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Abstract: We consider two bidimensional Ising models coupled by an interaction quar-
tic in the spins, like in the spin representation of the Eight vertex or the Ashkin-Teller
model. By Renormalization Group methods we write a convergent perturbative expan-
sion for the specific heat and for the energy-energy correlation up to the critical tem-
perature. A form of nonuniversality is proved, in the sense that the critical behaviour is
described in terms of critical indices which are non trivial functions of the coupling. The
logarithmic singularity of the specific heat of the Ising model is removed or changed in a
power law (with a non universal critical index) depending on the sign of the interaction.

1. Main Results

1.1. Much of our understanding about phase transitions and critical behaviour of classi-
cal spin systems on a 2D lattice is based on some remarkable exact solutions. Onsager
[O] solved the Ising model, in which the spins take two values and only nearest-neighbor
two spin interactions are considered. Lieb [Li] and Baxter [B] solved respectively the
Six vertex and Eight vertex models; in their original formulation such models are vertex
models (to each site of a bidimensional lattice is associated a vertex with four arrows)
but via a suitable identification of the parameters they can be written as two Ising models
coupled by a four spin interaction [W]. The critical exponents describing the behaviour
of the system close to the critical point can be exactly computed; it is remarkable that
the critical indices in the Ising or in the vertex models are different.

The exact solutions provide indeed a lot of detailed information about such integrable
models; however even very small and apparently harmless modifications of them com-
pletely destroy their integrability. On the other hand one can hope that many relevant
properties of the integrable models are quite “robust” under perturbations. It is believed
that a universality property holds for the Ising model, in the sense that by adding to
it, for instance, a next to nearest neighbor or a four spin interaction the critical indices
remain unchanged. A universality property is believed to hold also for the Eight vertex
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model; Kadanoff [K] by “operator algebra and scaling theory” found evidence that the
Eight vertex model is in the same class of universality of the Ashkin-Teller model [AT],
which is not integrable. Other evidence for such a conclusion was found in [PB] (using
second order renormalization group arguments) and [LP, N] (by a heuristic mapping
of both models into the massive Luttinger model describing interacting fermions in the
continuum).

The natural method to relate non-integrable models to integrable ones is given by the
Renormalization Group (RG); this was known for a long time but the main open problem
in this context was to implement such a method in a rigorous way. While RG methods
were generally applied to the spin variables, it was realized in recent times that it can be
convenient to do this in the fermionic representation of spin models. The fermionic rep-
resentation of the Ising model was done in [SML, H, Ka, MW, S, ID] and it was shown
that the correlations can be written as Grassmann integrals formally describing non-
interacting fermions on a lattice in d = 1+1. In the same way Ising models with quartic
interactions can be written as Grassmann integrals formally describing interacting non-
relativistic fermions. The rigorous analysis of Grassmann integrals for non-relativistic
fermions via RG methods is quite well developed, starting from [G] and [BG1] (see
also [BG] or [GM] for extensive reviews) and one can apply such methods to classical
2D spin systems (such methods were already applied to a closely related problem, the
XYZ Heisenberg spin chain [BM]; the relation between the Eight vertex and XYZ model
is well known, [Su, Ba]). Fermionic RG methods for classical spin models have been
applied first in [PS] to the Ising model with a small next to nearest neighbor or four spin
interaction. A form of universality was established in the sense that the interaction does
not change certain critical indices; the fermionic interaction is, in this case, irrelevant in
the RG sense and the fixed point of the RG transformation is the free one.

The aim of the present paper is to study two Ising models coupled by an interaction
quartic in the spins, such that both the Eight vertex and the Ashkin-Teller models are
included: the system is, in general, non-integrable. The specific heat and the energy-
energy correlation are written as Grassmann integrals and studied by RG methods. In
such cases the fermionic interaction is marginal and the RG transformation has a line
of fixed points. The critical behaviour is different with respect to the case of the Ising
model, and it is described in terms of critical indices which are analytic non-trivial
functions of λ. In agreement with [K] we find that the behaviour of the system is quite
independent from the details of the quartic interaction. In our analysis no use is made
of the Six or Eight vertex model exact solutions; we use instead some properties which
can be deduced from the solution [ML] of the (massless) Luttinger model following a
strategy first outlined (in purely fermionic models) in [BG1].

Our analysis establishes as a mathematically rigorous statement the statement in [K,
LP, N, PB] that the Gaussian boson model, the massive Luttinger model, the Eight vertex
and the Ashkin-Teller models are in the same class of universality.

1.2. We consider two Ising models coupled by a four spin interaction bilinear in the
energy densities of the two sublattices. Given � ∈ Z2 a square lattice with side M
and periodic boundary condition, we call x = (x, x0) a site of �. If σ (1)x = ±1 and
σ
(2)
x = ±1, we write the following Hamiltonian

H�(σ
(1), σ (2)) = HI (σ

(1))+HI (σ
(2))+ V (σ (1), σ (2))

≡
M∑

x,x0=1

H�,x(σ
(1), σ (2)), (1.1)
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Fig. 1. The spins involved in the interaction of the models in Eq. (1.1). The heavy dots and lines or
the light dots and lines mark the Ising lattices and the nearest neighbors Ising couplings. The ellipses
symbolize the Ashkin–Teller four spin interactions and the circles the Eight vertex four spin interactions
couplings

where, if α = 1, 2

HI (σ
(α)) = −J

M∑

x,x0=1

[σ (α)x,x0
σ
(α)
x+1,x0

+ σ (α)x,x0
σ
(α)
x,x0+1] (1.2)

is the Ising model hamiltonian and V (σ (1), σ (2)) is the interaction between the Ising
systems

V (σ (1), σ (2)) = −λ
M∑

x,x0=1

{
a [σ (1)x,x0

σ
(1)
x+1,x0

σ (2)x,x0
σ
(2)
x+1,x0

+ σ (1)x,x0
σ
(1)
x,x0+1σ

(2)
x,x0

σ
(2)
x,x0+1]

+b[σ (1)x,x0
σ
(1)
x+1,x0

σ (2)x,x0
σ
(2)
x,x0+1 + σ (1)x,x0

σ
(1)
x,x0+1σ

(2)
x−1,x0+1σ

(2)
x,x0+1]

}
.

(1.3)

If b = 0 the Hamiltonian (1.1) coincides with the Hamiltonian of the spin representation
[F] of the Ashkin-Teller model [AT]; if a = 0 it coincides with the spin representation
[W] of the Eight vertex model.

For a given observable O(x) localized near x we define the correlation

< O(x)O(y) >�= 1

Z�

∑

σ
(1)
x ,σ

(2)
x =±1

x∈�M

O(x)O(y)e−H�(σ
(1),σ (2)), (1.4)

where Z� = ∑
σ
(1)
x ,σ

(2)
x =±1

x∈�
e−H�(σ (1),σ (2)) is the the partition function. The truncated

correlation of the observable O(x) is

< O(x)O(y) >�,T=< O(x)O(y) >� − < O(x) >�< O(y) >� , (1.5)
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and the energy-energy truncated correlation function is given by (1.5) with O(x) =
H�,x(σ

(1), σ (2)); the specific heat Cλv is

Cλv = lim
|�|→∞

1

|�|
∑

x,y∈�
< H�,x(σ

(1), σ (2))H�,y(σ
(1), σ (2)) >�,T . (1.6)

If λ = 0 the model reduces to two independent Ising models and close to the critical
temperature (equal for both) it is

C0
v � −C1 log |Jc

J
− 1| + C2 , (1.7)

where C1, C2 are positive constants and tanh Jc = √
2 − 1, see [MW] Eq. (3.58). The

truncated correlation of the observable O(x) = HI,x(σ
(α)) for λ = 0 has the property

| < O(x)O(y) >T | ≤ Ce−A|t−tc||x−y| with A,C suitable constants.
We expect that the interaction changes the value of the critical temperature (i.e. of Jc)

by quantitiesO(λ). However it is convenient to keep the critical singularity at a λ-inde-
pendent value; we shall show that this can be done by choosing properly the molecular
energy parameter J as a function of λ. Therefore we consider the model (1.1) with Jr
replacing J , and we shall choose Jr = J +O(λ) so that the critical coupling is precisely
in correspondence of tanh−1(

√
2 − 1).

Denoting byN an arbitrary positive integer, fixing a+ b �= 0 and with the notations

t ≡ tanh J , tanh Jr
def= tanh J + ν(λ) and tc ≡ √

2 − 1, we shall rigorously derive the
following result.

Theorem. Assume a = 0 or b = 0. There are C,CN,C1, C2, τ, Z̃1, positive λ–inde-
pendent constants, such that for λ small enough one can uniquely define ν′(λ), analytic
in λ, so that the model in Eq. (1.1), (1.3) and with coupling Jr = J + ν′(λ) is critical
at t = tc. This means that, for |t − tc| > 0,

lim
|�|→∞

〈H�,x(σ (1), σ (2))H�,y(σ (1), σ (2))〉�,T = �a(x, y)+�b(x, y), (1.8)

and the bounds

|�a(x, y)| ≤ 1

|x − y|2+2η1

CN

1 + (	|x − y|)N ,

|�b(x, y)| ≤ 1

|x − y|2+τ
CN

1 + (	|x − y|)N (1.9)

hold, with “correlation length” 	−1 and “critical indices” η1, η2 given by

	 = |t − tc|1+η2 , η1(λ) = −a1(a + b)λ+O(λ2)

η2(λ) = −a2(a + b)λ+O(λ2) (1.10)

with a1 > 0, a2 > 0 constants and η1, η2 analytic in λ. Furthermore if 1 ≤ |x| ≤ 	−1

the correlation is asymptotic to �a in the sense that �b is neglegible because

�a(x, y) = 1

Z̃2
1

1 + A(x − y)
(x − y)2+2η1

, |A(x)| ≤ C
[|λ| + (	|x|) 1

2
]
. (1.11)
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Finally the specific heat Cλv (1.6) verifies

C1
1

2η1
[1 −	2η1 ] ≤ Cλv ≤ C2

1

2η1
[1 −	2η1 ], (1.12)

where C1, C2 are positive constants.

1.3. The above result says that the interaction changes the value of the critical tem-
perature and it qualitatively modifies the critical behaviour of the specific heat and of
the energy-energy correlations. As t gets closer and closer to the critical temperature
the logarithmic singularity of the specific heat in the Ising model is changed by the
four spin interaction into a power law singularity with non-universal critical indices if
λ (a+ b) > 0; if λ (a+ b) < 0 the specific heat is instead continuous, but higher deriv-
atives of the free energy are singular, as one can check from the proof of the Theorem.

Moreover one can distinguish two different regimes in the asymptotic behaviour of
the energy- energy correlation function, discriminated by an intrinsic correlation length
ξ of order |t − tc|−1−η2 with η2 = O(λ). If 1 � |x − y| � ξ , the bound for the
correlation function is power-like while if ξ � |x − y|, there is a faster than any power
decay with rate of order ξ−1. The splitting (1.8) and (1.9) might suggest that the fast
decay is modulated by a power |x − y|−2−2η1 but it does not prove that because the first
of (1.9) is an inequality rather than an asymptotic expression.

We do not study the free energy directly at t = tc, therefore in order to show that
t = tc is a critical point we must study some thermodynamic property like the specific
heat by evaluating it at t �= tc andM = ∞ and then verify that it has a singular behavior
as t → tc. Moreover (1.11) holds uniformly for all |t − tc| > 0, hence we can draw
the remarkable consequence that assuming continuity for t → tc , at fixed |x − y|, of
the correlations in (1.8) we obtain at t = tc a power law behaviour with critical index
η1. We cannot exclude a discontinuity at t = tc of the correlation in (1.8), not even at
fixed x − y, because, as it is the case in various models which can be studied up to the
critical point, the case t precisely equal to tc cannot be discussed at the moment with our
techniques in spite of the uniformity of our bounds as t → tc. In the case of the Eight
vertex model our results are in agreement with the exact solution in [B] (see also [W]).

For definiteness we have chosen V (σ (1), σ (2)) of the form (1.3) but the proof of the
Theorem does not depend on the details of the interaction but only on a few general
properties; one needs essentially that the interaction is short ranged and it is invariant
under the same symmetry transformations which leave invariant the “free” hamiltonian
HI (σ

(1)) + HI (σ
(1)). We will describe briefly how the proof of the theorem can be

generalized in Appendix O.

1.4. The paper is organized in the following way. We begin to study the analyticity prop-
erties of the partition function. The starting point is the well known representation, due
to [H, Ka, MW, S], of the Ising model partition function in terms of Grassmann integrals
with a formal action which is quadratic. Also the partition function of the model (1.1)
can be written in terms of Grassmann integrals, with a formal action which is however
non-quadratic. By a suitable linear transformations, see §2, the Grassmann integrals can
be written in a form which strongly resembles the partition function of a system of two
interacting Dirac fermions on a lattice in d = 1 + 1; one fermion (called massive) has
an O(1) mass, while the other (light fermion) has a mass O(t − tc) i.e. vanishing at
criticality.

In §3 we “integrate out” the massive fermions, thus obtaining an effective theory
in terms of the light fermions only. The integration of the light fields is much more
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difficult, as their mass is almost zero, and we perform a multiscale analysis based on
Renormalization Group ideas, see §4; the result of such analysis is an integration pro-
cedure (or a resummmation prescription) for the partition functions which is written as
a series in a number of functions which are called running coupling constants carrying
a scale label h = 0, 1, . . . : for each scale there are only a few such running couplings.
Contrary to the naive expansion in powers of λ (which cannot be convergent at t = tc),
such expansion is well defined arbitrarily close to the critical temperature if the running
coupling constants are small enough.

The running coupling constants verify a recursive relation expressing the running
couplings on a given scale h as a function of the ones on the previous scales h′ < h:
the latter function is usually called the Beta function and it is defined as long as its argu-
ments are small enough. In §5 we show that the running coupling constants are indeed
small, if ν′ is chosen properly and λ is small enough. In order to prove this one has to
use two key results. The first is the exploitation of a number of symmetry cancellations
to prove that a number of running coupling constants are exactly vanishing; such sym-
metries, which are manifest in the original spin variables, become quite involved in the
fermionic representation. The second one is the decomposition of the beta function in
the sum of many terms, in which only one of them is really crucial, while the others
would have a small effect in the absence of the first one. One recognizes that such a
crucial contribution to the Beta function of our model coincides with the Beta function
of the Luttinger model: the latter Beta function was proved to be zero, as a consequence
of its exact solution [ML], in [BGPS, GS, BM1] (see [BeM1] for a simplified proof).
This means that the apparently largest contribution to the Beta function is essentially
zero, if ν′(λ) is properly chosen. Note also that, despite the vanishing of the Luttinger
model the Beta function is believed to be a consequence of suitable Ward identities, to
convert such an argument on a rigorous proof seems at the moment quite difficult, see
[BeM1], hence the only rigorous proof of such a key result is the one in [BGPS, GS,
BM1].

Finally in §5 we define an expansion for the correlation functions and the specific
heat; it is similar to the one for the partition function, with the main difference that one
has to introduce new terms in the action associated with the external fields introduced
to express via functional integrals the correlation functions.

The proof establishes rigorously a relationship between spin models with quartic
interactions like the model (1.1) and the massive Luttinger model: in agreement with
what was conjectured in [LP, N, PB]. Our results extend a previous paper [M1] (where
Eq. (1.12) must replace Eq. (1.16) of [M1] which was incorrect). The analysis of ref.

[M1] was restricted to the case |t − tc| ≥ e
− a

λ2 , where a is a suitable constant. The
paper is self contained aside from a few technical lemmata proved in full detail in
[BM].

A very important open problem is to obtain by such fermionic RG methods the
asymptotic behaviour of the spin-spin correlation function; its fermionic representation
is much more involved than the one for the specific heat or for energy-energy correlations
which are the only correlations considered here. One can study also the cases in which
the parameters J of the two Ising model hamiltonian are different so that there are two
critical temperatures; new fermionic effective marginal interactions appear in such a case
and universality will be probably found. Another possible extension is the analysis of
four coupled Ising models; in this last case interacting spinning d = 1 fermions appear
in the fermionic description, which are known to have a behaviour quite different from
the spinless one (like in the d = 1 Hubbard model).
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2. Fermionic Representation

2.1. The partition function Z(α)I of the Ising model with Hamiltonian HI (σ (α)) in (1.3)
can be written as a Grassmann integral; this is a classical result, mainly due to [Ka, H,
MW, S] and rederived recently in §3 of [PS] to which we refer for a detailed proof. It is

Z
(α)
I = (−1)S

(cosh J )B2S

2

∑

ε,ε′=±

∫ ∏

x∈�M
dH(α)

x dH
(α)

x dV (α)x dV
(α)

x (−1)δγ eS
(α)
J ;γ , (2.1)

where α = 1, 2 denotes the lattice, γ
def= (ε, ε′) and δγ is δ+,+

def= 1, δ+,− = δ−,+ =
δ−,−

def= 2,�M = �, B is the total number of bonds and S is the total number of sites,

S
(α)
J,γ = tanh J

∑

x∈�M
[H

(α)

x,x0
H
(α)
x+1,x0

+ V
(α)

x,x0
V
(α)
x,x0+1]

+
∑

x∈�M
[H

(α)

x,x0
H(α)
x,x0

+ V
(α)

x,x0
V (α)x,x0

+ V
(α)

x,x0
H
(α)

x,x0
+ V (α)x,x0

H
(α)

x,x0

+H(α)
x,x0

V
(α)

x,x0
+ V (α)x,x0

H(α)
x,x0

], (2.2)

where H(α)
x , H

(α)

x , V
(α)
x , V

(α)

x are Grassmann variables verifying different boundary
conditions depending on the label γ = (ε, ε′)which is not affixed explicitly, to simplify
the notations, i.e.

