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412 96 Göteborg, Sweden. E-mail: hjalmar@math.chalmers.se

Received: 10 April 2003 / Accepted: 8 September 2003
Published online: 19 December 2003 – © Springer-Verlag 2003

Abstract: We investigate an elliptic quantum group introduced by Felder and
Varchenko, which is constructed from the R-matrix of the Andrews–Baxter–Forrester
model, containing both spectral and dynamical parameter. We explicitly compute the
matrix elements of certain corepresentations and obtain orthogonality relations for these
elements. Using dynamical representations these orthogonality relations give discrete bi-
orthogonality relations for terminating very-well-poised balanced elliptic hypergeomet-
ric series, previously obtained by Frenkel and Turaev and by Spiridonov and Zhedanov
in different contexts.

1. Introduction

Elliptic functions appear in various solvable models in statistical mechanics and other
areas of physics. A famous example is Baxter’s 8-vertex model [2], whose R-matrix,
containing the Boltzmann weights, is an elliptic solution of theYang–Baxter equation. A
related face model was introduced by Andrews, Baxter and Forrester [1]. In this case the
R-matrix satisfies a modified, “dynamical”, version of theYang–Baxter equation, gener-
alizing Wigner’s hexagon identity for the classical 6j -symbols of quantum mechanics.

In the early 1980’s, the algebraic study of the Yang–Baxter equation lead to the
introduction of quantum groups. The most well understood quantum groups are those
constructed from the simplest, constant, solutions. Quantum groups connected to more
complicated solutions, and in particular to elliptic solutions, have been more difficult to
construct and study. One reason for this is that elliptic quantum groups are not Hopf alge-
bras. Various approaches have been tried for finding a substitute; cf. [5, 8, 10, 12, 20].
In the dynamical case, a decisive step was taken by Felder and Varchenko [9], who

� The second author is supported by Netherlands Organisation for Scientific Research (NWO) under
project number 613.006.572.
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introduced the algebra that we will study here. This example motivated Etingof and Var-
chenko [7] to introduce h-Hopf algebroids, a generalization of Hopf algebras adapted to
studying dynamical R-matrices; cf. [15, 19] for further additions to this framework.

An important mathematical application of quantum groups is their relation to basic
hypergeometric series (or q-series), a class of special functions going back to work of
Cauchy and Heine in the 1840’s. The input from quantum group theory has been impor-
tant for the rapid development of this field during the last 20 years. To our knowledge,
nobody has so far associated special functions to elliptic quantum groups in an analogous
way. There is, however, a natural candidate for the special functions that should appear,
namely, the elliptic or modular hypergeometric series of Frenkel and Turaev [11]. This
type of sums may be used to express the elliptic 6j -symbols of Date et al. [4], which
are solutions to the Yang–Baxter equation that greatly generalize the Andrews–Baxter–
Forrester solution. For more information on elliptic hypergeometric series we refer to
[13, 18, 17, 21, 23, 22, 24, 25, 27].

Our main aim is to give an explicit link from elliptic quantum groups to elliptic
hypergeometric series. Namely, we show that 10ω9 sums, or elliptic 6j -symbols, appear
as matrix elements for an elliptic quantum group which we denote by FR(U(2)), which
is the algebra of Felder and Varchenko with some extra structure. To achieve this, we
first construct finite-dimensional corepresentations of FR(U(2)), analogous to the stan-
dard representations of SU(2) on spaces of homogeneous polynomials in two variables.
A main result, Theorem 3.4, is an explicit expression for the matrix elements of these
corepresentations. We can then calculate the action of the matrix elements in represen-
tations found by Felder and Varchenko, and show that it is given in terms of elliptic
hypergeometric series.

The matrix elements satisfy orthogonality relations in the non-commutative algebra
FR(U(2)). Evaluating these in a representation leads to bi-orthogonality relations for
10ω9 series. These relations were found already by Frenkel and Turaev [11]; cf. also
[25].

Our new derivation of the bi-orthogonality relations shows that they can be viewed
as analogues of the orthogonality relations for Krawtchouk polynomials, see [26] for the
Lie group SU(2). For the quantum SU(2) group the same approach leads to quantum
q-Krawtchouk polynomials, see [16]. For the dynamical quantum SU(2) group, i.e. cor-
responding to a trigonometric dynamical R-matrix, we get the orthogonality relations
for q-Racah polynomials, see [15, §4]. So the above cases can be considered as limiting
cases of the bi-orthogonality relations for elliptic 6j -symbols.

The paper is organized as follows. In Sect. 2 we recall the definition of an h-Hopf
algebroid and the generalized FRST-construction from [7]. Then we describe the elliptic
quantum group FR(U(2)), which is obtained from the R-matrix of theAndrews–Baxter–
Forrester model. In Sect. 3 we define finite-dimensional corepresentations of FR(U(2))

and compute their matrix elements explicitly. In Sect. 4 we consider representations
of FR(U(2)), from which we obtain commutative versions of the orthogonality rela-
tions for matrix elements of the corepresentations. It turns out that these are in fact
bi-orthogonality relations for terminating very-well-poised balanced elliptic hypergeo-
metric 10ω9-series (or elliptic 6j -symbols).

Notation. We denote by θ(z) the normalized Jacobi theta function

θ(z) =
∞∏

j=0

(
1 − zpj

) (
1 − pj+1/z

)
, |p| < 1,
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where p is a fixed parameter that is suppressed from the notation. It satisfies

θ(pz) = θ(z−1) = −z−1θ(z),

and the addition formula

θ(xy, x/y, zw, z/w) = θ(xw, x/w, zy, z/y) + (z/y)θ(xz, x/z, yw, y/w), (1.1)

where we use the notation

θ(a1, . . . , an) = θ(a1) · · · θ(an).

We define elliptic Pochhammer symbols by

(a)n =
n−1∏

i=0

θ(aq2i ),

with q another fixed parameter. We will frequently write

(a1, a2, . . . , ak)n = (a1)n · · · (ak)n.

Elliptic binomial coefficients are defined by

[
k

l

]
=

l∏

i=1

θ(q2(k−l+i))

θ(q2i )
.

Finally, the balanced very-well-poised elliptic hypergeometric series is defined by [11]

r+1ωr(a1; a4, a5, . . . , ar+1) =
∞∑

k=0

θ(a1q
4k)

θ(a1)

(a1, a4, . . . , ar+1)kq
2k

(q2, a1q2/a4, . . . , a1q2/ar+1)k
, (1.2)

where (a4 · · · ar+1)
2 = ar−3

1 q2(r−5). In this paper all series terminate, i.e. one of the ai

is of the form q−2n with n a nonnegative integer, so there are no convergence problems.
Let us emphasize that in this paper all elliptic factorials and elliptic hypergeometric
series are in base q2, p.

2. Elliptic U(2) Quantum Group

In this section we recall the definition of h-Hopf algebroids (also known as dynamical
quantum groups) and the FRST-construction. We start with the definition of the quantum
dynamical Yang-Baxter equation with spectral parameter and give in (2.2) the R-matrix
to which we apply the FRST-construction. The generators and relations for the resulting
h-Hopf algebroid have been studied by Felder and Varchenko [9].

