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Abstract: This paper is devoted to the study of the existence and the time-asymptotic
of multi-dimensional quantum hydrodynamic equations for the electron particle density,
the current density and the electrostatic potential in spatial periodic domain. The equa-
tions are formally analogous to classical hydrodynamics but differ in the momentum
equation, which is forced by an additional nonlinear dispersion term, (due to the quan-
tum Bohm potential) and are used in the modelling of quantum effects on semiconductor
devices.

We prove the local-in-time existence of the solutions, in the case of the general,
nonconvex pressure-density relation and large and regular initial data. Furthermore we
propose a “subsonic” type stability condition related to one of the classical hydrodynam-
ical equations. When this condition is satisfied, the local-in-time solutions exist globally
in-time and converge time exponentially toward the corresponding steady-state. Since
for this problem classical methods like, for instance, the Friedrichs theory for symmetric
hyperbolic systems cannot be used, we investigate via an iterative procedure an extended
system, which incorporates the one under investigation as a special case. In particular
the dispersive terms appear in the form of a fourth-order wave type equation.

1. Introduction and Main Results

Quantum hydrodynamic models become important and necessary to model and simulate
electron transport, affected by extremely high electric fields, in ultra-small sub-micron
semiconductor devices, such as resonant tunnelling diodes, where quantum effects (like
particle tunnelling through potential barriers and build-up in quantum wells [10, 21]) take
place and dominate the process. Such kinds of quantum mechanical phenomena cannot

� Current address: Department of Pure and Applied Mathematics, Graduate School of Information
Science and Technology, Osaka University, Toyonaka, Osaka 560–0043, Japan. E-mail: lihl@math.sci.
osaka-u.ac.jp



216 H.-L. Li, P. Marcati

be simulated by classical hydrodynamical models. The advantage of the macroscopic
quantum hydrodynamical models relies on the facts that they are not only able to describe
directly the dynamics of the physical observable and simulate the main characters of
quantum effects, but are also numerically less expensive than those microscopic models
like the Schrödinger and Wigner-Boltzmann equations. Moreover, even in the process
of the semiclassical (or zero dispersion) limit, the macroscopic quantum quantities like
density, momentum, and temperature converge in some sense to those of Newtonian
fluid-dynamical quantities [13]. Similar macroscopic quantum models are also used in
other physical area such as superfluid [26] and superconductivity [5].

The idea to derive quantum fluid-type equations goes back to Madelung in 1927 [27,
24], where the relation between the (linear) Schrödinger equation and quantum fluid
equation was described in view of the nonlinear geometric optic (WKB)–ansatz of the
wave function for irrotational flow away from vacuum. This in fact gives a way to derive
quantum fluid type equations, i.e., to make use of the WKB–expansion and derive the
equations for (macroscopic) density and momentum from the single-state Schrödinger
equation, or those with temperature involved from the mixed-state Schrödinger equa-
tion [14, 18, 13]. Another practicable way to derive quantum hydrodynamic equations is
to take advantage of the kinetic structure behind the Schrödinger Hamiltonian through
Wigner transformation [37]. In fact, the action of the Wigner transformation on the
wave function describes the equivalence between the (linear) Schrödinger equation and
Wigner-Boltzmann equation [31], the quantum kinetic transport equation. The appli-
cation of the moment method to the Wigner-Boltzmann (or Wigner-Poisson) equation,
yields the macroscopic quantities density, momentum and temperature, whose time-
evolutions obey the quantum hydrodynamic equations [10, 11]. This is done in analogy
with derivation of the first three moment equations, in the moment expansion for the
Wigner (distribution) function of the Wigner-Boltzmann equation, under appropriate
closure conditions [15] near the “quantum Maxwellian”. For further references on
the quantum modelling of semiconductor devices, we refer to [32, 10, 14, 18, 11] and
the references quoted therein.

We are interested in the mathematical analysis of the quantum hydrodynamic model
for semiconductors. In the present paper we consider the initial value problem (IVP) of
the quantum hydrodynamic model for semiconductors where an additional relaxation
term is involved in the linear momentum equation to model the interaction between the
electron and crystal lattice. The re-scaled multi-dimensional quantum hydrodynamic
models for semiconductors (QHD) then is given by

∂tρ + ∇· (ρu) = 0, (1.1)

∂t (ρu)+ ∇· (ρu ⊗ u)+ ∇P = ρ∇V + 1
4ε

2∇· (ρ∇2log ρ
)− ρu

τ
, (1.2)

λ2�V = ρ − C, (1.3)

ρ(x, 0) = ρ1(x), u(x, 0) = u1(x), (1.4)

where ρ > 0, u, J = ρu denote the density, velocity and momentum respectively.
ε > 0 the scaled Planck constant, τ > 0 is the (scaled) momentum relaxation time,
λ > 0 the (re-scaled) Debye length, and C = C(x) > 0 the doping profile simulating
the semiconductor device under consideration [18, 32]. The pressure P = P(ρ), like in
classical fluid dynamics, often satisfies the γ -law expression

P(ρ) = T

γ
ργ , ρ ≥ 0, γ ≥ 1
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with the temperature T > 0 [10, 17]. Notice that the particle temperature is T (ρ) =
Tργ−1. Moreover, the nonlinear dispersive term

1

4
ε2∇·

(
ρ∇2log ρ

)
= 1

2
ε2ρ∇

(
�

√
ρ√
ρ

)

is produced by the gradient of the quantum Bohm potential

Q(ρ) = 1

2
ε2�

√
ρ√
ρ
,

which requires the strict positivity of density for the classical solution.
Recently, many efforts have been made on the existence of (steady-state or time-

dependent) solutions of QHD (1.1)–(1.3). The existence and uniqueness of (classical)
steady-state solutions to the QHD (1.1)–(1.3) for current density J = 0 (thermal equilib-
rium) has been studied in one dimensional and multi-dimensional bounded domains for
density and electrostatic potential boundary conditions [1, 12]. The thermal equilibrium
state of the bipolar isothermic model in a bounded domain was considered in [36]. The
stationary QHD (1.1)–(1.3) for J > 0 (non-thermal equilibrium) has been considered in
[9, 17, 38] for general monotone pressure functions, but, with different boundary condi-
tions, i.e., Dirichlet data for the velocity potential S [17] or by using nonlinear boundary
conditions [9, 38]. The existence of the one-dimensional steady-state solutions to (1.1)–
(1.3) subject to boundary conditions on the density and the electrostatic potential has
been proved in [16], for the case of a linear pressure function P(ρ) = ρ, and in [19] for
general pressure functions P(ρ). The local in-time existence of the classical solution
was obtained in the one-dimensional bounded domain [20] (subject to boundary condi-
tions on the density and the electrostatic potential). In this case additional boundedness
restrictions on initial velocity were required to keep the strict positivity of density. The
case of large initial data and the strictly convex pressure function in R

n has been inves-
tigated by [25] . In both of these cases, the classical solutions exist globally in time for
initial data which are small perturbations of stationary states [20, 25] (which are time
exponentially stable).

In the present paper we consider the initial value problem (1.1)–(1.4) for a general,
nonconvex pressure function in multi-dimension, and we focus on the local existence
of the classical solutions (ρ,u, V ) of IVP (1.1)–(1.4) for regular large initial data, and
their time-asymptotic convergence to an asymptotic state under small perturbation. We
give a general framework to show the local in-time existence of classical solutions for
a general (nonconvex) pressure density function and for regular large initial data. Then,
we propose a (generic) “subsonic” condition to prove the global existence of the classical
solutions in the “subsonic” region and investigate their large time behavior.

It is convenient to make use of the variable transformation ρ = ψ2 in (1.1)–(1.4).
Then, we derive the corresponding IVP for (ψ,u, V ):

2ψ · ∂tψ + ∇· (ψ2u) = 0, (1.5)

∂tu + (u·∇)u + ∇h(ψ2)+ u
τ

= ∇V + ε2

2
∇
(
�ψ

ψ

)
, (1.6)

�V = ψ2 − C, (1.7)

ψ(x, 0) = ψ1(x) :=
√
ρ1(x), u(x, 0) = u1(x), (1.8)
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with ρh′(ρ) = P ′(ρ). Note here the two problems (1.1)–(1.4) and (1.5)–(1.8) are equiv-
alent for classical solutions. For simplicity in this paper we consider the initial value
problem (1.5)–(1.8) on the multi-dimensional torus T

n, with T = [0, L] and L > 0
representing the period length. The doping profile C is therefore assumed to be a peri-
odic function and in the present paper is set to be a positive constant for mathematical
simplicity. Because of the periodicity in the space variables, the solution of the Poisson
equation is not unique since each combination of one solution and a constant is another
solution. It is natural to consider the Poisson equation (1.7) in homogeneous Sobolev
space. And by choosing an appropriate reference value of voltage, we can consider the
Poisson equation (1.7) for V satisfying

∫

Tn
V (x, t)dx = 0, t ≥ 0.

In analogy, the right hand side term of Eq. (1.7) is required to belong to the homogeneous
Sobolev space, i.e.,

∫

Tn
(ψ2 − C)(x, t)dx = 0, t ≥ 0.

This can be guaranteed due to the conservation (neutrality) of density (1.5) and neutrality
assumption on the initial datum

∫

Tn
(ψ2

1 − C)(x)dx = 0. (1.9)

In the present paper we consider the problem (1.5)–(1.8) for irrotational (quantum)
flow. We describe some ideas to prove both the local and the global existence and we
investigate the large time behavior in the “subsonic” regime. The general situation for
rotational flow is more complicated and it is expected to be investigated in a forthcoming
paper.

The first result is the following local existence theorem:

Theorem 1.1. Suppose P(ρ) ∈ C5(0,+∞). Assume (ψ1,u1) ∈ H 6(Tn) × H 5(Tn)

(n = 2, 3) satisfying (1.9), ∇× u1 = 0, and minx∈[0,1] ψ1(x) > 0. Then, there exists
T∗∗ > 0, such that there exists a unique solution (ψ,u, V ) to the IVP (1.5)–(1.8), with
ψ > 0, which satisfies

ψ ∈ Ci([0, T∗∗];H 6−2i (Tn))
⋂
C3([0, T∗∗];L2(Tn)), i = 0, 1, 2;

u ∈ Ci([0, T∗∗];H 5−2i (Tn)), i = 0, 1, 2; V ∈ C1([0, T∗∗]; Ḣ 4(Tn)).

Remark 1.2. The irrotationality assumption on the velocity vector fields u is consistent
with Eq. (1.6), namely it keeps this property as long as it is true initially. This can be
justified via standard arguments as used in the case of ideal fluids in classical hydro-
dynamics based on Kelvin’s theorem and Stokes’s theorem, see for instance [23] for
details.

The proof of the above local-in-time existence is based on the construction of approx-
imate solutions and the application of compactness arguments. The main difficulties are
given by the following facts. The former arises since the general pressure P(ρ) can be
non-convex (even zero), then the left part of (1.5)–(1.7) (or (1.1)–(1.3) resp.) may not
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be hyperbolic anymore and we cannot apply the theory of quasilinear symmetric hyper-
bolic systems like [25] to obtain the local existence. The latter is given by the nonlinear
dispersion term in (1.6), which requires the density ψ (or ρ resp.) to be strictly positive,
for regular solutions. Hence we have to establish the local-in-time existence of solutions
in a less traditional way.

Indeed we are going to construct approximate solutions and to prove the local in-time
existence of classical solutions (v, ϕ, ψ,u, V ) for an extended system, which incorpo-
rates our problem, constructed in a suitable way based on (1.5)–(1.8). Note that in this
new system, there are two additional equations for the variable v, the artificial “velocity”
(a sort of Lagrangian type velocity), and the artificial “density” ϕ > 0. The key point
is that the local in-time existence of classical solutions for this extended system for
the unknown (v, ϕ, ψ,u, V ) will be equivalent to the original one given by (1.5)–(1.8),
when v = u and ψ = ϕ (see Sect. 3 for a proof in detail).