H
(α)

x,x0+M = εH
(α)

x,x0
H
(α)

x+M,x0
= ε′H(α)

x,x0

H
(α)
x,x0+M = εH(α)

x,x0
H
(α)
x+M,x0

= ε′H(α)
x,x0

ε, ε′ = ±, (2.3)

and identical definitions are set for the variables V (α), V
(α)

. We call Dγ , for γ = ε, ε′
the set of k’s such that

k = 2πn1

M
+ (ε′ − 1)π

2M
k0 = 2πn0

M
+ (ε − 1)π

2M
(2.4)

and −[M/2] ≤ n0 ≤ [(M − 1)/2], −[M/2] ≤ n1 ≤ [(M − 1)/2], n0, n1 ∈ Z. We can
write if k = (k0, k),

H(α)
x = 1

M2

∑

k∈Dε,ε′
H
(α)
k e−ikx H

(α)

x = 1

M2

∑

k∈Dε,ε′
H
(α)

k e−ikx, (2.5)

and similar expressions hold for V (α)x , V
(α)

x .

The integration
∫ ∏

x dH
(α)
x dH

(α)

x or
∫ ∏

x dV
(α)
x dV

(α)

x is defined as a linear func-
tional on the Grassmann algebra in the standard way: we recall it in Appendix A below.

It will be convenient to use auxiliary models in which J is allowed to depend on α
and on the bonds: i.e. we can imagine replacing the coupling J of each bond b joining the
nearest neighbors x, y on the lattice α by Jb = J

(α)
x,y . If J is not constant but it depends

on the bonds, one expresses the partition function Z(α)I (J
(α)

x,x′) by a formula similar to

Eq. (2.1) in which S(α)J,γ , with γ = (ε, ε′), becomes

S
(α)

J (α),γ
=
∑

x

tanh J (α)x,x0;x+1,x0
H
(α)

x,x0
H
(α)
x+1,x0

+ tanh J (α)x,x0;x,x0+1V
(α)

x,x0
V
(α)
x,x0+1
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+
∑

x

[H
(α)

x,x0
H(α)
x,x0

+ V
(α)

x,x0
V (α)x,x0

+ V
(α)

x,x0
H
(α)

x,x0
+ V (α)x,x0

H
(α)

x,x0

+H(α)
x,x0

V
(α)

x,x0
+ V (α)x,x0

H(α)
x,x0

], (2.6)

and the factor (cosh J )B is replaced by
∏
b cosh J (α)b .

2.2. The partition function of the model (1.1) with Jr replacing J is

Z2I =
∑

σ
(1)
x =±1
x∈�M

∑

σ
(2)
x =±1
x=�M

e−HI (σ
(1))e−HI (σ

(2))e−V (σ
(1),σ (2)). (2.7)

Setting λ̂a
def= tanh(λ a), λ̂b

def= tanh(λ b) we see that Z2I becomes
(cosh λa cosh λb)2S times Ẑ2I with

Ẑ2I =
∑

σ(1)=±1
x∈�M

∑

σ(2)=±1
x∈�M

e−HI (σ
(1))e−HI (σ

(2))

·
∏

x∈�M
[1 + λ̂aσ (1)x,x0

σ
(1)
x+1,x0

σ (2)x,x0
σ
(2)
x+1,x0

]

·
∏

x∈�M
[1 + λ̂aσ (1)x,x0

σ
(1)
x,x0+1σ

(2)
x,x0

σ
(2)
x,x0+1]

·
∏

x∈�M
[1 + λ̂bσ (1)x,x0

σ
(1)
x+1,x0

σ (2)x,x0
σ
(2)
x,x0+1]

·
∏

x∈�M
[1 + λ̂bσ (1)x,x0

σ
(1)
x,x0+1σ

(2)
x−1,x0+1σ

(2)
x,x0+1], (2.8)

where HI (σ (α)) are defined as in (1.3) with Jr replacing J . Note that

∑

σ
(α)
x =±1

x∈�

σ (α)x σ
(α)

x′ e
−HI (σ (α)) = ∂

∂J
(α)

x,x′
Z
(α)
I ({J }(α)x,x′)|{J (α)

x,x′ }={Jr }, (2.9)

where x, x′ are nearest neighbors on the lattice α, and from (2.6) (and remembering that

a = 0 or b = 0) this derivative gives an extra factor tanh Jr +sech2J
(α)
r H

(α)

x,x0
H
(α)
x+1,x0

in

(2.1). We can therefore write Ẑ2I , hence Z2I , as a Grassmann integral over the variables
H,V,H, V . The algebra is straightforward and we reproduce it in Appendix B, and
the result is that we can express Ẑ2I as a sum of sixteen partition functions labeled by
γ1, γ2 = (ε(1), ε

′(1)), (ε(2), ε
′(2)) (corresponding to choosing each ε and ε′ as ±)

Ẑ2I = (cosh λa cosh λb)2S
∑

γ1,γ2

(−1)δγ1+δγ2 Ẑ
γ1,γ2
2I , (2.10)

each of which is given by a functional integral

Ẑ
γ1,γ2
2I = (cosh Jr)2B22S

4

∫ 2∏

α=1

([ ∏

x∈�M
dH(α)

x dH
(α)

x dV (α)x dV
(α)

x
]
e
S
(α)
J,γα

)
e−V ,

(2.11)
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where V is an expression containing linear or bilinear terms in H
(α)

x H
(α)
x+1,x0

or V
(α)

x

V
(α)
x,x0+1, see (7.4). It is convenient to rewrite (2.11) in a form closer to an expression

more familiar in the theory of fermionic ground states: our aim in fact is to reduce our
critical point problem to a rather standard problem on the ground state of Fermi systems.

We shall consider for simplicity the partition function Ẑ−,−,−,−
2I

def= Ẑ−
2I , i.e. the

partition function in which all Grassmann variables verify antiperiodic boundary condi-
tions (see (2.3)). The other fifteen partition functions in (2.10) admit similar expressions.
Furthermore it will appear that for |t − tc| > 0 the logarithm of Zγ1,γ2

2I divided by its
expression for λ = 0 is insensitive to boundary conditions up to corrections which are
exponentially small in the size M of the system in the thermodynamic limit in which
M → ∞ (see Appendix G) so that it will turn out that it is sufficient to study just one of
the sixteen partition functions and Ẑ−,−,−,−

2I is chosen here (arbitrarily). It is convenient
to perform the following change of variables [ID], α = 1, 2:

H
(α)

x + iH (α)
x = ei

π
4 ψ(α)x − ei

π
4 χ(α)x H

(α)

x − iH (α)
x = e−i

π
4 ψ

(α)

x − e−i
π
4 χ(α)x

V
(α)

x + iV (α)x = ψ(α)x + χ(α)x V
(α)

x − iV (α)x = ψ
(α)

x + χ(α)x (2.12)

which replaces the H,V,H, V variables with “Majorana variables” ψ(α), χα). Subse-
quently we replace the Majorana variables with Dirac variables by setting

ψ∓
1,x = 1√

2
(ψ(1)x ± iψ(2)x ), ψ∓

−1,x = 1√
2
(ψ

(1)
x ± iψ

(2)
x ) , (2.13)

χ∓
1,x = 1√

2
(χ(1)x ± iχ(2)x ), χ∓

−1,x = 1√
2
(χ(1)x ± iχ(2)x ) . (2.14)

The final expression, see Appendix C for the algebra, is

Ẑ−
2I

def= Ẑ
−,−,−,−
2I = N

∫
P(dψ)P (dχ)eQ(χ,ψ)−V(χ,ψ), (2.15)

where N is a suitable constant and, if φ denotes either ψ or χ ,

P(dφ) = N −1
φ

∏

k∈D−,−

∏

ω=±1

dφ+
k,ωdφ

−
k,ω exp

[
t

2M2

∑

k∈D−,−

−ξ (+)Tk Aφ(k)ξk

]
,

Aφ(k) =
(
i sin k + sin k0 −imφ(k)

imφ(k) i sin k − sin k0

)
, ξT

k = (φ−
k,1, φ

−
k,−1)

ξ+,T
k = (φ+

k,1, φ
+
k,−1) (2.16)

with Nφ a normalization constant, mφ defined, differently for φ = ψ (choose +) and
for φ = χ (choose −), by

t

2
mφ(k) = (t − (±

√
2 − 1))+ t

2
(cos k0 + cos k − 2). (2.17)

Remark. Note that we are interested in t close to tc = √
2 − 1 hence, for t → tc, mχ is

bounded away from 0 and therefore m−1
χ (0) defines a length scale which stays finite in

this limit whilemψ(0) → 0 and the corresponding length scale diverges. Note also that
(2.15) for Ẑ+,+,+,+

2I at t = tc is meaningless, as in that case N = 0 (as Nψ = 0); hence
the assumption |t − tc| > 0.
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Finally Q(χ,ψ) and V(χ, ψ) are obtained respectively from (7.10) and (7.5) in
Appendix C through the change of variables (2.12), (2.13) and (2.14). The final expres-
sions for them are rather intricate and we just extract from them a few properties which
will be important in the following. Introducing the discrete derivatives of φ = ψ, χ as

∂1φx
def= φx+1,x0 − φx, ∂0φx

def= φx,x0+1 − φx. (2.18)

It turns out, see Appendix D, that Q and V are given by a sum of terms of the forms

∑

x

A
a;σ1,σ2
x;φ,ω1;φ′,ω2

, or
∑

x

A
b;σ1,σ2
x;φ,ω1;φ′,ω2

A
b;σ ′

1,σ
′
2

x′;φ′′,ω′
1;φ′′′,ω′

2
, (2.19)

where x′ = x or x′ = (x − 1, x0 + 1) with φ, φ′, φ′′, φ′′′ ∈ {ψ, χ}, σ = ± and

1) If ω1 = ω2 then for a suitable numerical coefficient aσ1,σ2,ω,c,n it is, for n = 1, 2 and
c = a, b,

A
c;σ1,σ2
x;φ,ω;φ′,ω = aσ1,σ2,ω,c,nφ

σ1
ω,x∂xnφ

′σ2
ω,x with (2.20)

1a) If n = 1 ∂xn = ∂x0 and aσ1,σ2,ω,c,1 is imaginary;
1b) If n = 2 ∂xn = ∂x and aσ1,σ2,ω,c,2 is real.

2) If ω1 = −ω2 then for suitable real numerical coefficients bσ1,σ2,ω,c,m, cσ1,σ2,ω,c,m it
is

2a) Ac,σ1,σ2
x;φ,ω;φ′,−ω = ibσ1,σ2,ω,c,m∂xmφ

σ1
ω,x∂xmφ

′σ2−ω,x,
∂xm = ∂x0 if m = 1, ∂xm = ∂x if m = 2,

2b) Ac,σ1,σ2
x;φ,ω;φ′,−ω = icσ1,σ2,ω,c,lφ

σ1
ω,xl φ

′σ2−ω,xl , (2.21)

with l = 1, 2, 3 and xl = x, xl = (x + 1, x0), xl = (x, x0 + 1) for l = 1, 2, 3
respectively.

2.3. The value of
∫
P(dφ)Q(φ), where Q(φ) is any monomial on the φ = ψ, χ vari-

ables, is given by the anticommutative Wick rule with propagator
∫
P(dφ) φ−

x,ωφ
+
y,ω′ =

g
(φ)

ω,ω′(x − y) given by

g
(φ)

ω,ω′(x − y) = 2

tM2

∑

k

e−ik(x−y)[A−1
φ (k)]ω,ω′ . (2.22)

If we set Qφ(k) = detAφ(k) = − sin2 k0 − sin2 k − [mφ(k)]2, then

A−1
φ (k) = 1

Qφ(k)

(− sin k0 + i sin k imφ(k)
−imφ(k) sin k0 + i sin k

)
. (2.23)

The following bounds hold for the propagators, for anyN > 1 and for a suitable constant
CN

|g(φ)ω,ω(x − y)| ≤ 1

1 + |d(x − y)|
CN

1 + |mφ(0)d(x − y)|N , (2.24)

|g(φ)ω,−ω(x − y)| ≤ |mφ(0)| log[1 + (|mφ(0)||d(x − y)|)−1]CN
1 + |mφ(0)d(x − y)|N , (2.25)
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where d is a distance between x, y which takes into account the antiperiodicity of the
boundary conditions that we are considering, namely

d(x − y) =
(
M

π
sin

(
π(x − y)

M

)
,
M

π
sin

(
π(x0 − y0)

M

))
. (2.26)

Note that the following parity properties hold:

g(φ)ω,ω(x) = −g(φ)ω,ω(−x), g
(φ)
ω,−ω(x) = g

(φ)
ω,−ω(−x) . (2.27)

Remark. After the change of variables (2.12), (2.13) and (2.14) we have achieved writing
Ẑ−

2I as (2.15), which can be naturally seen as the partition function of a system of two
kinds of bidimensional Dirac fermions on a lattice. The remark following (2.17) says
that the χ -fields mass is O(1) while the ψ-fields mass is vanishing when t = tc; hence
the χ -fields will be called massive fields and the ψ-fields will be called light fields. In
contrast with this interpretation note, however, that the interaction V has a quite non-
standard form; it is not invariant under global gauge transformations and is not given by
products of density operators, unlike in the usual fermionic models.

3. Integration of Massive Fermions

3.1. Considering (2.15) we proceed to perform the Grassmann integration over the mas-
sive χ fields and to reduce the double integration over ψ, χ to an integration of a (more
involved) new exponential e−V(1)(ψ) over the light fields ψ alone,

Ẑ−
2I = N

∫
P(dψ)

∫
P(dχ)eQ(χ,ψ)e−V(ψ,χ) =

∫
P(dψ)eM

2N (1)−V(1)(ψ), (3.1)

where N (1) is a constant such that the effective potential V(1)(ψ) vanishes at ψ = 0 and
P is suitably defined. Indeed we prove the following result.

3.2. Lemma 1. Assume a = 0 or b = 0. There exists ε and C such that, for |λ|, |ν| ≤ ε,

V(1) =
∑

n≥1

∑

α,ω,σ

∑

x1,..,x2n

W2n,σ ,α,ω(x1, .., x2n)∂
α1ψσ1

x1,ω1
...∂α2nψσ2n

x2n,ω2n
,

|Ŵ2n,σ ,α,ω(k1, ...kn−1)| ≤ M2Cnεn/2, n ≥ 2. (3.2)

The addends in (3.2) with n = 2 can be written, for l1 = 2(λ̂a + λ̂b)sech4Jr +O(ε2)

real, as

l1
∑

x

ψ+
1,xψ

+
−1,xψ

−
−1,xψ

−
1,x +

∑

x1,..,x4

∑

α1+..α4≥1,σ

W4,σ ,α,ω(x1, .., x4)

× ∂α1ψσ1
x1,ω1

∂α2ψσ2
x2,ω2

∂α3ψσ3
x3,ω3

∂α4ψσ4
x4,ω4

. (3.3)

The addend with n = 1 can be written, for ν1 = ν +O(ε), a1, a2 = ν/2 +O(ε), as
∑

ω

∑

x

[−iων1ψ
+
x,ωψ

−
x,−ω + ψ+

x,ω(iωa1∂0 − a2∂1)ψ
−
x,ω]

+
∑

x1,x2

∑

{ω}

∑

α1+α2≥2,σ1,σ2

W2,σ ,α,ω(x1, x2)∂
α1ψσ1

x1,ω1
∂α2ψσ2

x2,ω2
(3.4)
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with ν1, a1, a2 real and |Ŵ2,σ ,α,ω(k1)| ≤ M2C|ε|. Finally making use of a general nota-
tion for later reference, the Grassmann integration P(dψ) is PZ1,m1,C̃1

(dψ), where

PZ1,m1,C̃1
(dψ)

= N −1
∏

k∈D−,−
C̃1(k)

−1>0

∏

ω=±1

dψ+
k,ωdψ

−
k,ω exp



− tZ1C̃1(k)
M2

∑

k∈D−,−
C̃1(k)

−1>0

ψ+
k,ωT

(1)
ω,ω′(k)ψ−

k,ω′



 ,

T (1)(k)
def= 1

C0 + µ0,0(k)

×
(
Z̃1(i sin k + sin k0)+ µ1,1(k)Z

−1
1 −im1 − iµ1,2(k)Z

−1
1

im1 + iµ1,2(k)Z
−1
1 Z̃1(i sin k − sin k0)+ µ2,2(k)Z

−1
1

)
(3.5)

withC0 = (t+1+√
2)2, C̃1(k) ≡ 1,m1 = C0(t− tc), Z1 = 1, Z̃1 = t

2 [(2t+2
√

2t)+
(2

√
2 + 3 + t2)], µi,j (k) analytic functions in k of size O(k2) with µi,i(k), i = 1, 2,

odd and µ1,2(k) even and real; moreover C0 + µ0,0 ≥ 1 and det T (1)(k) is bounded
above and below by two constants times −2t (1 − t2)(cos k0 + cos k1 − 2)+m2

1.

The proof of the above proposition is a repetition of standard arguments, see for
instance [BGPS] or [BM]: the key is the Gram-Hadamard inequality applied along the
lines of Lesniewski, [Le]. For completeness the details are in Appendix E and F.

The result says that the integration of the massive fermions has the “only” effect over
the remaining (non trivial) ψ–integration of modifying the propagator of the light ψ
fields by a few trivial factors of O(1) (analytically dependent on λ for λ small).

The only difficulty and novelty is that a detailed analysis of the bilinear and quartic
terms in V(1) is necessary. In fact we have to show that the quadratic part can be writ-
ten as in (3.4), saying that there are no terms of the form ψσx,ωψ

−σ
x,ω , or ψσx,ωψ

σ
x,−ω or

ψσx,ω∂ψ
σ
x,−ω; despite the fact that such terms are absent in V , they could be generated

by the integration of the χ variables. This is not the case, as a consequence of symmetry
properties verified by the model (1.1), as it will be shown in Appendix F.

4. Renormalization Group for Light Fermions

4.1. Multiscale analysis. We continue the analysis of Ẑ−
2I (2.15); after the integration

over the χ–fields we have to compute the Grassmann integral over theψ–fields given by
the r.h.s. of (3.1). The problem is quite different from the one treated in Sect. 3 because
the ψ–field has propagator, (3.5), with “mass” O(t − tc) which can be arbitrarily close
to 0, and we need estimates that are uniform in this quantity. Therefore we shall proceed
via a multiscale analysis following the techniques developed to study the ground state
of one–dimensional Fermi systems in [BG], [BGPS] and [BM].

