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Abstract: Motivated by problems related to quasi-local mass in general relativity, we
study the static metric extension conjecture proposed by R. Bartnik [4]. We show that,
for any metric on B̄1 that is close enough to the Euclidean metric and has reflection
invariant boundary data, there always exists an asymptotically flat and scalar flat static
metric extension in M = R

3 \ B1 such that it satisfies Bartnik’s geometric boundary
condition [4] on ∂B1.

1. Introduction

Let (M3, g) be an asymptotically flat time-symmetric initial data set satisfying condi-
tions of the Positive Mass Theorem [12] in general relativity. It is an interesting and
challenging question to ask how much energy or mass can be localized in a bounded
region � ⊂ M3. The underlying idea is that we expect the total energy of a system can
be consistently found by computing contributions from its separate components. Among
various efforts towards understanding this question, R. Bartnik gave his quasi-local mass
definitionmB(�) in [3], which seems to have many appealing properties. We recall that

mB(�) = inf{mADM((M̃3, g̃)) | (M̃3, g̃) ∈ PM},
where mADM(·) is the ADM mass functional for asymptotically flat manifolds [2] and
PM denotes the space of all (M̃3, g̃) satisfying conditions of the Positive Mass Theorem,
which contains (�, g) isometrically and contains no horizon outside�. It is conjectured
by R. Bartnik that there exists a (M̃3, g̃) ∈ PM, called a minimal mass extension, the
mass of which realizes mB(�) and g̃ is a scalar flat and static metric outside �.

In [5], J. Corvino gave a detailed study of static metrics from a pure scalar curvature
deformation point of view. He showed that, if a metric g is not static in an open domain
U , one can locally deform the scalar curvature of g insideU . Corvino’s result suggests an
interesting proof of the second part of Bartnik’s conjecture on minimal mass extension,
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because if (M̃3, g̃) is such an extension and g̃ is not static in M̃3 \�, one can first bump
the scalar curvature of g̃ up and then use conformal deformation to decrease the ADM
mass of (M̃3, g̃).

Hence, the existence of a static metric g̃ outside� satisfying some meaningful bound-
ary condition on ∂� that is relevant to the mass of g̃ becomes a basic question in under-
standing mB(�). In [4], R. Bartnik proposed the following extension problem with an
interesting geometric boundary condition.

Static Metric Extension Conjecture. Given a bounded region � ⊂ (M3, g), there
exists a scalar flat and static metric g̃ on M \� so that

g|∂� = g̃|∂� and H(∂�, g) = H(∂�, g̃), (bd)

where H(∂�, g),H(∂�, g̃) represents the mean curvature of ∂� with respect to g, g̃
following the unit normal vector pointing to the outside of �.

For the motivation of the boundary condition (bd) and its influence on the ADM mass
of (M̃3, g̃), readers may refer to [9] for a discussion.

In this paper, we study the above conjecture by taking M = R
3 and g to be a small

perturbation of the Euclidean metric go. We first derive an analytical criteria that guar-
antees the existence of such an extension for a general domain (�, g), then we focus on
the case that � is a round ball and prove the following existence theorem.

Main Theorem. LetB1 be the unit open ball in R
3. Then, for any number δ ∈ (−1,− 1

2 ]
and any integer k > 9

2 , there exists a neighborhood U of the Euclidean metric go in
Hk(B1) such that, for any g ∈ U , if g|S2 andH(S2, g) is invariant under a Z2 ×Z2 ×Z2

action, then there exists a scalar flat static metric g̃ ∈ Hk
δ (R

3 \ B1) such that

{
g̃|S2 = g|S2

H(S2, g̃) = H(S2, g) .

Here H(S2, g), H(S2, g̃) denotes the mean curvature of S2 with respect to g, g̃. The
Z2 × Z2 × Z2 invariance of g|S2 and H(S2, g) means that they are invariant under
reflections about all the coordinate planes spanned by an arbitrary orthonormal basis
{e1, e2, e3}.
Remark. In fact, a slight modification of our argument shows that given any metric σ
and any function h on S2 that are sufficiently close to go|S2 andH(S2, go), if they satisfy
the same symmetry condition as above, then there exists a scalar flat and static metric g̃
on R

3 \ B1 such that g|S2 = σ and H(S2, g̃) = h.

2. Preliminary

We first recall the definition of a scalar flat metric being static.

Definition 1. Let g be a metric with zero scalar curvature on an open set U . We say that
g is static in U if there exists a function f on U such that

{
fRic(g) = Hessg(f )

�gf = 0. (1)



On Existence of Static Metric Extensions in General Relativity 29

We recommend [5] for a discussion of the origin of this definition and various properties
of static metrics.

As in many problems involving small data, our main tool to obtain existence is the
following corollary of the Implicit Function Theorem (See [1, 11]).

Corollary of the IFT. Let X, Y,Z be Banach manifolds, U,V be an open set of X, Y
andG : V ×U −→ Z a differentiable function. Assume that there exists xo ∈ U, yo ∈ V
such that G(yo, xo) = 0, and D′G(yo, xo) : Y → Z, the differential of G with respect
to the first argument is surjective and has complemented kernel. Then there exists a
neighborhood Uxo ⊂ U,Vyo ⊂ V around xo, yo such that for any x ∈ Uxo there exists
at least a y ∈ Vyo satisfying G(y, x) = 0.

We begin our investigation on Bartnik’s conjecture by studying a general bounded
domain � ⊂ R

3 and its complement M = R
3 \�, where � has a smooth boundary �

such that (�,�) is diffeomorphic to (B1, S
2). By translation, we assume that 0 ∈ �.

For any l ∈ R, we letHl
�,H

l
� denote the usual Sobolev space of functions on�,�, and

Hl
�,Hl

� represent the space of (0, 2) symmetric tensors on �,� whose components
lie in Hl

�,H
l
� . We define Hl

(�,R3)
to be the space of R

3-valued 1-forms on �, whose

components lie in Hl
� .