Let h be a finite dimensional complex vector space, viewed as a commutative Lie
algebra and V = ⊕

α∈h∗ Vα a diagonalizable h-module. The quantum dynamical Yang-
Baxter equation with spectral parameter (QDYBE) is given by

R12(λ − h(3), z12)R
13(λ, z13)R

23(λ − h(1), z23)

= R23(λ, z23)R
13(λ − h(2), z13)R

12(λ, z12). (2.1)
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Here R : h∗ × C → End(V ⊗ V ) is a meromorphic function, h indicates the action of
h, the upper indices are leg-numbering notation for the tensor product and zij = zi/zj .
For instance, R12(λ − h(3), z) denotes the operator R12(λ − h(3), z)(u ⊗ v ⊗ w) =
R(λ − µ, z)(u ⊗ v) ⊗ w for w ∈ Vµ. An R-matrix is by definition a solution of the
QDYBE (2.1) which is h-invariant.

In the example we study, h is one-dimensional. We identify h = h∗ = C and take V

to be the two-dimensional h-module V = Ce1 ⊕ Ce−1. In the basis e1 ⊗ e1, e1 ⊗ e−1,
e−1 ⊗ e1, e−1 ⊗ e−1 the R-matrix is given by

R(λ, z) = R(λ, z, p, q) =





1 0 0 0
0 a(λ, z) b(λ, z) 0
0 c(λ, z) d(λ, z) 0
0 0 0 1



 , (2.2)

where

a(λ, z) = θ(z)θ(q2(λ+2))

θ(q2z)θ(q2(λ+1))
, b(λ, z)= θ(q2)θ(q−2(λ+1)z)

θ(q2z)θ(q−2(λ+1))
,

(2.3)

c(λ, z) = θ(q2)θ(q2(λ+1)z)

θ(q2z)θ(q2(λ+1))
, d(λ, z) = θ(z)θ(q−2λ)

θ(q2z)θ(q−2(λ+1))
.

The R-matrix defined by (2.2) satisfies the QDYBE (2.1), see [3, 1, 9, 12].

2.1. h-Hopf algebroids. In this subsection we recall the notion of h-bialgebroids and
h-Hopf algebroids (or dynamical quantum groups) originally introduced by Etingof and
Varchenko [7], see also [6]. For the definition of the antipode in an h-Hopf algebroid
we follow [15]. We discuss the FRST-construction that associates an h-bialgebroid to an
h-invariant matrix, see [7, 6].

Let h be a finite dimensional complex vector space. Denote the field of meromorphic
functions on the dual of h by Mh∗.

Definition 2.1. An h-algebra is a complex associative algebra A with 1, which is
bigraded over h∗, A = ⊕α,β∈h∗Aαβ , and equipped with two algebra embeddings µl ,
µr : Mh∗ → A00 (the left and right moment map) such that

µl(f )a = aµl(Tαf ), µr(f )a = aµr(Tβf ), for all a ∈ Aαβ, f ∈ Mh∗,

where Tα denotes the automorphism (Tαf )(λ) = f (λ + α).
A morphism of h-algebras is an algebra homomorphism preserving the moment

maps.

Let A and B be two h-algebras. The matrix tensor product A⊗̃B is the h∗-bigraded
vector space with (A⊗̃B)αβ = ⊕

γ∈h∗(Aαγ ⊗Mh∗ Bγβ), where ⊗Mh∗ denotes the usual
tensor product modulo the relations

µA
r (f )a ⊗ b = a ⊗ µB

l (f )b, for all a ∈ A, b ∈ B, f ∈ Mh∗. (2.4)

The multiplication (a ⊗b)(c⊗d) = ac⊗bd for a, c ∈ A and b, d ∈ B and the moment
maps µl(f ) = µA

l (f ) ⊗ 1 and µr(f ) = 1 ⊗ µB
r (f ) make A⊗̃B into an h-algebra.
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Example. Let Dh be the algebra of difference operators in Mh∗, consisting of the oper-
ators

∑
i fiTβi

, with fi ∈ Mh∗ and βi ∈ h∗. This is an h-algebra with the bigrading
defined by f T−β ∈ (Dh)ββ and both moment maps equal to the natural embedding.

For any h-algebra A, there are canonical isomorphisms A ∼= A⊗̃Dh
∼= Dh⊗̃A,

defined by

x ∼= x ⊗ T−β
∼= T−α ⊗ x, for all x ∈ Aαβ. (2.5)

The algebra Dh plays the role of the unit object in the category of h-algebras.

Definition 2.2. An h-bialgebroid is an h-algebra A equipped with two h-algebra homo-
morphisms � : A → A⊗̃A (the comultiplication) and ε : A → Dh (the counit) such
that (� ⊗ id) ◦ � = (id ⊗ �) ◦ � and (ε ⊗ id) ◦ � = id = (id ⊗ ε) ◦ � (under the
identifications (2.5)).

Definition 2.3. An h-Hopf algebroid is an h-bialgebroid A equipped with a C-linear
map S : A → A, the antipode, such that

S(µr(f )a) = S(a)µl(f ), S(aµl(f )) = µr(f )S(a), for all a ∈ A, f ∈ Mh∗,

m ◦ (id ⊗ S) ◦ �(a) = µl(ε(a)1), for all a ∈ A,

m ◦ (S ⊗ id) ◦ �(a) = µr(Tα(ε(a)1)), for all a ∈ Aαβ,

where m : A⊗̃A → A denotes the multiplication and ε(a)1 is the result of applying the
difference operator ε(a) to the constant function 1 ∈ Mh∗.

If there exists an antipode on an h-bialgebroid, it is unique. Furthermore, the anti-
pode is anti-multiplicative, anti-comultiplicative, unital, counital and interchanges the
moment maps µl and µr , see [15, Prop. 2.2].

The FRST-construction provides many examples of h-bialgebroids, see [7, 6, 9, 15].
We recall the construction.

Let h and Mh∗ be as before, V = ⊕
α∈h∗ Vα be a finite-dimensional diagonalizable

h-module and R : h∗ × C → Endh(V ⊗ V ) a meromorphic function that commutes
with the h-action on V ⊗ V . Let {ex}x∈X be a homogeneous basis of V , where X is an
index set. Write Rab

xy (λ, z) for the matrix elements of R,

R(λ, z)(ea ⊗ eb) =
∑

x,y∈X

Rab
xy (λ, z)ex ⊗ ey,

and define ω : X → h∗ by ex ∈ Vω(x). Let AR be the unital complex associative algebra
generated by the elements {Lxy(z)}x,y∈X, with z ∈ C, together with two copies of Mh∗,
embedded as subalgebras. The elements of these two copies will be denoted by f (λ)

and f (µ), respectively. The defining relations of AR are f (λ)g(µ) = g(µ)f (λ),

f (λ)Lxy(z) = Lxy(z)f (λ + ω(x)), f (µ)Lxy(z) = Lxy(z)f (µ + ω(y)), (2.6)

for all f , g ∈ Mh∗, together with the RLL-relations
∑

x,y∈X

R
xy
ac (λ, z1/z2)Lxb(z1)Lyd(z2) =

∑

x,y∈X

Rbd
xy (µ, z1/z2)Lcy(z2)Lax(z1), (2.7)

for all z1, z2 ∈ C and a, b, c, d ∈ X. The bigrading on AR is defined by Lxy(z) ∈
Aω(x),ω(y) and f (λ), f (µ) ∈ A0,0. The moment maps defined by µl(f ) = f (λ),
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µr(f ) = f (µ) make AR into a h-algebra. The h-invariance of R ensures that the bigrad-
ing is compatible with the RLL-relations (2.7). Finally the co-unit and co-multiplication
defined by

