0, 1, 1, 0) = E10,

F̃(1, 0, 1, 0) = F̃(0, 1, 0, 1) = E11,

F̃(2, 2, 0, 0) = F̃(0, 0, 2, 2) = F̃(1, 1, 2, 2) = F̃(2, 2, 1, 1) = E02,

F̃(0, 2, 2, 0) = F̃(2, 0, 0, 2) = F̃(1, 2, 2, 1) = F̃(2, 1, 1, 2) = E20,

F̃(0, 1, 2, 2) = F̃(1, 0, 2, 2) = F̃(2, 2, 0, 1) = F̃(2, 2, 1, 0) = E12,

F̃(0, 2, 2, 1) = F̃(1, 2, 2, 0) = F̃(2, 0, 1, 2) = F̃(2, 1, 0, 2) = E21,

F̃(1, 2, 1, 2) = F̃(2, 1, 2, 1) = −E22,

F̃(0, 2, 0, 2) = F̃(2, 0, 2, 0) = F̃(0, 2, 1, 2) = F̃(1, 2, 0, 2)

= F̃(2, 0, 2, 1) = F̃(2, 1, 2, 0) = E22,

F̃(2, 2, 2, 2) =






1√
2

1√
2
DC

1√
2

− 1√
2
DC

DC DC DC




 ;

all other fusing-coupling matrices have entries which are either 0 or DC.
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The proposition above gives the complete information about the fusing isomorphisms
for the minimal model of central charge 1

2 . Now consider the irreducible modulesWi⊗Wi

for i = 0, 1, 2 for the tensor product vertex operator algebra L( 1
2 , 0) ⊗ L( 1

2 , 0). Let

W = ∐2
i=0Wi ⊗Wi and let

Yf : (W ⊗W) → W {x}
be given by

Yf =
2∑

i,j,k=0

Ykij ⊗ Ykij ,

where we have taken Ykij = 0 for i, j, k ∈ {0, 1, 2} such that Vkij = 0 and where Ykij⊗Ykij
for i, j, k ∈ {0, 1, 2} act on W ⊗W in the obvious way. Let

YO : (W ⊗W)× R+ → W

(w1 ⊗ w2, r) �→ YO(w1, r)w2

be given by

YO(w1, r)w2 = Yf (w1, r)w2

for r ∈ R+ and w1, w2 ∈ W . Let 1 and ω be the vacuum and conformal element of
L( 1

2 , 0). Then we have:

Proposition 3.2. The quadruple (W, YO, 1 ⊗ 1, ω⊗ 1 + 1 ⊗ω) is a grading-restricted
conformal open-string vertex algebra with C0(W) = W0 ⊗W0.

The proof is a straightforward verification. See [K] for details.

Remark 3.3. In the construction above, Yf and YO involve fractional powers. So W is
not a vertex operator algebra.

4. Braided Tensor Categories and Open-String Vertex Algebras

In this section, we show that an associative algebra in the braided tensor category of
modules for a suitable vertex operator algebra V is equivalent to an open-string vertex
algebra with V in its meromorphic center. The main result of this section (Theorem
4.3) is a straightforward generalization of the main result in [HKL]. In this section, we
assume that the reader is familiar with the tensor product theory developed by Lepowsky
and the first author. See [HL3, HL4, HL5, HL6 and H3] for details.

First of all, we have the following result established in [H9]:

Theorem 4.1. Let V be a vertex operator algebra satisfying the conditions in Theorem
2.7. Then the category of V -modules has a natural structure of vertex tensor category
with V as its unit object. In particular, this category has a natural structure of braided
tensor category.

Given a braided tensor category C, we use 1C to denote its unit object. We need the
following concept:
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Definition 4.2. Let C be a braided tensor category. An associative algebra in C (or
associative C-algebra) is an object A ∈ C along with a morphism µ : A⊗A → A and
an injective morphism ιA : 1C → A such that the following conditions hold:

1. Associativity: µ ◦ (µ ⊗ idA) = µ ◦ (idA ⊗ µ) ◦ A, where A is the associativity
isomorphism from A⊗ (A⊗ A) to (A⊗ A)⊗ A.

2. Unit properties:µ◦(ιA⊗idA)◦l−1
A = µ◦(ιA⊗idA)◦r−1

A = idA, where lA : 1C⊗A →
A and rA : A⊗ 1C → A are the left and right unit isomorphism, respectively.

We say that the unit of an associative algebra A in C is unique if

dim HomC(1C, A) = 1.

We use (A,µ, ιA) or simply A to denote the associative algebra in C just defined.
An associative algebra whose unit is unique was called a haploid algebra by Fuchs,
Runkel and Schweigert ( see [FRS1 and FRS2]).

Let V be a vertex operator algebra satisfying the conditions in Theorem 2.7. Then
we know that the direct sum of all irreducible V -modules is an intertwining operator
algebra. We say that this intertwining operator algebra satisfies the positive weight con-
dition if for any irreducible V -module W , the weights of nonzero elements of W are
nonnegative,W(0) �= 0 if and only ifW is isomorphic to V , and V(0) = C1. We say that
an open-string vertex algebra V satisfies the positive weight condition if the weights of
elements of V are nonnegative and V(0) = C1.

Theorem 4.3. Let (V , Y, 1, ω) be a vertex operator algebra satisfying the conditions in
Theorem 2.7 and let C be the braided tensor category of V -modules. Then the categories
of the following objects are isomorphic:

1. A grading-restricted conformal open-string vertex algebra Ve and an injective homo-
morphism of vertex operator algebras from V to the meromorphic center C0(Ve) of
Ve.

2. An associative algebra Ve in C.

If the intertwining operator algebra on the direct sum of all irreducible V -modules
satisfies the positive weight condition, then an algebra Ve in Category 1 above satisfies
the positive weight condition if and only if the unit of the corresponding associative
algebra Ve in C is unique.

Proof. Let Ve be a grading-restricted conformal open-string vertex algebra, 1e the vac-
uum of Ve and ιVe an injective homomorphism of vertex operator algebras from V to
C0(Ve). Then we have ιVe (1) = 1e. Then by Theorem 2.3, Ve is an ιVe (V )-module and
thus a V -module. So Ve is an object in C. Since Ve is an open-string vertex algebra, we
have a vertex operator map YOe for Ve. By Theorem 2.3 again, the corresponding formal

vertex operator map Yfe is in fact an intertwining operator for V of type
(
Ve
VeVe

)
. Let

µ : Ve � Ve → Ve be the module map corresponding to the intertwining operator Yfe .
We claim that (Ve, µ, ιVe ) is an associative algebra in C. The proof is similar to the proof
of the result in [HKL] that suitable commutative associative algebras in C are equivalent
to vertex operator algebras extending V . For the reader’s convenience, we give a proof
here.

