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Abstract: We reduce the number of open additivity problems in quantum information
theory by showing that four of them are equivalent. Namely, we show that the conjec-
tures of additivity of the minimum output entropy of a quantum channel, additivity of
the Holevo expression for the classical capacity of a quantum channel, additivity of the
entanglement of formation, and strong superadditivity of the entanglement of formation,
are either all true or all false.

1. Introduction

The study of quantum information theory has led to a number of seemingly related open
questions that center around whether certain quantities are additive. We show that four
of these questions are equivalent. In particular, we show that the four conjectures of

i. additivity of the minimum entropy output of a quantum channel,
ii. additivity of the Holevo capacity of a quantum channel,

iii. additivity of the entanglement of formation,
iv. strong superadditivity of the entanglement of formation,

are either all true or all false.
Two of the basic ingredients in our proofs are already known. The first is an obser-

vation of Matsumoto, Shimono and Winter [12] that the Stinespring dilation theorem
relates a constrained version of the Holevo capacity formula to the entanglement of
formation. The second is the realization that the entanglement of formation (or the con-
strained Holevo capacity) is a linear programming problem, and so there is also a dual
linear formulation. This formulation was first presented by Audenaert and Braunstein
[1], who expressed it in the language of convexity rather than that of linear programming.
We noted this independently [16]. These two ingredients are explained in Sect. 3 and 5.
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The rest of this paper is organized as follows. Sect. 2 gives some background in
quantum information theory, describes the additivity questions we consider, and gives
brief histories of them. Sect. 3 and 5 explain the two ingredients we describe above, and
are positioned immediately before the first sections in which they are used. To show that
the conditions (i) to (iv) are equivalent, in Sect. 4 we prove that (ii) → (iii): additivity
of the Holevo capacity implies additivity of entanglement of formation. In Sect. 6 we
prove (iii) → (iv): additivity of entanglement of formation implies strong superaddi-
tivity of entanglement of formation. This implication was independently discovered by
Pomeransky [13]. In Sect. 7 we prove that (i) → (iii): additivity of minimum entropy
output implies additivity of entanglement of formation. In Sect. 8, we give simple proofs
showing that (iv) → (i), (iv) → (ii), and (iv) → (iii). The first implication is the only one
that was not in the literature, and we assume this is mainly because nobody had tried to
prove it. The second of these implications was already known, but for completeness we
give a proof. The third of these implications is trivial.1 In Sect. 9 we give proofs that (ii)
→ (i) and (iii) → (i): either additivity of the Holevo capacity or of the entanglement of
formation implies additivity of the minimum entropy output. These implications com-
plete the proof of equivalence. Strictly speaking, the only implications we need for the
proof of equivalence are those in Sect. 6–9. We include the proof in Sect. 4 because it
uses one of the techniques used later for Sect. 7 without introducing the extra complex-
ity of the dual linear programming formulation. Finally, in Sect. 10 we comment on the
implications of the results in our paper and give some open problems.

2. Background and Results

One of the important intellectual breakthroughs of the 20th century was the discovery
and development of information theory. A cornerstone of this field is Shannon’s proof
that a communication channel has a well-defined information carrying capacity and his
formula for calculating it. For communication channels that intrinsically incorporate
quantum effects, this classical theory is no longer valid. The search for the proof of
the analogous quantum formulae is a subarea of quantum information theory that has
recently received much study.

In the generalization of Shannon theory to the quantum realm, the definition of a
stochastic communication channel generalizes to a completely positive trace-preserving
linear map (CPT map). We call such a map a quantum channel. In this paper, we consider
only finite-dimensional CPT maps; these take din ×din Hermitian matrices to dout ×dout
Hermitian matrices. In particular, these maps take density matrices (trace 1 positive semi-
definite matrices) to density matrices. Note that the input dimension can be different
from the output dimension, and that these dimensions are both finite. Infinite dimen-
sional quantum channels (CPT maps) are both important and interesting, but dealing
with them also introduces extra complications that are beyond the scope of this paper.

There are several characterizations of CPT maps. We need the characterization given
by the Stinespring dilation theorem, which says that every CPT map can be described by
an unitary embedding followed by a partial trace. In particular, given a finite-dimensional
CPT map N , we can express it as

N(ρ) = TrBU(ρ),

1 In fact, property (iv), strong superadditivity ofEF , seems to be in some sense the “strongest” of these
equivalent statements, as it is fairly easy to show that strong superadditivity of entanglement of formation
implies the other three additivity results whereas the reverse directions appear to require substantial work.
Similarly, property (i) appears to be the “weakest” of these statements.
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where U(ρ) is a unitary embedding, i.e., there is some ancillary space HB such that U
takes Hin to Hout ⊗ HB by

U(ρ) = VρV †

and V is a unitary matrix mapping Hin to range(V ) ⊆ Hout ⊗ HB . We also need the
operator sum characterization of CPT maps. This characterization says that any finite-
dimensional CPT map N can be represented as

N(ρ) =
∑
k

AkρA
†
k ,

where the Ak are complex matrices satisfying∑
A

†
k Ak = I.

The Holevo information2 χ is a quantity which is associated with a probabilistic ensem-
ble of quantum states (density matrices). If density matrix ρi occurs in the ensemble
with probability qi , the Holevo information χ of the ensemble is

χ = H

(∑
i

qiρi

)
−
∑
i

qiH(ρi),

where H is the von Neumann entropy H(ρ) = −Tr ρ log ρ. This quantity was intro-
duced in [6, 11, 8] as a bound for the amount of information extractable by measurements
from this ensemble of quantum states. The first published proof of this bound was given
by Holevo [8]. It was much later shown that maximizing the Holevo capacity over all
probabilistic ensembles of a set of quantum states gives the information transmission
capacity of this set of quantum states; more specifically, this is the amount of classi-
cal information which can be transmitted asymptotically per quantum state by using
codewords that are tensor products of these quantum states, as the length of these code-
words goes to infinity [9, 15]. Optimizing χ over ensembles composed of states that
are potential outputs of a quantum channel gives the quantum capacity of this quantum
channel over a restricted set of protocols, namely those protocols which are not allowed
to send inputs entangled between different channel uses. If the channel isN , we call this
quantity χN ; it is defined as

χN = max
{pi,| vi 〉}

H

(
N

(∑
i

pi |vi〉〈vi |
))

−
∑
i

piH(N(|vi〉〈vi |)), (1)

where the maximization is over ensembles {pi, | vi〉}, where
∑
i pi = 1 and | vi〉 ∈ Hin,

the input space of the channel N .
The regularized Holevo capacity is

lim
n→∞

1

n
χN⊗n;

this gives the capacity of a quantum channel to transmit classical information when
inputs entangled between different channel uses are allowed. The question of whether

2 This has also been called the Holevo bound and the Holevo χ -quantity.
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the quantum capacity is given by the single-symbol Holevo capacity χN is the question
of whether the capacity χN is additive; that is, whether

χN1⊗N2 = χN1 + χN2 .