ε(Lab(z)) = δabT−ω(a), ε(f (λ)) = ε(f (µ)) = f, (2.8)

�(Lab(z)) =
∑

x∈X

Lax(z) ⊗ Lxb(z),

(2.9)
�(f (λ)) = f (λ) ⊗ 1, �(f (µ)) = 1 ⊗ f (µ),

equip AR with the structure of an h-bialgebroid, see [7].

2.2. Elliptic U(2) quantum group. We now give the results of the generalized FRST-
construction when applied to the R-matrix (2.2), see [9]. Let 0 < q < 1, 0 < p < 1.
We assume that p, q are generic, it suffices to take p and q algebraically independent
over Q. Let X = {−1, 1} and define ω : {−1, 1} → C by ω(x) = x. We denote the
corresponding h-bialgebroid by FR(M(2)): it is an elliptic analogue of the algebra of
polynomials on the space of complex 2 × 2-matrices. In the rest of this paper the four
L-generators will be denoted by α(z) = L1,1(z), β(z) = L1,−1(z), γ (z) = L−1,1(z)

and δ(z) = L−1,−1(z).

Remark 2.4. Since a(λ, q2) = c(λ, q2) and b(λ, q2) = d(λ, q2) we see that the
R-matrix (2.2) is singular for z = q2. Using (1.1) we compute

det

(
a(λ, z) b(λ, z)

c(λ, z) d(λ, z)

)
= q2 θ(zq−2)

θ(zq2)
.

We find that z = q2, up to powers of p, is the only zero of the determinant of R. For
(a, b, c, d) = (1, 1, 1, −1) and (1, −1, 1, 1) in (2.7) we obtain

α(z1)β(z2) = a(µ, z1/z2)β(z2)α(z1) + c(µ, z1/z2)α(z2)β(z1),

β(z1)α(z2) = b(µ, z1/z2)β(z2)α(z1) + d(µ, z1/z2)α(z2)β(z1).
(2.10)

In the case z1/z2 = q2 the right-hand side of the relations in (2.10) are multiples
of each other, so this also holds for the left-hand sides giving b(µ, q2)α(q2z)β(z) =
a(µ, q2)β(q2z)α(z). Simplifying this identity and doing the same for (2.7) for the cases
(a, b, c, d) = (±1, 1, ∓1, 1), (±1, −1, ∓1, −1) and (−1, ±1, −1, ∓1) we find

θ(q−2µ) α(q2z) β(z) = q2θ(q−2(µ+2)) β(q2z) α(z), (2.11a)

γ (z) α(q2z) = α(z) γ (q2z), (2.11b)

δ(z) β(q2z) = β(z) δ(q2z), (2.11c)

θ(q−2µ) γ (q2z) δ(z) = q2θ(q−2(µ+2)) δ(q2z) γ (z). (2.11d)

From the relations (2.7) for (a, b, c, d) = (±1, ±1, ∓1, ∓1), (±1, ∓1, ∓1, ±1) we
obtain three independent relations

a(λ, q2)α(q2z)δ(z) + b(λ, q2)γ (q2z)β(z) = a(µ, q2)[γ (z)β(q2z) + δ(z)α(q2z)],

a(λ, q2)β(q2z)γ (z) + b(λ, q2)δ(q2z)α(z) = b(µ, q2)[γ (z)β(q2z) + δ(z)α(q2z)],

α(z)δ(q2z) + β(z)γ (q2z) = γ (z)β(q2z) + δ(z)α(q2z). (2.12)
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From (2.3) we see that a(λ, z), b(λ, z), c(λ, z) and d(λ, z) have a simple pole
for z = q−2. The residual relations of (2.7) are the relations obtained by multiply-
ing by (z1/z2) − q−2 and taking the limit z1/z2 → q−2, see [9]. By convention, we
interpret (2.7) so that these are also supposed to hold. The residual relations of (2.7)
for (a, b, c, d) = (1, ±1, 1, ∓1), respectively (±1, 1, ∓1, 1), (±1, −1, ∓1, −1) and
(−1, ±1, −1, ∓1), are linearly dependent and simplify to (2.11). The residual relations
of (2.7) for (a, b, c, d) = (±1, ±1, ∓1, ∓1), (±1, ∓1, ∓1, ±1) reduce to three inde-
pendent relations of which two can be derived from (2.12). The independent relation can
be written as

b(µ, q2)γ (q2z)β(z) − a(µ, q2)δ(q2z)α(z) = a(λ, q2)[γ (z)β(q2z) − α(z)δ(q2z)].
(2.13)

Note that �, ε preserve the commutation relations (2.11)–(2.13).

Lemma 2.5. The element

det(z) = F(µ)

F (λ)

[
α(z)δ(q2z) − γ (z)β(q2z)

]

= F(µ)

F (λ)

[
δ(z)α(q2z) − β(z)γ (q2z)

]

= qµ

qλ

[
θ(q−2(µ+2))

θ(q−2(λ+2))
δ(q2z)α(z) − θ(q−2µ)

q2θ(q−2(λ+2))
γ (q2z)β(z)

]

= qµ

qλ

[
θ(q−2µ)

θ(q−2λ)
α(q2z)δ(z) − q2θ(q−2(µ+2))

θ(q−2λ)
β(q2z)γ (z)

]
,

where F(µ) = qµθ(q−2(µ+1)), is a central element of FR(M(2)). Moreover, �(det(z))
= det(z) ⊗ det(z) and ε(det(z)) = 1.

Proof. The equality of the four expressions follows from (2.12), (2.13). The remainder
of the lemma follows from [9, Theorem 13]. 
�

To FR(M(2)) we adjoin the central element det−1(z) subject to the relation
det(z)det−1(z) = 1. The comultiplication and counit extend by

�(det−1(z)) = det−1(z) ⊗ det−1(z), ε(det−1(z)) = 1.

It is easily checked that the resulting algebra, denoted by FR(GL(2, C)), is an
h-bialgebroid. Note that det(z) and det−1(z) have (0, 0)-bigrading. In the dynamical
representations we consider later, det(z) does not act as id , see Remark 4.3. Therefore
we do not put det(z) = 1.