For δ ∈ R, k a non-negative integer, we introduceHk
δ,M , the weighted Sobolev space

on M with weight δ, following Bartnik’s notation [2]:

Hk
δ,M = {u ∈ Hk

loc(M) | ‖ u ‖k,2,δ< ∞} , (2)

where Hk
loc(M) is the usual Sobolev space on M and

‖ u ‖k,2,δ=
k∑
l=0

{∫
M

(
|Dlu| · |x|l−δ

)2 |x|−3dx

} 1
2

. (3)

We then define Hk
δ,M to be the space of (0, 2) symmetric tensors onM whose components

lie in Hk
δ (M).

Given ε > 0, we will work in the following spaces:

MM,ε = {go +� | � = �ijdx
idxj ∈ Hk

δ,M, ‖ �ij ‖k,2,δ< ε},
M�,ε = {go +� | � = �ijdx

idxj ∈ Hk
�, ‖ �ij ‖Hk(�)< ε}, (4)

Fε = {1 + φ | φ ∈ Hk
δ,M, ‖ φ ‖k,2,δ< ε},

where we will always assume that k − 3
2 > 3 and δ < 0. It follows from Sobolev

imbeddings and weighted Sobolev inequalities [2] that we can choose ε sufficiently
small so that MM,ε,M�,ε only consists of C3 metrics on M,� and Fε only consists
of C3 positive functions on M .

Throughout this paper we will use S(·) to denote the symmetrization operator on
(0, 2) tensors and use ∇g(·) to denote the covariant differentiation with respect to a
metric g. Our first lemma below shows that, to get a solution to the static equation (1)
that is close to go, it suffices to consider a modified elliptic system. (See [11] for a similar
procedure.)
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Reduction Lemma. Let δ ≤ − 1
2 . There exists a ε0 > 0 depending only on δ such that

if ε < ε0 and (g̃, f ) ∈ MM,ε × Fε is a solution to{
fRic(g̃)−Hessg̃(f ) = fS(∇g̃ω)

�g̃(f ) = 0 (5)

in M with ω = 0 on �, where ω = ω(go, g̃) is a 1-form defined by

ω = divgo g̃ − 1

2
d(trgo g̃) , (6)

then ω vanishes identically in M and hence (g̃, f ) is a solution to (1).

Proof. We let “ ; ” denote covariant differentiation with respect to g̃ in local coordinates.
Taking g̃-trace, g̃-divergence of (5) and applying the contracted second Bianchi identity,
we have that {

dR(g̃)i = (�g̃ω)i + g̃jkωj ;ik + 2S(∇g̃ω)( 1
f
∇g̃f, ∂i)

R(g̃) = g̃jkωj ;k .
(7)

It follows from (7), the Ricci identity and the boundary assumption that
{
(�g̃ω)+ 2S(∇g̃ω)( 1

f
∇g̃f, ·)+ Ric(g̃)(ω, ·) = 0 in M

ω = 0 on �
, (8)

where �g̃ω denotes the rough Laplacian of the 1-form ω and {∂1, ∂2, ∂3} is a standard
basis for (R3, go). We note that (8) is a second order linear elliptic system ofωi ∈ Hk−1

δ−1 .
When (g̃, f ) = (go, 1), it reduces to{�goω = 0 in M

ω = 0 on � .
(9)

Integrating by parts and using the decay assumption δ ≤ − 1
2 , we see that (9) only admits

zero solution in Hk−1
δ−1 . Since injectivity is a continuous property for elliptic operators,

we know that there exists a ε0 > 0 so that if ‖ g̃−go ‖k,p,δ< ε0 and ‖ f −1 ‖k,p,δ< ε0,
(8) only admits zero solution as (9) does. Hence, ω vanishes identically inM and (g̃, f )
solves (1). 
�

3. Linearization at the Flat Metric

From now on, we assume that δ ≤ − 1
2 and ε < ε0. Our Reduction Lemma suggests the

following map between two Banach manifolds:


 : MM,ε × Fε × M�,ε −→ Hk−2
δ−2,M ×Hk−2

δ−2,M × Hk− 3
2

(�,R3)
× Hk− 1

2
� ×H

k− 3
2

� ,


(g̃, f, g) =



fRic(g̃)−Hessg̃f − fS(∇g̃ω)

�g̃f

ω

g̃|� − g|�
H(�, g̃)−H(�, g)


 , (10)
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where ω is defined by (6). It is readily seen that 
 is a differentiable map and 
(go, 1,
go) = 0. Hence, to apply the Implicit Function Theorem, it is necessary to study

D′
o : Hk
δ,M ×Hk

δ,M −→ Hk−2
δ−2,M ×Hk−2

δ−2,M × Hk− 3
2

(�,R3)
× Hk− 1

2
� ×H

k− 3
2

� ,

where D′
o denotes the partial differential of 
 at (go, 1, go) with respect to the first
two arguments.

Lemma 1. Given (�, φ) ∈ Hk
δ,M ×Hk

δ,M , we have that

D′
o(�, φ)=




− 1
2��−Hessφ

�φ
div�− 1

2dtr�

�|�
− 1

2�nn;n + 1
2Ho�nn− < �|�,�o > +(div�− 1

2dtr�)n


 , (11)

where “�(·), div(·), tr(·)” each is taken with respect to go, �o is the second funda-
mental form of � in R

3, Ho is the mean curvature of � in R
3, a tensor with a lower

index “n” denotes its value evaluated at the normal vector ν on � pointing to ∞ and
“;” denotes the covariant differentiation with respect to go in local coordinates.