For r ∈ R+, let µr be the morphism from Ve �P(r) Ve to Ve corresponding to the

intertwining operator Yfe and let µr : Ve �P(r) Ve → V e be the natural extension of
µP(r). Then by definition, µ = µ1 and

µr(u�P(r) v) = Yfe (u, r)v = YOe (u, r)v
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for u, v ∈ Ve. For simplicity, we shall use id to denote idVe in this proof. Thus for
u, v,w ∈ Ve and r1, r2 ∈ R+ satisfying r1 > r2 > r1 − r2 > 0,

(µr1 ◦ (id �P(r1) µr2))(u�P(r1) (v �P(r2) w))

= YOe (u, r1)Y
O
e (v, r2)w, (4.1)

(µr2 ◦ (µr1−r2 �P(r2) id))((u�P(r1−r2) v)�P(r2) w)

= YOe Y
O
e (u, r1 − r2)v, r2)w, (4.2)

where (and below) we use the notation that a linear map preserving gradings with a
horizontal line over it always mean the natural extension of the map to a map between
the algebraic completions of the original graded spaces. The associativity for YOe gives

YOe (u, r1)Y
O
e (v, r2)w = YOe (Y

O
e (u, r1 − r2)v, r2)w. (4.3)

The associativity isomorphism

AP(r1−r2),P (r2)
P (r1),P (r2)

: Ve �P(r1) (Ve �P(r2) Ve) → (Ve �P(r1−r2) Ve)�P(r2) Ve

is characterized by

AP(r1−r2),P (r2)
P (r1),P (r2)

(u�P(r1) (v �P(r2) w)) = (u�P(r1−r2) v)�P(r2) w (4.4)

for u, v,w ∈ Ve, where AP(r1−r2),P (r2)
P (r1),P (r2)

is the natural extension of AP(r1−r2),P (r2)
P (r1),P (r2)

.
Combining (4.1)–(4.4), we obtain

(µr1 ◦ (id �P(r1) µr2)) = (µr2 ◦ (µr1−r2 �P(r2) id)) ◦ AP(r1−r2),P (r2)
P (r1),P (r2)

. (4.5)

From (4.5), we obtain

(µr1 ◦ (id �P(r1) µr2)) ◦ (id �P(r1) Tγ2) ◦ Tγ1

= (µr2 ◦ (µr1−r2 �P(r2) id)) ◦ AP(r1−r2),P (r2)
P (r1),P (r2)

◦ (id �P(r1) Tγ2) ◦ Tγ1 , (4.6)

where r1, r2 are real numbers satisfying r1 > r2 > r1 − r2 > 0, γ1 and γ2 are paths
in R+ from 1 to r1 and r2, respectively, and Tγ1 and Tγ2 the parallel transport isomor-
phisms associated to γ1 and γ2, respectively. (For the reader’s convenience, we recall
the definition of parallel transport isomorphism here. Let γ be a path from z1 ∈ C

× to
z2 ∈ C

×. The parallel isomorphism Tγ : W1 �P(z1)W2 → W1 �P(z2)W2 is given as fol-
lows: Let Y be the intertwining operator corresponding to the intertwining map �P(z2)

and l(z1) the value of the logarithm of z1 determined uniquely by log z2 (satisfying
0 ≤ �(log z2) < 2π ) and the path γ . Then Tγ is characterized by

T γ (w1 �P(z1) w2) = Y(w1, x)w2

∣
∣
∣
∣
xn=enl(z1), n∈C

for w1 ∈ W1 and w2 ∈ W2, where T γ is the natural extension of Tγ to the algebraic
completionW1 �P(z1) W2 ofW1 �P(z1) W2. The parallel isomorphism depends only on
the homotopy class of γ ).

By definition, we have

(µr1 ◦ (id �P(r1) µr2)) ◦ (id �P(r1) Tγ2) ◦ Tγ1 = µ ◦ (id � µ). (4.7)
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Similarly, we have

(µr2 ◦ (µr1−r2 �P(r2) id)) ◦ (Tγ3 ◦ (Tγ4 �P(r2) id))−1 = (µ ◦ (µ� id)), (4.8)

where γ3 and γ4 are paths in R+ from r2 and r1 − r2 to 1, respectively, and Tγ3 and Tγ4

the parallel transport isomorphisms associated to γ3 and γ4, respectively. Combining
(4.6)–(4.8) with the definition

A = Tγ3 ◦ (Tγ4 �P(z2) id) ◦ AP(z1−z2),P (z2)
P (z1),P (z2)

◦ (id �P(z1) Tγ2) ◦ Tγ1 (4.9)

of the associativity isomorphism for the tensor product structure, we obtain the associa-
tivity

µ ◦ (id � µ) = (µ ◦ (µ� id)) ◦ A.

For the unit property, we note that the inverse l−1
Ve

: Ve → V � Ve of the left unit

isomorphism is defined by l−1
Ve
(u) = 1 � u for u ∈ Ve and thus

(µ ◦ (ιVe � idVe ) ◦ l−1
Ve
)(u) = µ((ιVe � idVe )(1 � u))

= µ(1e � u)

= Ye(1e, 1)u

= idVe (u)

for u ∈ Ve. The other unit property is proved similarly.
Conversely, let (Ve, µ, ιVe ) be an associative C-algebra. In particular, Ve is a V -mod-

ule. The module map µ : Ve � Ve → Ve corresponds to an intertwining operator Yfe of
type

(
Ve
VeVe

)
such that

µ(u� v) = Yfe (u, 1)v (4.10)

for u, v ∈ Ve. Let 1e = ιVe (1) and ωe = ιVe (ω). We define

YOe : (Ve ⊗ Ve)× R+ → V e

(u⊗ v, r) �→ YOe (u, r)v

by

YOe (u, r)v = Yfe (u, r)v

for r ∈ R+, u, v ∈ Ve. Then we claim that (Ve, YOe , 1e, ωe) is an grading-restricted
conformal open-string vertex algebra satisfying the positive weight condition above and
with V in its meromorphic center. Again, the proof is similar to the proof of the result
in [HKL] mentioned above. For the reader’s convenience, we give a proof here.

The identity property for the vacuum follows immediately from the left unit property
µ ◦ (ιVe � idVe ) ◦ l−1

Ve
= idVe . The creation property follows from the right unit property

µ ◦ (ιVe ⊗ idVe ) ◦ r−1
Ve

= idVe . The Virasoro relations and the L(0)-grading property
follows from the fact that Ve is a V -module. The L(−1)-derivative property and the
commutator formula for the Virasoro operators and Yfe follow from the fact that Yfe is
an intertwining operator.
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We now prove associativity. As above, for any r ∈ R+, let

µr : Ve �P(r) Ve → Ve

be the module map corresponding to the intertwining operator Yfe . By definition, we
have

µr(u�P(r) v) = Yfe (u, r)v = (µ ◦ Tγ )(u�P(r) v) (4.11)

for u, v ∈ Ve and r ∈ R+, where γ is a path from r to 1 in R+. By definition, for
r1, r2 ∈ R+ satisfying r1 > r2 > r1 − r2 > 0, paths γ1 and γ2 in R+ from 1 to r1, r2,
respectively, and paths γ3 and γ4 in R+ from r2 and r1 − r2 to 1, respectively, (4.7)–(4.8)
hold.