In order to extend the local-in-time solution globally in time, we will need uniform
a-priori estimates, that can be proved by assuming the initial data close to the time-
asymptotic (stationary) state (ψ̄, ū, V̄ ). Actually it will be possible to extend globally,
the local-in-time solutions, in the “subsonic” region (in the sense defined by (1.10) or
(1.12) below); namely we will prove the global existence of the local-in-time solution
when it starts near a stationary state (ψ̄, ū, V̄ ) located in the so called “subsonic” region
(this notion to be provided later in a more precise fashion).

The well-posedness of the stationary state (ψ̄, ū, V̄ ) of the boundary value prob-
lem (1.5)–(1.7) subject to density and electrostatic potential boundary conditions was
established in one dimension [19] for a general (nonconvex) pressure function P(ρ),
and was obtained for multi-dimensional irrotational flow [17] for a monotone enthalpy
function where an additional boundary condition was imposed for the Fermi potential.
The argument [17, 19] could be applied also here to obtain the existence of the station-
ary solution with periodic boundary conditions. However, since here we are focusing
our attention only on the global existence, for simplicity we will bound ourselves to
consider only the very special stationary state (ψ̄, ū, V̄ ) = (

√C, 0, 0) and study the
situation when the initial data are assumed in a small neighborhood of the stationary
solution (

√C, 0, 0) to (1.5)–(1.7). Here note that the same argument can be applied to
treat the more general case, see item (1) of Remark 1.4 and Theorem 1.5 below for an
explanation in detail.

Theorem 1.3. Let P(ρ) ∈ C5(0,+∞) satisfying

A0 =:
π2

L2 ε
2 + P ′(C) > 0, (1.10)

whereL > 0 is the space period length. Let us assume (ψ1−
√C,u1) ∈ H 6(Tn)×H 5(Tn)

(n = 2, 3), the condition (1.9) and moreover ∇× u1 = 0. There exists η > 0 such that,
if ‖ψ1 − √C‖H 6(Tn) + ‖u1‖H 5(Tn) ≤ η, the solution (ψ,u, V ) of the IVP (1.5)–(1.8)
exists globally in time and moreover one has

‖(ψ −
√

C)(t)‖2
H 6(Tn)

+ ‖u(t)‖2
H 5(Tn)

+ ‖V (t)‖2
H 4(Tn)

≤ Cδ0e
−�0t ,

for all t ≥ 0, where C > 0, �0 > 0 are suitable constants, and

δ0 = ‖ψ1 −
√

C‖2
H 6(Tn)

+ ‖u1‖2
H 5(Tn)

. (1.11)
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Remark 1.4. (1) Although in Theorem 1.3 we choose the special stationary state
(
√C, 0, 0), we claim that the method used here can be applied to prove the time-

asymptotic convergence toward any stationary state of (1.5)–(1.7) on the multi-
dimensional torus T

n, say (ψ̄, ū, V̄ ), with ∇×ū = 0. Their well-posedness can
be obtained by applying the arguments of [17], with suitable modifications. In this
case, the corresponding “subsonic” condition has to be changed in the following way:

π2

L2 ε
2 + P ′(ψ̄2) > |ū|2. (1.12)

(2) It is known that classical solutions of the hydrodynamical model for semiconductors
(without dispersion term) for large initial data may blow up in finite time to form sin-
gularities [3]. Analogous results on the existence of the L∞ solution and one or two
dimensional transonic solutions for the hydrodynamical model for semiconductors
was proven [6, 7]. However when dispersive regularity is involved in (1.10) or (1.12),
it may prevent the formation of singularities, and classical solutions exist globally in
time even in the transonic or supersonic region, in the classical sense [2, 4].

(3) Note here that the conditions (1.10) and (1.12) are exactly the subsonic conditions
in the classical sense [2], when the re-scaled Planck constant ε goes to zero. If ε > 0
and P ′(ρ) > 0, the “sound” speed c̃(ρ̄) =

√
π2ε2/L2 + P ′(ρ̄) is bigger than the

sound speed c(ρ) = √
P ′(ρ̄) for the classical hydrodynamic equations. ��

Theorems 1.1–1.3 can be extended to the multi-dimensional torus T
n, n ≥ 2, for the

IVP (1.5)–(1.8) with smooth initial data. Indeed, we have

Theorem 1.5. Let P ∈ Cm(0,∞), withm ≥ s− 1 and s >
[
n
2

]+ 5. Let us assume that
(ψ1,u1) ∈ Hs(Tn) × Hs−1(Tn), ∇× u1 = 0, and minx∈[0,1] ψ1(x) > 0, then, there
exists T ′ > 0 such that a solution (ψ,u, V )(t) ∈ Hs(Tn)×Hs−1(Tn)×Hs−2(Tn) of
the IVP (1.5)–(1.8), with ψ > 0, exists on [0, T ′].

Moreover, assume that (ψ̄, ū, V̄ ), with ∇×ū = 0 and ψ̄ > 0, is a classical stationary
state of (1.5)–(1.7)with small oscillation and satisfies (1.12). Then, if ‖ψ1−ψ̄‖Hs(Tn)+
‖u1 − ū‖Hs−1(Tn) is sufficiently small, the solution (ψ,u, V )(t) of IVP (1.5)–(1.8) exists
globally in time and satisfies

‖(ψ − ψ̄)(t)‖2
Hs(Tn) + ‖(u − ū)(t)‖2

Hs−1(Tn)
+ ‖(V − V̄ )(t)‖2

Hs−2(Tn)
≤ Cδ1e

−�2t ,

with �2 > 0 and

δ1 = ‖(ψ1 − ψ̄)‖2
Hs(Tn) + ‖(u1 − ū)‖2

Hs−1(Tn)
.

Remark 1.6. Once we prove the local existence (resp. global existence) of solutions
(ψ,u, V ) of IVP (1.5)–(1.8), we can obtain the local existence (resp. global existence)
of solutions (ρ,u, V ) of IVP (1.1)–(1.4) by setting ρ = ψ2. ��

This paper is organized in the following way. In Sect. 2, we present preliminary results
on the divergence equation, Poisson equation, and a fourth order semilinear wave type
equation on T

n, then we list some known calculus inequalities. We prove Theorem 1.1
in Sect. 3. After the construction of our extended system in Sect. 3.1, we show the con-
struction of the approximate solutions, we derive the uniform estimates, and we prove
Theorem 1.1 in Sect. 3.2. Section 4 is concerned with the proof of Theorem 1.3. After the
reformulation of original problem in Sect. 4.1, we establish the a-priori estimates on the
local solutions in Sect. 4.2, and prove the global existence and the large time behavior
in the remaining part.
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Notation. C always denotes the generic positive constant.L2(Tn) is the space of square
integral functions on T

n with the norm ‖ · ‖. Hk(Tn) with integer k ≥ 1 denotes the
usual Sobolev space of function f , satisfying ∂ixf ∈ L2 (0 ≤ i ≤ k), with norm

‖f ‖k =
√ ∑

0≤|l|≤m
‖Dlf ‖2 ,

here and after Dα = ∂
α1
1 ∂

α2
2 · · · ∂αnn for |α| = α1 + α2 + · · · + αn and ∂j = ∂xj ,

j = 1, 2, ..., n, for abbreviation. In particular, ‖ · ‖0 = ‖ · ‖. Ḣ k(Tn) denotes the
subspace of function in Hk(�) satisfying

∫

�

u(x) dx = 0.

Let T > 0 and let B be a Banach space. Ck(0, T ; B) (Ck([0, T ]; B) resp.) denotes
the space of B-valued k-times continuously differentiable functions on (0, T ) (or [0, T ]
resp.), L2([0, T ]; B) the space of B-valued L2-functions on [0, T ], and Hk([0, T ]; B)
the spaces of functions f , such that ∂it f ∈ L2([0, T ]; B), 1 ≤ i ≤ k, 1 ≤ p ≤ ∞.

2. Preliminaries

In this section, we prove the existence and uniqueness of solutions of the divergence
equation on T

n and we recall a known result on the multi-dimensional Poisson equation
with periodic boundary conditions. Then, we turn to prove the well-posedness for an
abstract second order semi-linear evolution equation. Finally, some calculus inequalities
are listed without proof.

First, we have the following theorem on the divergence operator and Laplace operator
on T

n:

Theorem 2.1. Let f ∈ Ḣ s(Tn), s ≥ 0. There exists a unique solution u ∈ (Hs+1(Tn)
)n

satisfying

∇· u = f, ∇×u = 0,
∫

Tn
(u − û) dx = 0, (2.1)

and

‖(u − û)‖Hs+1(Tn) ≤ c1‖f ‖Ḣ s (Tn), (2.2)

where c1 > 0 is a suitable constant and û a vector in R
n.

Theorem 2.2. Let f ∈ Ḣ s(Tn), s ≥ 0. There exists a unique solution u ∈ Ḣ s+2(Tn) to
the Poisson equation

�u = f

satisfying

‖u‖Ḣ s+2(Tn) ≤ c2‖f ‖Ḣ s (Tn) (2.3)

with c2 > 0.
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The proofs of Theorems 2.1–2.2 can be completed with the help of the Fourier series
expansion of the functions u, u and f . Here we omit the details. ��

Based on Theorem 2.2, we obtain the initial potential V1 through (1.7) in view of the
initial density:

�V1 = ψ2
1 − C,

∫

Tn
V1(x)dx = 0. (2.4)

By (1.9) and ψ1 − √C ∈ H 3, we obtain that V1 ∈ Ḣ 5 and satisfies

‖V1‖Ḣ 5(Tn) ≤ c3‖ψ2
1 − C‖Ḣ 3(Tn) ≤ c4‖ψ1 −

√
C‖H 3(Tn), (2.5)

with c3, c4 > 0 constants.
Finally, let us consider the abstract initial value problem in the periodic Hilbert space

L2(Tn):

u′′ + 1

τ
u′ + Au+ Lu′ = F(t), (2.6)

u(0) = u0, u′(0) = u1. (2.7)

Hereafter u′ denotes du
dt

. The operator A is defined by

Au = ν0�
2u+ ν1u, (2.8)

where � is the Laplacian operator on R
n, and ν0, ν1 > 0 are given constants. The

domain of the linear operator A is D(A) = H 4(Tn). Related to the operator A, we
define a continuous and symmetric bilinear form a(u, v) on H 2(Tn),

a(u, v) =
∫

Tn
(ν0�u�v + ν1uv)dx, ∀ u, v ∈ H 2(Tn), (2.9)

which is coercive, i.e.,

∃ ν > 0, a(u, u) ≥ ν‖u‖H 2(Tn), ∀ u ∈ H 2(Tn). (2.10)

This means that there is a complete orthogonal family {rl}l∈N of L2(Tn) and a family
{µl}l∈N consisting of the eigenvectors and eigenvalues of operator A

Arl = µlrl, l = 1, 2, · · · ,
0 < µ1 ≤ µ2, · · · , µl → ∞ as l → ∞. (2.11)

The family {rl}l∈N is also orthogonal for a(u, v) on H 2(Tn), i.e.,

a(rl, rj ) =< Arl, rj >= µl(rl, rj ) = µlδlj , ∀ l, j,
where δlj denotes the Kronecker symbol.

Related to Lu and F(t), we have

< Lu, v >=
∫

Tn
(b(x, t)·∇u)vdx, u, v ∈ H 2(Tn), (2.12)

< F(t), v >=
∫

Tn
f (x, t)vdx, v ∈ H 2(Tn), (2.13)

where b : T × [0, T ] → R
n and f : T × [0, T ] → R are measurable functions.