Proof. Let {(g̃(t), f (t))}|t |<1 be a family of metrics and functions on (M,�) such that
(g̃(0), f (0)) = (go, 1) and (g̃′(0), f ′(0)) = (�, φ). We view go as a background met-
ric. For each t , we let Dt denote the connection determined by g̃(t) and ∇ t (·) denote
the covariant differentiation with respect to g̃(t). We also let R(t)ij dxidxj denote the
Ricci tensor of g̃(t).

Since the difference between any two connections is a tensor, we can write

Dt∂i ∂j −D0
∂i
∂j = D(t)kij ∂k , (12)

where

D(t)kij = 1

2
g̃(t)kl{g̃(t)lj ;i + g̃(t)li;j − g̃(t)ij ;l} . (13)

It follows from the definition of the Ricci tensor that

R(t)ij − R(0)ij = D(t)kij ;k −D(t)kki;j +D(t)kklD(t)
l
ij −D(t)kljD(t)

l
ik , (14)

which gives that

d

dt
R(t)ij |t=0 = D′(0)kij ;k −D′(0)kki;j . (15)

On the other hand, we know from (13) and the fact g̃(0)ij ;k = 0 that

D′(0)kij ;s = 1

2
g̃(0)kl{�lj ;is +�li;js −�ij ;ls} . (16)
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Hence, (15), (16) and the fact that g̃(0) is flat imply that

d

dt
R(t)ij |t=0 = −1

2
(��)ij − 1

2
Hess(tr�)ij + 1

2
g̃(0)kl{�lj ;ki +�li;kj }

+1

2
g̃(0)kl{�lj ;ik −�lj ;ki +�li;jk −�li;kj }

= −1

2
(��)ij − 1

2
Hess(tr�)ij + S(∇0div�)ij . (17)

We rewrite (17) as

d

dt
R(t)ij |t=0 = −1

2
(��)ij + S

[
∇0(div�− 1

2
d(tr�))

]
ij

. (18)

To identify the non-elliptic term in (18), we compute d
dt

S(∇ t divg̃(t))|t=0 and
d
dt
Hessg̃(t)(trg̃(t))|t=0. First, we note that

(∇ t divg̃(t))ij − (∇0divg̃(t))ij = −D(t)kij (divg̃(t))k . (19)

Hence,

d

dt
S(∇ t divg̃(t))ij |t=0 = d

dt
S(∇0divg̃(t))ij |t=0 (20)

= S(∇0div�)ij . (21)

Second, by definition we have that

(Hessg̃(t)trg̃(t))ij = ∂i∂j trg̃(t)− (D0
∂i
∂j )trg̃(t)− (D(t)kij ∂k)trg̃(t) , (22)

which implies that

d

dt
(Hessg̃(t)trg̃(t))ij |t=0 = ∂i∂j tr�− (D0

∂i
∂j )tr� = (Hesstr�)ij (23)

because trg(0) is a constant. Thus we have that

d

dt
{R(t)ij − S(∇ tω(t))ij }|t=0 = −1

2
(��)ij , (24)

where ω(t) is given by

ω(t) = divg̃(t)− 1

2
d(trg̃(t)) . (25)

A similar calculation gives that

d

dt
(Hessg̃(t)f (t))ij |t=0 = ∂i∂jφ − (∇0

∂i
∂j )φ = (Hessφ)ij (26)

and

d

dt
{�g̃(t)f (t)}|t=0 = �φ . (27)
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Next we proceed to linearize the mean curvature functional at �. We define n(t)
to be the outward unit normal vector field to ∂� determined by g̃(t). We also choose
{x1, x2, x3} to be a local coordinate chart for M such that {x1, x2} gives a local chart
for � and ∂3 coincides with n(0) = n. Then by definition,

H(�, g̃(t))(x) = g̃(t)αβ�(t)αβ = g̃(t)αβ < Dt∂α∂β,n(t) >g̃(t) , (28)

where �(t) is the second fundamental form of � with respect to g̃(t). Henceforth, we
let α, β, . . . run through {1, 2} and i, j, . . . run through {1, 2, 3}. We will also use the
lower index “n” to specially denote the index “3”.

It follows from (28) that

d

dt
H(�, g̃(t))(x)|t=0 = g̃′(0)αβ < D0

∂α
∂β,n(0) >go

+ gαβo
d

dt
{< Dt∂α∂β,n(t) >g̃(t)}|t=0 , (29)

where

g̃′(0)αβ < D0
∂α
∂β,n(t) >go= − < �|�,�o >go , (30)

and

d

dt
{< Dt∂α∂β,n(t) >g̃(t)}|t=0 = �(D0

∂α
∂β,n(0))+ < D0

∂α
∂β,n′(0) >go

+ <
d

dt
{Dt∂α∂β}|t=0,n(0) >go . (31)

Straightforward calculation gives that

�(D0
∂α
∂β,n(0)) = �(�nαβ∂n + �δαβ∂δ, ∂n) = �nn�

n
αβ + �δαβ�δn , (32)

where �kij denotes the Christoffel symbols for go, and

< D0
∂α
∂β,n′(0) >go=< �nαβ∂n + �δαβ∂δ,n′(0) >go . (33)

On the other hand, the fact that < n(t), ∂δ >g̃(t)= 0 and < n(t),n(t) >g̃(t)= 1 imply
that {

�(∂n, ∂δ)+ < ∂δ,n′(0) >go = 0
�(∂n, ∂n)+ 2 < n′(0),n(0) >go = 0 . (34)

Hence, (33) becomes

< D0
∂α
∂β,n′(0) >go= −1

2
�nn�

n
αβ −�nδ�

δ
αβ . (35)

To calculate < d
dt

{Dt∂α∂β}|t=0,n(0) >go , we recall that

Dt∂α∂β −D0
∂α
∂β = D(0)kαβ∂k .