Compose both sides of the associativity

µ ◦ (id � µ) = (µ ◦ (µ� id)) ◦ A

for the C-algebra Ve with

((id �P(z1) Tγ2) ◦ Tγ1)
−1,

where r1, r2 ∈ R+ satisfying r1 > r2 > r1 − r2 > 0 and γ1 and γ2, as above, are paths
From 1 to r1 and r2, respectively, in R+. Then we obtain

µ ◦ (id � µ) ◦ ((id �P(r1) Tγ2) ◦ Tγ1)
−1

= (µ ◦ (µ� id)) ◦ A ◦ ((id �P(r1) Tγ2) ◦ Tγ1)
−1. (4.12)

Using (4.7)–(4.9) and (4.12), we obtain

µr1 ◦ (id �P(r1) µr2)

= µ ◦ (id � µ) ◦ ((id �P(r1) Tγ2) ◦ Tγ1)
−1

= (µ ◦ (µ� id)) ◦ A ◦ ((id �P(r1) Tγ2) ◦ Tγ1)
−1

= (µr2 ◦ (µr1−r2 �P(r2) id)) ◦ (Tγ3 ◦ (Tγ4 �P(r2) id))−1

◦A ◦ ((id �P(r1) Tγ2) ◦ Tγ1)
−1

= (µr2 ◦ (µr1−r2 �P(r2) id)) ◦ AP(r1−r2),P (r2)
P (r1),P (r2)

. (4.13)

For the next step, we use the convergence of products and iterates of intertwining
operators for V . Because of the convergence, id �P(r1) µr2 is well defined and it is clear
that µr1 ◦ (id �P(r1) µr2) is equal to µr1 ◦ (id �P(r1) µr2). Similarly, µr1−r2 �P(r2) id
is well-defined and µr1 ◦ (µr1−r2 �P(r2) id) is equal to µr1 ◦ (µr1−r2 �P(r2) id). Taking
the natural completions of both sides of (4.13), we obtain

µr1 ◦ (id �P(r1) µr2) = µr1 ◦ (µr1−r2 �P(r2) id) ◦ AP(r1−r2),P (r2)
P (r1),P (r2)

. (4.14)

Applying both sides of (4.14) to u�P(r1) (v�P(r2) w) for u, v,w ∈ Ve, pairing the result
with v′ ∈ Ve and using (4.11) and

AP(r1−r2),P (r2)
P (r1),P (r2)

(u�P(r1) (v �P(r2) w)) = (u�P(r1−r2) v)�P(r2) w,
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we obtain the associativity

〈v′, YOe (u, r1)Y
O
e (v, r2)w〉 = 〈v′, YOe (Y

O
e (u, r1 − r2)v, r2)w〉

for u, v,w ∈ Ve, v′ ∈ V ′
e and r1, r2 ∈ R+ satisfying r1 > r2 > r1 − r2 > 0.

We now prove that ιVe (V ) is in the meromorphic center of Ve. Clearly ιVe (V ) is a
vertex operator algebra isomorphic to V , ιVe is an isomorphism of vertex operator alge-
bras from V to ιVe (V ) and thus Ve is an ιVe (V )-module. We know that the restriction

Yfe |Ve⊗ιVe (V ) of Yfe to Ve ⊗ ιVe (V ) is in fact the intertwining operator of type
(

Ve
VeιVe (V )

)

for the vertex operator algebra ιVe (V ) corresponding to the module map µ|Ve�ιVe (V ) :
Ve� ιVe (V ) → Ve which is the restriction of µ to Ve� ιVe (V ). By the creation property
for YOe , we have

lim
r→0

Yfe (u, r)1e = lim
r→0

YOe (u, r)1e = u

for u ∈ Ve. Since the space of intertwining operators of type
(

Ve
VeιVe (V )

)
is isomorphic

to the space of intertwining operators of type
(

Ve
ιVe (V )Ve

)
, which in turn is isomorphic to

the space of module maps from Ve to itself, any intertwining operator Y of this type
satisfying the creation property

lim
r→0

Y(u, r)1e = u

must be equal to Yfe |Ve⊗ιVe (V ). In fact, the intertwining operator Y of such type defined
by

Y(u, x)v = exL(−1)YVe (v,−x)u
for u ∈ Ve, v ∈ ιVe (V ), where YVe is the vertex operator map for the ιVe (V )-module Ve,
is such an intertwining operator. Thus we have

Yfe |Ve⊗ιVe (V )(u, x)v = exL(−1)YVe (v,−x)u (4.15)

for u ∈ Ve, v ∈ ιVe (V ). But both YVe and Yfe |ιVe (V )⊗Ve are intertwining operators of

type
(

Ve
ιVe (V )Ve

)
satisfying the identity property and the space of intertwining operators

of such type, as we mentioned above, is isomorphic to the space of module maps from
Ve to itself. So YVe and Yfe |ιVe (V )⊗Ve must be equal. Thus (4.15) says that ιVe (V ) is
in the meromorphic center of Ve. So ιVe is an injective homomorphism from V to the
meromorphic center of Ve.

The constructions above give two functors and it is easy to see that they are inverse
to each other. Thus the two categories are isomorphic.

Finally we prove the last statement. We assume that the intertwining operator algebra
on the direct sum of all irreducible V -modules satisfies the positive weight condition.
In particular, as an open-string vertex algebra, V itself satisfies the positive weight con-
dition. Let Ve be a grading-restricted conformal open-string vertex algebra and ιVe an
injective homomorphism of vertex operator algebras fromV toC0(Ve). Since the weights
of the nonzero elements of all the irreducible V -modules are nonnegative, the weights of
the nonzero elements of the V -module Ve are also nonnegative. Assume that Ve satisfies
the positive weight condition. Let f ∈ HomC(V , Ve). Since f preserves the grading and
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since V and Ve both satisfy the positive weight condition, it is clear that f maps 1 to a
scalar multiple of 1e. Since V as a module is generated by 1, f is determined completely
by the scalar above. On the other hand, given any scalar, we can also construct an element
of HomC(V , Ve) such that it maps 1 to the scalar times 1e. Thus dim HomC(V , Ve) = 1.
Conversely, assume that dim HomC(V , Ve) = 1. We already know that the weights of
nonzero elements of the V -module Ve are also nonnegative. Assume that there is an
element of (Ve)(0) which is not proportional to 1e. Then this element generates a V -sub-
module of the V -module Ve. Since all V -modules are completely reducible, we can find
an irreducible V -submodule of this V -submodule such that it is generated by an element
of (Ve)(0) which is not proportional to 1e. Since any irreducible V -module having a
nonzero element of weight 0 must be isomorphic to V , this V -submodule is isomorphic
to V . But this V -submodule is not equal to ιe(V ) ⊂ C0(Ve) since its generator of weight
0 is not proportional to 1e. Thus we see that dim HomC(V , Ve) > 1. Contradiction. So
Ve satisfies the positive weight condition. �

Remark 4.4. Recall that a commutative associative algebra in a braided tensor cate-
gory C or a commutative associative C-algebra is an associative C-algebra satisfying
µ ◦ R = µ (commutativity), where R is the commutativity isomorphism from A ⊗ A

to itself. Let V be a vertex operator algebra as in Theorem 4.3 and C the category of
V -modules. Then an associative C-algebra Ve is in general not commutative In fact, for
the category C of modules for V , the commutativity isomorphism R is characterized by

R(u� v) = eL(−1)T γ+(v �P(−1) u), (4.16)

where u, v ∈ Ve, γ+ is a path from −1 to 1 in the closed upper half plane without
passing through 0, Tγ+ is the corresponding parallel transport isomorphism and T γ+
is the natural extension of Tγ+ to the algebraic completion Ve � Ve of Ve � Ve. The
natural extensions of the left- and right-hand sides of commutativity applied to u�v for
u, v ∈ Ve gives µ(R(u� v)) and µ(u� v), respectively. By the characterization (4.16)
of R and the relation between µ and Yfe , the left- and right-hand sides of commutativity
are further equal to eL(−1)Yfe (v,−1)u and Yfe (u, 1)v, respectively. Note that in gen-
eral Yfe (v,−1)u �= YOe (v,−1)u. So eL(−1)Yfe (v,−1)u and Yfe (u, 1)v are not equal in
general. Thus commutativity is not true in general.