Lemma 2.6. The h-bialgebroid FR(GL(2, C)) is an h-Hopf algebroid with the antipode
S defined by S(det−1(z)) = det(z),

S(α(z)) = F(µ)

F (λ)
det−1(q−2z)δ(q−2z), S(β(z)) = −F(µ)

F (λ)
det−1(q−2z)β(q−2z),

S(γ (z)) =−F(µ)

F (λ)
det−1(q−2z)γ (q−2z), S(δ(z)) = F(µ)

F (λ)
det−1(q−2z)α(q−2z),

S(f (λ)) = f (µ), S(f (µ)) = f (λ), (2.14)

on the generators and extended as an algebra antihomomorphism.
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Proof. By Proposition 2.2 of [15] we only have to check that on the generators we have

(
S(α(z)) S(β(z))

S(γ (z)) S(δ(z))

) (
α(z) β(z)

γ (z) δ(z)

)
=

(
1 0
0 1

)
=

(
α(z) β(z)

γ (z) δ(z)

) (
S(α(z)) S(β(z))

S(γ (z)) S(δ(z))

)
,

(2.15)

and that the antipode preserves the defining relations of the algebra. The proof is straight-
forward, using the RLL-relations and Lemma 2.5. Note that we need the residual relation
(2.13) for the second equality in (2.15). 
�

Next we give a ∗-structure to the obtained h-Hopf algebroid. Therefore we recall the
definition of a ∗-structure on h-bialgebroids, see [15]. Assuming ¯ : h → h is a conjuga-

tion, we putf (λ) = f (λ),f ∈ Mh∗.A∗-operator on anh-bialgebroidA is a C-antilinear,
antimultiplicative involution on A satisfying µl(f ) = µl(f )∗, µr(f ) = µr(f )∗ and
(∗ ⊗ ∗) ◦ � = � ◦ ∗, ε ◦ ∗ = ∗Dh ◦ ε, where ∗Dh is defined by (f Tα)∗ = T−αf . We
use complex conjugation on h ∼= C.

Lemma 2.7. The h-Hopf algebroid FR(GL(2, C)) has a ∗-structure defined on the gen-
erators by det−1(z)∗ = det−1(q−2/z),

α(z)∗ = δ(1/z), β(z)∗ = −γ (1/z), γ (z)∗ = −β(1/z), δ(z)∗ = α(1/z).

(2.16)

We call this h-Hopf algebroid the elliptic U(2) quantum group and denote it by
FR(U(2)).

Proof. We can easily check that this definition preserves the defining relations of the
algebra, that it is an involution and that we have (∗⊗∗)◦� = �◦∗ and ε◦∗ = ∗Dh ◦ε.

�

Remark 2.8. Note that S(det(z)) = det−1(z) and det(z)∗ = det(q−2/z).

3. Corepresentations of the Elliptic U(2) Quantum Group

Before discussing a special corepresentation of the elliptic U(2) quantum group, we
recall the general definition of a corepresentation of an h-bialgebroid on an h-space, see
[15].

Definition 3.1. An h-space is a vector space over Mh∗ which is also a diagonalizable
h-module, V = ⊕

α∈h∗ Vα , with Mh∗Vα ⊆ Vα for all α ∈ h∗. A morphism of h-spaces
is an h-invariant (i.e. grade preserving) Mh∗-linear map.

We next define the tensor product of anh-bialgebroidA and anh-spaceV . PutA⊗̃V =⊕
α,β∈h∗(Aαβ ⊗Mh∗ Vβ), where ⊗Mh∗ denotes the usual tensor product modulo the rela-

tions µA
r (f )a ⊗ v = a ⊗ f v. The grading Aαβ ⊗Mh∗ Vβ ⊆ (A⊗̃V )α and the extension

of scalars f (a ⊗ v) = µA
l (f )a ⊗ v, a ∈ A, v ∈ V , f ∈ Mh∗, make A⊗̃V into an

h-space.
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Definition 3.2. A (left) corepresentation of an h-bialgebroid A on an h-space V is an
h-space morphism ρ : V → A⊗̃V such that

(� ⊗ id) ◦ ρ = (id ⊗ ρ) ◦ ρ, (ε ⊗ id) ◦ ρ = id. (3.1)

The first equality is in the sense of the natural isomorphism (A⊗̃A)⊗̃V ∼= A⊗̃(A⊗̃V )

and in the second identity we use the identification V  Dh⊗̃V defined by f T−α ⊗ v ∼=
f v, for all f ∈ Mh∗, v ∈ Vα .

Choose a homogeneous basis {vk}k of V over Mh∗, vk ∈ Vω(k), and introduce the
corresponding matrix elements of a corepresentation ρ by ρ(vk) = ∑

j tkj ⊗ vj . For
these matrix elements we have from (3.1),

�(tij ) =
∑

k

tik ⊗ tkj , ε(tij ) = δij T−ω(i),

and Definition 2.3 implies

δkl =
∑

j

S(tkj )tj l =
∑

j

tkj S(tj l). (3.2)

Our next objective is to construct explicit corepresentations of FR(U(2)). Define,
with the convention that the empty product is 1,

vk = vk(z) = γ (z)γ (q2z) · · · γ (q2(N−k−1)z)

× α(q2(N−k)z) · · · α(q2(N−1)z), k ∈ {0, 1, . . . , N}, (3.3)

and put V2k−N = µl(Mh∗)vk , V = V N = ⊕N
k=0 V2k−N . Then V is an h-space. Note

that the grading on V is compatible with the grading of FR(M(2)). We show that
� : V N → FR(U(2))⊗̃V N , making V N a corepresentation of FR(U(2)), see Theorem
3.4. We start with the following preparatory lemma.

Lemma 3.3. In the h-Hopf algebroid FR(U(2)) we have

α(q2kz)β(q2(l−1)z) · · · β(z)

= θ(q2(k−l+1), q2(µ+l+1))

θ(q2(k+1), q2(µ+1))
β(z) · · · β(q2(l−1)z)α(q2kz)

+ θ(q2, q2(µ+k+1))

θ(q2(k+1), q2(µ+1))

l−1∑

i=0

β(z) · · · α(q2iz) · · · β(q2(l−1)z)β(q2kz),

for all k ≥ l ≥ 1.

Proof. For l = 1 this is (2.10). In order to provide for the induction step we interchange
the order of the β’s since β(z)β(w) = β(w)β(z) for all z, w ∈ C, use the case l = 1
and then the induction hypothesis with z �→ q2z, k �→ k − 1 finishes the proof using
(2.6) and (2.3). 
�
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Theorem 3.4. In the h-Hopf algebroid FR(U(2)), with vk(z) defined by (3.3), we have

�(vk(z)) =
N∑

j=0

tNkj (µ, z) ⊗ vj (z), (3.4)

where the matrix-elements tNkj (µ, z) are given by

tNkj (µ, z)=
min(k,j)∑

l=max(0,k+j−N)

[
k

l

] [
N − k

j − l

]
(q2(µ+N−k−2j+l+2))l

(q2(µ+N−2j+2))l

(q2(µ+l−j+2))j−l

(q2(µ+N−2j−k+2l+2))j−l

× γ (q2(N−k−1)z) · · · γ (q2(N−j−k+l)z)δ(q2(N−j−k+l−1)z) · · · δ(z)
× α(q2(N−1)z) · · · α(q2(N−l)z)β(q2(N−l−1)z) · · · β(q2(N−k)z).