Hence,

<
d

dt
{Dt∂α∂β}|t=0,n(0) >go= D′(0)nαβ , (36)
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where

D′(0)nαβ = 1

2
gnno {�nα;β +�nβ;α −�αβ;n} (37)

by (13). Therefore (32), (35) and (36) imply that

gαβo
d

dt
{< Dt∂α∂β,n(t) >g̃(t)}|t=0 = 1

2
H(�, go)�nn + gαβo D

′(0)nαβ . (38)

To see the geometric meaning of the second term in (38), we compute

(div�)n = g
ij
o �ni;j = �nn;n + gαβo �nα;β (39)

and

(dtr�)n = �nn;n + gαβo �αβ;n , (40)

which imply that

gαβo �nα;β = (div�− 1

2
dtr�)n − 1

2
�nn;n . (41)

Therefore, it follows from (29), (30), (38) and (41) that

d

dt
H(�, g̃(t))(x)|t=0 = −1

2
�nn;n + 1

2
H(�, go)�nn

− < �|�,�o >go +(div�− 1

2
dtr�)n , (42)

which proves the lemma. 
�

4. Derivation of Potential Obstruction

Simple observation reveals that D′
o is equivalent to another operator T that has a
simpler boundary map

T : Hk
δ,M ×Hk

δ,M −→ Hk−2
δ−2,M ×Hk−2

δ−2,M × Hk− 3
2

(�,R3)
× Hk− 1

2
� ×H

k− 3
2

�

T (�, φ) =




− 1
2��−Hessφ

�φ
div�− 1

2dtr�

�|�
− 1

2�nn;n + 1
2Ho�nn


 . (43)

Assuming that δ is a non-exceptional value [2], i.e. δ /∈ Z in our case, we have the
following important fact:

Fact. T is an elliptic operator in the sense of Hörmander [6] which includes the
Lopatinskiǐ-Šapiro conditions for the boundary map. Hence, T is Fredholm and its
image is determined by Coker(T), the kernel of its adjoint.
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Remark. In general it is a subtle problem to give a boundary condition for the Ricci
curvature tensor such that it is both elliptic and geometric. Hence we have a non-trivial
fact that (bd) is an elliptic condition for the static metric equation. We omit its proof
here since it is straightforward checking against the definition.

Lemma 2. For − 3
2 < δ ≤ − 1

2 and δ �= −1, (ϒ, ϕ, η, τ, h) ∈ Coker(T ) if and only if

{�ϒ = 0
�ϕ = 0 in M (44)

and 


ϕ − ϒnn = 0
∂ϕ
∂n − div�ϒ(n, ·) = 0

divϒ = 0
ϒ |� = wgo|�

on �, (45)

where n is the outward unit normal vector field to �, ϒ(n, ·) is viewed as a 1-form
defined on � and div�(·) represents the divergence operator on (�, go|�).
Proof. It follows from the general elliptic theory [8, 13] that (ϒ, ϕ, η, τ, h) ∈ Coker(T )
if and only if

0 =
∫
M

< −1

2
��−Hessφ,ϒ > +

∫
M

�φ · ϕ +
∮
�

< div�− 1

2
dtr�, η >

+
∮
�

< �|�, τ > +
∮
�

{−1

2
�nn;n + 1

2
Ho�nn} · h (46)

for any (�, φ) ∈ Hk
δ,M ×Hk

δ,M , where all the inner products between tensors are taken
with respect to go. Integrating by parts, we have that

∫
M

< −1

2
��−Hessφ,ϒ > +

∫
M

�φ · ϕ

= −1

2

∫
M

< �,�ϒ > +1

2

∮
�

< ∇n�,ϒ > −1

2

∮
�

< �,∇nϒ >

−
∫
M

div(divϒ) · φ +
∮
�

ϒ(∇φ,n > −
∮
�

(divϒ)(n) · φ

+
∫
M

φ · �ϕ −
∮
�

ϕ · ∂φ
∂n

+
∮
�

φ · ∂ϕ
∂n

, (47)

where ∇n(·) represents the covariant derivative of a tensor along n and ∇f denotes the
go-gradient of a function f . Since (�, φ) can be arbitrary, we have that

{�ϕ − div(divϒ) = 0
�ϒ = 0 in M . (48)

Now we begin to work in the Gaussian coordinate chart {x1, x2, x3} around � in
which

go = (dx3)2 + go(x)αβdx
αdxβ
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and ∂x3 coincides with n along �. Inside such a chart, we let “ ; ” denote the covariant
differentiation with respect to go and “ , ” denote the usual partial derivative. On �, it
follows from (46), (47) and (48) that

0 =
∮
�

< div�− 1

2
dtr�, η > +

∮
�

{
−1

2
�nn;n + 1

2
Ho�nn

}
· h

+
∮
�

< �|�, τ > +1

2

∮
�

< ∇n�,ϒ > −1

2

∮
�

< �,∇nϒ >

+
∮
�

ϒ(∇φ,n > −
∮
�

(divϒ)(n) · φ −
∮
�

ϕ · ∂φ
∂n

+
∮
�

φ · ∂ϕ
∂n

. (49)

Integrating by parts over � and using the fact ϒ(∇φ,n) = ϒnn
∂φ
∂n + ϒ(n,∇�φ), we

have that ∮
�

ϒ(∇φ,n) =
∮
�

ϒnn
∂φ

∂n
−
∮
�

div�[ϒ(n, ·)]φ . (50)

Since φ and ∂φ
∂n can be independently chosen arbitrary, (49) implies that

{
∂ϕ
∂n − (divϒ)(n)− div�[ϒ(n, ·)] = 0

ϕ − ϒnn = 0
on � , (51)

and (49) is reduced to

0 =
∮
�

< div�− 1

2
dtr�, η > +

∮
�

{
−1

2
�nn;n + 1

2
Ho�nn

}
· h

+
∮
�

< �|�, τ > +1

2

∮
�

< ∇n�,ϒ > −1

2

∮
�

< �,∇nϒ > . (52)

To see the hidden relation among {ϒ, η, τ, h} on�, we need to rewrite every integral
in (52) in terms of the independent free boundary quantities