By applying the Faedo-Galerkin method [35, 39], we can obtain the existence of
solutions to (2.6)–(2.7) in a standard way.
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Theorem 2.3. Let T > 0, n = 2, 3, and assume that

F ∈ H 1([0, T ];L2(Tn)), b ∈ L2([0, T ];H 3(Tn))
⋂
H 1([0, T ];H 2(Tn)). (2.14)

Then, if u0 ∈ H 4(Tn) and u1 ∈ H 2(Tn), the solution to (2.6)–(2.7) exists and satisfies

u ∈ Ci([0, T ];H 4−2j (Tn)), j = 0, 1, u′′ ∈ L∞([0, T ];L2(Tn)). (2.15)

Moreover, assume that

F ′, F ∈ L2([0, T ];H 2(Tn)), (2.16)

then, if u0 ∈ H 6(Tn) and u1 ∈ H 4(Tn), it follows

u ∈ Ci([0, T ];H 6−2j (Tn)), j = 0, 1, 2, u′′′ ∈ L∞([0, T ];L2(Tn)). (2.17)

Proof. The statement (2.17) follows from (2.15), if we consider the same type of prob-
lem for new unknown v = D2u. The statement (2.15) can be proved by applying the
Faedo-Galerkin method. We omit the details here since everything is quite standard. For
general stability theory of abstract second order equations, the reader can refer to [29,
30]. ��
Remark 2.4. Note that if (2.14) is replaced by

F ∈ C1([0, T ];L2(Tn)), b ∈ Ci[0, T ];H 3−i (Tn)), i = 0, 1, (2.18)

then in (2.15) it follows

u′′ ∈ C([0, T ];L2(Tn)).

Furthermore, when (2.16) is replaced by

F ∈ C1([0, T ];H 2(Tn)), (2.19)

it also holds in (2.17) that

u′′′ ∈ C([0, T ];L2(Tn)).

Finally, we list below the Moser-type calculus inequalities [22, 28, 34]:

Lemma 2.5. Let f, g ∈ L∞(Tn)
⋂
Hs(Tn). Then, it follows

‖Dα(fg)‖ ≤ C‖g‖L∞‖Dαf ‖ + C‖f ‖L∞‖Dαg‖, (2.20)

‖Dα(fg)− fDαg‖ ≤ C‖g‖L∞‖Dαf ‖ + C‖f ‖L∞‖Dα−1g‖, (2.21)

for 1 ≤ |α| ≤ s.

3. Local Existence

This section is concerned with the proof of Theorem 1.1. We construct the new extended
system based on (1.5)–(1.8) in Sect. 3.1, then we build up the approximate solutions,
derive the uniform estimates, and prove Theorem 1.1 in Sect. 3.2. For simplicity, we set
τ = 1.
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3.1. Construction of the extended system. We construct the extended system in this sub-
section. For irrotational flow, the velocity field can be represented as the gradient field
of a phase function S:

u = ∇S. (3.1)

In analogy, the continuous equation (1.6) for the irrotational velocity vector field u is
changed into

∂tu + 1

2
∇(|u|2)+ ∇h(ψ2)+ u = ∇V + ε2

2
∇
(
�ψ

ψ

)
, (3.2)

which, together with the initial data u(x, 0) = u1(x), provides the time-decay of mean
velocity on T

n:
∫

Tn
u(x, t)dx = ū(t) =: e−t

∫

Tn
u1(x)dx, t ≥ 0. (3.3)

For ψ > 0 Eq. (1.5) becomes

2∂tψ + 2u·∇ψ + ψ∇· u = 0. (3.4)

We want to explain the main steps that we will use in the next subsection to imple-
ment an iterative procedure. Once we know u andψ based on Eq. (3.4) and the previous
observation, we introduce two new equations for the artificial “velocity” v and artificial
“density” ϕ > 0,

∇· v = −2(∂tψ + u·∇ψ)
ϕ

, ∇×v = 0,
∫

Tn
v(x, t)dx = ū(t), (3.5)

∂tϕ + 1

2
ϕ∇· v + u·∇ψ = 0, ϕ(x, 0) = ψ1(x) > 0. (3.6)

Clearly to re-initialize the procedure, we have to determine ψ and u as long as we know
ϕ and v (we will propose the corresponding equations, used in the next subsection, for
ψ and u below). By a simple combination of Eqs. (3.5)–(3.6), we obtain

∂t [ϕ − ψ](x, t) = 0, ∀ x ∈ T
n,

which implies

[ϕ − ψ](x, t) = 0 for (x, t) ∈ T
n × (0,∞), if [ϕ − ψ](x, 0) = 0. (3.7)

By applying to (3.6) a standard argument in the theory of O.D.E. namely by multiplying
Eq. (3.6) by the function exp{ 1

2

∫ t
0 ∇·v(x, s)ds} and by integrating the resulting equation

with respect to time, we can represent ϕ for (x, t) ∈ T
n × [0,+∞) by the identity

ϕ(x, t) = ψ1(x)e
− 1

2

∫ t
0 ∇·v(x,s)ds −

∫ t

0
u·∇ψ(x, s)e− 1

2

∫ t
s ∇·v(x,ξ)dξ ds. (3.8)

This means that for short time (smooth) solutions (if they exist) satisfy

ϕ(x, t) > 0, if ψ1(x) > 0, x ∈ T
n.
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Based on Eq. (3.4) and Eq. (3.2), we show how to reconstruct the density ψ . Here
we use the following second order evolutional problem:

ψtt + ψt + 1

4
ε2�2ψ − 1

4
ε2 |�ψ |2

ϕ
− 1

2ϕ
�P(ψ2)+ 1

2
ψ�V + ∇ψ · ∇V

+ (u + v)·∇ψt − 1

2
∇ψ · ∇(|v|2)− 1

2
ψ∇v :∇v + v·∇(u·∇ψ)

− 1

ϕ
(ψt + u·∇ψ)(v·∇ψ)− ψt

ϕ
(ψt + u·∇ψ) = 0, (3.9)

with initial data

ψ(x, 0) = ψ1, ψt (x, 0) = ψ0 =: −1

2
ψ1∇· u1 − u·∇ψ1, (3.10)

where v = (v1, v2, ..., vn) and

∇v :∇v =
∑

i,j

|∂j vi |2.

Indeed, let us multiply (3.2) by ψ2, take divergence of the resulting equation, then use
(3.4), the irrotationality assumption of velocity vector fields plus the relation

∇·
[
ψ2∇

(
�ψ

ψ

)]
= ψ

[
�2ψ − |�ψ |2

ψ

]
,

replace the nonlinear term 1
4ψ∇· (ψ2∇(|u|2)) by

1

2
∇ψ · ∇(|v|2)+ 1

2
ψ∇v :∇v − v·∇ψt − (v·∇)(u·∇ψ)+ 1

ψ
(ψt + u·∇ψ)(v·∇ψ),

and finally replace 1
ψ

in the resulting equation by 1
ϕ

; we get Eq. (3.9).
Similarly we can construct from (3.2) the equation for reconstructing the velocity u,

∂tu + u + 1

2
∇(|v|2)+ ∇h(ψ2) = ∇V + ε2

2

(∇�ψ
ϕ

− �ψ∇ψ
ϕ2

)
, u(x, 0) = u1(x).

(3.11)

Here we have used the identity

∇
(
�ψ

ψ

)
=
(∇�ψ

ψ
− �ψ∇ψ

ψ2

)
, (3.12)

and we replaced 1
ψ

and |u|2 by 1
ϕ

and |v|2 respectively in (3.2).
Finally, from (1.7) the reconstruction of V is done directly by using the Poisson

equation on T
n and involves only ψ :

�V = ψ2 − C − 1

Ln

∫

Tn
(ψ2 − C)(x, t)dx,

∫

Tn
V (x, t)dx = 0. (3.13)

So far, we have constructed an extended coupled and closed system for the new
unknown U = (v, ϕ, ψ,u, V ), which consists of two O.D.E.s (3.6) for ϕ and (3.11) for
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u, a second order evolutional equation (3.9) forψ , a divergence equation (3.5) for v, and
an elliptic equation (3.13) for V . The most important fact (which we will be able to show
later on) is to note that this extended system for U = (v, ϕ, ψ,u, V ) is equivalent to
the original equations (1.5)–(1.7) of (ψ,u, V ), as far as we look for classical solutions,
when u = v and ψ = ϕ > 0.

3.2. Iteration scheme and local existence. Now, we consider the corresponding prob-
lem for an approximate solution {Ui}∞i=1 with Up = (vp, ϕp, ψp,up, Vp) based on the
extended system constructed in Subsect. (3.1). The iteration scheme for the approximate
solution Up+1 = (vp+1, ϕp+1, ψp+1,up+1, Vp+1), p ≥ 1, is defined by solving the
following problems on T

n:

∇· vp+1 = rp(t), ∇×vp+1 = 0,
∫

Tn
vp+1(x, t) dx = ū(t), (3.14)

{
ϕ′
p+1 + 1

2 (∇· vp)ϕp+1 + up ·∇ψp = 0, t > 0,
ϕp+1(x, 0) = ψ1(x),

(3.15)

{
ψ ′′
p+1 + ψ ′

p+1 + ν�2ψp+1 + νψp+1 + kp(t) · ∇ψ ′
p+1 = hp(t), t > 0,

ψp+1(x, 0) = ψ1(x), ψ
′
p+1(x, 0) = ψ0 =: − 1

2ψ1∇· u1 − u·∇ψ1,
(3.16)

{
u′
p+1 + up+1 = gp(t), t > 0,

up+1(0) = u1, ∇×u1 = 0,
(3.17)

�Vp+1 = qp(t),

∫

Tn
Vp+1(x, t)dx = 0, (3.18)

where ν = 1
4ε

2, and

rp(t) = rp(x, t) = − 2(ψ ′
p + up ·∇ψp)
ϕp

+ 1

Ln

∫

Tn

2(ψ ′
p + up ·∇ψp)
ϕp

(x, t)dx,

(3.19)

kp(t) = kp(x, t) =up(x, t)+ vp(x, t), (3.20)

hp(t) = hp(x, t) =|ψ ′
p|2
ϕp

+ ψ ′
p

ϕp
up ·∇ψp + ε2

4

|�ψp|2
ϕp

− 1

2
ψp�Vp − ∇ψp · ∇Vp

+ 1

2

�P(ψ2
p)

ϕp
+ νψp + 1

2
∇ψp ·∇(|vp|2)+ 1

2
ψp

∑

j,i

|∂j vip|2

− vp ·∇ (up ·∇ψp
)+ 1

ϕp

(
ψ ′
p + up ·∇ψp

)
vp ·∇ψp, (3.21)

gp(t) = gp(x, t) =∇Vp − 1

2
∇
(∣∣vp

∣
∣2
)

− ∇h(ψ2
p)+ 1

2
ε2

(
∇�ψp
ϕp

− (�ψp)∇ψp
ϕ2
p

)

,

(3.22)

qp(t) = qp(x, t) =ψ2
p − C − 1

Ln

∫

Tn
(ψ2

p − C)(x, t)dx, (3.23)

where up = (u1
p, u

2
p, · · · , unp) and vp = (v1

p, v
2
p, · · · , vnp).
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Let us emphasize that here the functions rp(0), kp(0), hp(0), gp(0), qp(0) depend
only upon the initial data (ψ1,u1) and moreover they are periodic in the space variables.

The main result in this section is the following concerning “a-priori estimates”.

Lemma 3.1. Let us assume that P ∈ C5(0,∞) and (ψ1,u1) ∈ H 6 ×H 5, ∇×u1 = 0,
such that

ψ∗ = max
x∈Tn

ψ1(x), ψ∗ =: min
x∈Tn

ψ1(x) > 0. (3.24)

Then, there exist a positive time T∗ and a sequence {Up}∞p=1 of approximate solutions,
which solve the system (3.14)–(3.18) for t ∈ [0, T∗] and satisfy






vp ∈ Cj ([0, T∗];H 4−j (Tn))
⋂
C2([0, T∗];H 1(Tn)), j = 0, 1,

ϕp ∈ C1([0, T∗];H 3(Tn))
⋂
C2([0, T∗];H 2(Tn))

⋂
C3([0, T∗];L2(Tn)),

ψp ∈ Cl([0, T∗];H 6−2l (Tn))
⋂
C3([0, T∗];L2(Tn)), l = 0, 1, 2,

up ∈ C1([0, T∗];H 3(Tn))
⋂
C2([0, T∗];H 1(Tn)),

Vp ∈ C([0, T∗]; Ḣ 4(Tn))
⋂
C1([0, T∗]; Ḣ 4(Tn)).