Proof. We first deal with the cases k = N and k = 0, and get the general result from
the homomorphism property of the comultiplication �.

Claim. For all k ∈ Z≥0,

�(α(z) · · · α(q2(k−1)z)) =
k∑

l=0

Ckl(µ)α(q2(k−1)z) · · · α(q2(k−l)z)β(q2(k−l−1)z) · · · β(z)

⊗ γ (z) · · · γ (q2(k−l−1)z)α(q2(k−l)z) · · · α(q2(k−1)z), (3.5)

where the coefficients Ckl(µ) ∈ Mh∗ are given by

Ckl(µ) =
[
k

l

]
(q2(µ−l+2))l

(q2(µ+k−2l+2))l
.

Note that Ck,0 = Ck,k = 1. We prove the claim by induction on k. For k = 1 this is
just (2.9) on α(z). Assume that the claim is true for k. Then we obtain from (2.9) and
repeated application of (2.11b),

�(α(z) · · · α(q2kz)) = �(α(z) · · · α(q2(k−1)z))�(α(q2k)z)

=
k∑

l=0

Ck,l(µ)α(q2(k−1)z) · · · α(q2(k−l)z)

× β(q2(k−l−1)z) · · · β(z)β(q2kz)

⊗ γ (z) · · · γ (q2(k−l)z)α(q2(k−l+1)z) · · · α(q2kz)

+
k+1∑

l=1

Ck,l−1(µ)α(q2(k−1)z) · · · α(q2(k−l+1)z)

× β(q2(k−l)z) · · · β(z)α(q2kz)

⊗ γ (z) · · · γ (q2(k−l)z)α(q2(k−l+1)z) · · · α(q2kz).
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For l = 0 and l = k + 1, we have Ck+1,0(µ) = Ck,0(µ) = 1 and Ck+1,k+1(µ) =
Ck,k(µ) = 1 respectively. So it remains to prove that for 1 ≤ l ≤ k we have

Ck+1,l(µ)α(q2kz) · · · α(q2(k−l+1)z)β(q2(k−l)z) · · · β(z)

= Ck,l(µ)α(q2(k−1)z) · · · α(q2(k−l)z)β(q2(k−l−1)z) · · · β(z)β(q2kz)

+ Ck,l−1(µ)α(q2(k−1)z) · · · α(q2(k−l+1)z)

× β(q2(k−l)z) · · · β(z)α(q2kz). (3.6)

Using

Ck,l−1(µ) = Ck,l(µ)
θ(q2l , q2(µ+k−2l+3), q2(µ+k−2l+2))

θ(q2(k−l+1), q2(µ+k−l+2), q2(µ−l+2))
,

and (2.6) we obtain that the right-hand side of (3.6) equals

Ckl(µ)α(q2(k−1)z) · · · α(q2(k−l+1)z)

×
[
α(q2(k−l)z)β(q2(k−l−1)z) · · · β(z)β(q2kz)

+ θ(q2l , q2(µ+k−l+2), q2(µ+k−l+1))

θ(q2(k−l+1), q2(µ+k+1), q2(µ+1))
β(q2(k−l)z) · · · β(z)α(q2kz)

]
.

By Lemma 3.3, with (k, l) replaced by (k − l, k − l) the term in square brackets equals

θ(q2(k+1), q2(µ+k−l+1))

θ(q2(k−l+1), q2(µ+k+1))

[
θ(q2, q2(µ+k+1))

θ(q2(k+1), q2(µ+1))

k−l∑

n=0

β(z) · · · α(q2nz) · · · β(q2(k−l)z)

×β(q2kz) + θ(q2l , q2(µ+k−l+2))

θ(q2(k+1), q2(µ+1))
β(z) · · · β(q2(k−l)z)α(q2kz)

]

= θ(q2(k+1), q2(µ+k−l+1))

θ(q2(k−l+1), q2(µ+k+1))
α(q2kz)β(q2(k−l)z) · · · β(z),

where we use Lemma 3.3 with (k, l) replaced by (k, k − l + 1) in the last step. Using
α(z)α(w) = α(w)α(z) for all w, z ∈ C and (2.6) we see that the right-hand side of (3.6)
equals the left-hand side using

Ck+1,l(µ) = Ck,l(µ)
θ(q2(k+1), q2(µ+k−2l+2))

θ(q2(k−l+1), q2(µ+k−l+2))
.

This proves the claim.
Since the (α,β)- and the (γ ,δ)-commutation relations are similar we analogously have

�(γ (z) · · · γ (q2(k−1)z))=
k∑

l=0

Ckl(µ)γ (q2(k−1)z) · · · γ (q2(k−l)z)δ(q2(k−l−1)z) · · · δ(z)

⊗ γ (z) · · · γ (q2(k−l−1)z)α(q2(k−l)z) · · · α(q2(k−1)z). (3.7)
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Using (3.5), (3.7) and that the comultiplication � is a morphism we find

�(γ (z) · · · γ (q2(N−k−1)z)α(q2(N−k)z) · · · α(q2(N−1)z))

=
k∑

l=0

N−k∑

m=0

CN−k,m(µ)Ck,l(µ − 2m + N − k)γ (q2(N−k−1)z) · · · γ (q2(N−k−m)z)

× δ(q2(N−k−m−1)z) · · · δ(z)α(q2(N−1)z) · · · α(q2(N−l)z)

× β(q2(N−l−1)z) · · · β(q2(N−k)z)

⊗ γ (z) · · · γ (q2(N−m−l−1)z)α(q2(N−m−l)z) · · · α(q2(N−1)z),

where we use (2.6), (2.11b). Substituting m = j − l proves the theorem. 
�
In the next proposition we prove that this corepresentation is unitary in a certain

sense. Note that this property is an extension of unitarizability of a corepresentation
introduced in [15].

Proposition 3.5. The matrix elements tNkj (µ, z) of the corepresentation in Theorem 3.4
satisfy

�k(µ)S(tNkj (µ, z))∗ = �j (λ)tNjk(µ, q−2(N−2)/z)

N−1∏

i=0

det−1(q−2i/z),

with

�k(µ) =
[
N

k

]
(q2(µ−k+2))k

(q2(µ+N−2k+2))k

N−k−1∏

i=0

q−(µ+N−2k−i)

θ(q−2(µ+N−2k−i+1))

k−1∏

i=0

q−(µ−k+i)

θ(q−2(µ−k+i+1))
.

Proof. To simplify the formulas in the proof we denote D = ∏N−1
i=0 det−1(q−2i/z),

GNk(µ) =
[
N

k

]
(q2(µ−k+2))k

(q2(µ−N−2k+2))k
and Fk(µ) = ∏k−1

i=0 F(µ + i), where F is defined in

Lemma 2.5.
From Theorem 3.4 we see that the matrix elements tNkj (µ, z) for k or j equal to 0 or

N consist of a single term. Using Lemmas 2.6, 2.7 and the commutation relations of the
elliptic quantum group proves the proposition in case j = N ,

[S(tNkN(µ, z))]∗ = D
FN−k(µ − k + 1)

FN−k(λ − N)

Fk(λ − k)

Fk(µ − k)

× α(q2/z) · · · α(q−2(k−2)/z)β(q−2(k−1)/z) · · · β(q−2(N−2)/z)

= D
FN−k(µ − k + 1)

FN−k(λ − N)

Fk(λ − k)

Fk(µ − k)
GNk(µ)−1tNNk(µ, q−2(N−2)/z).