Remark 4.5. In [O], Ostrik introduced the notions of left center and right center of an
associative algebra in a braided tensor category. In the case that the braided tensor cate-
gory is the category of V -modules for a vertex operator algebra as in the theorem above,
both left and right centers of an associative algebra are V -modules and thus are graded.
The meromorphic center of the grading-restricted conformal open-string vertex algebra
corresponding to the associative algebra is actually the maximal Z-graded V -module
contained in the intersection of the left and right centers.

5. A Geometric and Operadic Formulation

In this section, we give a geometric and operadic formulation of the notion of a grad-
ing-restricted conformal open-string vertex algebra. For the notion of open-string vertex
algebra and other variations, we have similar geometric and operadic formulations. In the
present section, we discuss only grading-restricted conformal open-string vertex alge-
bras. We assume that the reader is familiar with the geometric and operadic formulation
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of the notion of vertex operator algebra given by the first author. See [H1, H2, H6, HL1
and HL2]. for details.

We first introduce a geometric partial operad. Note that Ĥ is analytically diffeomor-
phic to the closed unit disk. We use �ra and �̄ra to denote the relatively open upper-half
disk in H̄ and the closed upper-half disk in H̄, respectively, centered at a ∈ R with radius
r ∈ R+, that is, �ra = Bra ∩ H and �̄ra = B̄ra ∩ H, where Bra and B̄ra are the open and
closed disks centered at a ∈ R with radius r ∈ R+.

A disk with strips of type (m, n) (m, n ∈ N) is a disk S (a genus-zero compact con-
nected one-dimensional complex manifold with one connected component of boundary)
with m + n distinct, ordered points p1, . . . , pm+n (called boundary punctures) on the
boundary of S with p1, . . . , pm negatively oriented and the other punctures positively
oriented, and with local analytic coordinates

(U1, ϕ1), . . . , (Um+n, ϕm+n)
vanishing at the boundary punctures p1, . . . , pm+n, respectively, where for each i =
1, . . . , m + n, Ui is a local coordinate neighborhood at pi and ϕi : Ui → H̄, mapping
the boundary part of Ui analytically to R and satisfying ϕi(pi) = 0, is a local analytic
coordinate map vanishing at pi . In the present paper, we consider only disks with strips
of types (1, n) for n ∈ N. For such a disk with strips, we use the subscript 0 and the
subscripts 1, . . . , n to indicate that the corresponding boundary punctures are negatively
oriented and positively oriented, respectively.

Let S1 and S2 be disks with strips of type (1,m) and of type (1, n), respectively. Let
p0, . . . , pm be the boundary punctures of S1, q0, . . . , qn the boundary punctures of S2,
(Ui, ϕi) the local coordinate at pi for some fixed i satisfying 0 < i ≤ m, and (V0, ψ0)

the local coordinate at q0. Note that in our convention discussed above, p0 and q0 are the
negatively oriented boundary punctures on S1 and S2, respectively. Assume that there
exists r ∈ R+ such that ϕi(Ui) contains �̄r0 and ψ0(V0) contains �̄1/r

0 . Assume also

that pi and q0 are the only boundary punctures in ϕ−1
i (�̄r0) and ψ−1

0 (�̄
1/r
0 ), respec-

tively. In this case we say that the ith boundary puncture of the first disk with strips
can be sewn with the 0th boundary puncture of the second disk with strips. From these
two disks with strips we obtain a disk with strips of type (1,m + n − 1) by cutting
ϕ−1
i (�r0) and ψ−1

0 (�
1/r
0 ) from S1 and S2, respectively, and then identifying the new

parts of the boundaries (the parts not on the boundaries of the original surfaces) of the
resulting surfaces using the map ϕ−1

i ◦ (−J ) ◦ψ0, where J is the map from C
× to itself

given by J (w) = 1/w. The boundary punctures (with ordering) of this disk with strips
are p0, . . . , pi−1, q1, . . . , qn, pi+1, . . . , pm. The local coordinates vanishing at these
punctures are given in the obvious way. This sewing procedure gives a partial operation
which we call the sewing operation. Note that we have to use −J instead of J (as in
[H6]) in the definition of the sewing operation.

We define the notion of conformal equivalence between two disks with strips in the
obvious way. The space of equivalence classes of disks with strips is called the moduli
space of disks with strips. Similar to the moduli spaces of spheres with tubes in [H6],
the moduli space of disks with strips of type (1, n) (n ≥ 1) can be identified with
ϒ(n) = �n−1 ×
×
n

R+ , where 
 is the set of all sequences A = {Aj }j∈Z+ of real
numbers such that

exp




∑

j>0

Ajx
j+1 d

dx



 x
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is a convergent power series in some neighborhood of 0, 
R+ = R+ × 
, and �n−1

is the set of elements of R
n−1 with nonzero and distinct components. We think of each

element ofϒ(n), n ≥ 1, as the disk Ĥ equipped with ordered punctures ∞, r1, . . . , rn−1,
0, with an element of
 specifying the local coordinate at ∞ and with n elements of
R+
specifying the local coordinates at the other punctures. Analogously, the moduli space of
disks with strips of type (1, 0) can be identified with ϒ(0) = {A ∈ 
 | A1 = 0}. Then
the moduli space of disks with strips can be identified with ∪n≥0ϒ(n). From now on we
will refer to ∪n∈Nϒ(n) as the moduli space of disks with strips. The sewing operation
for disks with strips induces a partial operation on ∪n∈Nϒ(n). It is still called the sewing
operation.

Let Iϒ ∈ ϒ(1) be the equivalence class containing the standard disk Ĥ with the
negatively oriented puncture ∞, the only positively oriented puncture 0 , and with stan-
dard local coordinates vanishing at ∞ and 0. Here for a ∈ R ⊂ Ĥ, the standard local
coordinate vanishing at a is given by w �→ w − a, and for ∞ ∈ Ĥ, the standard local
coordinate vanishing at ∞ is given by w �→ − 1

w
. Note the minus sign in the definition

of the standard local coordinate at ∞. For n ∈ N, the symmetric group Sn acts on ϒ(n)
in an obvious way. Then by construction, the following result is clear:

Proposition 5.1. The sequences ϒ = {ϒ(n) | n ∈ N} of moduli spaces, together with
the sewing operation, the identity Iϒ and the actions of the symmetric groups, has a
structure of an associative smooth R+-rescalable partial operad.

We shall call the R+-rescalable partial operad ϒ the boundary disk partial operad.
Note that the boundary disk partial operad is very different from the so-called little disk
operad which is constructed using the embeddings of disks in the unit disk. In fact, ϒ
can be viewed as a partial suboperad of the sphere partial operad K discussed in [H6].
Geometrically, any disk with strips of type (1, n) is conformally equivalent to a disk with
strips of type (1, n)whose underlying disk is Ĥ and whose negatively oriented puncture
is ∞. But any such disk with strips of type (1, n) corresponds to a sphere with tubes
of type (1, n) whose underlying sphere is Ĉ, whose punctures are the same as those on
the disk with strips, whose local coordinates vanishing at positively oriented punctures
are the analytic extensions of those on the disk with strips and whose local coordinate
vanishing at the negatively oriented puncture is the analytic extension of the negation of
that on the disk with strips. Thus we obtain a map from ϒ(n) to K(n) and this map is
clearly injective. In fact the images of ϒ(n) in K(n) for n ≥ 2 are

{(r1, . . . , rn−1;A(0), (a(1)0 , A(1)), · · · , (a(n)0 , A(n))) ∈ K(n) |
r1, . . . , rn−1 ∈ R, a

(1)
0 , . . . , a

(n)
0 ∈ R+, A(0), . . . , A(n) ∈ 
}.