We introduce a scaling parameter γ > 1 which will be used to define a geometrically
growing sequence of length scales 1, γ, γ 2, γ 3, . . . , i.e. of geometrically decreasing
momentum scales γ h, h = 0,−1,−2, . . . . Let χ(k) ∈ C∞ be a non-negative function
such that

χ(k) = χ(−k) =
{

1 if |k| < 1/γ ,
0 if |k| > 1 ,

, where |k| =
√

sin k2
0 + sin k2 , (4.1)
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Fig. 2. The function χ(γ−hx), χ(γ−(h−1)x), f (γ−hx)

and for h ≤ 0 integer define fh(k)
def= χ(γ−hk)− χ(γ−h+1k) so that, for h′ < 0, it is

χ(k) =∑0
h=h′+1 fh(k)+ χ(γ−h′

k) .
Note that, if h ≤ 0, fh(k) = 0 for |k| < γ h−2 or |k| > γ h, and fh(k) = 1, if

|k| = γ h−1. Furthermore with our boundary conditions ε = ε′ = −, see (2.4), the

momenta k = (k0, k) are such that |k| > kM
def=

√
2

πM
. Therefore if we define the “mini-

mum” momentum scale larger than kM (i.e. hM = min{h : γ h > kM}) it will be for all
such k:

1 =
1∑

h=hM
fh(k) f1 = 1 − χ(k) , (4.2)

which can be visualized as in Fig. 2.
Note that the fact that hM is finite plays essentially no role in the subsequent analysis;

note also that we are making a multiscale decomposition around k = k0 = 0 as it is the
only pole of the propagator corresponding to PZ1,m1,C̃1

(dψ).
The purpose is to perform the integration over the light fermion fields in a iterative

way. The iteration steps will be labeled by scale values h = 1, 0,−1, . . . , hM . The
number of iterations will be −hM + 2 and after each iteration we shall be left with a
“simpler” Grassmann integration to perform: it will be an integration with respect to a
field ψ(≤h), h = 0,−1, . . . , hM of

∫
PZh,mh,Ch(dψ

(≤h)) e−V(h)(
√
Zhψ

(≤h))−M2Eh , V(h)(0) = 0 , (4.3)

where the quantities PZh,mh,Ch(dψ), Zh,mh, Ch(k),V(≤h)(ψ),Eh have to be defined

recursively and the result of the last iteration will be e−M
2E−1+hM ≡ Ẑ2I , i.e. the value

of the partition function.
ThePZh,mh,Ch(dψ) integration is defined by (3.5) in which we replaceZ1,m1, C̃1(k)

by other quantities

Zh,mh,Ch(k) with Ch(k)−1 =
h∑

j=hM
fj (k), (4.4)

keeping Z̃1 fixed to the value in (3.5) andZh,mh recursively defined as discussed below;
moreover

V(h)(ψ(≤h)) =
∞∑

n=1

∑

x1,...,x2n,
σ ,ω,α

2n∏

i=1

∂αiψ(≤h)σixi ,ωi W
(h)
2n,σ ,α,ω(x1, ..., x2n) . (4.5)
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4.2. The localization operator. The effective potential V(h) will be rather involved: to
define it recursively it will be convenient to identify in it a part that can be called “irrel-
evant” and the rest. Here the word irrelevant does not mean “negligible”: it identifies a
part of V(h) which can be expressed as a (convergent) power series in terms of a number
of parameters vh′ , h′ > h, which we call running coupling constants. The latter are also
defined recursively and they can be isolated from the effective potential V(h) by acting
on it with a “localization operator” L which extracts from the sum of monomials in the
fields in (3.1) the terms of degree 2n = 2, 4 in the fields and from each of them it extracts
the “local part”: for h ≤ 0 it acts on the kernels W by simplifying them as follows:

1) If 2n = 4, then we define

LŴ (h)
4,σ ,α,ω(k1,k2,k3) = Ŵ

(h)
4,σ ,α,ω(k̄++, k̄++, k̄++) , (4.6)

where k̄++ = ( π
M
, π
M
) is the smallest momentum allowed by the boundary conditions

that we are using (see (2.4)).
2) If 2n = 2 and k̄ηη′ = (η π

M
, η′ π

M

)
, then

LŴ (h)
2,σ ,α,ω(k) = 1

4

∑

η,η′=±1

Ŵ
(h)
2,σ ,α,ω(k̄ηη′)

[
1 + M

π
aM(η sin k + η′ sin k0)

]
, (4.7)

where aM M
π

sin π
M

= 1.
3) In all other cases LŴh

2n,σ ,α,ω(k1, . . . ,k2n−1) = 0.

Remark. Note that in the limit M → ∞ (4.7) becomes simply

LŴ (h)
2,σ ,α,ω(k) = [Ŵ (h)

2,σ ,α,ω(0)+ sin k0∂k0Ŵ
(h)
2,σ ,α,ω(0)+ sin k∂kŴ

a(h)
2,σ ,α,ω(0)], (4.8)

hence LŴ (h)
2,σ ,α,ω(k) has to be understood as a discrete version of the Taylor expansion

up to order 1. Since aM = 1+O(M−2) this property would be true also if aM = 1; how-
ever the choice (4.7) shares with (4.8) another important property, that is L2Ŵ

(h)
2,σ ,ω(k) =

LŴ (h)
2,σ ,ω(k), see [BM].

4.3. Relevant, marginal and irrelevant operators. By (4.6),(4.7) and the symmetry rela-
tions in Appendix F we can write LV(h) as:

LV(h)(ψ(≤h)) = (sh + γ hnh)F
(≤h)
m + lhF

(≤h)
λ + zhF

(≤h)
ζ + ahF

(≤h)
α , (4.9)

where sh, nh, lh, zh, ah are real and, if |λ|, |ν| ≤ ε, s1 = O(m1λ), z1, a1 = O(λ),
l1 = 2(λ̂a + λ̂b) sech4Jr +O(λ2), γ n1 = ν +O(λ); moreover

F (≤h)m = 1

M2

∑

k∈DM

∑

ω=±1

iωψ̂
(≤h)+
k,ω ψ̂

(≤h)−
k,−ω ,

F
(≤h)
λ = 1

M8

∑

k1,...,k4∈DM

ψ̂
(≤h)+
k1,+1 ψ̂

(≤h)+
k2,−1 ψ̂

(≤h)−
k3,−1 ψ̂

(≤h)−
k4,+1 δ(k1 − k2 + k3 − k4) ,

F (≤h)α = 1

M2

∑

k∈DM

∑

ω=±1

i sin kψ̂(≤h)+k,ω ψ̂
(≤h)−
k,ω ,
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F
(≤h)
ζ = 1

M2

∑

k∈DM

∑

ω=±1

ω sin k0ψ̂
(≤h)+
k,ω ψ̂

(≤h)−
k,ω , (4.10)

where δ(k) = 0 if k �= 0 and δ(0) = 1. Applying the operations L to the kernels of the
effective potential generates the sum in (4.9), i.e. a linear combination of the Grassmann
monomials in (4.10) which, in the renormalization group language are called “relevant”
operators (the first) and “marginal” operators (the three others); while applying the oper-
ations 1−L generates a sum of (infinitely many, in the limitM → ∞) monomials called
irrelevant operators.

Note that one can repeat the analysis in Appendix F to conclude that many terms,
which could be a priori present in (4.9) are indeed absent. Hence the constants nh, sh, lh,
zh, ah are real and many possible marginal interactions (like

∑
k sin kψ̂(≤h)+k,ω ψ̂

(≤h)−
k,−ω or

∑
k ψ̂

(≤h)+
k,ω ψ̂

(≤h)−
k,ω ) are excluded. This remark is crucial in order to analyze the flow of

the running coupling constant, see the next section: it shows that the number of relevant
or marginal operators is far smaller than a priori one might expect, due to the symmetries
in the hamiltonian.

Note also that we have written the coefficient of F (≤h)σ as sh + γ hnh according to a
rule which will be specified in (4.17), (4.18) below and for the reasons explained in the
subsequent remark.

4.4. Renormalization. We have set all definitions needed to define the recursive proce-
dure leading to the definition of the running couplings and of the effective potentials.

Suppose that Zk,mk, Ck,V(k) in (4.3) have been defined for k = 1, 0, . . . h + 1.
Then we can write V(h)(

√
Zhψ

(≤h)) as LV(h)(
√
Zhψ

(≤h))+ (1 − L)V(h)(
√
Zhψ

(≤h))
and we split from LV(h)(

√
Zhψ

(≤h)) in (4.9) the three terms quadratic in ψ(≤h) given
by ZhshF

(≤h)
σ + Zhzh(F

(≤h)
ζ + F

(≤h)
α ).

Since such terms are quadratic we can imagine to include them in the “the free integra-
tion”PZh,mh,Ch(dψ

(≤h)) by simply replacing the integration symbolPZh,mh,Ch(dψ
(≤h))

by a new Grassmann integration symbolP
Ẑh−1,mh−1,Ch

(dψ(≤h))obtained fromPZh,mh,Ch
(dψ(≤h)) via the substitutions of Zh,mh(k) with

Ẑh−1(k) = Zh[1 + t−1C−1
h Z̃−1

1 (C0 + µ0,0(k))zh],

mh−1(k) = Zh

Ẑh−1(k)
[mh(k)+ C−1

h (k)t−1(C0 + µ0,0(k))sh] ; (4.11)

and correspondingly by replacing V(h)(
√
Zhψ

(≤h)) by Ṽ(h) = V(h) − ZhshF
(≤h)
σ −

Zhzh(F
(≤h)
ζ + F

(≤h)
α ). This means that the subtracted terms are imagined included in

P
Ẑh−1,mh−1,Ch

as an algebraic check confirms.

If exp(−M2th) is a suitable constant factor fixing normalization of the two integra-
tions we get

∫
PZh,mh,Ch(dψ

(≤h))e−V(h)(
√
Zhψ

(≤h))

= e−M
2th

∫
P
Ẑh−1,mh−1,Ch

(dψ(≤h)) e−Ṽ(h)(
√
Zhψ

(≤h)) , (4.12)

and we try to express the r.h.s. as a double integral by writing ψ(≤h) = ψ(≤h−1)+ψ(h).
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We shall call mh(0) ≡ mh and Ẑh(0) ≡ Zh. The r.h.s of (4.12) can be written, as an
algebraic check will confirm, as

e−M
2th

∫
PZh−1,mh−1,Ch−1(dψ

(≤h−1))

∫
P
Zh−1,mh−1,f

−1
h
(dψ(h)) e−Ṽ(h)(

√
Zhψ

(≤h)) ,

(4.13)

where we have set

Zh−1 = Zh(1 + zht
−1Z̃−1

1 C0) , f̃h(k) = Zh−1

[
C−1
h (k)

Ẑh−1(k)
− C−1

h−1(k)

Zh−1

]
. (4.14)

Note that f̃h(k) has the same support of fh(k). The single scale propagator is

∫
P
Zh−1,mh−1,f̃

−1
h
(dψ(h)) ψ(h)−x,ω ψ

(h)+
y,ω′ =

g
(h)

ω,ω′(x − y)

Zh−1
,

g
(h)

ω,ω′(x − y)
def= 1

tM2

∑

k

e−ik(x−y)f̃h(k)[T
−1
h (k)]ω,ω′ , (4.15)

and Th(k) is defined by performing in (3.5) the replacement indicated in (4.4).
If |Z̃−1

1 C0zh| ≤ 1
2 , |C0sh| ≤ |mh/2| and supk≥h | Zk

Zk−1
| ≤ ec0|λ|, the large distance

behavior of g(h)
ω,ω′(x − y) and of its (discrete) derivatives can be established in detail and

one finds that it is characterized by a single lengh scale, namely γ−h. The analysis leads
to naively expected results that will be exploited in the following and it is performed in
Appendix H.

We can now specify according to which rule the splitting Ŵ (h)
2,σ ,ω(k̄ηη′) = sh + γ hnh

in (4.9) will be done. We write

g
(h)
ω,−ω(x − y) = ĝ

(h)
ω,−ω(x − y)+ g̃

(h)
ω,−ω(x − y),

ĝ
(h)
ω,−ω(x − y)

def= 1

tM2

∑

k

e−ik(x−y)f̃h(k)
imh(k)

Z̃2
1 sin2 k0 + Z̃2

1 sin k2 +m2
h(k)

, (4.16)

and g̃(h)ω,−ω(x − y) is g(h)ω,−ω − ĝ
(h)
ω,−ω and it does not vanish for mh = 0. We write

Ŵ
(h)
2,σ ,ω = Ŵ

a(h)
2,σ ,ω + Ŵ

b(h)
2,σ ,ω (4.17)

with Ŵ a(h)
2,σ ,ω given by definition by a sum of terms containing at least a propagator

ĝ
(k)
ω,−ω(x − y), k > h and we set

sh = δω,−ω



1

4

∑

η,η′=±1

Ŵ
a(h)
2,σ ,ω(k̄ηη′)



 γ hnh = δω,−ω



1

4

∑

η,η′=±1

Ŵ
b(h)
2,σ ,ω(k̄ηη′)



 .

(4.18)

Such definitions imply that Wa(h)
2,σ ,ω is vanishing at t = tc for all h.
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Remark. In a theory of fermions if there is no mass term in the action then no mass terms
are generated by the Renormalization Group iterations, by local Gauge invariance. In
our spin model this is not true, as the interaction is not Gauge invariant; hence even if
t = tc (or m1 = 0) a mass term in the Renormalization Group iterations can be gener-
ated. Hence we collect all the relevant terms which are vanishing if t = tc, in sh, which
we include in the fermionic integration; the “mass” has a non trivial flow producing
at the end the critical index of the correlation length. The remaining terms are left in
the effective interaction; they constitute the running coupling constant νh whose flow is
controlled by the counterterm ν.

We now rescale the kernelsW(h)
2n,σ ,α,ω in Ṽ(h), see (4.4), by a factor

√
Zh/

√
Zh−1 so

that the effective potential Ṽ(h)(
√
Zhψ

(≤h)) can be rewritten as

Ṽ(h)(
√
Zhψ

(≤h)) = V̂(h)(
√
Zh−1ψ

(≤h)) ; (4.19)

and as a consequence, see (4.9),

LV̂(h)(
√
Zh−1ψ

≤h) = γ hνhZh−1F
(≤h)
σ + δhZh−1F

(≤h)
α + λh(Zh−1)

2F
(≤h)
λ ,

νh
def= Zh

Zh−1
nh , δh

def= Zh

Zh−1
(ah − zh) , λh

def= (
Zh

Zh−1
)2lh . (4.20)

We will call vh
def= (λh, δh, νh) the running coupling constants and Zh,mh the renor-

malization constants.
If we now define V(h−1), Ẽh by

e−V(h−1)(
√
Zh−1ψ

(≤h−1))−M2Ẽh =
∫
P
Zh−1,mh−1,f̃

−1
h
(dψ(h)) e−V̂(h)(√Zh−1ψ

(≤h)) ,

(4.21)

with Ẽh such that V(h−1)(0) = 0, we see that V(h−1)(
√
Zh−1ψ

(≤h−1)) is of the form (4.4)
andEh−1 = Eh+th+Ẽh: this is checked by decomposingψ(≤h) = ψ(≤h−1)+ψ(h) and
by means of the relation (which is, essentially, a definition of truncated expectations),

M2Ẽh + V(h−1)(
√
Zh−1ψ

(≤h−1)) =
∞∑

n=1

1

n!
(−1)n+1ET ,nh (V̂(h)(

√
Zh−1ψ

(≤h))) ,

(4.22)

where ET ,nh denotes the truncated expectation of order nwith propagatorZ−1
h−1g

(h)

ω,ω′ , see
(4.15).

The above procedure allows us to write the kernelsW(h)
2n,σ ,ω,α and Ẽh by a convergent

expansion in the running coupling constants and the renormalization constants at higher
scales; more exactly we will prove in Appendix I the following proposition.

4.5. Lemma 2. Suppose that εh < ε, then if ε is small enough and if for some constant
c1,

max
h′>h

|vh′ | ≤ εh, sup
h′>h

∣∣∣
mh′

mh′−1

∣∣∣ ≤ ec1εh, sup
h′>h

∣∣∣
Zh′

Zh′−1

∣∣∣ ≤ ec1ε
2
h , (4.23)
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then for a suitable M–independent constant c0 the kernels in (4.4) satisfy

|Ŵ (h)
2n,σ ,ω,α(k1, ...,k2n−1)| ≤ γ−hDk(Pv0 ) (c0 εh)

max(1,n−1) (4.24)

where Dk(Pv0) = −2 + n+ k and k =∑2n
i=1 αi . Moreover

(|nh| + |zh| + |ah| + |lh|) ≤ c0εh , |sh| ≤ |mh| c0 εh, |Ẽh+1| ≤ γ 2h c0 εh. (4.25)

5. The Flow of the Running Coupling Constants

5.1. By the result in Sect. (4.5) it follows that the kernelsW(h)
2n,σ ,ω,α in (4.4) are bounded

as soon as the condition (4.23) on the running coupling constants vh′ and the renormal-
ization constants Zh′ ,mh′ , h′ > h are verified. Such quantities verify a set of recursive
equations called Beta function relations of the form

νh−1 = γ νh + βhν (ah, νh; ...; a1, ν1), ah−1 = ah + βha (ah, νh; ...; a1, ν1),
mh−1

mh
= 1 + βhm(ah, νh; ...; a1, ν1),

Zh−1

Zh
= 1 + βhz (ah, νh; ...; a1, ν1), (5.1)

where ah = (λh, δh). By explicit calculation of the lower order non-zero terms one finds,
for h ≤ 0,

βhz (ah, νh; ...; a1, ν1) = b1λ
2
h +O(ε3

h) , b1 > 0 ,
βhm(ah, νh; ...; a1, ν1) = a2λh +O(ε2

h) , a2 > 0 . (5.2)

It is possible to prove the following proposition, see Appendix L.