{�|�,�nα,�nn, (∇n�)|�, (∇n�)nα, (∇n�)nn} . (53)

First, we have that∮
�

< ∇n�,ϒ > =
∮
�

< (∇n�)|�,ϒ |� > +
∮
�

(∇n�)nn · ϒnn

+2
∮
�

< (∇n�)(n, ·), ϒ(n, ·) >, (54)

∮
�

< ∇nϒ,� > =
∮
�

< (∇nϒ)|�,�|� > +
∮
�

(∇nϒ)nn ·�nn

+2
∮
�

< (∇nϒ)(n, ·),�(n, ·) > , (55)

where (∇nϒ)(n, ·),�(n, ·), (∇n�)(n, ·), ϒ(n, ·) each is treated as a 1-form on�. Sec-
ond, we have that∮

�

< div�, η >=
∮
�

(div�)n · ηn +
∮
�

(div�)α · ηβ · gαβo , (56)
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∮
�

< dtr�, η >=
∮
�

(dtr�)n · ηn +
∮
�

(dtr�)α · ηβ · gαβo , (57)

where

(div�)n = g
ij
o �in;j = gnno �nn;n + gαβo �αn;β . (58)

To calculate �αn;β , we note that




�αn;β = �αn,β −�αi�
i
nβ −�in�

i
αβ

div�[�(n, ·)] = g
αβ
o �nα;�β

�nα;�β = �αn,β −�δn�
�δ
αβ ,

(59)

where “ ;� ” and ��δαβ denote the covariant differentiation and the Christoffel symbol of

the induced metric go|� on �. It follows from (59) and the fact ��δαβ = �δαβ that

�αn;β = �nα;�β −�nn�
n
αβ −�αδ�

δ
nβ −�αn�

n
nβ , (60)

which implies that

gαβ�αn;β = div�[�(n, ·)] −Ho�nn+ < �|�,�o > (61)

by the fact that �δβn = −(�o)λβgλδ and �nβn = 0. Therefore, (58) becomes

(div�)n = div�[�(n, ·)] +�nn;n −Ho�nn+ < �|�,�o > . (62)

Next we calculate (div�)δ and (div�[�|�])δ . By definition,

{
(div�)δ = �nδ;n + g

αβ
o �αδ;β

(div�[�|�])δ = g
αβ
o �αδ;�β

, (63)

where

gαβo �αδ;β = gαβo {�αδ,β −�iδ�
i
αβ −�αi�

i
δβ}

= (div�[�|�])δ −Ho�nδ − gαβo �αn(�o)δβ . (64)

Hence, we have that

(div�)δ = �nδ;n + (div�[�|�])δ −Ho�nδ − gαβo �αn(�o)δβ . (65)

Similar calculations shows that

(dtr�)α = �nn;α + gβδo �βδ;α
= �nn,α − 2�ni�

i
nα + gβδo {�βδ,α −�iδ�

i
βα −�βi�

i
δα}

= �nn,α + 2�nβ(�o)δαg
δβ
o + gβδo �βδ;�α − 2gβδo �nδ(�o)βα

= �nn,α + gβδo �βδ;�α . (66)
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Therefore, integrating by parts on �, we have that∮
�

< div�− 1

2
dtr�, η >

= −
∮
�

< �(n, ·), d�ηn > +1

2

∮
�

�nn;n · ηn +
∮
�

< (∇n�)(n, ·), η|� >

−
∮
�

Ho�nn · ηn +
∮
�

< �|�, ηn�o > −
∮
�

< (�|�,S[∇�(η|�)] >

−
∮
�

Ho < �(n, ·), η|� > −
∮
�

< �(n, ·),�o((η|�)∗, ·) >

−1

2

∮
�

< (∇n�)|�, ηn · go|� > +1

2

∮
�

�nn · div�(η|�)

+1

2

∮
�

< �|�, div�(η|�) · go|� > , (67)

where d�(·) denotes the exterior derivative on � and (η|�)∗ denotes the tangent vector
on � that is the dual of η|� with respect to go|� . Now we are in a position to rewrite
(52) as

0 = −
∮
�

< �(n, ·), d�ηn > +1

2

∮
�

�nn;n · ηn +
∮
�

< (∇n�)(n, ·), η|� >

−
∮
�

Ho�nn · ηn +
∮
�

< �|�, ηn�o > −
∮
�

< (�|�,S[∇�(η|�)] >

−
∮
�

Ho < �(n, ·), η|� > −
∮
�

< �(n, ·),�o((η|�)∗, ·) >

−1

2

∮
�

< (∇n�)|�, ηn · go|� > +1

2

∮
�

�nn · div�(η|�)

+1

2

∮
�

< �|�, div�(η|�) · go|� > +
∮
�

{
−1

2
�nn;n + 1

2
Ho�nn

}
· h

+
∮
�

< �|�, τ > +1

2

∮
�

< (∇n�)|�,ϒ |� > +1

2

∮
�

(∇n�)nn · ϒnn

+
∮
�

< (∇n�)(n, ·), ϒ(n, ·) > −1

2

∮
�

< (∇nϒ)|�,�|� >

−1

2

∮
�

(∇nϒ)nn ·�nn −
∮
�

< (∇nϒ)(n, ·),�(n, ·) > , (68)

where each term on the right-hand side explicitly involves the free boundary data (53).
Thus it follows from (68) that {ϒ, η, τ, h} satisfies the following boundary conditions
on �: 



d�ηn +Hoη|� +�o((η|�)∗, ·)+ (∇nϒ)(n, ·) = 0
−Hoηn + 1

2div�(η|�)+ 1
2Hoh− 1

2ϒnn;n = 0
1
2ηn − 1

2h+ 1
2ϒnn = 0

η|� + ϒ(n, ·) = 0
− 1

2ηngo|� + 1
2ϒ |� = 0

ηn�o − S[∇�(η|�)] + 1
2div�(η|�)go|� + τ − 1

2 (∇nϒ)|� = 0 .