(3.25)

Moreover, there is a positive constant M∗ so that for all t ∈ [0, T∗], we have
{
‖(up,u′

p)(t)‖2
3 + ‖(u′′

p, v′′
p)(t)‖2

1 + ‖vp(t)‖2
4 + ‖v′

p(t)‖2
3 + ‖(Vp, V ′

p)(t)‖2
4 ≤ M∗,

‖(ψp,ψ ′
p,ψ

′′
p,ψ

′′′
p )(t)‖2

H6×H4×H2×L2 + ‖(ϕp, ϕ′
p, ϕ

′′
p, ϕ

′′′
p )(t)‖2

H3×H3×H2×L2 ≤ M∗,
(3.26)

uniformly with respect to p ≥ 1.

Proof. Step 1: Estimates for p=1. Obviously,U1 =(u1(x), ψ1(x), ψ1(x),u1(x),V1(x))

satisfies (3.25)–(3.26) for the time interval [0, 1] with M∗ replaced by some constant
B1 > 0 and V1 determined by (2.4).

We start the iterative process with U1 = (u1, ψ1, ψ1,u1, V1); then by solving the
problems (3.14)–(3.18) for p = 1, we can prove the (local in time) existence of a solu-
tion U2 = (v2, ψ2, ϕ2,u2, V2) which also satisfies (3.25)–(3.26) for a time interval
(which without loss of generality is chosen to be [0, 1] since we focus on local in-time
existence of solutions) and with M∗ replaced by another constant B2 > 0. In fact, for
U1 = (u1, ψ1, ψ1,u1, V1) the functions r1, k1, h1, g1, q1 depend only on the initial
data (ψ1,u1), i.e.,

r1(x, t) = r̃1(x), k1(x, t) = k̃1(x), h1(x, t) = h̃1(x),

g1(x, t) = g̃1(x), q1(x, t) = q̃1(x),

and

‖r̃1‖2
2 + ‖k̃1‖2

3 + ‖h̃1‖2
3 + ‖g̃1‖2

3 + ‖q̃1‖2
2 ≤ Na0I

4
0 e
N‖u1‖3 . (3.27)

From now on, N > 0 denotes a generic constant independent of Up, p ≥ 1,

a0 = (1 + ψ∗)m

ψm∗
, for a integer m ≥ 10, (3.28)
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and

I0 = ‖(ψ1 −
√

C)‖2 + ‖∇ψ1‖2
5 + ‖u1‖2

5. (3.29)

The system (3.14)–(3.18) with p = 1 is linear on the unknown U2 = (v2, ψ2, ϕ2,

u2, V2), therefore it can be solved based on the estimates (3.27) for the corresponding
right-hand side terms as follows. Namely, by Theorem 2.1, we obtain the existence of the
solution v2 to the divergence equation (3.14), with r1(x, t) replaced by r̃1(x), satisfying

v2 ∈ Cj ([0, 1];H 4−j (Tn))
⋂
C2([0, 1];H 1(Tn)), j = 0, 1.

Then by making use of the theory of the linear O.D.E. system, we prove the existence
of the solution u2 of (3.17) for g1(x, t) = g̃1(x) and then ϕ2 of (3.15):

u2 ∈ C1([0, 1];H 3(Tn))
⋂
C2([0, 1];H 1(Tn)),

ϕ2 ∈ C1([0, 1];H 3(Tn))
⋂
C2([0, 1];H 2(Tn))

⋂
C3([0, 1];L2(Tn)).

By applying Theorem 2.3 to (3.16), with b(x, t) = 2u1(x) in (2.12) and f (x, t) = h̃1(x)

in (2.13), we obtain the existence of a solution ψ2 satisfying

ψ2 ∈ Cj ([0, 1];H 6−2j (Tn))
⋂
C3([0, 1];L2(Tn)), j = 0, 1, 2.

Finally, the existence of a solution V2 satisfying

V2 ∈ C1([0, 1]; Ḣ 4(Tn))

follows from the application of Theorem 2.2 to Eq. (3.18) on T
n, with q1(x, t) replaced

by q̃1(x).
Moreover, based on the estimates (3.27), we conclude there is a constant B2 > 0,

such that U2 satisfies
{‖(u2,u′

2)(t)‖2
3 + ‖(u′′

2, v′′
2)(t)‖2

1 + ‖v2(t)‖2
4 + ‖v′

2(t)‖2
3 + ‖(V2, V

′
2)(t)‖2

4 ≤ B2,

‖(ϕ2, ϕ
′
2, ϕ

′′
2 , ϕ

′′′
2 )(t)‖2

H 6×H 3×H 2×L2 + ‖(ψ2, ψ
′
2, ψ

′′
2 , ψ

′′′
2 )(t)‖2

H 6×H 4×H 2×L2 ≤ B2,

for all t ∈ [0, 1].

Step 2: Estimates for p ≥ 2. Now, assume that {Ui}pi=1 (p ≥ 2) exist in the time inter-
val [0, 1], solve the system (3.14)–(3.18), and satisfy (3.25)–(3.26), with M∗ replaced
by the max Bp (≥ max1≤j≤p−1{Bj }). For given Up, the system (3.17)–(3.18) is lin-
ear in Up+1 = (vp+1, ϕp+1, ψp+1,up+1, Vp+1). As before, we apply Theorem 2.1
to Eq. (3.14) for vp+1, the theory of linear O.D.E. systems to Eq. (3.15) for ϕp+1
and Eq. (3.17) for up+1, Theorem 2.3 to wave type equation (3.16) for ψp+1 with
f (x, t) = hp(t) and b(x, t) = kp(t), and Theorem 2.2 to the Poisson equation (3.18) for
Vp+1. Therefore we obtain the existence of Up+1 = (vp+1, ψp+1, ϕp+1,up+1, Vp+1)

on the time interval [0, 1] and moreover it follows:





vp+1 ∈ Cj ([0, 1];H 4−j (Tn))
⋂
C2([0, 1];H 1(Tn)), j = 0, 1,

ϕp+1 ∈ C1([0, 1];H 3(Tn))
⋂
C2([0, 1];H 2(Tn))

⋂
C3([0, 1];L2(Tn)),

ψp+1 ∈ Cj ([0, 1];H 6−2j (Tn))
⋂
C3([0, 1];L2(Tn)), j = 0, 1, 2,

up+1 ∈ C1([0, 1];H 3(Tn))
⋂
C2([0, 1];H 1(Tn)),

Vp+1 ∈ C([0, 1]; Ḣ 4(Tn))
⋂
C1([0, 1]; Ḣ 4(Tn)).
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Now our goal is to deduce uniform bounds forUj+1, 1 ≤ j ≤ p, for some time interval.
Let us first estimate the L2 norms of the initial value of ψp+1, ψ

′
p+1, ψ

′′
p+1, where the

initial value �0 of ψ ′′
p+1 is obtained through (3.16)1 at t = 0, where ψp+1 and ψ ′

p+1
are replaced by the initial data ψ1, ψ0:

�0 = −ψ0 − ν�2ψ0 − νψ1 − 2u1 ·∇ψ0 + h̃(0), (3.30)

and h̃(0) = hp(0) depending only on (ψ1,u1). Hence these initial values will depend
only on (ψ1,u1) and are periodic functions of the space variables. Obviously, there is
a constant M2 > 0, such that the initial values of ψp+1, ψ

′
p+1, ψ

′′
p+1 for p ≥ 1 are

bounded by

M2I0 ≥ max
{

‖ψ1‖2
2, ‖ψ0‖2

2, ‖�0‖2
2, ‖u1‖2

3

}
. (3.31)

Here, we recall that I0 is defined by means of (3.29).
Denote by

M0 =40M2I0 · max{1, ν−1}, (3.32)

M1 =3Na2
0(I0 + 1 +M0)

7 · max{1, ν−2}, (3.33)

and choose

T∗ = min

{
1,

ψ∗
4M0

,
M2I0

NM3
,

ln 2

NM4
,

2M2I0

NM5
,

2M2I0

NM6

}
, (3.34)

where

M3 = 5a2
0(I0 + 1 +M0 +M1)

6, M4 = 2a3
0(I0 + 1 +M0 +M1)

8,

M5 = a2
0(I0 + 1 +M0 +M1)

7, M6 = a5
0(I0 + 1 +M0 +M1)

14.
(3.35)

As before N ≥ M2 denotes a generic constant independent of Up, p ≥ 1, and a0 is
defined by (3.28).

Step 2.1: We claim that if the solution {Uj }pj=1, (p ≥ 2), to the problems (3.14)–(3.18)
satisfies

{‖uj (t)‖2
3 + ‖(ψj , ψ ′

j )(t)‖2
4 + ‖ψ ′′

j (t)‖2
2 ≤ M0,

‖vj (t)‖2
4 + ‖D�ψj(t)‖2

1 ≤ a0M1,
(3.36)

for all 1 ≤ j ≤ p and t ∈ [0, T∗], then this is also true for Up+1, namely
{‖up+1(t)‖2

3 + ‖(ψp+1, ψ
′
p+1)(t)‖2

4 + ‖ψ ′′
p+1(t)‖2

2 ≤ M0,

‖vp+1(t)‖2
4 + ‖D�ψp+1(t)‖2

1 ≤ a0M1,
(3.37)

for all t ∈ [0, T∗]. Here M0 and M1 are given by (3.32) and (3.33).
We prove (3.37) in the following Steps 2.2–2.4, namely, we first obtain the uniform

bounds for Vj+1 (1 ≤ j ≤ p) based on (3.36), then we estimate uniform bounds of
ϕj+1, vj+1, uj+1(1 ≤ j ≤ p) and their time derivatives in Sobolev space and prove
that vp+1,up+1 satisfy (3.37), and finally we estimate ψj+1 (1 ≤ j ≤ p). Meanwhile,
related to this, we can get uniform estimates on the time derivatives of up+1, vp+1 and
on ψ ′′′

p+1.
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Step 2.2: Estimate on Vj+1. Based on (3.36) we derive the estimates on Vj+1 (1 ≤ j ≤
p) by solving the Poisson equation (3.18) on T

n for Vj+1, 1 ≤ j ≤ p. Since it always
holds

∫

Tn
qj (x, t)dx = 0, 1 ≤ j ≤ p, t ∈ [0, T∗],

by using Theorem 2.2 there exists a unique solution Vj+1 of Eq. (3.18) satisfying

‖Vj+1(t)‖2
4 ≤N‖qj (t)‖2

2 ≤ N‖ψj (t)‖4
2 ≤ NM2

0 , t ∈ [0, T∗], 1 ≤ j ≤ p,

(3.38)

‖V ′
j+1(t)‖2

4 ≤N‖q ′
j (t)‖2

2 ≤ N‖(ψ ′
j , ψj )(t)‖4

2 ≤ NM2
0 , t ∈ [0, T∗], 1 ≤ j ≤ p.

(3.39)

Thus, we conclude that Vp+1 ∈ C1([0, T∗]; Ḣ 4(Tn)) is uniformly bounded so long as
(3.36) is true.

Step 2.3: Estimates on ϕj , vj ,uj . We estimate ϕj , vj ,uj , 1 ≤ j ≤ p for (x, t) ∈
T
n × [0, T∗] based on (3.36). For (x, t) ∈ T

n × [0, T∗] by using the same ideas as in
deriving (3.8) it follows for ϕj+1 from (3.15) that






ϕj+1(x, t) =
(
ψ1(x)− ∫ t

0 e
1
2

∫ s
0 ∇·vj (x,ξ)dξuj ·∇ψj (x, s)ds

)
e−

1
2

∫ t
0 ∇·vj (x,s)ds,

ϕj+1 ∈ C1([0, 1];H 3(Tn))
⋂
C2([0, 1];H 2(Tn))

⋂
C3([0, 1];L2(Tn)),

(3.40)

which satisfies for all (x, t) ∈ T
n × [0, T∗],

1

4
ψ∗ ≤ 1

2
ψ∗e−N(1+M1)T∗ ≤ ϕj+1(x, t) ≤ (ψ∗ + ψ∗)eN(1+M1)T∗ ≤ 2(ψ∗ + ψ∗).