From �(tNkN(µ, z)) = ∑N
j=0 tNkj (µ, z) ⊗ tNjN(µ, z) and σ ◦ ((∗ ◦ S) ⊗ (∗ ◦ S)) ◦ � =

� ◦ (∗ ◦ S) we obtain

N∑

j=0

S(tNjN(µ, z))∗ ⊗ S(tNkj (µ, z))∗ = �(S(tNkN(µ, z))∗).
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This relation gives

N∑

j=0

FN−j (µ − j + 1)Fj (µ − j)GNj (µ)−1tNNj (µ, q−2(N−2)/z) ⊗ S(tNkj (µ, z))∗

= [1 ⊗ D FN−k(µ − k + 1)Fk(µ − k)GNk(µ)−1]

×
N∑

j=0

tNNj (µ, q−2(N−2)/z) ⊗ tNjk(µ, q−2(N−2)/z).

Since {tNNj (µ, z)}Nj=0 are linearly independent (this follows easily from Proposition 4.2
and Lemma 4.4), the identity holds termwise. So (2.4) proves the proposition. 
�

4. Discrete Bi-Orthogonality for Elliptic Hypergeometric Series

Using Proposition 3.5 we can reformulate the orthogonality relations (3.2) for the matrix
elements as

δkl =
N∑

j=0

(tNjl (µ, z))∗
�j (λ)

�k(µ)
tjk(µ, q−2(N−2)/z)

N−1∏

i=0

det−1(q−2i/z) (4.1a)

=
N∑

j=0

�l(λ)

�j (µ)
tNlj (µ, q−2(N−2)/z)(tNkj (µ, z))∗

N−1∏

i=0

det−1(q−2i/z). (4.1b)

To obtain commutative versions of (4.1), we need to represent the algebra FR(U(2))

explicitly. For this we need the notion of a dynamical representation of an h-algebra, see
[6, 7, 9, 15].

Let V = ⊕
α∈h∗ Vα be an h-space and let (Dh,V )αβ be the space of C-linear operators

U on V such that U(gv) = T−β(g)U(v) and U(Vγ ) ⊆ Vγ+β−α for all g ∈ Mh∗, v ∈ Vβ ,
γ ∈ h∗. Then the space Dh,V = ⊕

α,β∈h∗(Dh,V )α,β is an h-algebra with the moment
maps µl , µr : Mh∗ → (Dh,V )00 given by µl(f )(v) = T−α(f )(v) and µr(f )(v) = f v

for all v ∈ Vα .

Definition 4.1. A dynamical representation of an h-algebra A on an h-space V is an
h-algebra homomorphism A → Dh,V .

Proposition 4.2 (see [9]). Let ω ∈ C be arbitrary and Hω be the h-space with basis
{ek}∞k=0 and weight decomposition Hω = ⊕∞

k=0 Hω
ω−2k , Hω

ω−2k = Mh∗ek . Then there
exists a dynamical representation πω : FR(M(2)) → Dh,Hω, defined on the generators
by

πω(α(z))(gek) = Ak(λ, z)T−1gek, πω(β(z))(gek) = Bk(λ, z)T1gek+1,

πω(γ (z))(gek) = Ck(λ, z)T−1gek−1, πω(δ(z))(gek) = Dk(λ, z)T1gek, (4.2)

πω(µr(f ))(gek) = f (λ)gek, πω(µl(f ))(gek) = f (λ − ω + 2k)gek,
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where g ∈ Mh∗ and

Ak(λ, z) = q2k θ(q−2(λ+1)−2k)θ(zqω−2k+1)

θ(q−2(λ+1))θ(zqω+1)
,

Bk(λ, z) = qk θ(q2)θ(zq−2(λ+1)+ω−2k−1)

θ(q−2(λ+1))θ(zqω+1)
,

Ck(λ, z) = q−(k−1) θ(q2k)θ(q2(ω−k+1))θ(zq2(λ+1)−ω+2k−1)

θ(q2)θ(q2(λ+1))θ(zqω+1)
, C0(λ, z) = 0,

Dk(λ, z) = θ(q−2(λ+1−ω+k))θ(zq−ω+2k+1)

θ(q−2(λ+1))θ(zqω+1)
.

Remark 4.3. Using the addition formula (1.1) we obtain

πω(det(z)) = qω θ(zq1−ω)

θ(zq1+ω)
id,

so det(z) acts as a scalar. Note that this scalar is 1 if ω = 0.

The action of a matrix element in the dynamical representation defined above can be
calculated in terms of elliptic hypergeometric series.

Lemma 4.4. For the dynamical representation of Proposition 4.2 we have

πω(tNkj (µ, z))(gem) = τNω
kjm(λ, z)(TN−2j g)em+k−j ,

where τNω
kjm(λ, z) is given by

τNω
kjm(λ, z)

=(−1)N−kθ(q2)k−j q
3
2 k(k−1)+N(N+1)+ 5

2 j (j+1)+2N(λ−k−2j)+m(k−j)+3jk−2kλ

× (q−2(λ+1), q2(m+k−j+1), q2(N−k−j+1), q2(ω−m−k+1), zq2(λ+N−2j+m+2)−ω−1)j

(q2, q2(λ+N−k−2j+2), q2(λ−j+2))j

× (zq−2(λ−2j+m+k)+ω−1)k

(q−2(λ+N−2j))k

(q−2(λ+N−2j−ω+m), zq2(m+k)−ω+1)N−k−j

(q2(λ−j+1))N−k−j

1

(zqω+1)N

×10ω9[q2(λ+N−2j−k+1); q−2k, q−2j , q2(λ−j+1), q2(λ+N−2j−ω+m+1),

q2(λ+N+2+m−2j), zq2(N−m−k)+ω+1, z−1q−2(m+k−1)+ω−1].

Note that if k + j ≥ N , one of the elliptic Pochhammer symbols in the denomina-
tor of (1.2), (q2(N−k−j+1))l , equals zero. This singularity is only apparent because of
(q2(N−k−j+1))j in front of the 10ω9.