(69)
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On the other hand, by (65) and (62) we know that{
(divϒ)n = div�[ϒ(n, ·)] + ϒnn;n −Hoϒnn+ < ϒ |�,� >

(divϒ)δ = ϒnδ;n + (div�[ϒ |�])δ −Hoϒnδ − gαβϒαn�δβ .
(70)

Hence, it is easily seen that (69) is equivalent to


div(ϒ)n = 0
div(ϒ)δ = 0
ϒ |� = wgo|�
h = w + ϒnn
η|� = −ϒ(n, ·)

(71)

and

−τ = w�+ S[∇�(ϒ(n, ·))] − 1

2
div�(ϒ(n, ·))go|� − 1

2
(∇nϒ)|� , (72)

where we replace ηn by w. (Interesting simplification!)
So far our analysis has shown that{�ϕ − div(divϒ) = 0

�ϒ = 0 (73)

in M and 


ϕ − ϒnn = 0
∂ϕ
∂n − div�ϒ(n, ·)− (divϒ)n = 0

divϒ = 0
ϒ |� = wgo|�

(74)

on �, where w is a parameter function. Now it follows from (73) that �(divϒ) = 0,
thus integrating by parts and using the fact that

(divϒ)i = O(r−δ−2), Dj (divϒi) = O(r−δ−3) and δ > −3

2

we see that divϒ ≡ 0 in M . Therefore, (73) and (74) become{ �ϕ = 0
�ϒ = 0 in M (75)

and 


ϕ − ϒnn = 0
∂ϕ
∂n − div�ϒ(n, ·) = 0

divϒ = 0
ϒ |� = wgo|�

on � , (76)

which proves Lemma 2. 
�
It is easily seen that (ϒ, ϕ) = (go, 1) satisfies both (75) and (76). To eliminate such

a trivial solution, we choose δ ∈ (−1,− 1
2 ] throughout the rest of our discussion. The

following criteria now follows directly from the Implicit Function Theorem and our
analysis above. (We note that T has complemented kernel because its kernel is of finite
dimension.)
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Proposition 1. Let δ ∈ (−1,− 1
2 ] and k − 3

2 > 3, if (75) and (76) only admit zero

solution of (ϒ, ϕ) ∈ H2−k
−δ−1,M × H 2−k

−δ−1,M , then there exists a neighborhood U of go
in M�,ε and a neighborhood V of go in MM,ε so that, for any g ∈ U , there exists a
scalar flat and static metric g̃ ∈ V satisfying the geometric boundary condition (bd).

5. Description of Coker(T) in Case Ω = B1

From now on, we concentrate on the important case (�,�) = (B1, S
2) and we will

obtain an explicit description of the cokernel of T . First, we claim that (75) and (76)
admit no non-trivial rotationally symmetric solutions. To see that, let (ϒ, ϕ) be such a
solution with the form




ϒi(∂r , ∂r ) = a(r)

ϒi(∂r , ·)|∂Br = 0
ϒi(·, ·)|∂Br = d(r) · r2go|S2

ϕ(x) = ϕ(r)

, (77)

where r = |x| and a(r), d(r), ϕ(r) is a single variable function of r . The fact that ϕ
is harmonic directly implies that ϕ(r) = 0 because of the boundary condition and the
decay assumption at ∞. Thus (75) and (76) are reduced to a coupled ODE,

{
a′′(r)+ 2

r
a′(r)− 4

r2 [a(r)− d(r)] = 0
d ′′(r)+ 2

r
d ′(r)+ 2

r2 [a(r)− d(r)] = 0
(78)

with the boundary condition
{

a(1) = 0
a′(1)− 2d(1) = 0 . (79)

It follows from (78) that

r3a(4)(r)+ 8r2a(3)(r)+ 8ra′′(r)− 8a′(r) = 0 , (80)

which, together with the decay assumption, shows that

{
a(r) = Br−1 + Cr−3

d(r) = Br−1 − 1
2Cr

−3 .
(81)

It follows from (79) that both B and C are 0.
Next, we follow the separation of variable method employed by Regge and Wheeler

in [10] and also by Hu in [7] to decompose the tensor ϒ and the function ϕ using tensor
harmonics. Keeping the same notation as in [10], we let

{YML (θ, β) |M = 1, 2, . . . ,ML}
denote the set of spherical harmonics of degree L = 1, 2, 3, . . . , where ML is the
dimension of the space of homogeneous harmonic polynomials in R

3. Since (75) and
(76) admit no non-trivial rotationally symmetric solutions, it suffices for us to look for
solutions of the following two types:
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Type (I).

L ≥ 2 :




ϒM(∂r , ∂r ) = a(r) · YML
ϒM(∂r , ·)|∂Br = b(r) · dS2YML
ϒM(·, ·)|∂Br = r2[c(r) ·HessS2YML

+d(r) · YML go|S2 ]
ϕM = co

1
r(L+1) Y

M
L

, (82)

L = 1 :




ϒM(∂r , ∂r ) = a(r) · YM1
ϒM(∂r , ·)|∂Br = b(r) · dS2YM1
ϒM(·, ·)|∂Br = r2d(r) · YM1 g|S2

ϕM = co
1
r2 Y

M
1

. (83)

Type (II).