The ≥ relation is easy; the open question is the ≤ relation.
The question of additivity of the minimum entropy output of a quantum channel was

originally considered independently by several people, including the author, and appears
to have been first considered in print in [10]. It was originally posed as a possible first
step to proving additivity of the Holevo capacity χN . The question is whether

min
|φ〉

H(N1 ⊗N2(|φ〉〈φ|)) = min
|φ〉

H(N1(|φ〉〈φ|))+ min
|φ〉

H(N2(|φ〉〈φ|)),

where the minimization ranges over states |φ〉 in the input space of the channel. Note
that by the concavity of the von Neumann entropy, if we minimize over mixed states
ρ – i.e., minρ H(N(ρ)) – there will always be a rank one ρ = |φ〉〈φ| achieving the
minimum.

The statements (iii) and (iv) in our equivalence theorem both deal with entanglement.
This is one of the stranger phenomena of quantum mechanics. Entanglement occurs when
two (or more) quantum systems are non-classically correlated. The canonical example
of this phenomenon is an EPR pair. This is the state of two quantum systems (called
qubits, as they are each two-dimensional):

1√
2

( | 01〉 − | 10〉 ).
Measurements on each of these two qubits separately can exhibit correlations which
cannot be modeled by two separated classical systems [2].

A topic in quantum information theory that has recently attracted much study is that
of quantifying entanglement. The entanglement of a bipartite pure state is easy to define
and compute; this is the entropy of the partial trace over one of the two parts

Epure(|v〉〈v|) = H(TrB |v〉〈v|).
Asymptotically, two parties sharing n copies of a bipartite pure state |v〉〈v| can use local
quantum operations and classical communication (called LOCC operations) to produce
nEpure(|v〉〈v|)− o(n) nearly perfect EPR pairs, and can similarly form n nearly perfect
copies of |v〉〈v| from nEpure(|v〉〈v|) + o(n) EPR pairs [4]. This implies that for a pure
state |v〉〈v|, the entropy of the partial trace is the natural quantitative measure of the
amount of entanglement contained in |v〉〈v|.

For mixed states (density matrices of rank > 1), things become more complicated.
The amount of pure state entanglement asymptotically extractable from a state using
LOCC operations (the distillable entanglement) is now no longer necessarily equal to
the amount of pure state entanglement asymptotically required to create a state using
LOCC operations (the entanglement cost) [17]. In general, the entanglement cost must
be at least the distillable entanglement, as LOCC operations cannot increase the amount
of entanglement.

The entanglement of formation was introduced in [5]. Suppose we have a bipartite
state σ on a Hilbert space HA ⊗ HB . The entanglement of formation is

EF (σ) = min
{pi, | vi 〉}

∑
i

piH(TrB |vi〉〈vi |), (2)
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where the minimization is over all ensembles such that
∑
i pi |vi〉〈vi | = σ with prob-

abilities pi satisfying
∑
i pi = 1. The entanglement of formation must be at least the

entanglement cost, as the decomposition of the state σ yielding EF (σ) can be used to
create a prescription for asymptotically constructing σ⊗n from nEF (σ) + o(n) EPR
pairs. The regularized entanglement of formation

lim
n→∞

1

n
EF (σ

⊗n)

has been proven to give the entanglement cost of a quantum state [7]. As in the case of
channel capacity, a proof of additivity, i.e., that

EF (σ1 ⊗ σ2) = EF (σ1)+ EF (σ2),

would imply that regularization is not necessary.
The question of strong superadditivity of entanglement of formation has been pre-

viously considered in [3, 17, 12, 1]. This conjecture says that for all states σ over a
quadripartite system HA1 ⊗ HA2 ⊗ HB1 ⊗ HB2, we have

EF (σ) ≥ EF (Tr2σ)+ EF (Tr1σ),

where the entanglement of formation EF is taken over the bipartite A-B division, as
in (2). This question was originally considered in relation to the question of additiv-
ity of EF . The strong superadditivity of entanglement of formation is known to imply
both the additivity of entanglement of formation (trivially) and the additivity of Holevo
capacity of a channel [12]. A proof similar to ours that additivity of EF implies strong
superadditivity of EF was discovered independently; it appears in [13].

We can now state the main result of our paper.

Theorem 1. The following are equivalent.

i. The additivity of the minimum entropy output of a quantum channel. Suppose we
have two quantum channels (CPT maps)N1 (taking C

d1,in×d1,in to C
d1,out×d1,out ) and

N2 (taking C
d2,in×d2,in to C

d2,out×d2,out ). Then

min
|φ〉

H((N1 ⊗N2)(|φ〉〈φ|)) = min
|φ〉

H(N1(|φ〉〈φ|))+ min
|φ〉

H(N2(|φ〉〈φ|)),

whereH is the von Neumann entropy and the minimization is taken over all vectors
|φ〉 in the input space of the channels.

ii. The additivity of the Holevo capacity of a quantum channel. Assume we have two
quantum channels N1 and N2, as in (i). Then

χN1⊗N2 = χN1 + χN2 ,

where χ is defined as in Eq. (1).
iii. Additivity of the entanglement of formation. Suppose we have two quantum states
σ1 ∈ HA1 ⊗ HB1 and σ2 ∈ HA2 ⊗ HB2. Then

EF (σ1 ⊗ σ2) = EF (σ1)+ EF (σ2),

where EF is defined as in Eq. (2). In particular, the entanglement of formation is
calculated over the bipartite A–B partition.
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iv. The strong superadditivity of the entanglement of formation. Suppose we have a
density matrix σ over a quadripartite system HA1 ⊗ HA2 ⊗ HB1 ⊗ HB2. Then

EF (σ) ≥ EF (Tr2σ)+ EF (Tr1σ),

where the entanglement of formation is calculated over the bipartiteA–B partition.
Here, the operator Tr1 traces out the space HA1 ⊗HB1, and Tr2 traces out the space
HA2 ⊗ HB2.