The images of ϒ(0) in K(0) and of ϒ(1) in K(1) are

{A(0) ∈ K(0) | A(0) ∈ 
, A(0)1 = 0}
and

{(A(0), (a(1)0 , A(1))) ∈ K(1) | a(1)0 ∈ R+, A(0), A(1) ∈ 
},
respectively. In addition, by the definitions of the maps from ϒ(n) to K(n) for n ∈ N

and the sewing operations in ϒ and K , it is clear that the maps from ϒ(n) to K(n) for
n ∈ N respect the sewing operations, the identities and the actions of Sn and thus give an
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injective morphism of partial operads. From now on, we shall identify the partial operad
ϒ with its image in K under this injective morphism.

For any c ∈ C, the restriction of the partial operad K̃c of the c
2

th power of the deter-
minant line bundles overK toϒ gives a partial suboperad ϒ̃c of K̃c. This partial operad
is called the C-extension of ϒ of central charge c.

We now consider certain (pseudo-)algebras over the partial operad ϒ̃c for c ∈ C. In
the terminology of [HL1, HL2 and H6], we consider ϒ̃c-associative (pseudo-)algebras
satisfying an additional differentiability condition. Since the rescaling group of ϒ̃c is R+,
we need to consider modules for R+. Since an equivalence class of irreducible modules
for R+ is determined by a real number s such that a ∈ R+ acts on modules in this class as
the scalar multiplication by a−s , any completely reducible module for R+ is of the form
V = ∐

s∈R
V(s), where V(s) is the sum of the R+-submodules in the class determined

by the real number s. We shall consider only those algebras over ϒ̃c whose underlying
vector space is of the form V = ∐

s∈R
V(s) such that dim V(s) < ∞. Recall from [HL1,

HL2 and H6] that given any R+-submoduleW of V , the endomorphism partial pseudo-

operad associated to the pair (V ,W) is the sequence HR+
V,W = {HR+

V,W (n)}n∈N, where

H
R+
V,W (n) is the set of all multilinear maps from V⊗n to V such that W⊗n is mapped to

W , equipped with natural operadic structures.

Definition 5.2. A differentiable (or C1) ϒ̃
c
-associative pseudo-algebra is a com-

pletely reducible R+-module V = ∐
s∈R

V(s) satisfying the condition dim V(r) < ∞
for s ∈ R equipped with an R+-submodule W and a morphism � of an R+-rescalable

pseudo-partial operad from ϒ̃c to the endomorphism partial pseudo-operadHR+
V,W (that

is, an ϒ̃c-associative pseudo-algebra) satisfying the following conditions:

1. For s sufficiently negative, V(s) = 0.

2. For any n ∈ N, �n : ϒ̃c(n) → H
R+
V,W (n) is linear on the fibers of ϒ̃c(n).

3. For any s1, . . . , sn ∈ R, there exists a finite subset R(s1, . . . , sn) ⊂ R such that the
image of

∐
s∈s1+Z

V(s) ⊗ · · · ⊗ ∐
s∈sn+Z

V(s) under �n(ψn(Q)) for any Q ∈ ϒ̃c(n)
is in

∐
s∈R(s1,...,sn)+Z

V(s).
4. For any v′ ∈ V ′, v1, . . . , vn ∈ V , 〈v′,�n(ψn(Q))(v1 ⊗ · · · ⊗ vn)〉 as a function of

Q = (r1, . . . , rn−1;A(0), (a(1)0 , A(1)), · · · , (a(n)0 , A(n))) ∈ ϒ̃c(n)

is of the form

m∑

i=1

fi(r1, . . . , rn−1)gi(A
(0), (a

(1)
0 , A(1)), · · · , (a(n)0 , A(n))),

where fi(r1, . . . , rn−1) for i = 1, . . . , m are continuous differentiable functions of
r1, . . . , rn−1 and gi(A(0), (a

(1)
0 , A(1)), · · · , (a(n)0 , A(n))) for i = 1, . . . , m are poly-

nomials in A(0), (a(1)0 )±1, A(1), · · · , (a(n)0 )±1, A(n).

Morphisms (respectively, isomorphisms) of differentiable ϒ̃c-associative pseudo-
algebras are morphisms (respectively, isomorphisms) of the underlying ϒ̃c-associative
pseudo-algebras.
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We denote the differentiable ϒ̃c-associative pseudo-algebra just defined by (V ,W,�)
or simply V . It is easy to see that a differentiable ϒ̃c-associative pseudo-algebra is actu-
ally analytic in the sense that for any v′ ∈ V ′, v1, . . . , vn ∈ V , 〈v′, ν(Q)(v1, . . . , vn)〉 is
analytic inQ because of the sewing axiom (that is, the sewing operation inϒ corresponds

to the contraction in HR+
V,W under �). Using this fact and the fact that the expansion of

analytic functions are always absolutely convergent in the domain of convergence, it is
easy to obtain:

Proposition 5.3. Any differentiable ϒ̃c-associative pseudo-algebra (V ,W,�) is an ϒ̃c-
associative algebra, that is, the image of ϒ̃c under � is a partial operad (the image of
ϒ̃c under � satisfies the composition-associativity).

We omit the proof of this result since it is the same as the proof of the correspond-
ing result in [H6]. Because of this result, we shall call a differentiable ϒ̃c-associative
pseudo-algebra simply a differentiable ϒ̃c-associative algebra.

Now we have the following main theorem which gives a geometric and operadic
formulation of the notion of grading-restricted conformal open-string vertex algebras:

Theorem 5.4. The category of grading-restricted conformal open-string vertex alge-
bras of central charge c is isomorphic to the category of differentiable ϒ̃c-associative
algebras.

Proof. The proof of this theorem is basically the same as that of the isomorphism
theorem for the geometric and operadic formulation of vertex operator algebras in [H6].
Here we give a sketch. Some more details will be given in [K].

Let (V , YO, 1, ω) be a grading-restricted conformal open-string vertex algebra of
central charge c. We construct a differentiable ϒ̃c-associative algebra of central charge
c as follows: The R-graded vector space V is naturally a completely reducible R+-mod-
ule. The module W for the Virasoro algebra generated by 1 is an R-graded subspace
of V and therefore is an R+-submodule of V . In [H2 and H6], a section ψ of the line
bundle K̃c over K is chosen. The restriction of this section to ϒ is a section of ϒ̃c and,
for simplicity, we still denote it by ψ . For an element

Q = (r1, . . . , rn−1;A(0), (a(1)0 , A(1)), . . . , (a
(n)
0 , A(n))) (5.1)

of ϒ(n), any element of the fiber of ϒ̃c over Q is of the form λψn(Q), where λ ∈ C.
When r1 > · · · > rn−1 > 0, we define �n(λψn(Q)) by

(�n(λψn(Q)))(v1 ⊗ · · · ⊗ vn)

= λe
− ∑

j∈Z+ A
(0)
j L(−j)

YO(e
− ∑

j∈Z+ A
(1)
j L(j)

(a
(1)
0 )−L(0)v1, r1) · · ·

·YO(e−
∑
j∈Z+ A

(n−1)
j L(j)

(a
(n−1)
0 )−L(0)vn−1, rn−1) ·

·e−
∑
j∈Z+ A

(n)
j L(j)

(a
(n)
0 )−L(0)vn

for v1, . . . , vn ∈ V . In general, for any Q ∈ ϒ(n), we can always find σQ ∈ Sn such
that σQ(Q) is of the form of the right-hand side of (5.1) such that r1 > · · · > rn−1 > 0.
We define �n(λψn(Q)) by

(�n(λψn(Q)))(v1 ⊗ · · · ⊗ vn) = �n(λψn(σQ(Q)))(vσ−1
Q (1) ⊗ · · · ⊗ v

σ−1
Q (n)

)
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for v1, . . . , vn ∈ V . It can be verified in the same way as in [H6] that the triple (V ,W, ν)
is a differentiable ϒ̃c-associative algebra of central charge c. This construction gives a
functor from the category of grading-restricted conformal open-string vertex algebras
of central charge c to the category of differentiable ϒ̃c-associative algebras.