L ≥ 2 :




ϒ̂M(∂r , ∂r ) = 0
ϒ̂M(∂r , ·)|∂Br = b(r) · (dS2YML )

∗
ϒ̂M(·, ·)|∂Br = c(r) · (HessS2YML )

∗
ϕ̂M = 0

, (84)

L = 1 :




ϒ̂M(∂r , ∂r ) = 0
ϒ̂M(∂r , ·)|∂Br = b(r) · (dS2YML )

∗
ϒ̂M(·, ·)|∂Br = 0

ϕ̂M = 0

, (85)

where a(r), b(r), c(r) and d(r) are single variable functions of r , co is a constant, dS2YML
and HessS2YML represent the exterior derivative of YML and the Hessian of YML on S2,
(dS2YML )

∗ and (HessS2YML )
∗ are defined to be the dual of dS2YML andHessS2YML in the

following sense:

(
dS2YML

)∗
δ

= ελδ ·
(
dS2YML

)
λ
,(

HessS2YML

)∗
αδ

= 1

2

{
ελα ·

(
HessS2YML

)
λδ

+ ελδ ·
(
HessS2YML

)
λα

}
, (86)

where ελδ is a (1, 1) tensor on S2 defined by

εθθ = 0, εβθ = − 1

sin θ
,

(87)
ε
β
β = 0, εθβ = sin(θ),

in the standard spherical coordinates on S2 (we note that go|S2 = (dθ)2 + (sin(θ)dβ)2).
It is easily seen that ε is a linear isometry of T (S2) which rotates every tangent vector
π
2 clockwise. In particular, ε is parallel, i.e. ∇S2ε = 0.
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First we look for Type (I) solutions. Straightforward calculation, though not quite a
pleasant thing to do, shows that (75) and (76) are reduced to the following system of
coupled ODEs:


d ′′(r)+ 2
r
d ′(r)− 2

r2 d(r)+ 2
r2 a(r)− L(L+1)

r2 [d(r)− 2c(r)] = 0

c′′(r)+ 2
r
c′(r)+ 2

r2 c(r)+ 4
r3 b(r)− L(L+1)

r2 c(r) = 0

b′′(r)− 4
r2 b(r)+ 2

r
a(r)− 2

r
d(r)− 2

r
c(r)− L(L+1)

r2 [b(r)− 2rc(r)] = 0

a′′(r)+ 2
r
a′(r)− 4

r2 a(r)+ 4
r2 d(r)− L(L+1)

r2 [a(r)− 4
r
b(r)+ 2c(r)] = 0

(88)

with the boundary condition


co − a(1) = 0
co − Lb(1) = 0

a′(1)+ 2a(1)− 2d(1)− L(L+ 1)b(1) = 0
b′(1)+ 2b(1)+ d(1) = 0

c(1) = 0

(89)

for L ≥ 2, and 

r2d ′′(r)+ 2rd ′(r)− 4d(r)+ 2a(r)− 4

r
b(r) = 0

rb′′(r)− 6
r
b(r)+ 2a(r)− 2d(r) = 0

r2a′′(r)+ 2ra′(r)− 6a(r)+ 4d(r)+ 8
r
b(r) = 0

(90)

with the boundary condition



co − a(1) = 0
co − b(1) = 0

a′(1)+ 2a(1)− 2d(1)− 2b(1) = 0
b′(1)+ 2b(1)+ d(1) = 0

(91)

for L = 1. When L ≥ 2, it follows from (88) and plain calculation that

0 = r5 · c(5)(r)+ 16r4 · c(4)(r)+ [72 − 2L(L+ 1)]r3 · c(3)(r)
+[96 − 12L(L+ 1)]r2 · c′′(r)
+[L2(L+ 1)2 − 14L(L+ 1)+ 24]r · c′(r) (92)

which shows that

c(r) = Ar−L−3 + Br−L−1 + C +DrL−2 + ErL . (93)

The decay assumption on ϒ near ∞ implies that

c(r) = Ar−L−3 + Br−L−1 . (94)

It is easily checked that the boundary condition (89) is sufficient to force both A and B
to vanish, hence yields that c(r) = 0. Then it follows from (88) and (89) that a(r), b(r)
and d(r) all vanish identically. When L = 1, (90) implies that

r3b′′′(r)+ 5r2b′′(r)− 2rb′(r)− 6b(r) = 0, (95)

which gives that

b(r) = Ar−1 + Br−3 . (96)
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Now it can be checked that (91) is not sufficient to force bothA and B to vanish. Indeed,
we have B = 0 and A can be any number. Hence, the solutions space is spanned by

(a(r), b(r), d(r)) =
(

1

r2 ,
1

r
,− 1

r2

)
. (97)

Next we turn to Type (II) solutions. Similar calculation reveals that we have a system
of coupled ODEs

{
c′′(r)− 2

r
c′(r)+ (4 − L2 − L) 1

r2 c(r)+ 4
r
b(r) = 0

b′′(r)− (4 + L2 + L) 1
r2 b(r)+ (−2 + L2 + L) 1

r3 c(r) = 0
(98)

with the boundary condition

{
c(1) = 0
b′(1) = −2b(1) (99)

for L ≥ 2, and

b′′(r)− (4 + L2 + L)
1

r2 b(r) = 0 (100)

with the boundary condition

b′(1) = −2b(1) (101)

for L = 1, where we use the fact that

divS2 [(dS2YML )
∗] = 0 and trg|

S2 [(HessS2YML )
∗] = 0 . (102)

When L ≥ 2, it follows from (98) that

0 = r4 · c(4)(r)− 2L(L+ 1)r2 · c′′(r)+ 4L(L+ 1)r · c′(r)
+ [L2(L+ 1)2 − 6L(L+ 1)] · c(r) , (103)

which gives that

c(r) = Ar−L + Br2−L + CrL+1 +DrL+3 . (104)

Since r−2 · c(r) decays at ∞, we have that

c(r) = Ar−L + Br2−L . (105)

It is readily seen that (99) forces both A and B to vanish, hence C(r) = 0 and b(r) = 0.
When L = 1, (100) directly gives that b(r) = Ar−2 + Br3, which together with the
decay and boundary condition shows that

b(r) = Ar−2 (106)

is the only solution.
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To summarize our analysis, we first replace the notationYMi by ξi(θ, β) for i = 1, 2, 3
and define 



ϒi(∂r , ∂r ) = r−2ξi(θ, β)

ϒi(∂r , ·)|∂Br = r−1dS2ξi(θ, β)

ϒi(·, ·)|∂Br = −r−2ξi(θ, β)(go|∂Br )
ϕi = r−2ξi(θ, β)

(107)

and



ϒ̂i(∂r , ∂r ) = 0
ϒ̂i(∂r , ·)|∂Br = r−2(dS2ξi(θ, β))

∗
ϒ̂i(·, ·)|∂Br = 0

ϕ̂i = 0 .