3. The Correspondence of Matsumoto, Shimono and Winter

Recall the definition of the Holevo capacity for a channel N :

χN = max
{pi, |φi 〉}

H(N(
∑
i

pi |φi〉〈φi |))−
∑
i

piH(N(|φi〉〈φi |)).

Recall also the definition of entanglement of formation. For a bipartite state σ on HA⊗
HB , the entanglement of formation is

EF (σ) = min
{pi , | vi 〉}∑
pi |vi 〉〈vi |=σ

∑
i

piH(TrB |vi〉〈vi |).

Let us define a constrained version of the Holevo capacity, which is just the Holevo
capacity over ensembles whose average input is ρ,

χN(ρ) = max
{pi , |φi 〉}∑
i pi |φi 〉〈φi |=ρ

H(N(
∑
i

pi |φi〉〈φi |))−
∑
i

piH(N(|φi〉〈φi |)). (3)

The paper of Matsumoto, Shimono and Winter [12] gives a connection between this
constrained version of the Holevo capacity and the entanglement of formation, which
we now explain. The Stinespring dilation theorem says that any quantum channel can
be realized as a unitary transformation followed by a partial trace. Suppose we have a
channel N taking Hin to HA. We can find a unitary embedding U(ρ) = VρV † that
takes Hin to HA ⊗ HB such that

N(µ) = TrBU(µ)

for all density matrices µ ∈ Hin. Now, U maps an ensemble of input states {pi, |φi〉}
with ρ = ∑

i pi |φi〉〈φi | to an ensemble of states {pi, | vi〉 = V |φi〉} on the bipartite
system HA ⊗ HB such that

∑
i pi |vi〉〈vi | = σ = U(ρ).

Conversely, if we are given a bipartite state σ ∈ HA ⊗ HB , we can find an input
space Hin with dim Hin = rank σ , a density matrix ρ ∈ Hin, and a unitary embedding
U : Hin → Hout such that U(ρ) = σ . We can then define N by

N(µ) = TrBU(µ),

establishing the same relation between N , U , ρ and σ . Note that since we chose
dim Hin = rank σ = rank ρ, ρ has full rank in Hin.

Since N(|φi〉〈φi |) = TrB |vi〉〈vi |, we have

χN(ρ) = H(N(ρ))− EF (σ).
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Now, suppose EF (σ) is additive. I claim that χN(ρ) is as well, and vice versa. Let us
take N1(ρ) = TrBU1(ρ) and N2(ρ) = TrBU2(ρ). If U1(ρ1) = σ1 and U2(ρ2) = σ2,
then we have

χN1⊗N2(ρ1 ⊗ ρ2) = H(N1 ⊗N2(ρ1 ⊗ ρ2))− EF (σ1 ⊗ σ2)

= H(N1(ρ1))+H(N2(ρ2))− EF (σ1 ⊗ σ2).

The first term on the right-hand side is additive, so the entanglement of formation EF is
additive if and only if the constrained capacity χN(ρ) is.

4. Additivity of χ Implies Additivity of EF

Recall the definition of the Holevo capacity for a channel N :

χN = max
{pi, |φi 〉}

H

(
N

(∑
i

pi |φi〉〈φi |
))

−
∑
i

piH(N(|φi〉〈φi |)),

where the maximization is over ensembles {pi, |φi〉} with
∑
i pi = 1. Recall also our

definition of a constrained version of the Holevo capacity, which is just the definition of
the Holevo capacity with the maximization only over ensembles whose average input isρ,

χN(ρ) = max
{pi , |φi 〉}∑
i pi |φi 〉〈φi |=ρ

H

(
N

(∑
i

pi |φi〉〈φi |
))

−
∑
i

piH(N(|φi〉〈φi |)).

Let σ be the state whose entanglement of formation we are trying to compute. The MSW
correspondence yields a channel N and an input state ρ so that

N(ρ) = TrBσ

and

χN(ρ) = H(N(ρ))− EF (σ).

This is very nearly the channel capacity, the only difference being that the ρ above is
not necessarily the ρ that maximizes χN . Only one element is missing for the proof that
additivity of channel capacity implies additivity of entanglement of formation: namely
making sure that the average density matrix for the ensemble giving the optimum chan-
nel capacity is equal to a desired matrix ρ0. This cannot be done directly [14], but we
solve the problem indirectly.

We now give the intuition for our proof. Suppose we could define a new channel N ′
which, instead of having capacity

χN = max
ρ
χN(ρ),

has capacity

χN ′ = max
ρ
χN(ρ)+ Tr ρτ (4)

for some fixed Hermitian matrix τ . For a proper choice of τ , this will ensure that the
maximum of this channel occurs at the desired ρ. Consider two entangled states σ1 and
σ2 which we wish to show are additive. We can find the associated channels N ′

1 andN ′
2,
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with the capacity maximized when the average input density matrix is ρ1 and ρ2, respec-
tively. By our hypothesis of additivity of channel capacity, the tensor product channel
N ′

1 ⊗ N ′
2 has capacity equal to the sum of the capacities of N ′

1 and N ′
2. If we can now

analyze the capacity of the channelN ′
1 ⊗N ′

2 carefully, we might be able to show that the
entanglement of formation of EF (σ1 ⊗ σ2) is indeed the sum of EF (σ1) and EF (σ2).
We do not know how to define such a channel N ′ satisfying (4). What we actually do is
find a channel whose capacity is close to (4), or more precisely a sequence of channels
approximating (4) in the asymptotic limit. It turns out that this will be adequate to prove
the desired theorem.

We now give the definition of our new channel N ′. It takes as its input, the input
to the channel N , along with k additional classical bits (formally, this is actually a 2k-
dimensional Hilbert space on which the first action of the channel is to measure it in
the canonical basis). With probability q the channel N ′ sends the first part of its input
through the channelN and discards the classical bits; with probability 1−q the channel
N makes a measurement on the first part of the input, and uses the results of this mea-
surement to decide whether or not to send the auxiliary classical bits. When the auxiliary
classical bits are not sent, an erasure symbol is sent to the receiver instead. When the
auxiliary classical bits are sent, they are labeled, so the receiver knows whether he is
receiving the output of the original channel or the auxiliary bits.