Conversely, given a differentiable ϒ̃c-associative algebra (V ,W,�), we construct
a grading-restricted conformal open-string vertex algebra as follows: As in [H6], for
ε ∈ R and i ∈ Z+, let A(ε; i) be the element of 
 whose ith component is equal to ε
and all other components are 0 and 0 the element of
 whose components are all 0, and
for r ∈ R+, let

P(r) = (r; 0, (1, 0), (1, 0)) ∈ ϒ(2) ⊂ K(2).

We define the vertex operator map

YO : (V ⊗ V )× R+ → V ,

(v1 ⊗ v2, r) �→ YO(v1, r)v2

by

YO(v1, r)v2 = (�2(ψ2((P (r))))(v1 ⊗ v2)

for v1, v2 ∈ V and r ∈ R+. The vacuum 1 ∈ V is given by

1 = �0(ψ0(0)).

The conformal element ων is given by

ω = − d

dε
�0(ψ0((A(ε; 2))))

∣
∣
∣
∣
ε=0
.

It can be proved in the same way as in [H6] that (V , YO, 1, ω) is a grading-restricted
conformal open-string vertex algebra. This construction gives a functor from the cat-
egory of differentiable ϒ̃c-associative (pseudo-)algebras to the category of conformal
open-string vertex algebras of central charge c.

It can be shown in the same way as in [H6] that these two functors constructed above
are inverse to each other. Thus the conclusion of the theorem is true. �


The result above can actually be generalized to show that a grading-restricted confor-
mal open-string vertex algebra of central charge c gives an algebra over a partial operad
extending the operad of the cth power of the determinant line bundles over the so-called
“Swiss-cheese” operad (see [V]). We actually have a stronger isomorphism theorem
than Theorem 5.4 involving meromorphic centers of grading-restricted conformal open-
string vertex algebras. To formulate this result, we first introduce the underlying partial
operads.

A disk with strips and tubes of type (m, n; k, l) (m, n, k, l ∈ N) is a disk S withm+n
distinct, ordered pointspB1 , . . . , p

B
m+n (called boundary punctures) on the boundary of S

and k+ l distinct, ordered points pI1 , . . . , p
I
k+l (called interior punctures) in the interior

of S with pB1 , . . . , p
B
m and pI1 , . . . , p

I
k negatively oriented and the other (boundary or

interior) punctures positively oriented, and with local analytic coordinates

(UB1 , ϕ
B
1 ), . . . , (U

B
m+n, ϕ

B
m+n), (U

I
1 , ϕ

I
1 ), . . . , (U

I
k+l , ϕ

i
k+l )
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vanishing at the (boundary or interior) punctures pB1 , . . . , p
B
m+n, pI1 , . . . , p

I
k+l , respec-

tively, where for each i = 1, . . . , m + n (or j = 1, . . . , k + l), UBi (or UIj ) is a local

coordinate neighborhood at pBi (or pIj ) and ϕBi : UBi → H̄ (or ϕIj : UIj → C), map-

ping the boundary part of UBi (or mapping UIj ) analytically to R (or C) and satisfying

ϕBi (p
B
i ) = 0 (or ϕIi (p

I
i ) = 0), is a local analytic coordinate map vanishing at pBi (or

pIi ). Note that when k = l = 0, we have a disk with strips of type (m, n). In the present
paper, we consider only disks with strips and tubes of types (1, n; 0, l) for n, l ∈ N. For
such a disk with strips, we use the subscript 0 and the subscripts 1, . . . , n to indicate that
the corresponding boundary punctures are negatively oriented and positively oriented,
respectively.

Similar to disks with strips, we have a sewing operation which sews two disks with
strips and tubes at boundary punctures of opposite orientations. Here we shall call this
sewing operation the boundary sewing operation. On the other hand, we can also sew
the negatively oriented puncture of a sphere with tubes to an interior puncture of a disk
with strips and tubes just as we sew two spheres with tubes in [H6]. We shall call this
sewing operation the interior sewing operation.

The conformal equivalences for these disks with strips and tubes are defined in the
obvious way. For n ≥ 1 and l ∈ N, the moduli space of disks with strips and tubes
of type (1, n; 0, l) can be identified with ϒ(n; l) = �n−1 × 
 × 
n

R+ × Ml
H

× Hl
c ,

where �, 
 and 
R+ are defined above, H ands Hc are defined in [H6] and Ml
H

is the
set of elements of H

l with nonzero and distinct components. Analogously, for l ∈ N,
the moduli space of disks with strips and tubes of type (1, 0; 0, l) can be identified with
ϒ(0; 1) = {A ∈ 
 | A1 = 0} ×Hl

c . Note that ϒ(n) = ϒ(n; 0) for n ∈ N. In particular,
the identity Iϒ is an element of ϒ(1; 0). Also, for n ∈ N, Sn acts on ϒ(n; l) in the
obvious way. Let S(n) = ∪l∈Nϒ(n; l) for n ∈ N. Then Sn acts on S(n) for n ∈ N. The
following result is clear:

Proposition 5.5. The sequences S = {S(n)}n∈N together with the boundary sewing
operation, the identity Iϒ ∈ ϒ(1) = ϒ(1; 0) and the actions of the symmetric groups,
has a structure of a smooth R+-rescalable partial operad. In addition, for each n ∈ N,
there is an action of the sphere partial operad K on S(n) given by the interior sewing
operation.

Borrowing the terminology used by Voronov in [V], we shall call the R+-rescalable
partial operad S the Swiss-cheese partial operad. But note that our partial operad is
much larger than the Swiss cheese operad. In fact, the Swiss cheese operad is an ana-
logue of the little disk operad while our Swiss cheese partial operad is an analogue of
the sphere partial operad in [H6].

For each pair n, l ∈ N, we have an injective map fromϒ(n; l) toK(n+ 2l) obtained
by doubling disks with strips and tubes as follows: For any disk with strips and tubes of
type (1, n; 0, l), by the uniformization theorem, we can find a conformally equivalent
disk with strips and tubes of the same type such that its underlying disk is Ĥ. This latter
disk with strips and tubes can be doubled to obtain a sphere with tubes of type (1, n+2l)
such that its underlying sphere is the double C ∪ {∞} of Ĥ. By definition, we see that
conformally equivalent disks with strips give conformally equivalent spheres with tubes.
Thus we obtain a map from ϒ(n; l) to K(n+ 2l). Clearly this map is injective.

It is clear from the definition that these maps respect the (boundary) sewing opera-
tions. In addition, these maps also intertwine the actions of K on S(n) for n ∈ N and
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the actions ofK on the images of S(n) obtained by doubling the actions ofK onK(n).
We shall identify ϒ(n; l) with its image in K(n+ 2l).