(3.41)

Moreover the L2 norm of ϕj+1, with 1 ≤ j ≤ p, and its derivatives are bounded for all
t ∈ [0, T∗], through those of vj ,uj and through the initial data by

∥∥ϕj+1(t)
∥∥2

3 ≤ NeN(1+M1)T∗(‖ψ1‖2
3 + T∗(‖uj (t)‖2

3 · ‖ψj (t)‖2
4)) ≤ NI0, (3.42)

and

∥∥
∥ϕ′

j+1(t)

∥
∥∥

2

3
≤N

(
I0 + ‖vj‖2

4 + ‖uj (t)‖2
3 + ‖ψj (t)‖2

4

)2

≤Na0 (I0 + 1 +M0 +M1)
2 , (3.43)
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∥∥∥ϕ′′
j+1(t)

∥∥∥
2

2
≤NM0

(
‖ϕ′
j+1(t)‖2

2 + ‖u′
j (t)‖2

2 +M0

)
+N‖ϕj+1(t)‖2

3 · ‖v′
j (t)‖2

3

≤Na2
0 (I0 + 1 +M0 +M1)

3 +N(I0 +M0)‖(u′
j , v′

j )(t)‖2
3, (3.44)

∥∥∥ϕ′′′
j+1(t)

∥∥∥
2 ≤N(I0 +M0)

(
‖ϕ′′
j+1(t)‖2 + ‖(u′

j ,u′′
j )(t)‖2 + ‖v′′

j (t)‖2
1 +M0

)

+N
(
‖ϕ′
j+1(t)‖4

3 + ‖v′
j (t)‖4

3

)

≤N
(
‖v′
j (t)‖4

3 + (I0 +M0)
2‖(u′

j , v′
j )(t)‖2

3

)

+N(I0 +M0)
(
‖u′′
j (t)‖2 + ‖v′′

j (t)‖2
1

)

+Na2
0 (I0 + 1 +M0 +M1)

4 . (3.45)

Let us consider the divergence equation (3.14) for vj+1, with 1 ≤ j ≤ p. Since one
has

∫

Tn
rj (x, t) dx = 0, 1 ≤ j ≤ p, t ∈ [0, T∗],

the application of Theorem 2.1 yields the existence of a unique solution vj+1 of Eq. (3.14)
for t ∈ [0, T∗], which, in view of (3.40)–(3.44) and (3.36), satisfies the following bounds:

‖vj+1(t)‖2
4 ≤ N‖rj (t)‖2

3 ≤Na0‖ϕj (t)‖2
3

(
‖ψ ′

j (t)‖2
3 + ‖ψj (t)‖2

4 + ‖uj (t)‖2
3

)

≤Na0 (I0 + 1 +M0)
3 (3.46)

≤1

3
M1, t ∈ [0, T∗], 1 ≤ j ≤ p, (3.47)

‖v′
j+1(t)‖2

3 ≤N‖r ′j (t)‖2
2

≤Na0‖ϕj‖2
2

(
‖ψ ′′

j (t)‖2
2 +M0‖(ψ ′

j ,u′
j )(t)‖2

2

)

+Na0I0‖ϕ′
j (t)‖2

3

(
M0‖uj‖2

2 + ‖ψ ′
j (t)‖2

2

)

≤Na2
0 (I0 + 1 +M0 +M1)

5

+Na0(I0 +M0)
2‖u′

j (t)‖2
2, t ∈ [0, T∗], 1 ≤ j ≤ p, (3.48)

and

‖v′′
j+1(t)‖2

1 ≤N‖r ′′j (t)‖2

≤Na0

(
‖ψ ′′′

j (t)‖2 +M0‖(u′′
j ,u′

j )(t)‖2 +M0‖ψ ′′
j (t)‖2

2

)

+Na0‖ϕ′′
j (t)‖2

(
‖ψ ′

j (t)‖2
2 +M0‖uj (t)‖2

2

)
+Na0(1 +M0)

2‖ϕ′
j (t)‖4

3

+Na0‖ϕ′
j (t)‖2

3

(
‖ψ ′′

j (t)‖2 + ‖ψj (t)‖2
4 + ‖(uj ,u′

j )(t)‖2
)



232 H.-L. Li, P. Marcati

≤Na0

(
‖ψ ′′′

j (t)‖2
3 +M0‖u′′

j (t)‖2
)

+Na3
0 (I0 + 1 +M0 +M1)

6

+Na0 (I0 + 1 +M0 +M1)
3
(
‖u′
j (t)‖2

3 + ‖v′
j (t)‖2

3

)

≤Na0

(
‖ψ ′′′

j (t)‖2
3 +M0‖u′′

j (t)‖2
)

+Na3
0 (I0 + 1 +M0 +M1)

8

+Na2
0 (I0 + 1 +M0 +M1)

3 ‖u′
j (t)‖2

3

+Na2
0(I0 + 1 +M0)

5‖u′
j−1(t)‖2

2, t ∈ [0, T∗], 2 ≤ j ≤ p, (3.49)

where we have already used (3.48) for v′
j .

For the functions Ui (1 ≤ j ≤ p) satisfying (3.36), it is easy to verify that gj , g′
j

(1 ≤ j ≤ p) belong toH 3(Tn) andH 1(Tn). By (3.36), (3.38)–(3.43) and (3.47)–(3.48),
we can obtain the L2 norm of gj ,u′

j , v′
j+1 (1 ≤ j ≤ p) and those of their derivatives

as follows. We observe that

‖gj (t)‖2
3 ≤Na0

(
‖ψj (t)‖2

6 + ‖ϕj (t)‖2
3

)5 +N
(
‖∇Vj (t)‖2

3 + ‖vj (t)‖4
4

)

≤Na2
0 (I0 + 1 +M0 +M1)

6 , t ∈ [0, T∗], 1 ≤ j ≤ p. (3.50)

Then from (3.17) and (3.36) one has

‖u′
j (t)‖2

3 ≤N
(
‖uj‖2

3 + ‖gj−1(t)‖2
3

)

≤Na2
0 (I0 + 1 +M0 +M1)

6 , t ∈ [0, T∗], 1 ≤ j ≤ p. (3.51)

And we can estimate v′
j+1 in view of (3.48) as follows:

‖v′
j+1(t)‖2

3 ≤Na2
0 (I0 + 1 +M0 +M1)

5 +Na0 (I0 +M0)
2 ‖u′

j (t)‖2
2

≤Na3
0 (I0 + 1 +M0 +M1)

8 , t ∈ [0, T∗], 1 ≤ j ≤ p. (3.52)

By differentiating (3.22) with respect to t , and using (3.36), (3.39), (3.42)–(3.43), (3.47)
and (3.52), we obtain

‖g′
j (t)‖2

1 ≤Na0

(
‖(ψ ′

j , ψj )(t)‖2
4 + ‖ϕj (t)‖2

3

)3

+Na0‖ϕ′
j (t)‖2

3

(
‖ψj (t)‖2

4 + ‖ϕj (t)‖2
3

)4

+N
(
‖∇V ′

j (t)‖2
1 + ‖vj (t)‖2

3 · ‖v′
j (t)‖2

3

)

≤Na4
0 (I0 + 1 +M0 +M1)

11 , t ∈ [0, T∗], 1 ≤ j ≤ p. (3.53)

Hence, we obtain, after differentiating (3.17) with respect to time, that

‖u′′
j (t)‖2

1 ≤N(‖u′
j‖2

1 + ‖g′
j−1(t)‖2

1)

≤Na4
0 (I0 + 1 +M0 +M1)

11 , t ∈ [0, T∗], 2 ≤ j ≤ p, (3.54)
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and from (3.49) that

‖v′′
j+1(t)‖2

1 ≤Na0

(
‖ψ ′′′

j (t)‖2
3 +M0‖u′′

j (t)‖2
)

+Na3
0 (I0 + 1 +M0 +M1)

8

+Na2
0 (I0 + 1 +M0 +M1)

3 ‖u′
j (t)‖2

3

+Na2
0(I0 + 1 +M0)

5‖u′
j−1(t)‖2

2

≤Na5
0 (I0 + 1 +M0 +M1)

12

+Na0‖ψ ′′′
j (t)‖2

3, t ∈ [0, T∗], 1 ≤ j ≤ p. (3.55)

By the previous estimates, it is easy to obtain the estimates for up+1. In fact, by taking
the inner product between Dα(3.17)1 (0 ≤ |α| ≤ 3) and 2Dαup+1 over T

n, we obtain

d

dt
‖Dαup+1‖2 + ‖Dαup+1‖2 ≤ ‖Dαgp(t)‖2. (3.56)

Hence by summing (3.56) with respect to |α| = 0, 1, 2, 3, and integrating it over [0, t],
and by the Gronwall lemma, we have

‖up+1(t)‖2
3 ≤‖u1‖2

3 +
∫ t

0
‖gp(s)‖2

3e
−(t−s)ds

≤M2I0 + T∗Na2
0 (I0 + 1 +M0 +M1)

6 ≤ 2

5
M0, t ∈ [0, T∗], (3.57)

with T∗ defined by (3.34). With the help of (3.50), (3.53) and (3.57), the corresponding
H 3 and H 1 norms of u′

p+1 and u′′
p+1 are bounded, similarly to (3.51) and (3.54), by

‖u′
p+1(t)‖2

3 ≤N
(
‖up(t)‖2

3 + ‖gp(t)‖2
3

)
≤ Na2

0 (I0 + 1 +M0 +M1)
6 , (3.58)

‖u′′
p+1(t)‖2

1 ≤N(‖u′
p(t)‖2

1 + ‖g′
p(t)‖2

1) ≤ Na4
0 (I0 + 1 +M0 +M1)

11 , (3.59)

for t ∈ [0, T∗].
In addition, with the help of previous estimates on v,u (i.e., (3.51), (3.52), (3.54),

and (3.55)), we obtain from (3.44)–(3.45) that
∥∥∥ϕ′′

j+1(t)

∥∥∥
2

2
≤Na2

0 (I0 + 1 +M0 +M1)
3 +N(I0 +M0)‖(u′

j , v′
j )(t)‖2

3

≤Na3
0 (I0 + 1 +M0 +M1)

9 , (3.60)

and
∥∥∥ϕ′′′

j+1(t)

∥∥∥
2 ≤N

(
‖v′
j (t)‖4

3 + (I0 +M0)
2‖(u′

j , v′
j )(t)‖2

3

)

+N(I0 +M0)
(
‖u′′
j (t)‖2 + ‖v′′

j (t)‖2
1

)

+Na2
0 (I0 + 1 +M0 +M1)

4

≤Na6
0 (I0 + 1 +M0 +M1)

16 +Na0(I0 +M0)‖ψ ′′′
j (t)‖2

3. (3.61)

So far, we have proved that vp+1 and up+1 satisfy (3.37) (i.e., (3.47) and (3.57)) as
long as (3.36) holds, and the time derivatives of them (i.e., (3.52), (3.58), and (3.59)) are
also bounded uniformly in Sobolev space, with the exception of (3.55) for v′′

j+1 relative
to ψ ′′′

j+1 (1 ≤ j ≤ p). Furthermore, from (3.42)–(3.43) and (3.60)–(3.61) we conclude
that ϕp+1 and its time derivatives are uniformly bounded in Sobolev space, with the
exception of ϕ′′′

j+1, i.e., (3.61), relative to ψ ′′′
j+1 (1 ≤ j ≤ p).
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Step 2.4: Estimates on ψj+1, v′′
j+1, ϕ′′′

j+1. We estimate ψj+1 and then v′′
j+1 and ϕ′′′

j+1,
1 ≤ j ≤ p, for (x, t) ∈ T

n × [0, T∗]. By (3.36), (3.46), (3.51), and (3.52), it is easy to
verify the upper bounds of kj , k′

j in H 3(Tn), for all t ∈ [0, T∗], namely

‖kj (t)‖2
3 ≤ N(‖uj (t)‖2

3 + ‖vj (t)‖2
3) ≤ Na0(I0 + 1 +M0)

3, 1 ≤ j ≤ p, (3.62)

and

‖k′
j (t)‖2

3 ≤ N(‖u′
j (t)‖2

3 + ‖v′
j (t)‖2

3) ≤ Na3
0 (I0 + 1 +M0 +M1)

8 , 1 ≤ j ≤ p.