What is the capacity of this new channel N ′? Let E be the element of the POVM
measurement in the case that we send the auxiliary bits (so I − E is the element of the
POVM in the case that we do not send these bits). Now, we claim that for some set of
vectors | vi〉 and some associated set of probabilities pi , the optimum signal states of
this new channel N ′ will be |vi〉〈vi | ⊗ |b〉〈b| with associated probabilities pi/2k , where
b ranges over all values of the classical bits.3

We now can find bounds on the capacity of N ′. Let | vi〉 and pi be the optimal signal
states and probabilities for χN ′(ρ). We compute

χN ′(ρ) = q

(
H

(
N

(∑
i

pi |vi〉〈vi |
))

−
∑
i

piH(N(|vi〉〈vi |))
)

+(1 − q)k
∑
i

piTr E|vi〉〈vi |

+(1 − q)

(
H2

(
Tr E

∑
i

pi |vi〉〈vi |
)

−
∑
i

piH2(Tr E|vi〉〈vi |)
)
, (5)

where H2 is the binary entropy function H2(x) = −x log x − (1 − x) log(1 − x). The
first term is the information associated with the channelN , the second is that associated
with the auxiliary classical bits, and the third is the information associated with the
measurement E.

Let ρ = ∑
i pi |vi〉〈vi | and let σ be the associated entangled state. We can now deduce

from (5) that

χN ′(ρ) = qχN(ρ)+ (1 − q)kTr Eρ + (1 − q)δ, (6)

3 This just says that we want to use the classical part of the channel as efficiently as possible. The
formal proof is straightforward: First, we show that it doesn’t help to send superpositions of the auxiliary
bits, so we can assume that the signal states are indeed of the form |vi〉〈vi |⊗ |b〉〈b|. Next, we show that if
two signals |vi〉〈vi | ⊗ |b1〉〈b1| and |vi〉〈vi | ⊗ |b2〉〈b2| do not have the same probabilities associated with
them, a greater capacity can be achieved by making these probabilities equal.
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where δ is defined as

δ = H2(Tr Eρ)−
∑
i

piH2(〈vi | E | vi〉).

Note that 0 ≤ δ ≤ 1, since δ is positive by the concavity of the entropy functionH2, and
is at most 1 since H2(p) ≤ 1 for 0 ≤ p ≤ 1. Similarly, if we use the optimal states for
χN(ρ), we find that

χN ′(ρ) ≥ χN(ρ)+ (1 − q)kTr Eρ. (7)

From Eq. (6) and (7), if we find the ρ0 that maximizes the quantity

qχN(ρ)+ (1 − q)kTr Eρ; (8)

we are guaranteed to be within 1 − q of the capacity of N ′.
We next show that we can find a measurement E such that an arbitrary density matrix

ρ0 is a maximum of (8).

Lemma 2. For any probability 0 < q < 1, any channelN , and any fixed positive matrix
ρ0 over the input space of N , there is a sufficiently large k0 such that for k ≥ k0 we can
find an E so that the maximum of (8) occurs at ρ0. (This maximum need not be unique.
If χN(ρ) is not strictly concave at ρ0, then ρ0 will be just one of several points attaining
the maximum.)

Proof. It follows from the concavity of von Neumann entropy thatχN(ρ) is concave inρ.
The intuition is that we must choose E so that the derivative 4 of (8) with respect to ρ at
ρ0 is 0. Because we only vary over matrices with Tr ρ = 1, we can add any multiple of
I to E and not change the derivative. Suppose that in the neighborhood of ρ0,

χN(ρ) ≤ χN(ρ0)+ Tr τ(ρ − ρ0). (9)

That such an expression exists follows from the concavity of χN(ρ) and the assumption
that ρ0 is not on the boundary of the state space, i.e., has no zero eigenvalues. A full
rank ρ0 is guaranteed by the MSW correspondence.

To make ρ0 a maximum for Eq. (8), we see from Eq. (9) that we need to find E so
that

(1 − q)

q
kE = λI − τ

with 0 ≤ E ≤ I . This can be done by choosing k and λ appropriately. 
�
Now, suppose we have two entangled states σ1 and σ2 for which we want to show that

the entanglement of formation is additive. We create the channelsN ′
1 andN ′

2 as detailed
above. By the additivity of channel capacity (which we’re assuming), the signal states
of the tensor product channel can be taken to be | v(1)i 〉| b1〉 ⊗ | v(2)j 〉| b2〉 for b1, b2 any

k-bit strings, with probability p(1)i p
(2)
j /22k . This gives a bound on the channel capacity

of at most

χN ′
1⊗N ′

2
≤ q (H(N1(ρ1))− EF (σ1))+ (1 − q)kTr E1ρ1

+q (H(N2(ρ2))− EF (σ2))+ (1 − q)kTr E2ρ2 + 2(1 − q). (10)
4 This is the intuition. This derivative need not actually exist.
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The 2(1 − q) term at the end comes from the fact that the formula (8) is within 1 − q of
the capacity. Now, we want to show that we can find a larger capacity than this if there
is a better decomposition of σ1 ⊗ σ2, i.e., if the entanglement of formation of σ1 ⊗ σ2
is not additive. The central idea here is to let q go to 1; this forces k to simultaneously
go to ∞. There is a contribution from entangled states, which goes as q2, a contribution
from the auxiliary k-bit classical channel, which goes as (1 − q)k, but which is equal in
both cases, and a contribution from unentangled states, which goes as q(1 − q). As q
goes to 1, the contribution from the entangled states dominates the difference.

Suppose there is a set of entangled states which gives a smaller entanglement of for-
mation for σ1 ⊗ σ2 than EFσ1 + EFσ2. By the MSW correspondence, this gives a set
of signal states for the map N1 ⊗ N2 which yields a larger constrained capacity than
χN1(ρ1) + χN2(ρ2). We define this set of signal states for N1 ⊗ N2 to be the states
|φi〉〈φi |, and let the associated probabilities be πi . Now, using the |φi〉 as signal states
in N ′

1 ⊗N ′
2 shows that

χN ′
1⊗N ′

2
≥ q2H(N1 ⊗N2(ρ1 ⊗ ρ2))− q2EF (σ1 ⊗ σ2)+ (1 − q)kTr E2ρ2.

This estimate comes from considering the information transmitted by the signal states
|φi〉〈φi | in the case (occurring with probability q2) when the channels operate asN1⊗N2,
as well as the information transmitted by the k classical bits.