(108)

Our calculation above then shows that the solution space of (75) and (76) is spanned by

{(ϒi, ϕi), (ϒ̂i , ϕ̂i) | i = 1, 2, 3} . (109)

The following characterization of the cokernel of T and the image of T now follow
directly from (109), (71), (72) and the general linear elliptic theory [8].

Proposition 2. If � = B1, then

Coker(T ) = span{(ϒi, ϕi, ηi, 0, 0), (ϒ̂i , 0, η̂i , 0, 0) | i = 1, 2, 3},
where

ηi = −dS2ξi(θ, φ)− ξi(θ, φ)dr (110)

and

η̂i = −(dS2ξi(θ, φ))
∗ . (111)

Furthermore, given (�,ψ, ζ, σ, h̃) ∈ Hk−2
δ−2,M ×Hk−2

δ−2,M × Hk− 3
2

(�,R3)
× Hk− 1

2
� ×H

k− 3
2

� ,

T (�, φ) =




− 1
2��−Hessφ

�φ
div�− 1

2d(tr�)

�|�
− 1

2�nn;n + 1
2H0�nn


 =




�

ψ

ζ

σ

h̃


 (112)

has a solution (�, φ) ∈ Hk
δ,M ×Hk

δ,M if and only if

{∫
R3\B1

< �,ϒi > + ∫
R3\B1

< ψ, ϕi > + ∮
S2 < ω, ηi > = 0∫

R3\B1
< �, ϒ̂i > + ∫

R3\B1
< ψ, ϕ̂i > + ∮

S2 < ω, η̂i > = 0
(113)

for all i ∈ {1, 2, 3}. Hence, (�,ψ, ζ, σ, h̃) ∈ Image(D′
o) if and only if (113) holds.
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6. Proof of the Main Theorem

We prove our main theorem based on the following basic observation.

Fact. For any i ∈ {1, 2, 3}, (ϒi, ϕi, ηi) is “odd” under the reflection about the coordi-
nate plane not containing ei while (ϒ̂i , ϕ̂i , η̂i ) is “odd” under the reflection about the
coordinate planes containing ei . Hence, (113) holds automatically if (�,ψ, ζ, σ, h̃) is
“even”(or invariant) under reflections about all the coordinate planes.

Keeping this in mind, we define G to be the finite group of isometries of R
3 that is

generated by all reflections with respect to coordinate planes. It is easily seen that G is
isomorphic to Z2 × Z2 × Z2.

Definition 2. MG
M,ε,MG

�,ε, F
G
ε ,Hl,G

δ,M,H
l,G
δ,M,Hl,G

(S2,R3)
,Hl,G

S2 , H
l,G

S2 is defined to be the

G-invariant subspace of MM,ε,M�,ε, Fε,Hl
δ,M,H

l
δ,M,Hl

(S2,R3)
,Hl

S2 , H
l
S2 .

The fact that G consists of isometries of R
3 implies that

ι∗(
(g̃, f, g)) = 
(ι∗(g̃, f, g)), ∀ι ∈ G. (114)

Hence, we have a well defined map 
G which is the restriction of 
 to the G-invariant
subspaces,


G : MG
M,ε ×FGε × MG

�,ε −→ Hk−2,G
δ−2,M ×Hk−2,G

δ−2,M × Hk− 3
2 ,G

(S2,R3)
× Hk− 1

2 ,G

S2 ×Hk− 3
2 ,G

S2 .

We let D′
Go denote the partial differential of 
G at (go, 1, go) with respect to the first
two arguments.

Proposition 3.

D′
Go : Hk,G
δ,M ×H

k,G
δ,M −→ Hk−2,G

δ−2,M ×H
k−2,G
δ−2,M × Hk− 3

2 ,G

(S2,R3)
× Hk− 1

2 ,G

S2 ×H
k− 3

2 ,G

S2

is a surjective map.

Proof. Let (�,ψ, ζ, σ, h̃) be any element in the target space. By definition we have that

ι∗(�,ψ, ζ, σ, h̃) = (�,ψ, ζ, σ, h̃), ∀ι ∈ G. (115)

Proposition 2 implies that ∃ (�, φ) ∈ Hk
δ,M ×Hk

δ,M so that

D′
Go (�, φ) = (�,ψ, ζ, σ, h̃). (116)

On the other hand, (114) gives that

D′
Go (ι
∗(�), ι∗(φ)) = ι∗(�,ψ, ζ, σ, h̃). (117)

Hence, (115) implies that

D′
Go (ι
∗(�), ι∗(φ)) = (�,ψ, ζ, σ, h̃), (118)
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which, together with (116), gives that

D′
Go

(
1

8

∑
ι∈G

ι∗(�),
1

8

∑
ι∈G

ι∗(φ)

)
= (�,ψ, ζ, σ, h̃). (119)

Since ( 1
8

∑
ι∈G ι∗(�),

1
8

∑
ι∈G ι∗(φ)) ∈ Hk,G

δ,M ×H
k,G
δ,M , we conclude that

D′
Go

(
1

8

∑
ι∈G

ι∗(�),
1

8

∑
ι∈G

ι∗(φ)

)
= (�,ψ, ζ, σ, h̃),

which shows the subjectivity of D′
o. 
�
Our main existence theorem now follows readily from the above proposition and the

Inverse Function Theorem.
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