5.2. Lemma 3. There are positive constants ci 1, . . . , 6, such that forM large, |t− tc| >
0 and small enough and λ small enough one can uniquely define ν(λ) such that there
exists an integer h∗ ≤ 0 such that for h∗ − 1 ≤ h ≤ 0,

|λh − λ| ≤ c1|λ|3/2 , |δh| ≤ c1|λ| , |νh| ≤ c6 |λ| (γ− 1
2 (h−h∗) + γ κh),

γ−λc2h <
mh

m1
< γ−λc3h , γ−c4λ

2h < Zh < γ−c5λ
2h. (5.3)

The scale h∗ is such that γ k−1 ≥ 4|mk| for 1 ≥ k ≥ h∗ while γ h
∗−2 ≤ 4|mh∗ |; it verifies

logγ |m1|
1 − λc2

≤ h∗ <
logγ |m1|
1 − λc2

+ 1 . (5.4)

5.3. Remark. h∗ is the scale at which the massmh and the momentum scale γ h become
of the same order (at the first steps |mh| << γ h close to criticality). As mh has a non
trivial flow, such scale depends on λ, see (5.4). It is sufficient to study the flow up to
h∗ because the integration of ψ(≤h∗) can be performed in a single step as mh∗ acts as
an infrared cut-off on the momentum scale γ h

∗
; see §5.2. For scales greater than h∗

(5.3) says that it is possible to choose the counterterm ν so that νh stays bounded, λh, δh
remains close to their initial value, while mh,Zh have a non trivial anomalous flow.
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The main point in order to prove the above proposition is that the functions βha (ah, νh;
...; a1, ν1) can be written as the sum of two terms; only one of them is really crucial
while the other has little effect on the flow, if the counterterm ν is chosen properly. In
particular we write βha (ah, νh; ...; a1, ν1) in the following way:

βha (ah, νh; ...; a1, ν1) = βha,L(ah; ...; a1)+ rha (ah, νh; . . . ; a1, ν1), (5.5)

where βha,L(ah; ...; a1) is obtained from βha (ah, νh; ...; a1, ν1) by setting νk = mk = 0

for all k ≥ h and substituing, for all k ≥ h, each propagator g(k)ω,ω(x − y) given by (4.16)
with g(k)L;ω,ω(x −y) given by (7.63), and each propagator g(k)ω,−ω(x −y)with zero. By the
estimates of the propagator in Appendix H and proceeding as in Appendix I it follows
that, if (4.23) holds and ε̄ is small enough, for h ≥ h∗,

|rhλ | + |rhδ | ≤ Cλ
2
h (νh + γ− 1

2 (h−h∗) + γ κh ), (5.6)

where 0 < κ < 1 is a constant and λh = supk≥h |λk|, νh = supk≥h |νk|.
On the other hand it was proved, following the strategy outlined in [BG], in [BGPS,

GS, BM1] (see also [BeM1] for a simplified proof) that, with the latter definition of λh
and for h∗ ≤ h ≤ 0, the following result holds

5.4. Lemma 4. There exist constants ε0 and η′ > 0, such that, if |ah| ≡ |(δh, λh)| ≤ ε0,
if the label a is a = λ, δ and if h ≤ 0,

|βha,L(ah, . . . , ah)| ≤ Cλ
2
hγ

η′h . (5.7)

The proof of the above statement is based on a Renormalization Group analysis of the
Luttinger model (see for instance [BGM] for the definition of this model). Proceeding
as in §4 one gets an expansion for the correlation functions in terms of running coupling
constants λ(L)h , δ

(L)
h verifying

λ
(L)
h−1 = λ

(L)
h + β̄hλ,L(a

(L)
h , . . . , a

(L)
1 ) ,

δ
(L)
h−1 = δ

(L)
h + β̄hδ,L(a

(L)
h , . . . , a

(L)
1 ) , (5.8)

where β̄hλ,L, β̄
h
λ,L are the same as the ones in (5.2) up toO((λ

(L)

h )2γ η
′h) terms for a suit-

able η′ > 0. The proof of (5.7) is done by comparing the expression for the correlation
functions obtained by the exact solution in [ML] with their expression as series in terms
of running coupling constants, see [BGPS, GS, BM1] and [BeM1].

Hence by (5.6), (5.7) and some properties of the functions βhi (ah, νh; ...; a1, ν1) in
(5.1) the above proposition on the flow follows, see Appendix L.

5.5. The propagator corresponding to the integration of all the scales between h∗ and
hM ,

g
(≤h∗)
ω,ω′ (x − y)

Zh∗−1
≡
∫
PZh∗−1,mh∗−1,Ch∗ (dψ

(≤h∗))ψ(≤h
∗)−

x,ω ψ
(≤h∗)+
y,ω′ , (5.9)

obeys the same bound as the propagator of the integration of a single scale greater than
h∗, see (7.67) in Appendix H ; this property can used to perform the integration of all
the scales ≤ h∗ in a single step. We define

e−M
2Ẽ≤h∗ =

∫
PZh∗−1,mh∗−1,Ch∗ (dψ

(≤h∗)) e−V̂(h∗)(
√
Zh∗−1ψ

(≤h∗)) , (5.10)

and in Appendix I it is proved that:
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5.6. Suppose that εh∗ < ε, then if ε is small enough and (4.23) holds with h = h∗ − 1,
then

|Ẽ≤h∗ | ≤ γ 2h∗
c0 εh. (5.11)

Then by the statements in §4.5, §5.2, §5.6 for λ small enough and ν suitably chosen
we get a convergent expansion for the free energy

− 1

M2 log Ẑ−
2I =

1∑

h=h∗+1

[Ẽh + th] + Ẽ≤h∗ + t≤h∗ . (5.12)

The quantities Ẽh, Ẽ≤h∗ are written by a convergent tree expansion, see Appendix I.
Note that the fact that hM is finite, which is due to the fact that we are considering the
addend with γ (1), γ (2) = −,−,−,− in (2.10), plays essentially no role in the analysis.

Remark. γ h
∗

is a momentum scale and, roughly speaking, for momenta bigger than
γ h

∗
the theory is “essentially” a massless theory (up to O(mhγ−h) terms), while for

momenta smaller than γ h
∗

it is a “massive” theory with mass O(γ h
∗
) which can be

integrated without multiscale decomposition.

6. Correlation Functions and the Specific Heat

6.1. In the preceding sections we have found a convergent expansion for the free energy;
the latter is not interesting per se until we show that the free energy as a function of t− tc
has some singularity at t = tc. In order to show that t = tc is a critical point we can study
some correlation functions or some thermodynamic property like the specific heat by
evaluating them at t �= tc andM = ∞ and then verify that they have a singular behavior
as t → tc. We shall study, for this purpose, the energy-energy correlation function (1.8)
and the specific heat. We start by considering the following expression:

��(x, y) =< [HI,x(σ
(1))+HI,x(σ

(2))][HI,y(σ
(1))+HI,y(σ

(2))] >�,T , (6.1)

whereHI (σ (α)) =∑x HI,x(σ
(1)), andHI (σ (α)) is the Ising model hamiltonian defined

in the first of (1.3). By using (2.9) we get, for x �= y

��(x, y) =
∑

γ1,γ2

(−1)δγ1+δγ2
Z
γ1,γ2
2I

Z2I
�γ1,γ2,�(x − y), (6.2)

where

�γ1,γ2,�(x − y) =
〈{ 2∑

α=1

[
sech2Jr∂tS

α

x,ε(a),ε′(α) − ∂

∂J
(α)
x,x0;x+1,x0

V
∣∣∣{Jr }

− ∂

∂J
(α)
x,x0;x,x0+1

V
∣∣∣{Jr }

]}
;
{ 2∑

α=1

[
sech2Jr∂tS

α

y,ε(a),ε′(α)

− ∂

∂J
(α)
r;y,y0;y+1,y0

V
∣∣∣{Jr }

− ∂

∂J
(α)
y,y0;y,y0+1

V
∣∣∣{Jr }

]}〉T
. (6.3)
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If A1, . . . , An are functions of the field, we are using the symbol < A1; . . . ;An >T to
denote the truncated expectationw.r.t. the fermionic integration 1

Z
γ1,γ2
2I

∫
[
∏2
α=1 P

(α)

ε(α),ε
′(α)

(dH(α), dV (α))]e−V of
∏n
i=1Ai .

Let us consider first the following expression, which gives the dominant large distance
contribution

�̃γ1,γ2,�(x − y) =
〈 2∑

α=1

[
∂tS

α

x,ε(a),ε′(α)
];
[ 2∑

α=1

[
∂tS

α

y,ε(a),ε′(α)

]〉T
. (6.4)

Performing the change of variable (2.12), (2.13) we see that the r.h.s. of (6.4) can be
written as �̃γ1,γ2,�(x −y) = ∂

∂φ(x)
∂

∂φ(y)Sγ1,γ2(φ)|φ=0 where, with the notation of (3.1),

eSγ1,γ2 (φ) =
∫
P(dψ)

∫
P(dχ)eQ(χ,ψ)−V(ψ,χ)e

∑
x φ(x)

[
∂t S

1
x,ε1,ε

′1+∂t S2
x,ε2,ε

′2
]
. (6.5)

This is a new expression similar but not identical to the ones studied to obtain analyticity
of the free energy for t �= tc. We can study (6.5) in a similar way, by adapting the free
energy analysis for the integration of Sγ1,γ2(φ).

Consider S−,−,−,−(φ)
def= S(φ) and �̃−,−,−,−,�(x − y)

def= �̃�(x − y). One can
proceed as in §3 in order to integrate the massive χ fields and finding, for |λ| ≤ ε and
with the notations of (3.1),

eS(φ) = eM
2N
∫
P(dψ)e−V(1)(ψ)+B(φ,ψ), (6.6)

where N is a normalization constant and

B(ψ, φ) =
∞∑

m=1

∞∑

n=1

∑

σ ,α,ω

∑

x1

· · ·
∑

xm

∑

y1

· · ·
∑

y2n

·

· Bm,2n,σ ,α,ω(x1, . . . , xm; y1, . . . , y2n)
[ m∏

i=1

φ(xi )
][ 2n∏

i=1

∂αiψσiyi ,ωi

]
,(6.7)

where for n ≥ 2,
∑

y1,...,y2n

|Bm,2n,σ ,α,ω(x1, . . . , xm; y1, . . . , y2n)| ≤ Cnε
n
2 , (6.8)

and for n = 1
∑

x

iωZ
(1)
1 φ(x)ψ+

x,ωψ
−
x,−ω +

∑

y1,y2

∑

x

∑

{σ,ω}

∑

α1+α2≥1

B1,2,σ ,α,ω(x; y1, y2)φ(x)

× ∂α1ψσ1
y1,ω1

∂α2ψσ2
y2,ω2

+ B̃(φ, ψ), (6.9)

where Z(1)1 is an O(1) constant,
∑

y1,y2
|B1,2,σ ,α,ω(x; y1, y2)| ≤ C and B̃(φ, ψ) con-

tains the terms withm ≥ 2. All kernelsBm,2n,σ ,α,ω andZ(1)1 are analytic in λ, as follows
by proceeding as in Appendix E.

The symmetry considerations in Appendix F apply here as well and imply that the
only possible local terms with n = m = 1 are of the form φ(x)ψ+

x,1ψ
−
x,−1.
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6.2. We shall evaluate the integral, over the light fermions, in the r.h.s. of (6.6) in a
way which is very close to that used for the integration of the r.h.s. of (3.1). We intro-
duce the scale decomposition described in §4 and we perform iteratively the integration
of the single scale fields, starting from the field of scale 1. After integrating the fields
ψ(1), ...ψ(h+1), 0 ≥ h ≥ h∗, we find

eS(φ) = e−M
2Eh+S(h+1)(φ)

∫
PZh,mh,Ch(dψ

≤h)e−V(h)(
√
Zhψ

(≤h))+B(h)(
√
Zhψ

(≤h),φ) ,

(6.10)

where PZh,mh,Ch(dψ
(≤h)) and Vh are given by (4.4), respectively, while S(h+1) (φ),

which denotes the sum over all terms dependent on φ but independent of the ψ field,
and B(h)(ψ(≤h), φ), which denotes the sum over all terms containing at least one φ field
and two ψ fields, can be represented in the form

S(h+1)(φ) =
∞∑

m=1

∑

x1

· · ·
∑

xm

S(h+1)
m (x1, . . . , xm)

[ m∏

i=1

φ(xi )
]
, (6.11)

B(h)(ψ(≤h), φ) =
∞∑

m=1

∞∑

n=1

∑

α,ω

∑

x1

· · ·
∑

xm

∑

y1

· · ·
∑

y2n

·

· B(h)m,2n,σ ,α,ω(x1, . . . , xm; y1, . . . , y2n)·

·
[ m∏

i=1

φ(xi )
][ 2n∏

i=1

∂αiψ(≤h)σiyi ,ωi

]
. (6.12)

Since the field φ is equivalent, from the point of view of dimensional considerations,
to two ψ fields, the only terms in the r.h.s. of (6.12) which are not irrelevant are those
with m = 1 and n = 1, which are marginal. Repeating the symmetry considerations in
Appendix F we can conclude that the only local terms with n = m = 1 and α1 = α2 = 0
have the form φ(x)ψ(≤h)+x,ω ψ

(≤h)−
x,−ω . Hence we extend the definition of the localization

operator L, so that its action on B(h)(ψ(≤h), φ) is defined by its action on the kernels
B
(h)
m,2n,σ ,α,ω(x1, . . . , xm; y1, . . . , y2n):

1) if m = 1, n = 1, α1 = α2 = 0, then

LB(h)1,2,σ ,α,ω(x1; y1, y2) = δ(y1 − x1)δ(y2 − x1)

∫
dz1dz2B

(h)
1,2,σ ,α,ω(x1; z1, z2),

(6.13)

2) in all the other cases,

LB(h)m,2n,σ ,α,ω(x1, ...xm; y1, ..., y2n) = 0 . (6.14)

Hence, by the symmetry reasons discussed in Appendix F,

LB(h)(ψ(≤h), φ) = Z
(1)
h

Zh
F
(≤h)
1 , (6.15)
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where Z(1)h is a real number and

F
(≤h)
1 =

∑

x

φ(x)i[ψ(≤h)+x,1 ψ
(≤h)−
x,−1 − ψ

(≤h)+
x,−1 ψ

(≤h)−
x,1 ] . (6.16)

In the expansion for the energy-energy correlation function there is then a renormal-
ization constant more, namely Z(1)h .

With the notation of §4 we can write the integral in the r.h.s. of (6.10)

e−M
2th

∫
PZ̃h−1,mh−1,Ch

(dψ(≤h))e−Ṽ(h)(
√
Zhψ

(≤h))+B(h)(
√
Zhψ

(≤h),φ)

= e−M
2th

∫
PZh−1,mh−1,Ch−1(dψ

(≤h−1)) ·

·
∫
P
Zh−1,mh−1,f̃

−1
h
(dψ(h))e−V̂(h)(√Zh−1ψ

(≤h))+B̂(h)(√Zh−1ψ
(≤h),φ) , (6.17)

where V̂(h)(
√
Zh−1ψ

(≤h)) is defined as in (4.19) and B̂(h)(
√
Zh−1ψ

(≤h), φ) =
B(h)(

√
Zhψ

(≤h), φ); moreover B(h−1)(
√
Zh−1ψ

(≤h−1), φ) and S(h)(φ) are then defined
through the relation analogue of (4.21), that is

e−V(h−1)(
√
Zh−1ψ

(≤h−1))+B(h−1)(
√
Zh−1ψ

(≤h−1),φ)−M2Ẽh+S̃(h)(φ)

=
∫
P
Zh−1,mh−1,f̃

−1
h
(dψ(h))e−V̂(h)(√Zh−1ψ

(≤h))+B̂(h)(√Zh−1ψ
(≤h),φ) . (6.18)

As in §5.5, the fields of scale between h∗ and hM are integrated in a single step
without any multiscale decomposition. Hence we define, in analogy to (5.10),

eS̃
(h∗)(φ)−M2Ẽh∗ def=

∫
PZh∗−1,mh∗−1,Ch∗ (dψ

(≤h∗))

× e−V̂(h∗)(
√
Zh∗−1ψ

(≤h∗))+B̂(h∗)(
√
Zh∗−1ψ

(≤h∗),φ) . (6.19)

It follows that

S(φ) = −M2EM + S(h
∗)(φ) = −M2EM +

1∑

h=h∗
S̃(h)(φ) ; (6.20)

hence, if S̃(h)2 (x, y) = ∂
∂φ(x)

∂
∂φ(y) S̃

(h)(φ)|φ=0,

�̃�(x, y) = S
(h∗)
2 (x, y) =

1∑

h=h∗
S̃
(h)
2 (x, y) . (6.21)

6.3. It is shown in Appendix M that �̃�(x, y) = �α�(x, y)+�
β
�(x, y), where

�α�(x, y) =
1∑

h,h′=h∗

∑

ω=±1

{ (Z
(1)
h∨h′)2

Zh−1Zh′−1
[g(h)ω,ω(x − y)g(h

′)
−ω,−ω(y − x)−

g
(h)
+1,−1(x − y)g(h

′)
−1,+1(y − x)]

}
+

1∑

h=h∗

(
Z
(1)
h

Zh

)2

G
(h),a
� (x, y), (6.22)
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where h ∨ h′ = max{h, h′} and g(h
∗)

ω1,ω2(x) has to be understood as g(≤h
∗)

ω1,ω2 (x); moreover
for all N > 0 there exists a constant CN such that

|∂m1
x ∂m0

x0
G
(h),α
� (x, y)| ≤ γ (2+m0+m1)h|λ1| CN

1 + (γ h|d(x − y)|)N . (6.23)

For �β�(x, y) the following bound holds:

|∂m1
x ∂m0

x0
�
β
�(x, y)| ≤

1∑

h=h∗

(
Z
(1)
h

Zh

)2

γ (2+m0+m1+τ)h CN

1 + (γ h|d(x − y)|)N , (6.24)

where 0 < τ < 1 is a constant. A similar bound, by dimensional reasons, holds for
sech4�̃�(x, y)−�−,−,−,−,�(x, y). It is shown in Appendix M that

Z
(1)
h−1

Z
(1)
h

= 1 + z
(1)
h = 1 + a1λh +O(µ2

h) , (6.25)

so that there exist two constants c1, c2 such that γ−λ1c1h <
Z
(1)
h

Zh
< γ−λ1c2h. If we define

η = logγ (1 + z[h∗/2]) , (6.26)

with C0Z̃
−1
1 zh = Zh−1

Zh
− 1, we can check that | γ−ηh

Zh
− 1| ≤ Cλ2

1 and, from (5.2),

η = b1λ
2
1 + O(λ3). In a similar way, if we define η̃1 = logγ (1 + z

(1)
[h∗/2]), it holds

|Z
(1)
1 γ−η̃1h

Z
(1)
h

− 1| ≤ C|λ1| and η̃1 = a1λ1 +O(λ2).