We now consider the difference between this lower bound (11) for the capacity of
N ′

1 ⊗ N ′
2 and the upper bound (10) we showed for the capacity using tensor product

signal states. In this difference, the terms containing (1−q)k cancel out. The remaining
terms give

0 ≥ qEF (σ1)+ qEF (σ2)− q2EF (σ1 ⊗ σ2)− 2(1 − q)

−q(1 − q)H(N1(ρ1))− q(1 − q)H(N2(ρ2)).

For q sufficiently close to 1, the (1 − q) terms can be made arbitrarily small, and q
and q2 are both arbitrarily close to 1. This difference can thus be made positive if the
entanglement of formation is strictly subadditive, contradicting our assumption that the
Holevo channel capacity is additive.

5. The Linear Programming Formulation

We now give the linear programming dual formulation for the constrained capacity
problem. Recall the definition of the constrained Holevo capacity

χN(ρ) = max
{pi , |φi 〉}∑
i pi |φi 〉〈φi |=ρ

H

(
N

(∑
i

pi |φi〉〈φi |
))

−
∑
i

piH(N(|φi〉〈φi |)). (11)

This is a linear program, and as such it has a formulation of a dual problem that also
gives the maximum value. This dual problem is crucial to several of our proofs. For this
paper, we only deal with channels having finite dimensional input and output spaces. For
infinite dimensional channels, the duality theorem fails unless the maxima are replaced
by suprema. We have not analyzed the effects this has on the proof of our equivalence
theorem, but even if it still holds the proofs will become more complicated.

By the duality theorem for linear programming there is another expression forEF (σ1).
This was observed in [1, 16]. It is

χN(ρ) = H(N(ρ))− f (ρ), (12)
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where f is the linear function defined by the maximization

max
f
f (ρ) such thatf (|v〉〈v|) ≤ H(N(|v〉〈v|)) for all | v〉 ∈ Hin. (13)

Here Hin is the input space for N and the maximum is taken over all linear functions

f (ρ) = Tr τρ.

Equations (12) and (13) can be proved if ρ is full rank by using the duality theorem
of linear programming. The duality theorem applies directly if there are only a finite
number of possible signal states allowed, showing the equality of the modified version
of Eqs. (11) and (12) where the constraints in (13) are limited to a finite number of
possible signal states | vi〉, which are also the only signal states allowed in the capacity
calculation (11). To extend from all finite collections of signal states |vi〉〈vi | to all |v〉〈v|,
we need to show that we can find a compact set of linear functions f (ρ) = Tr τρ which
suffice to satisfy Eq. (13). We can then use compactness to show that a limit of these
functions exists, where in the limit Eqs. (11) and (13) must hold on a countable set of
possible signal states | vi〉 dense in the set of unit vectors, thus showing that they hold
on the set of all unit vectors | v〉. The compactness follows from ρ being full rank, and
H(N(|v〉〈v|)) ≤ log dout for all |v〉〈v|, where dout is the dimension of the output space
of N . The case where ρ is not full rank can be proved by using the observation that the
only values of the function f which are relevant in this case are those in the support of ρ.

Equality must hold in (13) for those | v〉 which are signal states in an optimal decom-
position. This can be seen by considering the inequalities

χN(ρ) = H(N(ρ))−
∑
i

piH(N(|vi〉〈vi |))

≤ H(N(ρ))−
∑
i

pif (|vi〉〈vi |)

= H(N(ρ))− f (ρ).

For equality to hold, it must hold in all the terms in the summation, which are exactly
the signal states | vi〉.

6. Additivity of EF Implies Strong Superadditivity of EF

In this section, we will show that additivity of entanglement of formation implies strong
superadditivity of entanglement of formation. Another proof was discovered indepen-
dently by Pomeransky [13]; it is quite similar, although it is expressed using different
terminology.

We first give the statement of strong superadditivity. Assume we have a quadripartite
density matrix σ whose four parts are A1, A2, B1 and B2. The statement of strong
superadditivity is that

EF (σ) ≥ EF (Tr2σ)+ EF (Tr1σ), (14)

where EF is the entanglement of formation when the state is considered as a bipartite
state where the two parts are A and B; that is,

EF (σ) = min
{pi , |φi 〉}∑
i pi |φi 〉〈φi |=σ

∑
i

piH(TrB |φi〉〈φi |). (15)
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First, we show that it is sufficient to prove this whenσ is a pure state. Consider the opti-
mal decomposition ofσ = ∑

i πi |φi〉〈φi |.We can apply the theorem of strong subadditiv-

ity to the pure states |φi〉〈φi | to obtain decompositions Tr1|φi〉〈φi | = ∑
j p

(1)
i,j |v(1)i,j 〉〈v(1)i,j |

and Tr2|φi〉〈φi | = ∑
j p

(2)
i,j |v(2)i,j 〉〈v(2)i,j | so that

H(TrB |φi〉〈φi |) ≥
∑
j

p
(1)
i,j H(TrB |v(1)i,j 〉〈v(1)i,j |)+

∑
j

p
(2)
i,j H(TrB |v(2)i,j 〉〈v(2)i,j |).

Summing these inequalities over i gives the desired inequality.
We now show that additivity of EF implies strong superadditivity of EF . Let |φ〉 be

a quadripartite pure state for which we wish to show strong superadditivity. We define
σ1 = Tr2|φ〉〈φ| and σ2 = Tr1|φ〉〈φ|. Now, let us use the MSW correspondence to find
channels N1 and N2 and density matrices ρ1 and ρ2 such that

N1(ρ1) = TrBσ1 and N2(ρ2) = TrBσ2

and

χN1(ρ1) = H(N1(ρ1))− EF (σ1),

χN2(ρ2) = H(N2(ρ2))− EF (σ2).

We first do an easy case which illustrates how the proof works without introducing
additional complexities. Let d1 and d2 be the dimensions of the input spaces of N1 and
N2. In the easy case, we assume that there are d2

1 linearly independent signal states in an
optimal decomposition of ρ1 for χN1(ρ1), and d2

2 linearly independent signal states in

an optimal decomposition of ρ2 for χN2(ρ2). Let these sets of signal states be |v(1)i 〉〈v(1)i |
with probabilities p(1)i , and |v(2)j 〉〈v(2)j | with probabilities p(2)j , respectively. It now fol-
lows from our assumption of the additivity of entanglement of formation that an optimal
ensemble of signal states forχN1⊗N2(ρ1⊗ρ2) is | v(1)i 〉⊗| v(2)j 〉 with probabilityp(1)i p

(2)
j .