Lemma 4.4 is a generalization of [16, §6] for the quantum SU(2) group and of
[15, Prop. 4.5 ] for the dynamical quantum SU(2) group.
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Proof. From Proposition 4.2 and Theorem 3.4 it follows

πω(tNkj (µ, z))(gem) =
min(k,j)∑

l=max(0,k+j−N)

[
k

l

] [
N − k

j − l

]
(q2(λ+N−k−2j+l+2))l

(q2(λ+N−2j+2))l

× (q2(λ+l−j+2))j−l

(q2(λ+N−2j−k+2l+2))j−l

×
j−l−1∏

n=0

Cm+k−l−n(λ − j + l + 1 + n, q2(n+N−k−j+l)z)

×
N−k−j+l−1∏

n=0

Dm+k−l (λ + N − k − 2j + 2l − 1 − n, q2nz)

×
j−l−1∏

n=0

Am+k−l (λ + n + N − k − 2j + l + 1, q2(N−l+n)z)

×
k−l−1∏

n=0

Bm+n(λ + N − 2j − 1 − n, q2(n+N−k)z)

×(TN−2j g)em+k−j . (4.3)

This gives the required form of the lemma, and it remains to show that we can iden-
tify τNω

kjm(λ, z) with an elliptic hypergeometric series. From the explicit expressions of
Proposition 4.2 we see that we can rewrite the four products in terms of elliptic factorials:

j−l−1∏

n=0

Am+k−l (λ + n + N − k − 2j + l + 1, q2(N−l+n)z)

= (−1)lz−lq2l(l−N)−l(ω+l) (q
2(λ+N−2j+m+2), zq2(N−m−k)+ω+1, q2(λ+N−2j−k+2))l

(q−2(N−1)−ω−1/z)l(q2(λ+N−2j−k+2))2l

,

k−l−1∏

n=0

Bm+n(λ + N − 2j − 1 − n, q2(n+N−k)z)

= (−1)lq2l(m+k−l)+l(l+1)+ 1
2 (k−l)(2m+k−l−1)

×θ(q2)k
(q2(λ+N−2j−k+1), q−2(N−1)−ω−1/z)l(zq

−2(λ+k+m−2j)+ω−1)k

(q2(λ+m−2j+1)−ω+1)l(q−2(λ+N−2j), zq2(N−k)+ω+1)k
,

j−l−1∏

n=0

Cm+k−l−n(λ − j + l + 1 + n, q2(n+N−k−j+l)z)

= (−1)lθ(q2)−j qj (l+1−m−k)−l(m+k+2)+ 1
2 (j−l)(j−l−1)

× (q2(λ−j+2), zq2(N−k−j)+ω+1)l

(q−2(m+k), q2(ω−m−k+1), zq2(λ+N−2j+m+2)−ω−1)l

× (q2(ω−m−k+1), zq2(λ+N−2j+M+2)−ω−1, q2(m+k−j+1))j

(q2(λ−j+2), zq2(N−k−j)+ω+1)j
,
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N−k−j+l−1∏

n=0

Dm+k−l (λ + N − k − 2j + 2l − 1 − n, q2nz)

= (−1)N−j−k+lzl

×q(N−j−k)(2λ+N−3j−k+2l+2)+l(ω+l) (q
−2(λ+N−2j−ω+m), zq2(m+k)−ω+1)N−k−j

(q2(λ−j+1), zqω+1)N−k−j

× (q2(λ+N−2j−ω+m+1), q2(λ−j+1), q−2(m+k−1)+ω−1/z)l

(q2(λ+N−2j−k+1))2l (zq2(N−k−j)+ω+1)l
, (4.4)

where we use elementary transformation formulas, e.g. (aq−4l )l = (−1)l(aq−4l )lql(l−1)

(q2/a)2l/(q
2/a)l for the elliptic factorials.

Furthermore for the elliptic binomials and the other factor in (4.3) we have

[
k

l

]
= (−1)lq2l(k−l+1)+l(l−1) (q

−2k)l

(q2)l
,

[
N − k

j − l

]
= (−1)lq2l(j−l+1)+l(l−1) (q

−2j )l(q
2(N−k−j+1))j

(q2(N−k−j+1))l(q2)j
,

(4.5)
(q2(λ+N−k−2j+l+2))l

(q2(λ+N−2j+2))l

(q2(λ+l−j+2))j−l

(q2(λ+N−2j−k+2l+2))j−l

= (−1)j q2j (λ−j+2)+j (j−1)

× [(q2(λ+N−k−2j+2))2l]2(q−2(λ+1))j

(q2(λ+N−k−2j+2), q2(λ+N−2j+2), q2(λ−j+2), q2(λ+N−k−j+2))l(q2(λ+N−2j−k+2))j
.

Then, substituting (4.4) and (4.5) into (4.3) gives the required result. 
�
Analogously we can compute

Lemma 4.5. For the dynamical representations of Proposition 4.2 we have

πω((tNkj (µ, z))∗)(gem) = τ̃ Nω
kjm(λ, z)(T−N+2j g)em+j−k,

where τ̃ Nω
kjm(λ, z) is given by

τ̃ Nω
kjm(λ, z)

= q2j2+ 1
2 k(k−1)− 1

2 j (j−1)+k(1−m−j)+2m(N−j−k)+mj+2(N−k)(λ−k+1)−(N−k−j)(N−k−j−1)

×(−1)N−j θ(q2)j−k (q2(N−k−j+1), q−2(λ−N+2j+1), q−2(λ+2j−k+m)+ω+1/z)j

(q2)j (q2(λ−k+2), q−2(λ+2j−N), q−2(N−k−1)+ω+1/z)j

× (q2(m+j−k+1), q2(ω−m−j+1), q−2(N−3−λ+k−m−j)−ω−1/z)k

(q2(λ−k+2), q−2(N−1)+ω+1/z)k

× (q−2(λ+j+m+1−k), q−2(N−k+m−1)+ω+1/z)N−j−k

(q2(λ+2−N+j), q−2(N−j−k)+ω+1/z)N−j−k

×10ω9[q2(λ−k+1); q−2k, q−2j , q2(λ+j−N+1), q2(λ−k−ω+m+j+1),

q2(λ+j+m−k+2), zq2(N−m−j)+ω−1, q−2(m+j−1)+ω+1/z].
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Lemmas 4.4 and 4.5 can be used to convert the relations (4.1) to bi-orthogonality
relations for elliptic hypergeometric series. The resulting bi-orthogonality relations of
Theorem 4.6 and 4.8 have been obtained previously by Frenkel and Turaev [11] and
Spiridonov and Zhedanov [25] (see also Remark 4.9).

Theorem 4.6. A bi-orthogonality relation for the elliptic hypergeometric series is given
by

δklhk =
N∑

j=0

wj 10ω9[q2(�−2l−j+1); q−2j , q−2l , q2(�−l−N+1), q2(�−l−ω+M+1),

q2(�−l+M+2), zq2(N−M−j−l)+ω−1, q−2(M+j+l−2)+ω−1/z]

× 10ω9[q2(�−2k−j+1); q−2j , q−2k, q2(�−k−N+1), q2(�−k−ω+M+1),

q2(�−k+M+2), zq2(N−M−j−k)+ω−3, q−2(M+j+k−2)+ω+1/z],

where the quadratic norm hk and the weight function wj are given by

hk = (q2, q−2(�+M+1), q−2(�−ω+M), q−2(�−N))k

(q2(M+1), q−2N, q−2(ω−M), q−2�)k

(q−2(�+1))2k

(q−2�)2k

× (zq2M−ω−1, q2(M−N)−ω+5/z)k

(q−2(�+M)+ω+1/z, zq2(N−�−M)+ω−5)k

× (q−2(�−ω+2M+1), q−2�)N

(q−2(�+M+1), q−2(�−ω+M))N

(zqω−1, zq−ω−3)N

(zq2M−ω−1, zq−2M)+ω−3)N
,

and wj =: w1(j, k)w2(j, l) with

w1(j, k)