For any c ∈ C, the restriction of the partial operad K̃c of the c
2

th power of the deter-
minant line bundles over K to S has a natural structure of a partial operad. This partial
operad is called the C-extension of S of central charge c and is denoted S̃c. For any
n ∈ N, the action of K on S(n) also induces an action of K̃c on S̃c(n). For any n ∈ N,
the restrictions of the sections ψn+2l of K̃c(n+ 2l) for l ∈ N to ϒ(n; l) gives a section
of S̃c(n) and we shall use ψS

n to denote this section.
We now consider a completely reducible R+-module or, equivalently, an R-graded

vector space VO = ∐
s∈R

VO(s) and completely reducible C
×-modules or, equivalently,

Z-graded vector spaces V LC = ∐
m∈Z

V LC(m) and V RC = ∐
m∈Z

V RC(m) . (HereO, LC and

RC means open, left closed and right closed, respectively.) Let WO , WLC and WRC

be an R+-submodule of VO , a C
×-submodule of V LC and a C

×-submodule of V RC ,
respectively. Associated to V LC , WLC , V RC , WRC , we have the endomorphism par-
tial pseudo-operads HC

×
V LC,WLC , HC

×
V RC,WRC and HC

×
V LC⊗(V RC)−,WLC⊗(WRC)− (see [HL1,

HL2 and H6]), where (V RC)− and (WRC)− are the complex conjugate of V RC and
WRC . We also need an endomorphism partial operad constructed from VO ,WO , V LC ,

WLC , V RC and WRC . For n, l ∈ N, let HR+
VO,WO ;V LC⊗(V RC)−,WLC⊗(WRC)−(n; l) be

the space of all linear maps from (V O)⊗n ⊗ (V LC ⊗ (V RC)−)⊗l to VO such that
(WO)⊗n ⊗ (WLC ⊗ (WRC)−)⊗l is mapped to WO and for n ∈ N, let

H
R+
VO,WO ;V LC⊗(V RC)−,WLC⊗(WRC)−(n)

=
∐

l∈N

H
R+
VO,WO ;V LC⊗(V RC)−,WLC⊗(WRC)−(n; l).

Then it is clear that for n ∈ N, the endomorphism partial pseudo-operad

HC
×

V LC⊗(V RC)−,WLC⊗(WRC)− acts on HR+
VO,WO ;V LC⊗(V RC)−,WLC⊗(WRC)−(n) and

H
R+
VO,WO ;V LC⊗(V RC)−,WLC⊗(WRC)−

= {HR+
VO,WO ;V LC⊗(V RC)−,WLC⊗(WRC)−(n)}n∈N

is an R+-rescalable partial pseudo-operad. We call it the endomorphism partial pseudo-
operad for (V O,WO;V LC ⊗ (V RC)−,WLC ⊗ (WRC)−).

Notice thatHC
×

V LC,WLC ⊗(HC
×

V RC,WRC )
− (here (HC

×
V RC,WRC )

− is the complex conjugate

of HC
×

V RC,WRC ) can be embedded naturally into the space HC
×

V LC⊗(V RC)−,WLC⊗(WRC)− .

Below we shall view HC
×

V LC,WLC ⊗ (HC
×

V RC,WRC )
− as a partial pseudo-suboperad of

HC
×

V LC⊗(V RC)−,WLC⊗(WRC)− .

Let c̄ be the complex conjugate of c ∈ C. The complex conjugate K̃c̄ of K̃c̄ is also

a C
×-rescalable partial operad. Consequently the tensor product K̃c ⊗ K̃c̄ (the tensor

product of line bundles) is also a C
×-rescalable partial operad. Interpreting the action

of K on S using the method of doubling disks, we see that K̃c ⊗ K̃c̄ acts naturally on
S̃c.
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We are interested in certain algebras over S̃c for c ∈ C.

Definition 5.6. A pseudo-algebra over S̃
c

generated by a differentiable ϒ̃
c
-asso-

ciative pseudo-algebra and meromorphic actions of two K̃
c
-associative algebras or

simply a differentiable-meromorphic pseudo-algebra over S̃
c

consists of the follow-
ing data:

1. A completely reducible R+-module VO = ∐
s∈R

VO(s) satisfying the condition

dim VO(s) < ∞ for s ∈ R and completely reducible C
×-modules V LC = ∐

m∈Z
V LC(m)

and V RC = ∐
m∈Z

V RC(m) satisfying the condition dim V LC(m) < ∞ and dim V RC(m) < ∞
for m ∈ Z.

2. An R+-submoduleWO ofVO and C
×-submodulesWLC andWRC ofV LC andV RC ,

respectively.
3. A morphism � of R+-rescalable partial pseudo-operads From S̃c to the endomor-

phism partial pseudo-operad HR+
VO,WO ;V LC⊗(V RC)−,WLC⊗(WRC)− and a morphism �

of C
×-rescalable partial pseudo-operads From K̃c⊗K̃c̄ to the endomorphism partial

pseudo-operad HC
×

V LC⊗(V RC)−,WLC⊗(V RC)− .

These data satisfy the following conditions:

1. For s ∈ R sufficiently negative, VO(s) = 0 and for m ∈ Z sufficiently negative,

V LC(m) = V RC(m) = 0.

2. For any n ∈ N, �n : S̃c(n) → H
R+
VO,WO ;V LC⊗V RC,WLC⊗WRC (n) is linear on the

fibers of S̃c(n).
3. The morphism � is equal to �L ⊗ �R , where �L (�R) is a morphism of C

×-
rescalable partial pseudo-operads From K̃c (K̃c̄) to HC

×
V LC,WLC (HC

×
V RC,WRC ) and

�R is the complex conjugate of �R . In addition, the triples (V LC,WLC,�L) and
(V RC,WRC,�R)are meromorphic K̃c-associative algebra and K̃c̄-associative alge-
bra, respectively.

4. For any n ∈ N, the map

�n : S̃c(n) → H
R+
VO,WO ;V LC⊗(V RC)−,WLC⊗(WRC)−(n)

intertwines the action of the partial operad K̃c ⊗ K̃c̄ on S̃c(n) and the
action of the partial pseudo-operad HC

×
V LC⊗(V RC)−,WLC⊗(V RC)− on

H
R+
VO,WO ;V LC⊗(V RC)−,WLC⊗(V RC)−(n).

5. For any s1, . . . , sn ∈ R, there exists a finite subset R(s1, . . . , sn) ⊂ R such that
the image of

∐
s∈s1+Z

VO(s) ⊗ · · · ⊗ ∐
s∈sn+Z

VO(s) under �n(ψS
n (Q)) for any Q ∈

ϒ̃c(n; 0) is in
∐
s∈R(s1,...,sn)+Z

VO(s).