Note also that, by reasoning as in Appendix G, for x, y and t − tc fixed

lim
M→∞

[�γ1,γ2,�(x, y)−�−,−,−,−,�(x, y)] = 0. (6.27)

and the limit is reached exponentially fast. Then (6.2) is equal to the limiting value of
�−,−,−,−,�(x, y). In order to prove the first inequality in (1.9), we write, ifm0 +m1 = n

and η1 = η − η̃1,
∣∣∣∣∣∣

1∑

h=h∗

(
Z
(1)
h

Zh

)2

∂m1
x ∂m0

x0
G
(h),α
� (x, 0)

∣∣∣∣∣∣

≤ CN,n

0∑

h=h∗

γ (2+2η1+n)h

[1 + (γ h|d(x)|)N ]
≤ CN,n

|d(x)|2+2η1+nHN,2+2η1+n(|d(x)|), (6.28)

where η1 = η − η̃1,

HN,α(r) =
0∑

h=h∗

(γ hr)α

1 + (γ hr)N
. (6.29)

On the other hand one sees that, if α ≥ 1/2 andN−α ≥ 1, there exists a constantCN,α ,

HN,α(r) ≤ CN,α

1 + (	r)N−α , 	 = γ h
∗
, (6.30)
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and this implies the first inequality in (1.9). Proceeding in the same way by using
(6.24) one can prove the second inequality in (1.9). Moreover by writing the prop-
agators in the first two sums in the r.h.s. of (6.22) as in (7.62), (4.16) and using
(7.63),(7.65),(7.66),(4.16) it follows (1.11).

Finally first note that the specific heat Cλv differs, by trivial dimensional arguments,
from the sum

∑
x �ε,�(x, 0) by terms which are O(λ). By (6.22),(6.23),(6.24) it holds

∑

x

|�a�(x, 0)| ≤ C

1∑

h=h∗

(
Z
(1)
h

Zh

)2

≤ C2

1∑

h=h∗
γ 2η1h ≤ C2

1 − γ 2η1h
∗

2η1
. (6.31)

On the other hand, by (6.22),(6.23),(6.24),
∣∣∣∣∣∣

∑

x

��(x, 0)−
1∑

h,h′=h∗

∑

ω=±1

∑

x

(Z
(1)
h∨h′)2

Zh−1Zh′−1
g
(h)
L,ω,ω(x)g

(h′)
L,−ω,−ω(−x)

∣∣∣∣∣∣

≤ C

1∑

h=h∗

(
Z
(1)
h

Zh

)2 [
|λ| + γ τh + |mh|

γ h

]
, (6.32)

so the first of the two inequalities in (1.12) follows.

Remark. It is interesting to see how the results in [PS, Spe] can be recovered by our
analysis. We can consider the hamiltonian (1.1) with interaction given for instance by

V = −λ
∑

x,x0

2∑

α=1

[σ (α)x,x0
σ
(α)
x+1,x0

σ (α)x,x0
σ
(α)
x+1,x0

+ σ (α)x,x0
σ
(α)
x,x0+1σ

(α)
x,x0

σ
(α)
x,x0+1] (6.33)

describing two independent Ising models with a quartic interaction. We will briefly
explain in Appendix N that all the above analysis can be repeated in such a case and, due
to the special form of (6.33), formulas (1.8)-(1.12) hold with η1 = η2 = 0, i.e. there is
universality.

7. Appendices

7.1. Appendix A: Grassmann integration. Grassmann variablesH
(α)

x , H
(α)
x , V

(α)

x , V
(α)
x ,

x ∈ � are such that all functions of them are polynomials. The Grassmann integra-

tion
∫ ∏

x∈� dH
(α)
x dH

(α)

x of a monomial Q(H(α),H
(α)
) in the variables H(α)

x , H
(α)

x ,

x ∈ �M , is defined to be zero, except in the case Q(H(α),H
(α)
) = ∏x H

(α)
x H

(α)

x , up
to a permutation of the variables. In this case the value of the functional is determined,
by using the anticommuting properties of the variables, by the condition

∫ 


∏

x∈�M
dH

(α)

x dH(α)
x




∏

x∈�M
H(α)

x H
(α)

x = 1 . (7.1)

In a similar way the Grassmann integration forV (α), V
(α)

is defined likewise exchanging
H,H with V, V .
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7.2. Appendix B: Expression of the partition function as a Grassmann integral. If a = 0
or b = 0 we can write Ẑ2I , see (2.8), by making use of (2.9), as in (2.10) with

Ẑ
γ1,γ2
2I = (cosh Jr )

2B22S 1

4

·
∫ 2∏

α=1

[
∏

x∈�M
dH

(α)
x dH

(α)
x dV

(α)
x dV

(α)
x ] e

S
(1)

Jr ;ε(1),ε′(1) e
S
(2)

Jr ;ε(2),ε′(2)

·
∏

x∈�M

[
1 + λ̂a(tanh Jr + sech2JrH

(1)
x,x0

H
(1)
x+1,x0

)(tanh Jr + sech2JrH
(2)
x,x0

H
(2)
x+1,x0

)
]

·
∏

x∈�M

[
1 + λ̂a(tanh Jr + sech2JrV

(1)
x,x0

V
(1)
x,x0+1)(tanh Jr + sech2JrV

(2)
x,x0

V
(2)
x,x0+1)

]

·
∏

x∈�M

[
1 + λ̂b(tanh Jr + sech2JrH

(1)
x,x0

H
(1)
x+1,x0

)(tanh Jr + sech2JrV
(2)
x,x0

V
(2)
x,x0+1)

]

·
∏

x∈�M

[
1 + λ̂b(tanh Jr + sech2JrV

(1)
x,x0

V
(1)
x,x0+1)(tanh Jr + sech2JrH

(2)
x−1,x0+1H

(2)
x,x0+1)

]
.

(7.2)

By writing tanh Jr
def= tanh J + ν(λ), we have e

S
(α)

Jr ;ε,ε′ = e
S
(α)

J ;ε,ε′ e
S
(α),ν

ε,ε′ , where S(α)
J ;ε,ε′ is

given by (2.2) and

S
(α),ν

ε,ε′ = ν
∑

x∈�M
[H

(α)

x,x0
H
(α)
x+1,x0

+ V
(α)

x,x0
V
(α)
x,x0+1] . (7.3)

We can check that Ẑ2I can be written as in (2.11) with

V = Va + Vb −
2∑

α=1

S
(α),ν

ε(α),ε
′(α) , (7.4)

and, if fi = log(1 + λ̂[i] tanh2 Jr) and [i] = a, b

−Va =
∑

x∈�M
[fa + λ̃a[H

(1)
x,x0

H
(1)
x+1,x0

+H
(2)
x,x0

H
(2)
x+1,x0

]

+λaH(1)
x,x0

H
(1)
x+1,x0

H
(2)
x H

(2)
x+1,x0

] +
∑

x∈�M
[fa + λ̃a[V

(1)
x,x0

V
(1)
x,x0+1

+V (2)x,x0
V
(2)
x,x0+1] + λaV

(1)
x V

(1)
x,x0+1V

(2)
x,x0

V
(2)
x,x0+1]

−Vb =
∑

x∈�M
[fb + λ̃b[H

(1)
x,x0

H
(1)
x+1,x0

+ V
(2)
x,x0

V
(2)
x,x0+1] + λbH

(1)
x,x0

H
(1)
x+1,x0

V
(2)
x V

(2)
x,x0+1]

+
∑

x∈�M
[fb + λ̃b[V

(1)
x,x0

V
(1)
x,x0+1 +H

(2)
x−1,x0+1H

(2)
x,x0+1]

+λbV (1)x,x0
V
(1)
x,x0+1H

(2)
x−1,x0+1H

(2)
x,x0+1], (7.5)

where

λ̃i (1 + λ̂[i] tanh2 Jr) = λ̂[i]sech2Jr tanh Jr ,
(1 + λ̂[i] tanh2 Jr)(λi + (̃λi)

2) = λ̂[i]sech4Jr . (7.6)

For small λ it is λ̃i = λ̂[i](tanh Jrsech2Jr +O(λ)), λi = λ̂[i](sech4Jr +O(λ)).
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7.3. Appendix C: Change from Majorana to Dirac Grassmann variables. If S(α)
J ;ε(α),ε′(α)

=∑x S
(α)

x,ε(α),ε′(α)
we get, from the change of variables (2.12),

S
(α)

x,ε(α),ε′(α)
= S

(α,ψ)

x,ε(α),ε′(α)
+ S

(α,χ)

x,ε(α),ε′(α)
+Q

(α)

x,ε(α),ε′(α)
,

where

S
(α,ψ)

x,ε(α),ε′(α)
= t

4
[ψ(α)x (∂1 − i∂0)ψ

(α)
x + ψ

(α)

x (∂1 + i∂0)ψ
(α)

x ] + t

4
[−iψ(α)x (∂1ψ

(α)
x

+∂0ψ
(α)
x )+ iψ(α)x (∂1ψ

(α)

x + ∂0ψ
(α)

x )] + i(
√

2 − 1 − t)ψ
(α)

x ψ(α)x (7.7)

with the definitions

∂1ψ
(α)
x = ψ

(α)
x+1,x0

− ψ(α)x ∂0ψ
(α)
x = ψ

(α)
x,x0+1 − ψ(α)x . (7.8)

Moreover

S
(α,χ)

x,ε(α),ε′(α)
= t

4
[χ(α)x (∂1 − i∂0)χ

(α)
x + χ(α)x (∂1 + i∂0)χ

(α)
x ]

+ t

4
[−iχ(α)x (∂1χ

(α)
x + ∂0χ

(α)
x )

+iχ(α)x (∂1χ
(α)
x + ∂0χ

(α)
x )] − i(

√
2 + 1 + t)χ(α)x χ(α)x , (7.9)

and finally Q(χ,ψ) =∑x[Q(1)
x,−,− +Q

(2)
x,−,−] with

Q
(α)

x,ε(α),ε′(α)
= t

4
{−ψ(α)x (∂1χ

(α)
x + i∂0χ

(α)
x )− ψ

(α)

x (∂1χ
(α)
x − i∂0χ

(α)
x )

−χ(α)x (∂1ψ
(α)
x + i∂0ψ

(α)
x )− χ(α)x (∂1ψ

(α)

x − i∂0ψ
(α)

x )+ iψ
(α)

x (∂1χ
(α)
x

−∂0χ
(α)
x )+ iψ(α)x (−∂1χ

(α)
x + ∂0χ

(α)
x )+ iχ(α)x (∂1ψ

(α)
x − ∂0ψ

(α)
x )

+iχ(α)x (−∂1ψ
(α)

x + ∂0ψ
(α)

x )} . (7.10)

Moreover

H
(α)

x,x0
H
(α)
x+1,x0

+ V
(α)

x,x0
V
(α)
x,x0+1 = ∂tS

α

x,ε(α),ε′(α) (7.11)

so that S(α),ν
εα,ε′α = ν

∑
x∈� ∂tSαx,ε(α),ε′(α) .

Let us define

P
(α)
−,−(dψ) = N −1

ψ [
∏

k∈D−,−

dψ
(α)

k dψ
(α)
k ] exp[

t

4M2

∑

k∈D−‘,−

[ψ(α)k ψ
(α)
−k (i sin k + sin k0

+ψ(α)k ψ
(α)

−k(i sin k − sin k0)− i2mψ(k)ψ
(α)

k ψ
(α)
−k ]], (7.12)

where Nψ is a normalization constant and t
2mψ(k) = (−√

2 + 1 + t) + t
2 (cos k0 +

cos k− 2). Defining in the same way P (α)−,−(dχ), with the only difference thatmχ(k) =
−(√2 + 1 + t)− t

2 (cos k0 + cos k − 2) 2
t

replaces mψ(k), we can rewrite Ẑ−−−−
2I as

Ẑ
−,−,−,−
2I = (cosh Jr)

2B22S 1

4
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∫ [ 2∏

α=1

P
(α)
−,−(dψ)P

(α)
−,−(dχ)

]
eQ(χ,ψ)−V(χ,ψ). (7.13)

We can perform the following change of variables:

ψ−
1,k = 1√

2
(ψ

(1)
k + iψ

(2)
k ), ψ+

1,−k = 1√
2
(ψ

(1)
k − iψ

(2)
k ), (7.14)

ψ−
−1,k = 1√

2
(ψ

(1)
k + iψ

(2)
k ), ψ+

−1,−k = 1√
2
(ψ

(1)
k − iψ

(2)
k )

which in coordinate space is (2.13) if ψσω,x = 1
M

∑
k e

iσkxψσω,k, σ = ±. By this change

of variables P−,−(dψ(1))P−,−(dψ(2)) ≡ P(dψ) and P
(1)
−,−(dχ(1))P

(2)
−,−(dχ(2)) =

P(dχ), where P(dψ), P(dχ) given by (2.16).
In the physical language, the change of variables (2.13) means that one is describing

the system in terms of Dirac fermions instead of in terms of Majorana fermions.

7.4. Appendix D: The interaction in fermionic Grassmann variable. Note that

V
(α)

x,x0
V
(α)
x,x0+1 = Q1(α)

x +Q2(α)
x +Q3(α)

x , (7.15)

where

Q1(α)
x = 1

4i
[ψ(α)x,x0

ψ
(α)
x,x0+1 − ψ

(α)

x,x0
ψ
(α)

x,x0+1 + ψ
(α)

x,x0
ψ
(α)
x,x0+1 − ψ(α)x,x0

ψ
(α)

x,x0+1],

Q2(α)
x = 1

4i
[χ(α)x,x0

χ
(α)
x,x0+1 − χ(α)x,x0

χ
(α)
x,x0+1 + χ(α)x,x0

χ
(α)
x,x0+1 − χ(α)x,x0

χ
(α)
x,x0+1],

(7.16)
Q3(α)

x = 1

4i
[ψ(α)x,x0

χ
(α)
x,x0+1 − ψ

(α)

x,x0
χ
(α)
x,x0+1 − ψ(α)x,x0

χ
(α)
x,x0+1 + ψ

(α)

x,x0
χ
(α)
x,x0+1

+χ(α)x,x0
ψ
(α)
x,x0+1 − χ(α)x,x0

ψ
(α)

x,x0+1 − χ(α)x,x0
ψ
(α)

x,x0+1 + χ(α)x,x0
ψ
(α)
x,x0+1].

A similar expression holds for H
(α)

x,x0
H
(α)
x+1,x0

.
The above expressions can be naturally expressed in terms of (discrete) derivatives

of the fields. In fact by looking for instance to the first of (7.16) one finds

ψ(α)x,x0
ψ
(α)
x,x0+1 − ψ

(α)

x,x0
ψ
(α)

x,x0+1 = ψ(α)x,x0
∂x0ψ

(α)
x,x0

− ψ
(α)

x,x0
∂x0ψ

(α)

x,x0
(7.17)

and

ψ
(α)

x,x0
ψ
(α)
x,x0+1 − ψ(α)x,x0

ψ
(α)

x,x0+1 = −∂x0ψ
(α)

x,x0
∂x0ψ

(α)
x,x0

+ ψ
(α)

x,x0
ψ(α)x,x0

+ ψ
(α)

x,x0+1ψ
(α)
x,x0+1 .

(7.18)

From (7.5) we see that V is the sum of expressions linear or bilinear in H
(α)

x H
(α)
x+1,x0

or

V
(α)

x V
(α)
x,x0+1; moreover the change of variables (2.13) and (2.14) replaces a ψ, χ field

with a ψ±
1 , χ

±
1 field, and a ψ, χ field with a ψ±

−1, χ
±
−1 field; hence we see that V is a

sum of terms of the form (2.19). Analogous considerations hold for Q.
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7.5. Appendix E: The integration of theχ fields. We start from the definition of truncated
expectation:

ETχ (X; n) = ∂n

∂λn
log
∫
P(dχ)eλX(χ)

∣∣∣
λ=0

(7.19)

so that, calling

V(χ, ψ) = −Q(χ,ψ)+ V(χ, ψ) (7.20)

we obtain

M2N (1) − V(1)(ψ) = log
∫
P(dχ)e−V(χ,ψ) =

∞∑

n=0

(−1)n

n!
ETχ (V(., ψ; n)). (7.21)

We label each one of the monomials (whose number will be called C̃0) in V by an index
vi , so that each monomial can be written as

∑

xvi

v(xvi )
∏

f∈P̃vi

∂α(f )ψ
ε(f )

ω(f ),x(f )

∏

f∈Pvi
∂α(f )χ

ε(f )

ω(f ),x(f ), (7.22)

where xvi is the total set of coordinates associated to vi , and Pvi and P̃vi are the set
of indices labeling the χ or ψ-fields; v(xvi ) are short ranged functions (products of
Kronecker deltas, see (7.5)). We can write

V(1)(ψ) =
∑

P̃v0 �=0

V(1)(P̃v0) , (7.23)

V(1)(P̃v0) =
∑

xv0

[ ∏

f∈P̃v0

∂α(f )ψ
ε(f )

ω(f ),x(f )

]
KP̃v0

(xv0) , (7.24)

KP̃v0
(xv0) =

∞∑

n=1

1

n!

∑

v1,..,vn

ETχ [χ̃(Pv1), . . . , χ̃(Pvn)]
n∏

i=1

vi(xvi ) , (7.25)

where χ̃(Pv) = ∏
f∈Pv ∂

α(f )χ
ε(f )

ω(f ),x(f ),
∑
v1,...vn

1 ≤ C̃n0 , P̃v0 = ⋃
i P̃vi and xv0 =

⋃
i xvi . We use now the well known expression for ETχ (see for instance [Le])

ETχ (χ̃(P1), ..., χ̃(Ps)) =
∑

T

∏

l∈T
g
(χ)

ω−,ω+(xl − yl )
∫
dPT (t) detGT (t), (7.26)

where:

a) P is a set of indices, and χ̃(P ) =∏f∈P ∂α(f )χ
ε(f )

x(f ),ω(f ).
b) T is a set of lines forming an anchored tree between the cluster of points P1, .., Ps

i.e. T is a set of lines which becomes a tree if one identifies all the points in the same
clusters.

c) t = {ti,i′ ∈ [0, 1], 1 ≤ i, i′ ≤ s}, dPT (t) is a probability measure with support on a
set of t such that ti,i′ = ui · ui′ for some family of vectors ui ∈ R

s of unit norm.
d) GT (t) is a (n− s + 1)× (n− s + 1)matrix, whose elements are given byGT

ij,i′j ′ =
ti,i′gω−,ω+(xij − yi′j ′) with (f−

ij , f
+
i′j ′) not belonging to T .
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If s = 1 the sum over T is empty, but we can still use the above equation by inter-
preting the r.h.s. as 1 if P1 is empty, and detG(P1) otherwise.