(3.63)

With the help of (3.36), (3.38)–(3.39), (3.42), (3.43), (3.46), (3.51) and (3.52), we obtain,
from (3.21), the following bounds on hp(t), h′

p(t):

‖hj (t)‖2
2 ≤Na0

(
‖ϕj (t)‖2

3 + ‖ψj (t)‖2
4 + ‖ψ ′

j (t)‖2
2 + ‖uj (t)‖2

3

)4

+Na0‖vj (t)‖2
4

(
‖ψj (t)‖2

4 + ‖(ψ ′
j , ϕj )(t)‖2

2 + ‖uj (t)‖2
3

)3

+N‖ψj (t)‖2
4

(
‖Vj (t)‖2

4 + ‖vj (t)‖4
4

)

≤Na2
0(I0 + 1 +M0)

7, 1 ≤ j ≤ p, t ∈ [0, T∗], (3.64)

and

‖h′
j (t)‖2

2 ≤Na0

(
‖(ϕ′

j , ϕj )(t)‖2
3 + ‖(ψ ′

j , ψj )(t)‖2
4 + ‖ψ ′′

j (t)‖2
2 + ‖uj (t)‖2

3

)5

+Na0‖u′
j (t)‖2

3

(
1 + ‖vj (t)‖2

4

) (
‖ϕj (t)‖2

2 + ‖(ψ ′
j , ψj )(t)‖2

4

)4

+Na0‖vj (t)‖2
4

(
‖(ψ ′

j , ψj )(t)‖2
4 + ‖(ψ ′′

j , ϕ
′
j , ϕj )(t)‖2

2 + ‖uj (t)‖2
3

)4

+Na0‖v′
j (t)‖2

4

(
‖ψj (t)‖2

4 + ‖(ψ ′
j , ϕj )(t)‖2

2 + ‖uj (t)‖2
4

)5

+N‖ψj (t)‖2
4

(
‖V ′

j (t)‖2
4 + ‖v′

j (t)‖2
3 · ‖vj (t)‖2

4

)

+N‖ψ ′
j (t)‖2

4

(
‖Vj (t)‖2

4 + ‖vj (t)‖4
4

)

≤Na5
0(I0 + 1 +M0 +M1)

14, 2 ≤ j ≤ p, t ∈ [0, T∗]. (3.65)

To obtain the bounds on the L2 norm of ψp+1 and its derivatives, we first take the
inner product between Eq. (3.16)1 and 2ψ ′

p+1 and then we integrate by parts. By using
Lemma 2.5, we have

d

dt
(‖ψ ′

p+1(t)‖2 + ν‖ψp+1(t)‖2 + ν‖�ψp+1(t)‖2)

≤ |∇· kp(t)|L∞‖ψ ′
p+1‖2 + ‖hp(t)‖2

≤ N(1 + ‖kp(t)‖2
3)‖ψ ′

p+1(t)‖2 + ‖hp(t)‖2. (3.66)
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Take the inner product between Eq. Dα(3.16)1 and 2Dαψ ′
p+1 with 1 ≤ |α| ≤ 2 and

integrate it by parts over T
n. It follows

d

dt
(‖Dαψ ′

p+1(t)‖2 + ν‖Dαψp+1(t)‖2 + ν‖�Dαψp+1(t)‖2)

≤ |∇· kp(t)|L∞‖Dαψ ′
p+1(t)‖2 + ‖Dαhp(t)‖2 +N

∫

Tn
|Hα(ψ ′

p+1, kp)|2dx

≤ N(1 + ‖kp(t)‖2
3)‖Dψ ′

p+1(t)‖2 + ‖Dαhp(t)‖2 +N

∫

Tn
|Hα(ψ ′

p+1, kp)|2dx,
(3.67)

where

Hα(ψ, k) = Dα (k ·∇ψ)− k ·∇(Dαψ).

By Lemma 2.5, (3.62), we get

∫

Tn
|Hα(ψ, k)|2dx ≤

{
N(1 + ‖k(t)‖2

3)‖Dψ‖2, |α| = 1,

N(1 + ‖k(t)‖2
3)(‖Dψ‖2 + ‖Dαψ‖2), |α| = 2.

(3.68)

By substituting (3.68) into (3.67) and taking summation of these differential inequalities
with respect to |α| = 0, 1, 2, we have

d

dt

(
‖ψ ′

p+1(t)‖2
2 + ν‖ψp+1(t)‖2

2 + ν‖�ψp+1(t)‖2
2

)

≤ N(1 + ‖kp(t)‖2
3)
(
‖ψ ′

p+1(t)‖2
2 + ν‖ψp+1(t)‖2

2 + ν‖�ψp+1(t)‖2
2

)

+ ‖hp(t)‖2
2. (3.69)

By applying the Gronwall inequality and by using (3.62), (3.64), we obtain

‖ψ ′
p+1(t)‖2

2 + ‖ψp+1(t)‖2
2 + ‖�ψp+1(t)‖2

2

≤ max{1, ν−1} · (‖ψ0‖2
2 + ‖ψ1‖2

4 + T∗NM5)e
T∗Na0(1+M0+M1)

3

≤ 2(2M2I0 + T∗M5) · max{1, ν−1}
≤ 8M2I0 = 1

5
M0, t ∈ [0, T∗], p ≥ 1, (3.70)

where we recall thatM0, T∗ andM5 are defined by (3.32), (3.34), and (3.35) respectively.
Let us take the inner product between Eq. Dα∂t (3.16)1 and 2Dαψ ′′

p+1, with 0 ≤
|α| ≤ 2, and integrate by parts over T

n, then by summing the resulting differential
inequality with respect to α, by (3.68) and by the following estimates:

∫

Tn
|Dα

(
k′
p ·∇ψ ′

p+1

)
|2 ≤






Nν‖k′
p(t)‖2

2

(
‖ψ ′

p+1(t)‖2 + ‖�ψ ′
p+1(t)‖2

)
, α = 0,

Nν‖k′
p(t)‖2

2

(
‖Dψ ′

p+1‖2
1 + ‖�ψ ′

p+1(t)‖2
)
, |α| = 1,

Nν‖k′
p(t)‖2

2

(
‖Dψ ′

p+1‖2 + ‖�ψ ′
p+1‖2

1

)
, |α| = 2,
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we obtain, in analogy to (3.66), (3.69), that

d

dt

(
‖ψ ′′

p+1(t)‖2
2 + ν‖ψ ′

p+1(t)‖2
2 + ν‖�ψ ′

p+1(t)‖2
2

)

≤ N(1 + ‖kp(t)‖2
3)
(
‖Dψ ′′

p+1(t)‖2
1 + ν‖Dψ ′

p+1(t)‖2
1 + ν‖�Dψ ′

p+1(t)‖2
1

)

+ ‖h′
p(t)‖2

2 +N
∑

0≤|α|≤2

∫

Tn
(|Dα

(
k′
p ·∇ψ ′

p+1

)
|2 + |Hα(ψ ′′

p+1, kp)|2) dx

≤ NB1

(
‖ψ ′′

p+1‖2
2 + ν‖ψ ′

p+1(t)‖2
2 + ν‖�ψ ′

p+1(t)‖2
2

)
+ ‖h′

p(t)‖2
2, (3.71)

where

B1 = a3
0(I0 + 1 +M0 +M1)

8.

By applying the Gronwall inequality to (3.71), it follows

‖ψ ′′
p+1(t)‖2

2 + ‖ψ ′
p+1(t)‖2

2 + ‖�ψ ′
p+1(t)‖2

2

≤ max{1, ν−1} · (‖�0‖2
2 + ‖ψ0‖2

4 + T∗NM6)e
T∗Na3

0(I0+1+M0+M1)
8

≤ 2(2M2I0 + T∗NM6) · max{1, ν−1}
≤ 8M2I0 = 1

5
M0, t ∈ [0, T∗], p ≥ 1, (3.72)

where we recall thatM0, T∗ andM6 are defined by (3.32), (3.34), and (3.35) respectively.
To estimate the L2 bounds ofD5ψp+1 andD6ψp+1, it is sufficient to estimate those

of �2Dψp+1 and �2D2ψp+1. By differentiating Eq. (3.16)1 twice with respect to x
and by taking the inner product with �2Dψp+1 and �2D2ψp+1 over T

n, and using the
estimates (3.62), (3.64), (3.70), and (3.72), one has

‖�2Dψp+1(t)‖2 ≤N
ν2

(
‖ψ ′′

p+1(t)‖2
1 + ‖ψ ′

p+1(t)‖2
1 + ‖ψp+1(t)‖2

1

)

+ N

ν2 ‖D(kp ·∇ψ ′
p+1)(t)‖2 + N

ν2 ‖hp(t)‖2
1

≤N
ν2 a

2
0(I0 + 1 +M0)

7 ≤ 1

3
M1, t ∈ [0, T∗], p ≥ 1, (3.73)

‖�2D2ψp+1(t)‖2 ≤N
ν2

(
‖ψ ′′

p+1(t)‖2
2 + ‖ψ ′

p+1(t)‖2
2 + ‖ψp+1(t)‖2

2

)

+ N

ν2 ‖D2(kp ·∇ψ ′
p+1)(t)‖2 + N

ν2 ‖hp(t)‖2
2

≤N
ν2 a

2
0(I0 + 1 +M0)

7 ≤ 1

3
M1, t ∈ [0, T∗], p ≥ 1, (3.74)

where we recall M1 and T∗ are defined by (3.33) and (3.34) respectively.
We now need to show the L2 norm of ψ ′′′

j+1 and v′′
j+1 for 1 ≤ j ≤ p. By taking the

inner product between ∂t (3.16)1 and ψ ′′′
p+1 and using the above estimates, we obtain

‖ψ ′′′
p+1(t)‖2 ≤N

(
‖ψ ′′

p+1(t)‖2[1 + ‖kp(t)‖2
2] + ‖h′

p(t)‖2
)

+N‖ψ ′
p+1(t)‖2

4

(
1 + ‖k′

p(t)‖2
2

)

≤Na5
0(I0 + 1 +M0 +M1)

14, t ∈ [0, T∗], 1 ≤ j ≤ p, (3.75)
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which gives from (3.55) that

‖v′′
j+1(t)‖2

1 ≤Na5
0 (I0 + 1 +M0 +M1)

12 +Na0‖ψ ′′′
j (t)‖2

3

≤Na6
0(I0 + 1 +M0 +M1)

14, t ∈ [0, T∗], 1 ≤ j ≤ p, (3.76)

and from (3.61) that

∥∥
∥ϕ′′′

j+1(t)

∥∥
∥

2 ≤Na6
0 (I0 + 1 +M0 +M1)

16 +Na0(I0 +M0)‖ψ ′′′
j (t)‖2

3

≤Na6
0 (I0 + 1 +M0 +M1)

16 , t ∈ [0, T∗], 1 ≤ j ≤ p. (3.77)

Step 3: End of proof. By the previous estimates (3.38)–(3.39) on Vp+1, (3.47), (3.52),
and (3.76) on vp+1, (3.42)–(3.43), (3.60), and (3.77) onϕp+1, (3.57)–(3.59) on up+1, and
(3.70) and (3.72)–(3.75) on ψp+1, we conclude that the approximate solution Up+1 =
(vp+1, ϕp+1, ψp+1,up+1, Vp+1) is uniformly bounded in the time interval [0, T∗] and it
satisfies (3.37) for eachp ≥ 1 as long asUp satisfies (3.36) withM0,M1, and T∗ defined
by (3.32), (3.33), and (3.34) respectively, which are independent of Up+1, p ≥ 1. By
repeating the procedure used above, we can construct the approximate solution {Ui}∞i=1,
which solves (3.25)–(3.26) on [0, T∗], with T∗ defined by (3.34) and the constantM∗ > 0
chosen by

M∗ = max
{
M0, M1, Na

6
0(I0 + 1 +M0 +M1)

16
}
. (3.78)

Let us recall here thatM0,M1 and a0 are defined by (3.32), (3.33) and (3.28) respectively
and N > 0 is a generic constant independent of Up+1, p ≥ 1. Therefore, the proof of
Lemma 3.1 is completed. ��

Proof of Theorem 1.1. By means of Lemma 3.1, we obtain an approximate solution
sequence {Up}∞p=1 satisfying (3.25)–(3.26). Therefore, the proof of Theorem 1.1 is
completed if we show that the whole sequence converges. Indeed, based on Lemma 3.1,
we can obtain the estimates of the differenceYp+1 =: Up+1−Up,p ≥ 1, of the approxi-
mate solution sequence {Up}∞p=1. Let us denoteYp+1 =(v̄p+1, ϕ̄p+1, ψ̄p+1, ūp+1, V̄p+1)

by

v̄p+1 = vp+1 − vp, ϕ̄p+1 = ϕp+1 − ϕp,

ψ̄p+1 = ψp+1 − ψp, ūp+1 = up+1 − up, V̄p+1 = Vp+1 − Vp.