6. For any v′ ∈ (V O)′, u1, . . . , un ∈ VO , vL1 ⊗ v̄R1 , . . . , v
L
l ⊗ v̄Rl ∈ V LC ⊗ (V RC)−,

〈v′,�n(ψS
n (Q))(u1 ⊗ · · · ⊗ un ⊗ vL1 ⊗ v̄R1 ⊗ · · · ⊗ vLl ⊗ v̄Rl )〉
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as a function of

Q = (r1, . . . , rn−1;A(0), (a(1)0 , A(1)), · · · , (a(n)0 , A(n));
z1, . . . , zl; (b(1)0 , B(1)), · · · , (b(l)0 , B

(l));
z̄1, . . . , z̄l; (b̄(1)0 , B̄(1)), · · · , (b̄(l)0 , B̄

(l)))

∈ ϒ̃c(n; l) ⊂ K(n+ 2l)

is of the form

k∑

i=1

fi(r1, . . . , rn−1; z1, . . . , zl; z̄1, . . . , z̄l) ·

·gi(A(0), (a(1)0 , A(1)), · · · , (a(n)0 , A(n)); (b(1)0 , B(1)), · · · , (b(l)0 , B
(l));

(b̄
(1)
0 , B̄(1)), · · · , (b̄(l)0 , B̄

(l))),

where the functions

fi(r1, . . . , rn−1; z1, . . . , zl; ξ1, . . . , ξl)

for i = 1, . . . , k are continuous differentiable in r1, . . . , rn−1 and are meromorphic
in z1, . . . , zl , ξ1, . . . , ξl with zi = 0,∞ and zi = zk , i < k, zi = rj , ξi = 0,∞,
ξi = ξk , i < k, ξi = rj and zi = ξk for i, k = 1, . . . , l and j = 1, . . . , n− 1 as the
only possible poles, and

gi(A
(0), (a

(1)
0 , A(1)), · · · , (a(n)0 , A(n)); (b(1)0 , B(1)), · · · , (b(l)0 , B

(l));
(d
(1)
0 ,D(1)), · · · , (d(l)0 ,D(l)))

for i = 1, . . . , k are polynomials inA(0), (a(1)0 )±1, A(1), · · · , (a(n)0 )±1, A(n), (b(1)0 )±1,

B(1), · · · , (b(l)0 )
±1, B(l) and (d(1)0 )±1,D(1), · · · , (d(l)0 )±1,D(l).

Morphisms (respectively, isomorphisms) of such pseudo-algebras over S̃c are mor-
phisms (respectively, isomorphisms) of the underlying pseudo-algebras over S̃c pre-
serving all the structures.

We denote the differentiable-meromorphic pseudo-algebra over S̃c just defined by

(V O,WO, V LC,WLC, V RC,WRC,�,�)

or simply by (V O, V LC, V RC). For these pseudo-algebras, we also have the following
result whose proof is the same as those of the corresponding result in [H6] and for
Proposition 5.3:

Proposition 5.7. Any differentiable-meromorphic pseudo-algebra over S̃c

(V O,WO, V LC,WLC, V RC,WRC,�,�)

is an algebra over S̃c, that is, the image of S̃c under � is a partial operad (the image
of S̃c under � satisfies the composition-associativity).

Because of this result, we shall omit the word “pseudo” from now on.
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Note that given a vertex operator algebra V , its complex conjugate space V − has a
natural vertex operator algebra structure (V −, Y−, 1, ω) of central charge c̄. We have
the following generalization of Theorem 5.4:

Theorem 5.8. The category of objects consisting of a grading-restricted conformal
open-string vertex algebra of central charge c ∈ C, two vertex operator algebras,
one of central charge c and the other of central charge c̄, and homomorphisms from the
first vertex operator algebra and the complex conjugate of the second vertex operator
algebra to the meromorphic center of the grading-restricted conformal open-string ver-
tex algebra is isomorphic to the category of differentiable-meromorphic algebras over
S̃c.

Proof. The proof of this theorem is basically the same as the proof of the isomorphism
theorem for the geometric and operadic formulation of vertex operator algebras in [H6]
and the proof of Theorem 5.4. The main new ingredient is that we use those spheres with
tubes which are obtained by doubling disks with strips and tubes. Here we give only a
sketch. More details will be given in [K].

Given a grading-restricted conformal open-string vertex algebraVO of central charge
c, vertex operator algebras V LC and V RC of central charge c and c̄, respectively, and
homomorphisms hL : V LC → C0(V

O) and hR : (V RC)− → C0(V
O). Let WO ,

WLC andWRC be the modules for the Virasoro algebra generated by 1O , 1LC and 1RC

(the vacuums for these algebras), respectively. By the isomorphism theorem in [H6],
there are a meromorphic K̃c-associative algebra (V LC,WLC,�L) and a meromorphic
K̃c̄-associative algebra (V RC,WRC,�R) constructed from the vertex operator algebras
V LC and V RC , respectively. Let � = �L ⊗�R .

By Theorem 5.4, there is a differentiable ϒ̃c-associative algebra (V O,WO,�ϒ) con-
structed from VO . Note that ϒ̃c is actually a partial suboperad of S̃c. So this differentia-
ble ϒ̃c-associative algebra gives us part of a differentiable-meromorphic algebra struc-
ture over S̃c. In general, the construction of the differentiable-meromorphic algebra over
S̃c can be obtained using the meromorphic K̃c-associative algebra (V LC,WLC,�L)

and meromorphic K̃c-associative algebra (V RC,WRC,�R), the differentiable ϒ̃c-asso-
ciative algebra (V O,WO,�ϒ) and the homomorphisms hL and hR . The action of the
K̃c-associative algebra (V LC ⊗ (V RC)−,WLC ⊗ (WRC)−, �) is also obtained using
the homomorphisms hL and hR . Thus we have a functor from the category of objects
of the form (V O, V LC, V RC, hL, hR) to the category of differentiable-meromorphic
pseudo-algebra over S̃c.

Now given a differentiable-meromorphic pseudo-algebra over S̃c, by the definition
and the isomorphism theorem in [H6], we know that there are vertex operator algebra
structures of central charge c and c̄ on V LC and V RC , respectively. In particular, we
have vacuums 1LC ∈ V LC and 1RC ∈ V RC . Since ϒ̃c is actually a partial suboperad of
S̃c, by Theorem 5.4, we also obtain a grading-restricted conformal open-string vertex
algebra structure of central charge c on VO . For z ∈ H, we consider an element �(z)
of ϒ(0; 1) which is the conformal equivalence class containing the following disk with
strips and tubes of type (1, 0; 0, 1): The disk Ĥ with the boundary puncture ∞ and the
interior puncture z and with the standard local coordinates vanishing at these punctures.
Then

�0(ψ
S
0 (�(z))) ∈ HR+

VO,WO ;V LC⊗(V RC)−,WLC⊗(WRC)−(0; 1)

= Hom(V LC ⊗ (V RC)−, V O).
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By Condition 6 in Definition 5.6, we know that�0(ψ
S
0 (�(z))(v

L ⊗ 1RC) is meromor-
phic in z with the only pole z = ∞. In particular,

lim
z→0

�0(ψ
S
0 (�(z)))(v

L ⊗ 1RC)

exists. We define

hL(vL) = lim
z→0

�0(ψ
S
0 (�(z))(v

L ⊗ 1RC).

Thus we obtain a linear map hL From V LC to VO . It is easy to see that the image of hL

is in fact inC0(V
O) and hL is a homomorphism from V LC toC0(V

O). Similarly we can
construct hR . Now we have a functor from the category of a differentiable-meromorphic
pseudo-algebra over S̃c to the category of objects of the form (V O, V LC, V RC, hL, hR).

From the isomorphism theorem in [H6], Theorem 5.4 and the construction of the two
functors above, we see that these two functors are inverse to each other. �


In particular, we have:

Corollary 5.9. Let V be a grading-restricted conformal open-string vertex algebra of
central charge c. ThenV gives a natural structure of an algebra over S̃c in the sense that
(V , C0(V ), C0(V )

−) has a natural structure of a differentiable-meromorphic algebra
over S̃c.

Proof. We have a grading-restricted conformal algebra V and a vertex operator algebra
C0(V ). Let hL, hR : C0(V ) → C0(V ) be the identity map. Then hL and hR are ho-
momorphisms from C0(V ) to the meromorphic center of V . Then Theorem 5.8 gives
(V , C0(V ), (C0(V ))

−) a natural structure of differentiable-meromorphic algebra over
S̃c. �
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