We bound the determinant using the well known Gram-Hadamard inequality, stating
that, if M is a square matrix with elements Mij of the form Mij =< Ai, Bj >, where
Ai , Bj are vectors in a Hilbert space with scalar product < ·, · >, then

| detM| ≤
∏

i

||Ai || · ||Bi ||, (7.27)

where || · || is the norm induced by the scalar product.
Let H = R

s ⊗ H0, where H0 is the Hilbert space of complex four dimensional vec-
tors F(k) = (F1(k), . . . , F4(k)), Fi(k) being a function on the set D−,−, with scalar
product

< F,G >=
4∑

i=1

1

M2

∑

k

F ∗
i (k)Gi(k), (7.28)

and one checks that

GTij,i′j ′ = ti,i′g
(χ)

ω−
l ,ω

+
l

(xij − yi′j ′) =< ui ⊗ Ax(f−
ij ),ω(f

−
ij )
,ui′ ⊗ Bx(f+

i′j ′ ),ω(f
+
i′j ′ )

> ,

(7.29)

where ui ∈ R
s , i = 1, . . . , s, are the vectors such that ti,i′ = ui · ui′ , and (with Q(k)

defined in (2.23))

Ax,ω(k) = eik
′x 1√−Qχ(k)

·
{
(− sin k0 + i sin k, 0,−imχ(k), 0), if ω = +1,
(0, imχ(k), 0,mχ(k)), if ω = −1,

(7.30)

Bx,ω = eik
′y 1√−Qχ(k)

·
{
(1, 1, 0, 0), if ω = +1,
(0, 0, 1, (sin k0 + i sin k)/mχ(k)), if ω = −1.

Hence from (7.27) we immediately find

|GTij,i′j ′ | ≤ Cn1 (7.31)

where C1 is an O(1) constant. Finally we get

∑

xv0

|KP̃v0 (xv0)| ≤
∞∑

n=1

1

n!

∑

v1,..,vn

∑

xv1 ,...,xvn

Cn1

∑

T

[
∏

l∈T
|g(χ)
ω−,ω+(xl − yl )|]

n∏

i=1

|vi(xvi )|,

(7.32)

where we have used that
∫
dPT (t) = 1. The number of addends in

∑
T is bounded

by n!Cn2 . Finally T and the
⋃
i xvi form a tree connecting all points, so that using

that the propagator is massive and that the interactions are short ranged
∑

xv1 ,...xvn∑
T [
∏
l∈T |g(χ)

ω−,ω+(xl − yl )|]
∏n
i=1 |vi(xvi )| ≤ Cn3 |ε|̃nM2, where ñ is the number of

couplings O(ε).
Let us consider the case |P̃v0 | ≥ 4. Note that if to vi are associated only terms

from V(ψ, χ), then ñ = n. Let us consider now the case in which there are end-points
associated to Q(ψ, χ), which have O(1) coupling; there are at most |P̃v0 | end-points
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associated with Q(ψ, χ). In fact in Q(ψ, χ) there are only terms of the form ψχ , so
at most the number of them is equal to the number of ψ fields. If we call nλ ≤ ñ the
number of vertices quartic in the fields it is clear that nλ ≥ |P̃v0 |/2−1 ≥ |P̃v0 |/4; hence

∑

xv0

|KP̃v0 (xv0)| ≤ M2
∞∑

ñ=|P̃v0 |/4
Cñ+|P̃v0 ||ε|̃n (7.33)

and the second of (3.2) holds for |P̃v0 | ≥ 4.
Consider now the case |P̃v0 | = 2; in this case there are terms O(1), obtained when

all the vi are associated with elements of Q(ψ, χ). It is convenient to include all such
terms in the gaussian integration, as they cannot be considered as perturbations (they
are not O(ε)). Hence we define

N
∫
P(dψ) =

∫
P(dψ)

∫
P(dχ)eQ(ψ,χ) (7.34)

and, if<X>0=
∫
P(dψ)X, it holds<ψ−

x,1ψ
+
y,1>0=<ψ(1)x ψ

(1)
y >0,<ψ−

x,−1ψ
+
y,−1>0

=< ψ
(1)
x ψ

(1)
y >0 and < ψ−

x,1ψ
+
y,−1 >0=< ψ

(1)
x ψ

(1)
y >0. By using the explicit expres-

sions for < ψ
(1)
x ψ

(1)
y >0, < ψ

(1)
x ψ

(1)
y >0, < ψ

(1)
x ψ

(1)
y >0 in [MPW], (3.5) follows.

In order to obtain (3.3) we single out the local part of the terms quartic in the fields;
the fact that l1 = 2λ(a+ b)sech4J +O(ε2) can be checked by an explicit computation
of all the contributions with couplingO(λ) toW2, noting that they can only be obtained
contracting a term quartic in the χ fields with one of the addends of (7.10); each of such
terms carries a derivative in the coordinate space, hence the Fourier transform of such
terms is vanishing at zero momentum.

7.6. Appendix F: Symmetry cancellations in the effective potential.

• There are no local terms in the r.h.s. of (3.2) of the form ψ+
x,1ψ

−
x,1; in fact by (2.13)

ψ+
x,1ψ

−
x,1 = iψ

(1)
x ψ

(2)
x , but the system is invariant under the transformation

ψ(1), ψ
(1)
, χ(1), χ(1) → −ψ(1),−ψ(1),−χ(1),−χ(1)

ψ(2), ψ
(2)
, χ(2), χ(2) → ψ(2), ψ

(2)
, χ(2), χ(2), (7.35)

hence such terms cannot be present as they violate such symmetry.
• There are no terms in the r.h.s. of (3.2) of the form ψ−

1,xψ
−
−1,y or ψ+

1,xψ
+
−1,y; in fact,

ψ−
1,xψ

−
−1,y = 1

2
[ψ(1)x ψ

(1)
y − ψ(2)x ψ

(2)
y + iψ(1)x ψ

(2)
y + iψ(2)x ψ

(1)
y ] (7.36)

and the last two terms violate the symmetry (7.35). Moreover the first two terms are
forbidden
a) in the case b = 0 by the invariance under the symmetry

ψ(1)x,x0
, χ(1)x,x0

, ψ(2)x,x0
, χ(2)x,x0

→ ψ(2)x,x0
, χ(2)x,x0

, ψ(1)x,x0
, χ(1)x,x0

; (7.37)

b) in the case a = 0 by the invariance under the symmetry

ψ(1)x,x0
, χ(1)x,x0

, ψ(2)x,x0
, χ(2)x,x0

→ ψ(2)x,x0
, χ(2)x,x0

, ψ
(1)
x+1,x0−1, χ

(1)
x+1,x0−1 . (7.38)
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In fact consider in V(1) (3.1) the terms of the form
∑

x,y[ψ(1)x ψ̄
(1)
y w(1)(x, y) +

ψ
(2)
x ψ̄

(2)
y w(2)(x, y)]; w(1)(x, y) is obtained by the truncated expectation ETχ of a certain

number of (V +Q)|ψ=0, of a term ∂

∂ψ
(1)
x
(V +Q)|ψ=0 and of a term ∂

∂ψ̄
(1)
y
(V +Q)|ψ=0.

If we perform in the truncated expectation the change of variable (7.37) or (7.38)we get
that (V +Q)|ψ=0 is invariant while ∂

∂ψ
(1)
x
(V +Q)ψ=0 is changed in ∂

∂ψ
(2)
x
(V +Q)ψ=0

and ∂

∂ψ̄
(1)
y
(V + Q)ψ=0 is changed in ∂

∂ψ̄
(2)
y
(V + Q)ψ=0; this shows that w(1)(x, y) =

w(2)(x, y).
A similar argument can be repeated for ψ+

1,xψ
+
−1,y.

• There are no terms in the r.h.s. of (3.2) of the form ψω,xψω,y or ψ+
ω,xψ

+
ω,y; in fact,

ψ−
1,xψ

−
1,x′ = 1

2

[
ψ(1)x ψ(1)y − ψ(2)x ψ(2)y + iψ(1)x ψ(2)y + iψ(2)x ψ(1)y

]
(7.39)

and we can proceed as in the previous case.
• The model is invariant under complex conjugation and the exchange

ψ(α)x , ψ
(α)

x → ψ
(α)

x , ψ(α)x χ(α)x , χ(α)x → χ(α)x , χ(α)x ; (7.40)

this follows from the fact that, from (2.12), H
(α)
,H (α), V

(α)
, V (α), written in terms

of ψ
(α)
, ψ(α),

χ(α), χ(α), are invariant under such transformation. Hence the coefficient of the lo-
cal part of the quartic (non-vanishing) terms is real; in fact ψ+

1,xψ1,xψ
+
−1,xψ−1,x ≡

ψ
(1)
x ψ

(1)
x ψ

(2)
x ψ

(2)
x times ŵ(0, 0, 0) must be equal, by the above invariance, to

ŵ∗(0, 0, 0)ψ
(1)
x ψ

(1)
x ψ

(2)
x ψ

(2)
x , hence ŵ(0, 0, 0) = ŵ∗(0, 0, 0). Finally the combi-

nation of local terms ψ+
x,1ψ

−
x,−1 +ψ+

x,−1ψ
−
x,1 is equal to i[ψ(1)x ψ

(2)
x −ψ(2)x ψ

(1)
x ] so it

cannot be present as it violates the symmetry (7.35). On the other hand ψ+
x,1ψ

−
x,−1 −

ψ+
x,−1ψ

−
x,1 is equal to [ψ(1)x ψ

(1)
x + ψ

(2)
x ψ

(2)
x ]; hence the coefficient of the local part

is imaginary and odd in ω; in fact ŵ(0)[ψ(1)x ψ
(1)
x + ψ

(2)
x ψ

(2)
x ] must be equal to

ŵ∗(0)[ψ(1)x ψ
(1)
x +ψ(2)x ψ

(2)
x ], by the invariance under complex conjugation and (7.40),

hence ŵ(0) = −ŵ∗(0).
• We consider now the addends with n = 1 in the r.h.s. of (3.2),

∑

x,y

Wω1,ω2(x, y)ψ+
x,ω1

ψ−
y,ω2

. (7.41)

We can represent Wω1,ω2(x, y) as the sum over Feynman graphs g in the usual way
(see for instance [GM]); the external lines are associated to the ψ fields, and to
the internal lines are associated the propagators gχ

ω,ω′(x − y); moreover the vertices

associated to the interaction are linear or bilinear in Ac,ε1,ε2
x;φ,ω1;φ′,ω2

.

We show that
∑

x

sin
πx

M
Wω,−ω(x, 0) =

∑

x

sin
πx0

M
Wω,−ω(x, 0) = 0 . (7.42)

We can consider a single Feynman diagram value Ŵ g
ω,−ω(x, 0) and we call
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1) nωa is the number in g of terms Aε1,ε2
x;φ,ω1;φ′,ω2

with ω1 = ω2 = ω; n1
a + n−1

a = na .

2) nb is the number of Aε1,ε2
x;φ,ω1;φ′,ω2

with ω1 = −ω2 = ω.

3) nω+ is the number of diagonal propagators g(χ)ω,ω.

4) n− is the number of non diagonal propagators g(χ)ω,−ω.

If we make the transformation xi → −xi in all the sums in
∑

x W
g
ω,−ω(x, 0) sin πx

M

and we use (2.27), then in each Feynman graph each propagator g(χ)
ω,ω′(x) is replaced

by (−1)δω,ω′g(χ)
ω,ω′(x). Moreover the propagators ∂g(χ)

ω,ω′(x) are replaced by (−1)δω,ω′+1

∂̃g
(χ)

ω,ω′(x), where ∂̃x0fx,x0 = fx,x0 − fx,x0−1 and ∂̃xfx,x0 = fx,x0 − fx−1,x0 ; finally

g
(χ)

ω,ω′(x + a) is replaced by (−1)δω,ω′g(χ)
ω,ω′(x − a), if a is a constant vector.

On the other hand we could equivalently write the interaction (1.3) as

V (σ (1), σ (2)) = −
M∑

x,x0=1

λa[σ (1)x−1,x0
σ (1)x,x0

σ
(2)
x−1,x0

σ (2)x,x0
+ σ

(1)
x,x0−1σ

(1)
x,x0

σ
(2)
x,x0−1σ

(2)
x,x0

]

+λb[σ (1)x−1,x0
σ (1)x,x0

σ
(2)
x,x0−1σ

(2)
x,x0

+σ (1)x,x0−1σ
(1)
x,x0

σ
(2)
x,x0−1σ

(2)
x+1,x0−1]} ; (7.43)

Equation (7.43) can be found from (1.3) making the change of variables x → −x,
and then making the transformation σ (α)x → σ

(α)
−x . Starting from this expression and

repeating the computations in §2, §3 we get an expression similar to (2.11), where V is

now an expression linear or bilinear in H
(α)

x−1,x0
H
(α)
x,x0 or V

(α)

x,x0−1V
(α)
x,x0 .

From (2.12) it holds

V
(α)

x,x0−1V
(α)
x,x0

= Q̃1(α)
x + Q̃2(α)

x + Q̃3(α)
x , (7.44)

where

Q̃1(α)
x = 1

4i
[ψ(α)x,x0−1ψ

(α)
x,x0

− ψ
(α)

x,x0−1ψ
(α)

x,x0
+ ψ

(α)

x,x0−1ψ
(α)
x,x0

− ψ
(α)
x,x0−1ψ

(α)

x,x0
],

Q̃2(α)
x = 1

4i
[χ(α)x,x0−1χ

(α)
x,x0

− χ
(α)
x,x0−1χ

(α)
x,x0

+ χ
(α)
x,x0−1χ

(α)
x,x0

− χ
(α)
x,x0−1χ

(α)
x,x0

],

(7.45)
Q̃3(α)

x = 1

4i
[ψ(α)x,x0−1χ

(α)
x,x0

− ψ
(α)

x,x0−1χ
(α)
x,x0

− ψ
(α)
x,x0−1χ

(α)
x,x0

+ ψ
(α)

x,x0−1χ
(α)
x,x0

+χ(α)x,x0−1ψ
(α)
x,x0

− χ
(α)
x,x0−1ψ

(α)

x,x0
− χ

(α)
x,x0−1ψ

(α)

x,x0
+ χ

(α)
x,x0−1ψ

(α)
x,x0

].

A similar expression hold for H
(α)

x−1,x0
H
(α)
x,x0 . Note that, looking for instance to the first

of (7.45), we get

ψ
(α)
x,x0−1ψ

(α)
x,x0

− ψ
(α)

x,x0−1ψ
(α)

x,x0
= ψ(α)x,x0

∂̃x0ψ
(α)
x,x0

− ψ
(α)

x,x0
∂̃x0ψ

(α)

x,x0
(7.46)

and

ψ
(α)

x,x0−1ψ
(α)
x,x0

− ψ
(α)
x,x0−1ψ

(α)

x,x0
= −∂̃x0ψ

(α)

x,x0
∂̃x0ψ

(α)
x,x0

+ ψ
(α)

x,x0
ψ(α)x,x0

+ψ(α)x,x0−1ψ
(α)
x,x0−1 . (7.47)
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One verifies that V is a sum of the form
∑

x Ã
σ1,σ2
x;φ,ω1;φ′,ω2

or
∑

x Ã
σ1,σ2
x;φ,ω1;φ′,ω2

Ã
σ ′

1,σ
′
2

x′;φ′′,ω′
1;φ′′′,ω′

2
where x′ = x or x′ = (x + 1, x0 − 1) and Ãσ1,σ2

x;φ,ω1;φ′,ω2
is identical

to Aσ1,σ2
x;φ,ω1;φ′,ω2

up to the substitutions ∂ → ∂̃ , x + 1 → x − 1 and x0 + 1 → x0 − 1.
Hence it holds

∑

x

sin
πx

M
Wω,−ω(x, 0) = (−1)na+n++1

∑

x

sin
πx

M
Wω,−ω(x, 0) . (7.48)

It holds 2na + 2nb = 2(n+ + n−)+ 2 so that

∑

x

sin
πx

M
Wω,−ω(x, 0) = (−1)2na+nb−n−

∑

x

sin
πx

M
Wω,−ω(x, 0)

= (−1)nb−n−
∑

x

sin
πx

M
Wω,−ω(x, 0). (7.49)

The number of fields with ω = 1 is 2n1
a + nb and the number of external fields with

ω = 1 is then 2n1
a + nb − 2n1+ − n− = 2(n1

a − n1+) + nb − n− which implies that
nb − n− must be an odd number if the number of external fields with ω = 1 is 1. Hence∑

x sin πx
M
Wω,−ω(x, 0)=(−1)

∑
x sin πx

M
Wω,−ω(x, 0) so that

∑
x sin πx

M
Wω,−ω(x, 0)=

0.
We consider now Wω,ω(x; 0); we have already proved that

∑
x Wω,ω(x; 0) = 0. We

want to show that

∑

x

sin πx0

M
Wω,ω(x; 0) = iωα;

∑

x

sin πx

M
Wω,ω(x; 0) = β

with α, β real. From (2.23) we see that gω,−ω(x) is even in the exchange x → −x and
imaginary. Moreover we can write

ĝω,ω(k) = −i sin k

sin2 k + sin2 k0 +m2
χ

+ ω sin k0

sin2 k + sin2 k0 +m2
χ

= ĝ1
ω,ω(k)+ ĝ2

ω,ω(k)

(7.50)

with g1
ω,ω(x) real, odd in the exchange x → −x and even in x0 → −x0; g2

ω,ω(x) is
imaginary, even in the exchange x → −x and odd in x0 → −x0. Remember that (see
§2.4) the coefficient of Aσ1,σ2

x;φ,ω1;φ′,ω2
is a) imaginary if ω1 = ω2 and α = 1, ∂xα = ∂x0 ;

b) real if ω1 = ω2 and α = 2, ∂xα = ∂x ; c)imaginary if ω1 = −ω2. Given a Feynman
diagram g contributing to i