Now, let us consider the dual linear function fT for the tensor product channel N1 ⊗
N2. Since we assumed that entanglement of formation is additive, by the MSW corre-
spondence χN(ρ) is also additive. We claim that the dual function fT must satisfy

fT (|v(1)i 〉〈v(1)i | ⊗ |v(2)j 〉〈v(2)j |) = H(N1(|v(1)i 〉〈v(1)i |))+H(N2(|v(2)j 〉〈v(2)j |)) (16)

for all signal states | v(1)i 〉| v(2)j 〉. This is simply because equality must hold in the inequal-
ity (13) for all signal states. However, we now have that fT is a linear function in a
d2

1d
2
2 − 1 dimensional space which has been specified on d2

1d
2
2 linearly independent

points; this implies that the linear function fT is uniquely defined. It is easy to see that
it thus must be the case that

fT (ρ) = f1(Tr2ρ)+ f2(Tr1ρ), (17)

as this holds for the d2
1d

2
2 signal states We now let |ψ〉〈ψ | be the preimage of TrB |φ〉〈φ|

under the channel N1 ⊗N2. We have, from. Eq. (13) and (17), that

f1(Tr2|ψ〉〈ψ |)+ f2(Tr1|ψ〉〈ψ |) ≤ H(N1 ⊗N2(|ψ〉〈ψ |)). (18)



Equivalence of Additivity Questions in Quantum Information Theory 465

But recall that

f1(Tr2|ψ〉〈ψ |) = EF (σ1),

f2(Tr1|ψ〉〈ψ |) = EF (σ2), (19)

because (13) holds with equality for signal states, and that

N1 ⊗N2(|ψ〉〈ψ |) = TrB |φ〉〈φ|.
Thus, substituting into (18), we find that

EF (σ1)+ EF (σ2) ≤ H(TrB |φ〉〈φ|),
which is the statement for the strong superadditivity of entanglement of formation of
the pure state |φ〉〈φ|.

We now consider the case where there are fewer than d2
i signal states for χNi (ρi),

i = 1, 2. We still know that the average density matrices of the signal states for N1
and N2 are ρ1 and ρ2, and that the support of these two matrices are the entire input
spaces H1,in and H2,in. The argument will go as before if we can again show that the
dual function fT must be f1(Tr2ρ)+f2(Tr1ρ). In this case we do not know d2

1d
2
2 points

of the function fT , and thus cannot use the same argument as above to show that fT
is determined. However, there is more information that we have available. Namely, we
know that in the neighborhood of the signal states | v(1)i 〉, the entropy H(N1(|v〉〈v|))
must be at least the dual function f1 = Tr τ1|v〉〈v|, and that these two functions are
equal at the signal states. If we assume that the derivative of H(N1(|v〉〈v|)) exists at
|v(1)i 〉〈v(1)i |, then we can conclude that this is also the derivative of f1 = Tr τ1|v〉〈v|. For
the time being we will assume that the first derivative of this entropy function does in
fact exist.5

We need a lemma.

Lemma 3. Suppose that we have a set of unit vectors | vi〉 that span a Hilbert space
H. If we are given the value of f at all the vectors | vi〉 as well as the value of the first
derivative of f ,

lim
ε→0

1

ε

(
f (|vi〉〈vi |)− f

(
(
√
(1 − ε2 | vi〉 + ε |wi〉)(

√
1 − ε2 〈vi | + ε 〈wi |)

))
at all the vectors | vi〉 and for all orthogonal |w〉, then f is completely determined.

Proof. Let us use the representation f (ρ) = Tr τρ (we do not need a constant term on
the right-hand side because we need only specify f on trace 1 matrices). Suppose that
〈vi |w〉 = 0. We compute the derivative at | vi〉 in the |w〉 direction:(√

1 − ε2〈vi | + ε〈w |
)
τ
(√

1 − ε2| vi〉 + ε|w〉
)

− 〈vi |τ | vi〉
≈ ε (〈vi | τ |w〉 + 〈w | τ | vi〉) . (20)

The derivative in the i |w〉 direction gives

i (〈vi | τ |w〉 − 〈w | τ | vi〉) , (21)

5 In fact, I believe the function is smooth enough that these derivatives do exist. However, we find it
easier to deal with the cases where N1(|v〉〈v|) has zero eigenvalues by expressing N1 and N2 as a limit
of nonsingular completely positive maps.
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so a linear combination of (20) and (21) shows that the value of 〈vi | τ |w〉 is determined
for all |w〉 orthogonal to | vi〉. We also know the value of

〈vi | τ | vi〉;
it follows that the value of

〈vi |τ |w〉
is determined for all |w〉. Since the 〈vi | span the vector space, this determines the value
of

〈u | τ |w〉
for all 〈u | and all |w〉, thus determining the matrix τ . 
�

We now need to compute the derivative of the entropy of N1. Let

N1(ρ) =
∑
i

AiρA
†
i

with
∑
i A

†
i Ai = I . Then if Tr σ = 0,

H(N1(ρ + εσ ))−H(N1(ρ)) ≈ −εTr
[
(I + log(N(ρ))N1(σ )

]
= −εTr

(
σ
∑
k

A
†
k

(
logN1(ρ)

)
Ak

)
. (22)

Now, if the entanglement of formation is additive, then the derivative ofH(N1 ⊗N2) at
the tensor product signal states |v(1)i 〉〈v(1)i | ⊗ |v(2)j 〉〈v(2)j | must also match the derivative
of the function fT at these points. We calculate:

H(N1 ⊗N2(ρ + εσ ))−H(N1 ⊗N2(ρ))

≈ −εTr


σ ∑

k1,k2

(A
(1)†
k1

⊗ A
(2)†
k2

)(log(N1 ⊗N2(ρ)))(A
(1)
k1

⊗ A
(2)
k2
)


 .