We can obtain for p ≥ 4,

‖v̄p+1(t)‖2
4 + ‖(V̄p+1, V̄

′
p+1)(t)‖2

3 ≤ N∗
(
‖(ψ̄p, ψ̄ ′

p)(t)‖2
4 + ‖(ϕ̄p, ūp)(t)‖2

3

)
,

‖(v̄′
p+1, ū′

p+1, ϕ̄
′
p+1)(t)‖2

3 ≤ N∗
2∑

j=0

‖(ψ̄p−j , ψ̄ ′
p−j )(t)‖2

4

+N∗
2∑

j=0

(
‖ψ̄ ′′

p−j (t)‖2
2 + ‖(ϕ̄p−j , ūp−j )(t)‖2

3

)
,
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∑

5≤|α|≤6

‖Dαψ̄p+1(t)‖2 ≤ N∗‖ψ̄ ′′
p−j (t)‖2

2 +N∗
2∑

j=0

‖(ψ̄p+1−j , ψ̄ ′
p+1−j )(t)‖2

4

+N∗
1∑

j=0

(
‖ψ̄ ′′

p−j (t)‖2
2 + ‖(ϕ̄p−j , ūp−j )(t)‖2

3

)
.

Here N∗ denotes a constant dependent on M∗. By using the previous estimates,
Lemma 3.1, and an argument similar to the one used to get (3.42), (3.57), (3.70), and
(3.72), we show, after a tedious computation, that there exists 0 < T∗∗ ≤ T∗, such
that the difference Yp+1 = Up+1 − Up, p ≥ 1, of the approximate solution sequence
satisfies the following estimates

∞∑

p=1

(
‖(ūp+1, ϕ̄p+1)‖2

C1([0,T∗∗];H 3)
+ ‖V̄p+1‖2

C1([0,T∗∗];Ḣ 4)

)
≤ C∗, (3.79)

∞∑

p=1

(
‖ψ̄p+1‖2

Ci([0,T∗∗];H 6−2i )
+ ‖v̄p+1‖2

C([0,T∗∗];H 4)
+ ‖v̄′

p+1‖2
C([0,T∗∗];H 3)

)
≤ C∗,

(3.80)

where i = 0, 1, 2, and C∗ = C∗(N,M∗) denote a positive constant depending on N
and M∗. Then by applying the Ascoli-Arzela Theorem (to the time variable) and the
Rellich-Kondrachev Theorem (to the spatial variables) [33], we prove, in a standard way
(see for instance [28]), that there exists a (unique) U = (v, ϕ, ψ,u, V ), such that as
p → ∞,





vp → v strongly in Ci([0, T∗∗];H 4−i−σ (Tn)),
ϕp → ϕ strongly in C1([0, T∗∗];H 3−σ (Tn))

⋂
C2([0, T∗∗];H 2−σ (Tn)),

ψp → ψ strongly in Ci([0, T∗∗];H 6−2i−σ (Tn))
⋂
C2([0, T∗∗];H 2−σ (Tn)),

up → u strongly in Ci([0, T∗∗];H 3−σ (Tn)),
Vp → V strongly in Ci([0, T∗∗]; Ḣ 4−σ (Tn)),

(3.81)

holds with i = 0, 1, and σ > 0. Moreover, by (3.41) one has

ϕ(x, t) ≥ 1

4
ψ∗ > 0, (x, t) ∈ T

n × [0, T∗∗]. (3.82)

If we take σ � 1 in (3.81) and we pass into the limit as p → ∞ in (3.14)–(3.18),
we obtain the (short time) existence and uniqueness of the classical solution of the
system (3.5), (3.6), (3.9), (3.11), and (3.13) constructed in Sect. 3.1.

Next, we claim the local in-time classical solution (v, ϕ, ψ,u, V ), with initial data
(v, ϕ, ψ,u, V )(x, 0) = (u1, ψ1, ψ1,u1, V1)(x) also satisfies

ψ = ϕ, u = v, (3.83)

and then solves the IVP (1.5)–(1.8). Indeed by passing into the limit in (3.18)1, we have

ϕt + u·∇ψ + 1

2
ϕ∇· v = 0, (3.84)
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which yields

2(ϕt + u·∇ψ)
ϕ

= −∇· v, (3.85)
∫

Tn

2(ϕt + u·∇ψ)
ϕ

(x, t)dx = −
∫

Tn
∇· v(x, t)dx = 0. (3.86)

Let us note here that ϕ > 0. Then by taking the limiting equation of v (passing into the
limit in (3.14) and (3.19))

∇· v = −2(ψt + u·∇ψ)
ϕ

+ 1

Ln

∫

Tn

2(ψt + u·∇ψ)
ϕ

(x, t)dx, (3.87)

and using (3.85), (3.86), one has

(ϕ − ψ)t (x, t)

ϕ
− 1

Ln

∫

Tn

(ϕ − ψ)t

ϕ
(x, t)dx = 0, ∀ x ∈ T

n, t ≥ 0. (3.88)

Since by a straightforward computation we obtain (ϕ − ψ)t (x, 0) = 0 from (3.85) and
(3.87) with t = 0, then, from (3.88), we conclude that

(ϕ − ψ)t (x, t) = ϕ(x, t)f (t), t ≥ 0,

for any f ∈ C2([0, T∗∗]), with f (0) = 0. In particular we can choose

f (t) = 0, t ≥ 0,

hence by (3.82) and the fact

ϕ(x, 0) = ψ(x, 0) = ψ1(x) ⇒ (ϕ − ψ)(x, 0) = 0,

we obtain

ψ(x, t) = ϕ(x, t) ≥ 1

4
ψ∗ > 0, t ∈ [0, T∗∗], x ∈ T

n, (3.89)

ψt + u·∇ψ + 1

2
ψ∇· v = 0, t ∈ [0, T∗∗], x ∈ T

n. (3.90)

By passing into the limit p → ∞ in (3.17) we recover the equation for u, i.e., (3.11).
By using (3.89) and (3.12), from (3.11), one has

∂tu + 1

2
∇(|v|2)+ ∇h(ψ2)+ u = ∇V + ε2

2
∇
(
�ψ

ψ

)
. (3.91)

This equation, together with the fact ∇×u1(x) = 0, implies

∇×u = 0, ∀ x ∈ T
n, t ≥ 0. (3.92)

Similarly, by passing into limit in (3.16) we recover Eq. (3.9) for ψ , hence recombining
the various terms, with the help of (3.89) and (3.90), we get

ψtt + ψt + u·∇ψt + 1

2
ψt(∇· v)− 1

4ψ
∇· (ψ2∇(|v|2))− 1

2ψ
�P(ψ2)

+ 1

2ψ
∇· (ψ2∇V )+ 1

4ψ
ε2∇·

(
ψ2∇

(
�ψ

ψ

))
= 0. (3.93)
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From (3.90) we have ψt = −u·∇ψ − 1
2ψ∇· v, then by substituting it into (3.93) and by

representing ut by (3.91), it follows

∇· (u − v)t + ∇· (u − v) = 0.

By integrating previously the above equation with respect to time on [0, T∗∗], since
∇· (u − v)(x, 0) = 0 and

∫

Tn
u(x, t)dx =

∫

Tn
v(x, t)dx = ū(t),

we get the conclusion, by applying Theorem 2.1 where we choose f = 0, namely we
have û = 0, that

u(x, t) = v(x, t), t ∈ [0, T∗∗], x ∈ T
n, (3.94)

for the irrotational flow. Thus, by (3.91) and (3.94), we recover the equation for u which
is exactly Eq. (3.2) (and then Eq. (1.6) for the irrotational flow). Multiplying (3.90) by
ψ and by using (3.94) we recover the equation for ψ (which is exactly Eq. (1.5))

∂t (ψ
2)+ ∇· (ψ2u) = 0. (3.95)

From (3.95) the conservation (neutrality) of the density

∫

Tn
(ψ2 − C)(x, t)dx =

∫

Tn
(ψ2

1 − C)(x)dx = 0, t > 0 (3.96)

follows. Therefore passing into the limit as p → ∞, by (3.18) and by Theorem 2.2 one
has that V ∈ C1([0, T∗∗]; Ḣ 4) is the unique solution of the periodic boundary problem
of the Poisson equation:

�V = ψ2 − C,
∫

Tn
V dx = 0.

Therefore (ψ,u, V ) with ψ ≥ 1
2ψ∗ > 0 is the unique local (in time) solution of

IVP (1.5)–(1.8). By a straightforward computation once more, we get

ψ ∈ Ci([0, T∗∗];H 6−2i (Tn))
⋂
C3([0, T∗∗];L2(Tn)), i = 0, 1, 2;

u ∈ Ci([0, T∗∗];H 5−2i (Tn)), i = 0, 1, 2; V ∈ C1([0, T∗∗]; Ḣ 4(Tn)).

The proof of Theorem 1.1 is completed. ��

4. Global Existence and Large Time Behavior

We prove here uniform a-priori estimates for the local classical solutions (ψ,u, V )
of IVP (1.5)–(1.8) for any fixed T > 0, when (ψ,u, V ) is close to the steady state
(
√C, 0, 0).
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4.1. Reformulation of original problem. In this subsection, we reformulate the original
problem (1.5)–(1.8) into an equivalent one for classical solutions. For simplicity, we still
set τ = 1.

Set

w = ψ −
√

C.
By using (1.5), (1.7) and (3.9), we have the following systems for (w,u, V ):

ut + (u · ∇)u + u = f1(x, t), (4.1)

wtt + wt + 1

4
ε2�2w + Cw = f2(x, t)+ f3(x, t), (4.2)

�V = (2
√

C + w)w, (4.3)

and the corresponding initial values are

w(x, 0) = w1(x), wt (x, 0) = w2(x), u(x, 0) = u1(x), (4.4)

with

w1(x) =: ψ1 −
√

C, w2(x) =: u1 ·∇(
√

C + w1)− 1

2
(
√

C + w1)∇· u1. (4.5)

Here

f1(x, t) =∇V − ∇(h((
√

C + w)2)− h(C))+ 1

2
ε2∇

(
�w

w + √C

)
, (4.6)

f2(x, t) = − 2u · ∇wt + P ′(C)�w, (4.7)

f3(x, t) = − w2
t

w + √C − 1

2
w2(3

√
C + w)− ∇w · ∇V + ε2

4

|�w|2
(
√C + w)

+ (P ′((
√

C + w)2)− P ′(C))�w + (P ′((
√C + w)2)(

√C + w))′√C + w
|∇w|2

+ 1

2(
√C + w)

∇2 ·
(

[
√

C + w]2u ⊗ u
)

+ 2u · ∇wt . (4.8)

The derivatives of w and u satisfy:

2wt + 2u·∇(
√

C + w)+ (
√

C + w)∇· u = 0. (4.9)

4.2. The a-priori estimates. For all T > 0, define a suitable function space for the
unknown (w,u, V ) of the IVP (4.2)–(4.4) in the following way:

X(T ) = {(w,u, V ) ∈ H 6(Tn)×H 5(Tn)× Ḣ 4(Tn), 0 ≤ t ≤ T }
with norm

M(0, T ) = max
0≤t≤T

{‖w(t)‖H 6(Tn) + ‖u(t)‖H 5(Tn) + ‖V (t)‖Ḣ 4(Tn)},
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and assume that

δT = max
0≤t≤T

(‖w(t)‖H 6(Tn) + ‖u(t)‖H 5(Tn)) � 1. (4.10)

Under the assumption (4.10), it follows immediately

−1

2

√
C ≤ w ≤ 1

2

√
C. (4.11)

Lemma 4.1. Let (w,u, V ) ∈ X(T ), let the multi-index α satisfy 0 ≤ |α| ≤ 4, then the
following inequality holds

|∇V |2 + ‖V ‖2
5 ≤ C‖w‖2

3, |Vt |2 + |∇Vt |2 + ‖Vt‖2
4 ≤ C‖Dαwt‖2

2, (4.12)

‖Dαu‖2 ≤ C‖Dαu1‖2e−t + C‖Dα(∇V,wt , w,∇w,�w)‖2, (4.13)

‖Dαf3‖2 ≤ C‖Dαu1‖2e−t + CδT ‖Dα(∇V,wt , w,∇w,�w)‖2, (4.14)

provided that δT � 1.