∑
x sin πx

M
Wω,ω, by parity it must be present a total odd num-

ber ofg1
ω,ω(x)propagators and ∂x derivatives from the interaction. Moreover by parity the

number of g2
ω,ω(x) and ∂x0 from the interaction must be even. Finally as the external lines

have the sameω index, the sum of the number of non diagonal propagators gω,−ω(x) plus
the number of Aσ1,σ2

x;φ,ω1;φ′,ω2
with ω1 = −ω2 must be even. Hence

∑
x

sin πx
M

Wω,ω(x; 0)

is real and ω-independent. In the same way one sees that
∑

x
sin πx0
M

Wω,ω(x; 0) = iωα.
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7.7. Appendix G: Independence from boundary conditions. We show that, if |t−tc| > 0,

Z̃
ε(1),ε(2),ε(3),ε(4)
2I = Z

ε(1),ε(2),ε(3),ε(4)
2I (Z

ε(1),ε(2),ε(3),ε(4)
0,2I )−1, (7.51)

where Zε(1),ε(2),ε(3),ε(4)0,2I is given by (7.2) with λ = 0, is exponentially insensitive to
boundary conditions. In particular we show that for |t − tc| > 0, λ small enough

∣∣∣∣∣log
Z̃
γ (1),γ (2)
2I

Z̃
−,−,−,−
2I

∣∣∣∣∣ ≤ |λ|M2e−c1|t−tc|M , (7.52)

where c1 > 0 is a suitable constant.
The above equation implies in particular that the partition function is non-vanishing;

in fact, from (2.10) Z2I is (cosh λa cosh λb)2S times
∑

ε

(−1)δγ1+δγ2 Z̃
ε(1),ε(2),ε(3),ε(4)
2I Z

ε(1),ε(2),ε(3),ε(4)
0,2I

= Z̃
−,−,−,−
2I Z0,2I + Z̃

−,−,−,−
2I

∑

ε

(−1)δγ1+δγ2

[
Z̃
ε(1),ε(2),ε(3),ε(4)
2I

Z̃
−,−,−,−
2I

− 1

]

× Z
ε(1),ε(2),ε(3),ε(4)
0,2I , (7.53)

whereZ0,2I = Z2
I andZI =∑ε(1),ε(2)(−1)δε(1),ε(2)Zε(1),ε(2)I is the Ising model partition

function.
We recall that in §4 of [MW] it was proved that the limit M → ∞ of |Zε(1),ε(2)I |

if |t − tc| > 0 is exponentially independent from boundary conditions; moreover if
t − tc < 0 for any choice of ε1, ε2 the functions Zε(1),ε(2)I have a positive limit, while if
t − tc > 0 the limit of Z+,+

I is negative, and for the other choices the limit is a positive
number.

Hence by (7.52) the second addend in (7.53) is bounded by C|Z̃−,−,−,−
2I Z0,2I ||λ|M2

e−c1|t−tc|M so (7.53) is non-vanishing.
In order to prove (7.52) we can write, see (7.12) and (7.20),

log Z̃ε(1),ε
′(1),ε(2),ε′(2)

2I =
∫ [ 2∏

α=1

P
(α)

ε
(α)
α ,ε

′(α)
α

(dψ(α))P
(α)

ε
(α)
α ,ε

′(α)
α

(dχ(α))

]
eQ−V , (7.54)

and proceeding as in §3 we see that logZε(1),ε
′(1),ε(2),ε′(2)

2I can be written as in (5.12).
The terms Ẽh are the sum of addends of the form

∑
x1,..,xn Wε(x1, .., xn), with xi varying

in [−M
2 ,

M
2 ] × [−M

2 ,
M
2 ] and theW are truncated expectations for which a formula like

(7.26) holds. Note thatW(x1, .., xn) is periodic with periodM in any of its coordinates,
for any ε; this follows from the fact that there is an even number ofψ, χ fields associated
to any xi , and from the form of V . Moreover W(x1, .., xn) is translation invariant, so
that we can fix one variable to (0, 0), for instance x1; hence it holds

∑

x1,..,xn

Wε(x1, .., xn) =
∑

x1,..,xn

Wε(0, x2.., xn) . (7.55)

We can write
∑

x1,..,xn W as
∑∗

x1,..,xn W+∑∗∗
x1,..,xn W , where

∑∗
x1,..,xn is over xi varying

in [−M
4 ,

M
4 ] × [−M

4 ,
M
4 ]. Then

∑∗∗
x1,..,xn W is O(e−c1|t−tc|M)), as in W there is surely
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a chain of propagators exponentially decaying connecting the point (0, 0) with a point
outside [−M

4 ,
M
4 ] × [−M

4 ,
M
4 ]. On the other hand in

∑∗
x1,..,xn W we can use the Poisson

summation formula, stating that

1

M

M−1∑

n=0

f

(
n2π

M
+ απ

M

)
=
∑

n∈Z
f̂ (nM)(−1)αn, (7.56)

where f is a 2π -periodic function and α = (0, 1). From (7.56) we find, if g(i)
�,ε,ε′(x, x0),

i = ψ, χ is the propagator corresponding to Pε,ε′(dψ) or Pε,ε′(dχ) (7.12),

g
(i)

�,ε,ε′(x − y, x0 − y0) =
∑

n,n0∈Z
(−1)nδε (−1)nδε′g(i)(x − y + nM, x0 − y0 + n0M)

≡ g(i)(x − y, x0 − y0)+ δg
′(i)
ε,ε′(x − y, x0 − y0), (7.57)

where g(i)(x, x0) = limM→∞ g
(i)

�,ε,ε′(x, x0) and δε = 1 if ε = − and δε = 0 if
ε = +. Note that the only dependence on boundary conditions in the r.h.s. of (7.57) is
in δg(i)

ε,ε′(x − y, x0 − y0) and it holds, if |x − y| ≤ M
2 , |x0 − y0| ≤ M

2 ,

|δg(i)(x − y, x0 − y0)| ≤ e−c2|mi |M , (7.58)

with a proper constant c2. Hence all the terms in
∑∗

x1,..,xn W with at least a δg(i)(x −
y, x0 − y0) are exponentially bounded, and the part with only g(i)(x − y, x0 − y0) is
independent from boundary conditions. By (7.56) it holds that also the terms th are
exponentially insensitive to boundary conditions.

7.8. Appendix H:Asymptotic properties of the propagators on scale h. If |Z̃−1
1 C0zh| ≤

1
2 , |C0sh| ≤ |mh/2| and supk≥h | Zk

Zk−1
| ≤ e|λ|, for λ, t − tc small enough, given the

positive integers N, n0, n1 and if n = n0 + n1, it holds

|∂n0
x0
∂n1
x g

(h)
ω,ω(x − y)| ≤ CN,n

γ h(1+n)

1 + (γ h|d(x − y)|)N , (7.59)

|∂n0
x0
∂n1
x g

(h)
ω,−ω(x − y)| ≤ CN,n|mh

γ h
| γ h(1+n)

1 + (γ h|d(x − y)|)N , (7.60)

where ∂x denotes the discrete derivative. This follows immediately from the compact
support properties of f̃h(k) and the fact that

dM(x − y)n1dM(x0 − y0)
n0g

(h)

ω,ω′(x − y)

= e−iπ(xM
−1n1+x0M

−1n0)(−i)n0+n1
1

M2

∑

k

e−ik(x−y)∂
n1
k ∂

n0
k0

×
[
f̃h(k)[T

−1
h (k)]ω,ω′

]
, (7.61)

where Th is the quadratic form associated to PZh−1,mh−1,Ch(dψ).
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It will be useful to write

g(h)ω,ω(x − y) = g
(h)
L;ω,ω(x − y)+ ĝ(h)ω,ω(x − y)+ g̃(h)ω,ω(x − y) (7.62)

with

g
(h)
L;ω,ω(x − y) = 1

M2

∑

k

e−ik(x−y) f̃h(k)

−Z̃1ωk0 + iZ̃1k
, (7.63)

which is of course obeying the bound (7.59). The decomposition (7.62) is related to the
following identity:

[T −1
h (k′)]ω,ω = 1

−ωk0 + ik
+
[

1

−ω sin k0 + i sin k
− 1

−ωk0 + ik

]

+
[

−ω sin k0 + i sin k

sin2 k2
0 + sin2 k + [mh−1(k)]2

− 1

−ω sin k0 + i sin k

]
. (7.64)

From (7.64) one shows that

|∂n0
x0
∂n1
x g̃

(h)
ω,ω(x − y)| ≤ CN,n

γ (2+n)h

1 + (γ h|d(x − y))|N , (7.65)

|∂n0
x0
∂n1
x ĝ

(h)
ω,ω(x − y)| ≤ CN,n|mh

γ h
|2 γ h(1+n)

1 + (γ h|d(x − y)|)N . (7.66)

Analogously the decomposition (4.16) is such that ĝ(h)ω,−ω(x − y) verifies (7.60) and

g̃
(h)
ω,−ω(x − y), verifying (7.65).

Finally note that, with the definition (5.9), it holds, given the positive integers
N, n0, n1 and putting n = n0 + n1, that there exists a constant CN,n such that

|∂n0
x0
∂n1
x g

(≤h∗)
ω,ω′ (x; y)| ≤ CN,n

γ h
∗(1+n)

1 + (γ h
∗ |d(x − y)|)N . (7.67)

7.9. Appendix I: The integration of the ψ fields. It is possible to write V(h) in terms of
Gallavotti-Nicolo trees

We need some definitions and notations.

1) Let us consider the family of all trees which can be constructed by joining a point
r , the root, with an ordered set of n ≥ 1 points, the endpoints of the unlabeled tree,
so that r is not a branching point. n will be called the order of the unlabeled tree
and the branching points will be called the non trivial vertices. The unlabeled trees
are partially ordered from the root to the endpoints in the natural way; we shall use
the symbol < to denote the partial order. Two unlabeled trees are identified if they
can be superposed by a suitable continuous deformation, so that the endpoints with
the same index coincide. Then the number of unlabeled trees with n end-points is
bounded by 4n. We shall consider also the labeled trees (to be called simply trees in
the following); they are defined by associating some labels with the unlabeled trees,
as explained in the following items.
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Fig. 3. A tree with its scale labels

2) We associate a label h ≤ 0 with the root and we denote Th,n the corresponding set
of labeled trees with n endpoints. Moreover, we introduce a family of vertical lines,
labeled by an integer taking values in [h, 2], and we represent any tree τ ∈ Th,n so
that, if v is an endpoint or a non trivial vertex, it is contained in a vertical line with
index hv > h, to be called the scale of v, while the root is on the line with index
h. There is the constraint that, if v is an endpoint, hv > h + 1; if there is only one
end-point its scale must be equal to h+ 2, for h ≤ 0.
The tree will intersect in general the vertical lines in set of points different from the
root, the endpoints and the non trivial vertices; these points will be called trivial ver-
tices. The set of the vertices of τ will be the union of the endpoints, the trivial vertices
and the non trivial vertices. Note that, if v1 and v2 are two vertices and v1 < v2, then
hv1 < hv2 .
Moreover, there is only one vertex immediately following the root, which will be
denoted v0 and can not be an endpoint; its scale is h+ 1.

3) With each endpoint v of scale hv = +2 we associate one of the contributions to V(1)
given by (3.2); with each endpoint v of scale hv ≤ 1 one of the terms in LV(hv−1)

defined in (4.19). Moreover, we impose the constraint that, if v is an endpoint and
hv ≤ 1, hv = hv′ + 1, if v′ is the non trivial vertex immediately preceding v.

4) If v is not an endpoint, the cluster Lv with frequency hv is the set of endpoints fol-
lowing the vertex v; if v is an endpoint, it is itself a (trivial) cluster. The tree provides
an organization of endpoints into a hierarchy of clusters.

5) We introduce a field label f to distinguish the field variables appearing in the terms
associated with the endpoints as in item 3); the set of field labels associated with the
endpoint v will be called Iv . Analogously, if v is not an endpoint, we shall call Iv the
set of field labels associated with the endpoints following the vertex v; x(f ), σ(f )
and ω(f )will denote the space-time point, the σ index and the ω index, respectively,
of the field variable with label f .

6) We associate with any vertex v of the tree a subset Pv of Iv , the external fields of v.
These subsets must satisfy various constraints. First of all, if v is not an endpoint
and v1, . . . , vsv are the sv vertices immediately following it, then Pv ⊂ ∪iPvi ; if v
is an endpoint, Pv = Iv . We shall denote Qvi the intersection of Pv and Pvi ; this
definition implies thatPv = ∪iQvi . The subsetsPvi\Qvi , whose union will be made,
by definition, of the internal fields of v, have to be non empty, if sv > 1, that is if v
is a non-trivial vertex.
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Given τ ∈ Tj,n, there are many possible choices of the subsets Pv , v ∈ τ , compatible
with the previous constraints; let us call P one of these choices. Given P, we consider the
family GP of all connected Feynman graphs, such that, for any v ∈ τ , the internal fields
of v are paired by propagators of scale hv , so that the following condition is satisfied: for
any v ∈ τ , the subgraph built by the propagators associated with all vertices v′ ≥ v is
connected. The sets Pv have, in this picture, the role of the external legs of the subgraph
associated with v. The graphs belonging to GP will be called compatible with P and we
shall denote Pτ the family of all choices of P such that GP is not empty.

As explained for instance in §3.2 of [BM] we can write, if h ≤ 0,

V(h)
(√
Zhψ

(≤h)
)

+M2Ẽh+1 =
∞∑

n=1

∑

τ∈Th,n

∑

P∈Pτ

√
Zh

|Pv0 |∑

xv0

ψ̃(≤h)(Pv0)K
(h+1)
τ,P (xv0) ,

(7.68)

where

ψ̃(≤h)(Pv) =
∏

f∈Pv
ψ
(≤h)
x(f ),ω(f ) (7.69)

and K(j+1)
τ,P (xv0) is a suitable function, which is obtained by summing the values of all

the Feynman graphs compatible with P, see item 6) above, and applying iteratively in
the vertices of the tree, different from the endpoints and v0, the R-operation, starting
from the vertices with higher scale.

In order to control, uniformly inM , the various terms in (7.68) one has to exploit the
Gram-Hadamard inequality (see Appendix E) and to take into account the R operation
acting on the vertices of the tree, as explained in full detail in [BM], §3. The result of
this analysis, which applies essentially unchanged in the present case, is the following
bound (see (3.105) of [BM]), if k =∑i αi ,
∑

xv0

|K(h+1)
τ,P (xv0)| ≤ CnM2εnhγ

−hDk(Pv0 ) ·

·
∏

vnot e.p.

{
1

sv!
C
∑sv
i=1 |Pvi |−|Pv |

(
Zhv

Zhv−1

) |Pv |
2

γ−[−2+ |Pv |
2 +z(Pv)]

}
,

(7.70)

with −2 + |Pv |
2 + z(Pv) > 0 and

z(Pv) =






1 if |Pv| = 4,
2 if |Pv| = 2,
0 otherwise.

(7.71)

The above bound admits a simple dimensional interpretation. If we erase the R opera-
tion from all the vertices of the tree, then z(Pv) = 0 and (7.70) allow us to associate a

factor γ 2− |Pv |
2 with any trivial or non-trivial vertex of the tree. This would allow us to

control the sums over the scale labels and Pτ , provided that |Pv| were larger than 4 in
all vertices, which is however not true. The effect of the R operation is to improve the

bound with the factor γ−z(Pv), so that there is a factor γ−[−2+ |Pv |
2 +z(Pv)] smaller than 1

associated with all the vertices.
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In order to perform the sums note that the number of unlabeled trees is ≤ 4n; fix
an unlabeled tree, the number of terms in the sum over the various labels of the tree is
bounded by Cn, except the sums over the scale labels. In order to bound the sums over
the scale labels and P we first use the inequality

∏

vnot e.p.
γ−[−2+ |Pv |

2 +z(Pv)] ≤
[
∏

ṽ

γ−2α(hṽ−hṽ′ )
]


∏

vnot e.p.
γ−2α|Pv |



 , (7.72)

where ṽ are the non-trivial vertices, and ṽ′ is the non trivial vertex immediately preceding
ṽ or the root. The factors γ−2α(hṽ−hṽ′ ) in the r.h.s. of (7.72) allow us to bound the sums
over the scale labels by Cn; α is a suitable constant (one finds α = 1

40 ).
Finally the sum over P can be bounded by using the following combinatorial inequal-

ity, trivial forγ large enough. Let {pv, v ∈ τ }be a set of integers such thatpv ≤∑sv
i=1 pvi

for all v ∈ τ which are not endpoints; then
∏

vnot e.p.

∑

pv

γ− pv
40 ≤ Cn . (7.73)

It follows that
∑

P
|Pv0 |=2m

∏

vnot e.p.
γ− |Pv |

40 ≤
∏

vnot e.p.