Now at a point ρ = ρ1 ⊗ ρ2,

∑
k1,k2

(A
(1)†
k1

⊗ A
(2)†
k2

)(logN1 ⊗N2(ρ))(A
(1)
k1

⊗ A
(2)
k2
)

=
(∑

k1

A
(1)†
k1

logN1(ρ1)A
(1)
k1

)
⊗ I + I ⊗

(∑
k2

(A
(2)†
k2

logN2(ρ2)A
(2)
k2

)
,

showing that at the states | v(1)i 〉 ⊗ | v(2)j 〉, we have not only that fT = f1 + f2, but that
the first derivatives (for directions σ with Tr σ = 0) are equal as well. Since the states
| v(1)i 〉 ⊗ | v(2)j 〉 span the vector space, Lemma 3 shows that fT = f1 + f2 everywhere,
giving us the last element of the proof.
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The one thing remaining to do to show that the assumption that the first derivative of
entropy exists everywhere is unnecessary. It suffices to show that there are dual functions
fT = f1 + f2 such that Eq. (18) holds. We do this by taking limits. For x = 1, 2 let
N
(q)
x be the quantum channel

N
(q)
x (ρ) = Nx(ρ)+ (1 − q)

1

dout,x
I

which averages the mapNx with the maximally mixed state I/dout,x . LetN(q)
T = N

(q)
1 ⊗

N
(q)
2 . We need to show that some limits of the dual functions f (q)1 , f (q)2 and f (q)T exist.

By continuity of N(q)
x , they will be forced to have the desired properties (17), (18),

and (19). Let ρT = ρ1 ⊗ ρ2. Now, f (q)T is a linear function with f (q)T (ρT ) ≥ 0 and

f
(q)
T (ρ) ≤ log dout,T for all ρ, so the f (q)T lie in a compact set. Thus, some subsequence

of f (q)T has a limit as q → 1. The same argument applies to f (q)1 and f (q)2 , so by taking

these limits we find that the functions f (1)x have the desired properties, completing our
proof.

7. Additivity of min H(N) Implies Additivity of EF

Suppose that we have two bipartite states for which we wish to prove that the entangle-
ment of formation is additive. We use the MSW correspondence to convert this problem
to a question about the Holevo capacity with a constrained average signal state. We thus
now have two quantum channelsN1 andN2, and two states ρ1 and ρ2. We want to show
that

χN1⊗N2(ρ1 ⊗ ρ2) = χN1(ρ1)+ χN2(ρ2).

In fact, we need only prove the ≤ direction of the inequality, as the ≥ direction is easy.
Let | v(1)i 〉 and | v(2)i 〉 be optimal sets of signal states for χN1(ρ1) and χN2(ρ2), so that

χN1(ρ1) = H(N1(ρ1))−
∑
i

p
(1)
i N(|v(1)i 〉〈v(1)i |),

where ρ1 = ∑
i p

(1)
i |v(1)i 〉〈v(1)i |, and similarly for N2. By the linear programming dual

formulation in Sect. 5, we have that there is a matrix τ1 such that

χN1(ρ1) = H(N1(ρ1))− Tr τ1ρ1

and

Tr τ1ρ ≤ H(N1(ρ)

for all ρ, with equality for signal states ρ = |v(1)i 〉〈v(1)i |, and similarly for τ2 and N2.
Suppose we could find a channel N ′

1 and N ′
2 such that

H(N ′
1(|v〉〈v|)) = H(N1(|v〉〈v|))+ C1 − 〈v | τ | v〉 (23)



468 P.W. Shor

for all vectors | v〉 (similarly for N2). We know from the linear programming duality
theorem that

H(N ′
1(ρ)) = H(N1(ρ))+ C1 − Tr τ1ρ

≥ C1

for all input states ρ, with equality holding for the signal states ρ = |v(1)i 〉〈v(1)i |. Thus,
the minimum entropy output of N ′

1 is C1 and of N ′
2 is C2. Also,

χN ′
1
(ρ1) = H(N ′

1(ρ1)))−
∑
i

p
(1)
i H(N ′

1(|v(1)i 〉〈v(1)i |))

= H(N ′
1(ρ1)))− C1,

and similarly for N ′
2. Now, if we assume the additivity of minimum entropy, we know

that the minimum entropy output of N ′
1 ⊗ N ′

2 has entropy C1 + C2. We have for some
probability distribution πi on signal states |φi〉, that

χN ′
1⊗N ′

2
(ρ1 ⊗ ρ2) = H(N ′

1 ⊗N ′
2(ρ1 ⊗ ρ2))−

∑
i

πiH(N
′
1 ⊗N ′

2(|φi〉〈φi |))

≤ H(N ′
1(ρ1))+H(N ′

2(ρ2))− C1 − C2

= χN ′
1
(ρ1)+ χN ′

2
(ρ2).

Now, if we can examine the construction of the channels N ′
1 and N ′

2 and show that the
additivity of the constrained Holevo capacity forN ′

1 andN ′
2 implies the additivity of the

constrained Holevo capacity for N1 and N2, we will be done.
We will not be able to achieve Eq. (23) exactly, but will be able to achieve this

approximately, in much the same way we defined N ′ in Sect. 4.
Given a channel N , we define a new channel N ′. On input ρ, with probability q the

channel N ′ outputs N(ρ). With probability 1 − q the channel makes a POVM measure-
ment with elements E and I−E. If the measurement outcome is E,N ′ outputs the tensor
product of a pure state signifying that the result was E and the maximally mixed state
on k qubits. If the result is I − E the channelN ′ outputs only a pure state signifying this
fact. We have

H(N ′(ρ)) = qH(N(ρ))+H2(q)+ (1 − q)kTr Eρ + (1 − q)H2(Tr Eρ).

If we choose k and E such that

(1 − q)

q
kE = λI − τ,

we will have

H(N ′(|v〉〈v|)) = qH(N(|v〉〈v|))− q 〈v | τ | v〉 + qλ+H2(q)+ (1 − q)H2(〈v | E | v〉).

The minimum entropy H(N ′(|v〉〈v|)) is thus at least qλ+H2(q). For signal states | vi〉
ofN ,H(N ′(|vi〉〈vi |)) is at least qλ+H2(q) and at most qλ+H2(q)+ 1 −q. As q goes
to 0, this is approximately a constant. We thus see that

H(N ′
1(ρ1))− qλ1 −H2(q)− (1 − q) ≤ χN ′

1
(ρ1)
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≤ H(N ′
1(ρ1))− qλ1 −H2(q). (24)

Now, given two channels N1 and N2, we can prepare N ′
1 and N ′

2 as above. If we
assume the additivity of minimum entropy, this implies the constrained channel capac-
ity satisfies, for the optimal input ensembles |φi〉, πi ,

χN ′
1⊗N ′

2
(ρ1 ⊗ ρ2) = H(N ′

1(ρ1))+H(N ′
2(ρ2))−

∑
i

πiH(N
′
1 ⊗N ′

2(|φi〉〈φi |))

≤ H(N ′
1(ρ1))+H(N ′

2(ρ2))− qλ1 − qλ2 − 2H2(q)

≤ χN ′
1
(ρ1)+ χN ′

2
(ρ2)+ 2(1 − q),

where the first inequality follows from the assumption of additivity of the minimum
entropy output, and the second from Eq. (24).