= q2j−2k θ(q2(�−ω+2M−N+1+2j))

θ(q2(�−ω+2M−N+1))

(q2(�−ω+2M−N+1))j

(q2(�−ω+2M+2))j

× (zq2(�−k+M)−ω−1)j

(q−2(N−2−M−k)−ω+1/z)j

× (q2(M+k+1), q−2(N−k), q−2(�−k+1), q−2(ω−M−k))j

(q2, q2(�−N+M+2), q2(M+1), q−2(�−2k+1), q−2N, q−2(ω−M), q2(�−N−ω+M+1))j
,

w2(j, l) = (q2(M+l+1), q−2(N−l), q−2(�−l+1), q−2(ω−M−l))j

(q−2(�−2l+1))j

× (q−2(N−3−�+l−M)−ω−1/z)j

(zq2(M+l)−ω−1)j
.

Remark 4.7. These relations are bi-orthogonality relations since there is a shift in the
spectral parameter z. Omitting all other parameters the bi-orthogonality relations are in
fact relations of the form

δklhk =
∑

j

wjPl(j, q
2z)Pk(j, z).
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Proof. Applying the dynamical representation πω of Proposition 4.2 to (4.1a) gives

δklem =
N∑

j=max(0,k−m)

τ̃Nω
j,l,m+j−k(λ, z)

�j (λ − ω − N + 2m + 2j − 2k + 2l)

�k(λ − N + 2l)

×
[

N−1∏

i=0

q−ω θp(q−2i+1+ω/z)

θp(q−2i+1ω/z)

]
τNω
jkm(λ − N + 2l, q−2(N−2)/z)em−k+l .

Replacing λ + 2l by �, m − k by M and z by z we obtain

δkl =
N∑

j=max(0,−M)

�j (� − ω + 2M + 2j − N)

�k(� − N)

N∏

i=0

q−ω θp(q−2i+1+ω/z)

θp(q−2i+1ω/z)

×τ̃ Nω
j,l,M+j (� − 2l, z)τNω

j,k,M+k(� − N, q−2(N−2)/z).

Using Lemmas 4.4 and 4.5 and elementary relations for the elliptic factorials proves the
theorem. 
�
Theorem 4.8. The dual bi-orthogonality relation for the elliptic hypergeometric series
is given by

δkl =
∑

j

w1(l, j)w2(k, j)

(hj )
10ω9[q2(�−2j−l+1); q−2l , q−2j , q2(�−N−j+1),

q2(�−j−ω+M+1), q2(�+M−j+2), q−2(M+j+l−2)+ω+1/z, zq−2(M+j−N+l+1)+ω−1]

× 10ω9[q2(�−2j−k+1); q−2k, q−2j , q2(�−N−j+1), q2(�−j−ω+M+1),

q2(�+M−j+2), q−2(M+j+k−1)+ω+1/z, zq−2(M+j−N+k)+ω−1],

where w1, w2 and hj are as in Theorem 4.6.

Proof. These dual bi-orthogonality relations can be computed from (4.1b) by applying
the dynamical representation. Since the bi-orthogonal system in Theorem 4.6 is known
to be self-dual [25], we can also obtain the dual relations from Theorem 4.6. 
�
Remark 4.9. In [11] an elliptic analogue of Bailey’s transformation formula is proved.
Let bcdefg = a3q2(n+2) and λ = a2q2/bcd. Then

10ω9[a; b, c, d, e, f, g, q−2n]

= (aq2, aq2/ef, λq2/e, λq2/f )n

(aq2/e, aq2/f, λq2/ef, λq2)n
10ω9[λ; λb/a, λc/a, λd/a, e, f, g, q−2n]. (4.6)

We can relate the bi-orthogonality relations of Theorem 4.6 and 4.8 to the ones given in
[25]. To obtain this relation explicitly we have to apply the elliptic analogue of Bailey’s
transformation formula (4.6) twice to both 10ω9-functions in our bi-orthogonality rela-
tions in different ways. Finally, let us emphasize that we do not need Bailey’s transfor-
mation formula to obtain the bi-orthogonality relations of Theorem 4.6 and 4.8 in the
symmetric form given.

Remark 4.10. Using the dynamical representation of Proposition 4.2 we can obtain the
transformation formula (4.6) from the unitarity property of the corepresentations stated
in Proposition 3.5.
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equation. J. Phys. A 36, 263–272 (2003)

14. Koelink, H.T.: Askey-Wilson polynomials and the quantum SU(2) group: Survey and applications.
Acta Appl. Math. 44, 295–352 (1996)

15. Koelink, E., Rosengren, H.: Harmonic analysis on the SU(2) dynamical quantum group. Acta Appl.
Math. 69, 163–220 (2001)

16. Koornwinder, T.H.: Representations of the twisted SU(2) quantum group and some q-hypergeomet-
ric orthogonal polynomials. Nederl. Akad. Wetensch. Indag. Math. 51, 97–117 (1989)

17. Rosengren, H.: A proof of a multivariable elliptic summation formula conjectured by Warnaar. In:
q-series with applications to combinatorics, number theory, and physics, Providence, RI: Am. Math.
Soc., 2001, pp. 193–202

18. Rosengren, H.: Elliptic hypergeometric series on root systems. Adv. Math, to appear
19. Rosengren, H.: Duality and self-duality for dynamical quantum groups. Algebr. Represent. Theory,

to appear
20. Sklyanin, E.K.: Some algebraic structures connected with the Yang-Baxter equation. Funkt. Anal. i

Prilozhen. 16, 27–34 (1982)
21. Spiridonov,V.P.: Elliptic beta integrals and special functions of hypergeometric type. In: Pakuliak, S.,

von Gehlen, G. (eds.), Integrable structures of exactly solvable two-dimensional models of quantum
field theory, Dordrecht: Kluwer Acad. Publ., 2001, pp. 305–313

22. Spiridonov, V.P.: An elliptic incarnation of the Bailey chain. Int. Math. Res. Not. 37, 1945–1977
(2002)

23. Spiridonov,V. P.: Theta hypergeometric series. In: Malyshev, M.A.,Vershik,A.M. (eds.),Asymptotic
Combinatorics with Applications to Mathematical Physics, Dordrecht: Kluwer Acad. Publ., 2002,
pp. 307–327

24. Spiridonov, V.P.: Theta hypergeometric integrals, math.CA/0303205
25. Spiridonov, V., Zhedanov, A.: Spectral transformation chains and some new biorthogonal rational

functions. Commun. Math. Phys. 210, 49–83 (2000)
26. Vilenkin, N.Ja., Klimyk,A.U.: Representation of Lie groups and special functions.Vol. 1, Dordrecht:

Kluwer Academic Publishers Group, 1991
27. Warnaar, S.O.: Summation and transformation formulas for elliptic hypergeometric series. Constr.

Approx. 18, 479–502 (2002)

Communicated by L. Takhtajan