∑

pv

γ− pv
40 ≤ Cn . (7.74)

7.10. Appendix L: The flow of running coupling constants. Choice of the counterterm ν.
Let us call µh = supk≥h max{|λk|, |δk|}. Let us consider the first of Eqs. (5.1) for fixed
values of ah, Zh−1 and mh−1(k), h̃ ≤ h ≤ 1, if h̃ is a negative integer, satisfying the
conditions

µh ≤ ε1 ≤ ε0 , a0γ
h−1 ≥ 4|mh|, (7.75)

γ−c0µh ≤ mh−1

mh
≤ γ+c0µh , γ−c0µ

2
h ≤ Zh−1

Zh
≤ γ+c0µ

2
h (7.76)

for some constant c0.
We prove that, if ε̄0 is small enough, there exist some constants ε̄1, κ , γ ′, c1, B, and

a family of intervals I (h̄), h̃ ≤ h̄ ≤ 0, such that ε̄1 ≤ ε̄0, 0 < κ < 1, 1 < γ ′ < γ ,
I (h̄) ⊂ I (h̄+1), |I (h̄)| ≤ c1ε̄1(γ

′)h̄ and, if ν = ν1 ∈ I (h̄),

|νh| ≤ Bε̄1[γ− 1
2 (h−h̄) + γ κh] ≤ ε̄0 , h̄ ≤ h ≤ 1. (7.77)

In order to show this, note that if |νh| ≤ ε0 for h̄ ≤ h ≤ 1 and ε0 is small enough, the
r.h.s. of the first of (5.1) is well defined for h = h̄ and we can write

νh̄−1 = γ νh̄ + bh̄ + rh̄ , (7.78)

where bh̄ = cν
h̄−1

γ h̄−1λh̄ and rh̄ collects all terms of second or higher order in ε0. In the

tree expansion of βhν , there is no contribution from the trees with n ≥ 2 endpoints, which
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are only of type ν or δ, because of the support properties of the single scale propagators;
hence by (7.75) |rh̄| ≤ c2µh̄ε0. Let us now fix a positive constant c, consider the intervals

J (h) =
[
− bh

γ − 1
− cε1,− bh

γ − 1
+ cε1

]
. (7.79)

By using (7.78) one can show by an inductive argument (see for instance §4.3 of [BM])
that there exists a decreasing family of intervals I (h̄), h̃ ≤ h̄ ≤ 0, such that, if ν = ν1 ∈
I (h̄), then the sequence νh is well defined for h ≥ h̄ and satisfies the bound |νh| ≤ ε0.

In order to prove the bound (7.77) we note that, if we iterate the first of (5.1), we can
write, if h̄ ≤ h ≤ 0 and ν1 ∈ I (h̄),

νh = γ−h+1

[
ν1 +

1∑

k=h+1

γ k−2βkν (νk, . . . , ν1)

]
, (7.80)

where now the functions βkν are thought of as functions of νk, . . . , ν1 only.
If we put h = h̄ in (7.80), we get the following identity:

ν1 = −
1∑

k=h̄+1

γ k−2βkν (νk, . . . , ν1)+ γ h̄−1νh̄ . (7.81)

Equations (7.80) and (7.81) are equivalent to

νh = −γ−h
h∑

k=h̄+1

γ k−1βkν (νk, . . . , ν1)+ γ−(h−h̄)νh̄ , h̄ < h ≤ 1 . (7.82)

By construction, see §4.4, βνk is given by the sum over trees with at least an end-point
νk , k ≥ h or at least a propagator g̃ω,−ω, see (4.16), or at least with an end-point at scale
2 to which is associated one of the terms in RV(1). Hence, we can write

βhν = µh

1∑

k=h
νkβ̃

ν
h,kγ

−2κ(k−h) + γ κhµhR
ν
h , (7.83)

where |Rνh|, |β̃νh,k| ≤ C and κ is a constant. The second term in (7.83) comes from the
trees with at least a propagator g̃ω,−ω or with an end-point at scale 2, and the first term
from the trees with at least a νk end-point. The factor γ−2κ(k−h) in the r.h.s. of (7.83)
follows from the simple remark that the bound over all the trees contributing to νh, which
have at least one endpoint of fixed scale k > h, can be improved by a factor γ−η′(k−h),
with η′ positive but small enough. It is sufficient to use (7.72), which allows to extract
such a factor from the r.h.s. before performing the sum over the scale indices, and to
choose η′ = 2κ , which is possible if κ is small enough.

Let us now observe that the sequence νh, h̄ < h ≤ 1, satisfying (7.77) can be obtained
as the limit as n → ∞ of the sequence {ν(n)h }, h̄ < h ≤ 1, n ≥ 0, parameterized by

νh̄ ∈ J (h̄+1) and defined recursively in the following way:
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ν
(0)
h = 0 ,

ν
(n)
h = −γ−h

h∑

k=h̄+1

γ k−1βνk (ν
(n−1)
k , . . . , ν

(n−1)
1 )+ γ−(h−h̄)νh̄ , n ≥ 1 . (7.84)

In fact, by induction one verifies that, if ε1 is small enough, |ν(n)h | ≤ Cε1 ≤ ε0,

so that (7.84) is meaningful, and maxh∗<h≤1 |ν(n)h − ν
(n−1)
h | ≤ (Cε1)

n. In fact for

n = 1 it is trivial and for n > 1 it follows by the fact that βνk (ν
(n−1)
k , . . . , ν

(n−1)
1 ) −

βνk (ν
(n−2)
k , . . . , ν

(n−2)
1 ) can be written as a sum of terms in which there is at least one

endpoint of type ν, with a difference ν(n−1)
h′ −ν(n−2)

h′ , h′ ≥ k, in place of the correspond-

ing running coupling, and one endpoint of type λ. Then ν(n)h converges as n → ∞, for
h̄ < h ≤ 1, to a limit νh, satisfying (7.77) and the bound |νh| ≤ ε0, if ε1 is small enough.
Hence, if ε1 is small enough, by (7.83),

|βνk | ≤ Cε1

[
1∑

m=k
|νm|γ−2κ(m−k) + γ κk

]
. (7.85)

Hence

|ν(n)h | ≤ cε1{γ−h
h∑

k=h+1

γ k

[
1∑

m=k
|ν(n−1)
m |γ−2κ(m−k) + γ κk

]
+ γ−(h−h)} . (7.86)

Let us now suppose that, for some constant cn−1,

|ν(n−1)
m | ≤ cn−1ε1(γ

κm + γ− 1
2 (m−h)) ≤ ε0 , (7.87)

which is true for n = 1, since ν(0)m = 0, if ε1 is small enough. One then checks that the
same bound is verified by ν(n)m , if cn−1 is substituted with cn = c(1 + c4cn−1ε1), where
c4 is a suitable constant. Hence, we can prove the bound (7.77) for νh = limn→∞ ν

(n)
h ,

for ε1 small enough. ��
Proof of Lemma 3. We shall proceed by induction. The second part of (5.1) and the
above analysis imply that, if λ is small enough, there exists an interval I (0), whose size
is of order λ, such that, if ν ∈ I (0), then the bound (7.77) is satisfied, together with
|λ0 − λ| ≤ C|λ|2. Let us now suppose that the solution of (5.1) is well defined for
h̄ ≤ h ≤ 0 and satisfies the conditions (7.75),(7.77), for any ν belonging to an interval
I (h̄). Suppose also that there exists a constant c0, such that

µh̄ ≤ c0|λ| . (7.88)

We want to prove that all these conditions are verified also if h̄ is substituted with h̄− 1,
if λ is small enough. The induction will be stopped as soon as the second condition in
(7.75) is violated for some ν ∈ I (h̄). We shall put ν equal to one of these values, so
defining h∗ as equal to h̄+ 1.
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By using (5.5) we have

ah̄−1 = ah̄ + β
α,L

h̄
(ah̄, . . . , ah̄)+

1∑

k=h̄+1

Dα
h̄,k

+ rα
h̄
(ah̄, νh̄; . . . ; a1, ν1; u) , (7.89)

where

Dαh,k = β
α,L
h (ah, . . . , ah, ak, ak+1, . . . , a1)− β

α,L
h (ah, . . . , ah, ah, ak+1, . . . , a1) .

(7.90)

On the other hand, one checks that Dαh,k admits a tree expansion similar to that of the

functions βα,Lh (ah, . . . , a1), with the property that all trees giving a non zero contribu-
tion must have an endpoint of scale h, associated with a difference λk − λh or δk − δh.
Hence, if κ is the same constant in (7.83) and h ≤ 0,

|Dαh,k| ≤ C|λh|γ−κ(k−h)|ak − ah| . (7.91)

Let us now suppose that h̄ ≤ h ≤ 0 and that there exists a constant c0, such that

|ak−1 − ak| ≤ c0|λ|3/2[γ− 1
2 (k−h̄) + γ ϑk] , h < k ≤ 0, (7.92)

where ϑ = min{κ/2, η′}. Equation(7.92) is certainly verified for k = 0, thanks to the
second part of (5.1); we want to show that it is verified also if h is substituted with h−1,
if λ1 is small enough.

By using (7.89), (5.6), (5.7) and (7.92), we get

|ah−1 − ah| ≤ Cλ
2
hγ

η′h + C|λh|2[γ− 1
2 (h−h̄) + γ ϑh]

+Cc0|λh|5/2
1∑

k=h+1

γ−κ(k−h)
k∑

h′=h+1

[γ− 1
2 (h

′−h∗) + γ ϑh
′
] , (7.93)

which immediately implies (7.92) with h → h − 1 and (7.88) with h̄ → h̄ − 1. The
bound (7.93) implies also the first of (5.3). Finally the second of (5.3) follows from
(5.2). ��
Independence of ν from t − tc. We have shown that by choosing ν ∈ Ih∗ then (5.3)
holds; such ν are parametrized by νh∗ ∈ J (h

∗+1). Assuming (7.75) and h̄ = hM , one
can proceed as above to show that there exists a sequence ν′

h, hM < h ≤ 1 such that (so
that ν′

hM = 0)

ν′
h = −γ−h

h∑

k=hM+1

γ k−1βνk (ν
′
k, . . . , ν

′
1) . (7.94)

If νh, h∗ < h ≤ 1 verify (7.82) with νh∗ = 0 it holds that

|νh − ν′
h| ≤ Cε1γ

κh∗
h∗ ≤ h ≤ 1 ; (7.95)
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this implies that one can choose ν = ν′
1 for any h∗. Equation (7.95)) is proved by induc-

tion assuming that it holds for any k ≥ h + 1 and subtracting (7.82) with h = h∗ and
νh∗+1 = 0 from (7.94), finding

ν′
h − νh = −γ−h

h∑

k=h∗+1

γ k−1[βνk (ν
′
k, . . . , ν

′
1)− βνk (νk, . . . , ν1)]

−γ−h
h∗∑

k=hM+1

γ k−1βνk (ν
′
k, . . . , ν

′
1) . (7.96)

By using (7.83) and the inductive hypothesis, (7.95) follows.

7.11. Appendix M: Physical observables. The functionals B(h)(
√
Zhψ

(≤h), φ) and
S(h)(φ) defined in (6.11),(6.12) can be written in terms of a tree expansion similar
to the one introduced in Appendix I.

We introduce, for each n ≥ 0 and each m ≥ 1, a family T m
h,n of trees, which are

defined as in Appendix I, with some differences.

1) First of all, if τ ∈ T m
h,n, the tree has n+m (instead of n) endpoints. Moreover, among

the n+m endpoints, there are n endpoints, which we call normal endpoints, which
are associated with a contribution to the effective potential on scale hv − 1. The m
remaining endpoints, which we call special endpoints, are associated with a local
term of the form (6.15); we shall say that they are of type Z(1).

2) We associate with each vertex v a new integer lv ∈ [0,m], which denotes the number
of special endpoints following v, i.e. contained in Lv .

In order to study the expansion of the correlation function��(x, 0) ≡ ��(x), which
follows from (6.21), we have to consider the trees with two special endpoints, whose
space-points we shall denote x and y = 0; moreover, we shall denote by hx and hy the
scales of the two special endpoints and by hx,y the scale of the smallest cluster containing
both special endpoints.

The decomposition �̃�(x, y) = �α�(x, y)+�
β
�(x, y) is such that�α�(x, y) is given

by the sum over trees belonging to T 2
h,n with endpoints v to which are associated only

terms in LV(hv−1) or LB(hv−1), and �β�(x, y) is the sum over the remaining trees.
The first two addends in (6.22) are the contribution from the trees with n = 0, while

(
Z
(1)
h

Zh
)2G

(h),α
� (x) is given by the sum of trees with n ≥ 1,

G
(h),α
� (x) =

∞∑

n=1

h−1∑

hr=h∗−1

∑

τ∈T 2
hr ,n,l

hx,y=h

∑

P∈Pτ ,r
Pv0 =∅

G
(h,hr ),α
� (x, τ,P) , (7.97)

and, as proved in full detail in §5 of [BM], the following bound holds, see (5.60) of
[BM],

|G(h,hr ),α� (x, τ,P)| ≤ (Cεh)
nCN(2n+ 1)N

γ 2h

1 + [γ hd(x)]N
·
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·
(

Z
(1)
hx
Zh

Zhx−1Z
(1)
h

)


Z
(1)
hy
Zh

Zhy−1Z
(1)
h




∏

vnot e.p.

{ 1

sv!
C
∑sv
i=1 |Pvi |−|Pv |

·
(
Zhv/Zhv−1

)|Pv |/2
γ−[−2+ |Pv |

2 +lv+z(Pv,lv)] .
}
, (7.98)

where z(Pv, lv) = 1 if Pv = 4, lv = 0; z(Pv, lv) = 2 if Pv = 2, lv = 0; z(Pv, lv) = 1 if
Pv = 2, lv = 1; z(Pv, lv) = 0 in all other cases.

We can now perform as inAppendix I the various sums in the r.h.s. of (7.97). There are
some differences in the sum over the scale labels, but they can be easily treated. First of
all, one has to take care of the factors (Z(1)hx

Zh)/(Zhx−1Z
(1)
h ) and (Z(1)hy

Zh)/(Zhy−1Z
(1)
h ),

with the only effect of adding to the final bound a factor γ C|λ|(hv−hv′ ) for each non-trivial
vertex v containing one of the special endpoints and strictly following the vertex vx,y;
this has a negligible effect, thanks to a bound analogous to (7.72), valid in this case. The
other difference is in the fact that, instead of fixing the scale of the root, we have now to
fix the scale of vx,y. However, this has no effect, since we bound the sum over the scales
with the sum over the differences hv − hv′ .

The previous considerations are sufficient to get the bound (6.23) for G(h)α� (x). An

expression similar to (7.97) holds also for G(h)β� (x); the extra factor γ τh in the bound
(6.24) (with respect to (6.23)) is due to the fact that the bound over all the trees which
have at least one endpoint v of fixed scale hv = 2 can be improved by a factor γ τh. It
is sufficient to use (7.72), which allows to extract such a factor from the r.h.s. before
performing the sum over the scale indices.

Note also that from (6.15), (6.17) we get (6.25) , where z(1)h is given by

z
(1)
h =

∞∑

n=1

∑

τ∈T 1
h,n,P∈Pτ ,Pv0 =(f1,f2)

z
(1)
h (τ,P) , (7.99)

with

|z(1)h (τ,P)| ≤ Cnεnhγ
−h[D0(Pv0 )+lv0 ]

∏

vnot e.p.

{
C
∑sv
i=1 |Pvi |−|Pv |

· 1

sv!

(
Zhv/Zhv−1

)|Pv |/2
γ−[−2+ |Pv |

2 +lv+z(Pv,lv)]
}
. (7.100)

Finally note that sech4Jr�̃�(x, y)−�−,−,−,−,�(x, y) is given by a sum of terms in
which three or four external φ fields are present. Essentially by power counting one gets
a bound similar to (7.98) in which γ 2h is replaced by γ 3h or γ 4h depending if there are
three or four external φ fields.

7.12. Appendix N: Perturbations of a single Ising model. If we consider the hamiltonian
(1.1) with interaction given by (6.33) all the analysis in §2, §3 is still valid; the only
place in which we have used the explicit form of V is in Appendix F, but the symmetry
cancellations exploited there hold also in the case of V given by (6.33). The integration
of the light fermions is done exactly as in §4 but now in (4.9) and (4.20) F (≤h)λ = 0,
i.e. the term and quartic in the field is missing in LV(h); the reason is that
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ψ
(≤h)+
x,1 ψ

(≤h)−
x,1 ψ

(≤h)+
x,−1 ψ

(≤h)−
x,−1 = ψ̄(≤h)(1)x ψ(≤h)(1)x ψ̄(≤h)(2)x ψ(≤h)(2)x , (7.101)

but such a term cannot be present as the (1) and (2) systems are independent. As a
consequence, in (5.1) βhm, β

h
δ , β

h
z are allO(εhγ κh), if κ is a constant, for the same con-

siderations used in Appendix L: there is no contribution from trees with only end-points
of type ν or δ, because of the support properties of the single scale propagators. Hence
βhm, β

h
δ , β

h
z are given by a sum of trees with at least an end-point of scale hv = 2 and by

(7.72) the bound for them can be improved by a factor γ κh. Then, choosing ν properly,
δh = O(λ),mh = m0(1 +O(λ)), Zh = 1 +O(λ). For the same reasons the analysis in
§6 still holds but Z(1)h = 1 +O(λ) and at the end (1.8)–(1.12) hold with η1 = η2 = 0.

7.13. Appendix O: Extensions of the main Theorem. It should be clear from the above
analysis that the correlation function or the specific heat behaviour in (1.10) or (1.12)
does not depend on the details of the interaction (1.3) but on a few general properties.
In fact assume that V verifies the following properties.

1) V is symmetric under the exchange {σ (1)x }x∈�, {σ (2)x }x∈� → {σ (2)x }x∈�, {σ (1)x }x∈�.
This is true for the Ashkin-Teller Hamiltonian which is invariant under the operation
σ
(1)
x,x0 , σ

(2)
x,x0 → σ

(2)
x,x0 , σ

(1)
x,x0 , and for the Eight vertex model which is invariant under

σ
(1)
x,x0 , σ

(2)
x,x0 → σ

(2)
x,x0 , σ

(1)
x+1,x0−1 for any x ∈ �.

2) V is given by the sum of monomials in the spin variables each one of the form

λv(x1, .., xn)
n∏

i=1

σ (αi)xi σ
(αi )

x′
i

(7.102)

with αi = 1, 2 , xi , x′
i nearest neighbor, v(x1, .., x2) short ranged and λ small.

The above two properties ensure that the effective potential can be written in the form
(3.1), with V given by a sum over short range monomials in the Grassmann variables
ψ, χ . Moreover the analysis in Appendix F can be repeated, as the symmetries which
were true in the Ashkin Teller or in the Eight vertex model are true also here, and
the marginal or relevant terms in the Renormalization group analysis are the same as
in the Eight vertex or Ashkin Teller models. Note that the interaction in the Ashkin-
Teller or the Eight-vertex model verify an extra symmetry, namely a symmetry in the
exchange x, x0 → x0, x; such extra symmetry is however not used in our analysis.
Finally:

3) V is such that in V (3.1) there is a non vanishing local term of the form

[cλ+O(λ2)]ψ+
1,xψ

−
1,xψ

+
−1,xψ

−
−1,x (7.103)

with c �= 0 a constant.

If such conditions are verified, then a statement identical to the main Theorem follows.
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