We now need to relate χN ′
1
(ρ1) and χN1(ρ1). Suppose we have an ensemble of signal

states |vi〉〈vi | with associated probabilities pi , and such that
∑
i pi |vi〉〈vi | = ρ. Define

CN1 (CN ′
1
) to be the information transmitted by channel N1 (N ′

1) using these signal
states. We then have

CN ′
1

= qCN1 + (1 − q)δ1,

where

δ1 = H2(Tr Eρ)−
∑
i

piH2(〈vi | E | vi〉).

This shows that

qχN1(ρ1) ≤ χN ′
1
(ρ1) ≤ qχN1(ρ1)+ (1 − q).

Also, by using the optimal set of signal states for χN1⊗N2(ρ1 ⊗ ρ2) as signal states for
the channel N ′

1 ⊗N ′
2, we find that

χN ′
1⊗N ′

2
(ρ1 ⊗ ρ2) ≥ q2χN1⊗N2(ρ1 ⊗ ρ2),

since with probability q2, the channel N ′
1 ⊗N ′

2 simulates N1 ⊗N2. Thus, we have that

χN1⊗N2(ρ1 ⊗ ρ2) ≤ q−2χN ′
1⊗N ′

2
(ρ1 ⊗ ρ2)

≤ q−2(χN ′
1
(ρ1)+ χN ′

2
(ρ2))+ 2(1 − q)q−2

≤ q−1(χN1(ρ1)+ χN2(ρ2))+ 4(1 − q)q−2

holds for all q, 0 < q < 1. Letting q go to 1, we have subadditivity of the constrained
Holevo capacity, implying additivity of the entanglement of formation.
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8. Implications of Strong Superadditivity of EF

All three additivity properties (i) to (iii) follow easily from the assumption of strong
superadditivity of EF . The additivity of EF follows trivially from this assumption. That
the additivity of χN follows is known [12]. We repeat this argument below for complete-
ness. Recall the definition of χN :

χN = max
{pi, |φi 〉}

H

(
N

(∑
i

pi |φi〉〈φi |
))

−
∑
i

piH(N(|φi〉〈φi |)). (25)

Suppose that this maximum is attained at an ensemble pi, |φi〉 that is not a tensor prod-
uct distribution. If we replace this ensemble with the product of the marginal ensembles,
the concavity of von Neumann entropy implies that the first term increases, and the
superadditivity of entanglement of formation implies that the second term decreases,
showing that we can do at least as well by using a tensor product distribution, and that
χN is thus additive.

Finally, the proof that strong superadditivity of EF implies additivity of minimum
output entropy is equally easy, although I am not aware of its being in the literature. Sup-
pose that we have a minimum entropy outputχN1⊗N2(|φ〉〈φ|). The strong superadditivity
of EF implies that there are ensembles p(1)i , | v(1)i 〉 and p(2)i , | v(2)i 〉 such that

H(N1 ⊗N2(|φ〉〈φ|)) ≥
∑
i

p
(1)
i H(N1(|v(1)i 〉〈v(1)i |))+

∑
i

p
(2)
i H(N2(|v(2)i 〉〈v(2)i |)).

But the two sums on the right-hand side are averages, so there must be one quantum
state in each of these sums which has smaller output entropy than the average output
entropy; this shows additivity of the minimum entropy output.

9. Additivity of χN or of EF Implies Additivity of min H(N)

Suppose we have two channels N1 and N2 which map their input onto d-dimensional
output spaces. We can assume that the two output dimensions are the same by embedding
the smaller dimensional output space into a larger dimensional one.6 We will define two
new channels N ′

1 and N ′
2. The channel N ′

1 will take as input the tensor product of the
input space of channel N1 and an integer between 0 and d2 − 1. Now, let X0 . . . Xd2−1
be the d-dimensional generalization of the Pauli matrices: Xda+b = T aRb, where T
takes | j〉 to | j + 1(mod d)〉 and R takes | j〉 to e2πij/d | j〉. Let

N ′
1(ρ ⊗ |i〉〈i|) = XiN1(ρ)X

†
i .

Now, suppose that |v1〉〈v1| is the input giving the minimal entropy outputN1(|v1〉〈v1|).
We claim that a good ensemble of signal states for the channel N ′

1 is |v1〉〈v1| ⊗ |i〉〈i|,
where i = 0, 1, . . . , d2 −1, with equal probabilities. This is because for this set of signal
states, the first term in the formula for Holevo capacity (1) is maximized (taking any state

ρ and averaging over allXiρX
†
i gives the maximally mixed state, which has the largest

possible entropy in d dimensions), and the second term is minimized. The same holds

6 This is not necessary for the proof, but it reduces the number of subscripts required to express it.
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for the channel N ′
2. Now, suppose there is some state |w〉〈w| which has smaller output

entropy for the channel N1 ⊗N2 than H(N1(|v1〉〈v1|))+H(N2(|v2〉〈v2|)). We can use
the ensemble containing states |w〉〈w| ⊗ |i1, i2〉〈i1, i2|, for i1, i2 = 0 . . . d2 − 1, with
equal probabilities, to obtain a larger capacity for the tensor product channel N ′

1 ⊗N ′
2.

The above argument works equally well to show that additivity of entanglement of
formation implies additivity of minimum entropy output. We know that to achieve the
maximum capacity, the average output state must be the maximally mixed state, so we
can equally well use the fact that the constrained Holevo capacity χN(ρ) is additive to
show that the minimum entropy output is additive.

10. Discussion

We have shown that four open additivity questions are equivalent. This makes these
questions of even greater interest to quantum information theorists. Unfortunately, our
techniques do not appear to be powerful enough to resolve these questions.

The relative difficulty of the proofs of the implications given in this paper would seem
to imply that of these equivalent conjectures, additivity of minimum entropy output is in
some sense the “easiest” and strong superadditivity ofEF is in some sense the “hardest.”
One might thus try to prove additivity of the minimum entropy output as a means of
solving all of these equivalent conjectures. One step towards solving this problem might
be a proof that the tensor product of states producing locally minimum output entropy
gives a local minimum of output entropy in the tensor product channel.
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