Proof. The estimates (4.12) follows from Theorem 2.3, since the integral of the right-
hand side term of (4.3) equals zero due to the conservation of density and (1.9). By
(4.12) and by (4.10), we have

|∇V | + |Vt | + |∇Vt | + ||(∇V,∇Vt )|| ≤ CδT . (4.15)

In order to estimate (4.13) we take the inner product between (4.1) and u on T
n, then

1

2

d

dt
‖u‖2 + ‖u‖2 = − 1

2

∫

Tn
u · ∇(|u|2)dx +

∫

Tn
f1 · u dx

≤
(

1

4
+ CδT

)
‖u‖2 + C‖∇· u‖2 + C‖(w,∇V,�w)‖2. (4.16)

By replacing ∇· u in (4.16) by (4.9) and by (4.12), one has

d

dt
‖u‖2 + (3/2 − CδT )‖u‖2 ≤ C‖(∇w,wt ,�w)‖2dx. (4.17)

By applying the Gronwall Lemma, by taking δT small enough such that 1−CδT ≤ 1/2,
we get (4.13) for α = 0.

In order to get higher order estimates, we set û = Dαu. It satisfies the equation1

ût + (u · ∇)û+ û = f5 + ∇f6, (4.18)

where

f5(x, t) =∇(DαV )−Dα∇h(
√

C + w)− [Dα((u·∇)u)− (u·∇)Dαu], (4.19)

f6(x, t) =1

2
ε2Dα

(
�w√C + w

)
. (4.20)

1 For the proof of the case |α| = 4, we can assume that the solutions (w,u, V ) have high order reg-
ularity to have enough smooth derivatives, since the a-priori estimates (4.24) and (4.31) below are still
valid for these solutions when smoothed by Friedrich’s mollifier under assumptions similar to (4.10). We
omit all the details here.
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Let us take the inner product between (4.18) and û and integrate by parts over T
n. Then,

it follows

1

2

d

dt
‖û‖2 +

(
3

4
− 1

2
∇· u

)
‖û‖2

≤ − C‖f5‖2 + 1

2
ε2
∫

Tn
|Dα∇· u|

∣∣∣Dα((
√

C + w)−1�w)

∣∣∣ dx

≤C‖Dα(∇V,w,∇w,�w)‖2 + CδT ‖û‖2 + 1

4
‖∇· (Dαu)‖2. (4.21)

By Lemma 2.5 and by (4.9), one has

‖∇· (Dαu)‖2 ≤C‖Dα((
√

C + w)−1wt)‖2 + C‖Dα((
√

C + w)−1(u·∇)w)‖2

≤C‖Dα(wt , w,∇w)‖2 + CδT ‖Dαu‖2. (4.22)

By substituting (4.22) into (4.21) and by using the Gronwall inequality, one obtains
(4.13) for 1 ≤ |α| ≤ 4, provided that δT is small enough.

Finally, we estimate (4.14), with the help of Lemma 2.5, (4.10)–(4.13), (4.9), as

‖Dαf3‖2 ≤CδT ‖Dα(∇V,w,wt ,∇w,�w,u,Dα∇2w)‖2 + CδT
∑

l,j

‖Dα∂luj‖2

≤CδT ‖Dα(∇V,w,wt ,∇w,�w,u,∇· u)‖2

≤C‖Dαu1‖2e−t + CδT ‖Dα(∇V,w,wt ,∇w,�w)‖2. (4.23)

Thus, the proof of Lemma 4.1 is complete. ��

We have the following basic estimates:

Lemma 4.2. Let (w,u, V ) ∈ X(T ), then there exists β1 > 0, such that

‖(w,∇w,�w,wt)(t)‖2 + ‖u(t)‖2
1 + ‖V (t)‖2

2 ≤ C(||w1||22 + ||u1||21)e−β1t , (4.24)

provided that δT is small enough.

Proof. Take the inner product between (4.2) and w + 2wt and integrate by parts over
T
n. Therefore one has

d

dt

∫

Tn

(
1

2
w2 + wwt + w2

t + Cw2 + 1

4
ε2|�w|2

)
dx

+ 1

4
ε2‖�w‖2 + C‖w‖2 + ‖wt‖2

=
∫

Tn
(f2 + f3)(w + 2wt)dx

≤ CδT ‖(wt , w,∇w,�w)‖2 + C‖u1‖2e−t

+ 1

4
C‖w‖2 + 1

4
‖wt‖2 +

∫

Tn
f2(w + 2wt)dx. (4.25)
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By integration by parts and (4.9), the last term on the right hand side of (4.25) can be
estimated by
∫

Tn
f2(w + 2wt)dx =

∫

Tn
(2wwt∇· u + 2wtu·∇w + w2

t ∇· u)dx

− P ′(C) d
dt

‖∇w‖2 − P ′(C)‖∇w‖2

≤CδT ‖(w,wt ,∇w)‖2 − P ′(C) d
dt

‖∇w‖2 − P ′(C)‖∇w‖2.

(4.26)

Since

‖∇w‖2 ≤ L2

4π2 ‖�w‖2, (4.27)

it follows

d

dt

∫

Tn

(
1

2
w2 + wwt + w2

t + Cw2 + 1

4
ε2|�w|2 + P ′(C)|∇w|2

)
dx

+
(

1

4
A0 − CδT

)
‖�w‖2 +

(
3

4
C − CδT

)
‖w‖2 +

(
3

4
− CδT

)
‖wt‖2

≤ C‖u1‖2e−t , (4.28)

where A0 is defined by the “subsonic” condition (1.10)

A0 = π2

L2 ε
2 + P ′(C) > 0.

Note that there are positive constants κ1, β0 such that

||(w,wt ,∇w,�w)||2

≤ κ1

∫

Tn

(
1

2
w2 + wwt + w2

t + Cw2 + 1

4
ε2|�w|2 + P ′(C)|∇w|2

)
dx

≤ κ1β
−1
0 ‖(wt , w,�w)‖2. (4.29)

Hence, by applying the Gronwall lemma to (4.28) and using (4.29), we get

||(w,wt ,∇w,�w)||2 ≤ C(||w1||22 + ||u1||21)e−β1t (4.30)

with 0 < β1 < min{1, κ2β0}, provided that δT is sufficiently small to have

min

{
1

4
A0 − CδT ,

3

4
C − CδT ,

3

4
− CδT

}
=: κ2 > 0.

The combination of (4.30) and (4.12)–(4.13) with α = 0 yields (4.24). ��
In order to obtain higher order estimates, we differentiate (4.1)–(4.2) with respect to

x; therefore by repeating the previous steps and by using Lemmas 4.1–4.2, we have
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Lemma 4.3. Let(w,u, V ) ∈ X(T ), then there exists β4 > 0, such that the following
inequality holds:

‖(w,�w,wt )(t)‖2
|α| + ‖u(t)‖2

1+|α| + ‖V (t)‖2
4 ≤ C(||w1||22+|α| + ||u1||21+|α|)e

−β4t

(4.31)

for 1 ≤ |α| ≤ 4, provided that δT � 1.

Proof. Let w̃ = Dαw, with 1 ≤ |α| ≤ 4. Then w̃ satisfies the equation

w̃tt + w̃t + 1

4
ε2�2w̃ + Cw̃ = Dαf2(x, t)+Dαf3(x, t). (4.32)

Let us take the inner product between (4.32) by w̃ + 2w̃t and integrate it by parts over
T
n. By using (4.10), (4.11), and (4.14), we obtain

d

dt

∫

Tn

(
1

2
w̃2 + w̃w̃t + w̃2

t + Cw̃2 + 1

4
ε2|�w̃|2

)
dx

+ 1

4
ε2‖�w̃‖2 + C‖w̃‖2 + ‖w̃t‖2

≤ CδT ‖(w̃t , w̃,∇w̃,�w̃,∇V )‖2 + 1

8
C‖w̃‖2 + 1

8
‖w̃t‖2

+ C‖Dαu1‖2 exp{−t} +
∫

Tn
Dαf2(w̃ + 2w̃t )dx. (4.33)

By integrating by parts and by using (4.9), (4.13), the last term on the right hand side of
(4.33) can be estimated as follows:

∫

Tn
Dαf2(w̃ + 2w̃t )dx = − 2

∫

Tn
[Dα(u·∇wt)− u·∇w̃t ](w̃ + 2w̃t )dx

+
∫

Tn
(2w̃w̃t∇· u + 2w̃tu·∇w̃ + w̃2

t ∇· u)dx

− P ′(C) d
dt

‖∇w̃‖2 − P ′(C)‖∇w̃‖2

≤CδT ‖(Dαu,∇wt, w̃,∇w̃)‖2 + 1

8
C‖w̃‖2 + 1

8
‖w̃t‖2

− P ′(C) d
dt

‖∇w̃‖2 − P ′(C)‖∇w̃‖2

≤CδT ‖(wt , w,�w,Dα∇V )‖2 + C‖Dαu1‖2e−t

+ 1

8
C‖w̃‖2 + 1

8
‖w̃t‖2

− P ′(C) d
dt

‖∇w̃‖2 − P ′(C)‖∇w̃‖2, (4.34)

where we used the Nirenberg type inequality

‖∇w̃‖ ≤ C(‖w̃‖2 + ‖�w̃‖2). (4.35)
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By substituting (4.34) into (4.33), by using the Gronwall inequality, (4.24), (4.35),
and an argument similar to the one for (4.29), we have, for 1 ≤ |α| ≤ 4, that

‖(w̃, w̃t , w̃,�w̃)‖2 ≤ C(‖w1‖2
2+|α| + ‖u1‖2

1+|α|)e
−β2t , (4.36)

where β2 is a suitable positive constant. Finally we have

‖Dα+1u‖2 ≤C‖∇· (Dαu)‖2 ≤ C‖Dα(wt , w,∇w,u)‖2

≤C‖Dα(wt , w,∇w,�w)‖2 + C‖Dαu1‖2e−t

≤C(‖w1‖2
2+|α| + ‖u1‖2

1+|α|)e
−β3t (4.37)

with β3 = min{β2, 1}.
The estimate (4.31) follows from (4.36)–(4.37) and Lemma 4.1. ��
Hence by Lemmas 4.1–4.3, (4.35) and by the Sobolev embedding theorem, we get

the following result.

Theorem 4.4. Let (w,u, V ) ∈ X(T ), then the following inequality holds:

‖w(t)‖2
H 6(Tn)

+ ‖u(t)‖2
H 5(Tn)

+ ‖V (t)‖2
Ḣ 4(Tn)

≤ Cδ0e
−β5t , (4.38)

provided that δT � 1. Here β5 = min{β4, β1} and δ0 is given by (1.11).

Proof of the Theorem 1.3. Based on Theorem 4.4, we can prove that (4.10) is true for
the classical solution existing locally in time, as long as δ0 = ||ψ1 − √C||26 + ||u1||25
is small enough (e.g. Cδ0 � 1). Then via the classical continuity argument and the
uniform a-priori bounds (4.38) we have the global existence, and the time-asymptotic
behavior of our solutions. ��
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