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Abstract: We find a new gauge in which U(1) noncommutative instantons are explicitly
non-singular on noncommutative R4. We also present a pedagogical introduction into
noncommutative gauge theories.

1. Introduction

Recently there has been a revival of interest in noncommutative gauge theories [1, 2].
They are interesting as examples of field theories which have as their planar limit largeN
gauge theories [3, 4]; certain supersymmetric versions of noncommutative gauge theories
arise as the α′ → 0 limit of theories on Dp-branes in the presence of backgroundB-field
[6, 36]; the related theories arise in Matrix compactifications with C-field turned on [5];
finally, noncommutativity is in some sense an intrinsic feature of the open string field
theory [9, 7, 10]. A lot of progress has been recently achieved in the analysis of the clas-
sical solutions of the noncommutative gauge theory. The first explicit solutions and their
moduli were analysed in [11] where instantons in the four dimensional noncommuta-
tive gauge theory (with self-dual noncommutativity) were constructed. These instantons
play an important role in the construction of the discrete light cone quantization of the
M-theory fivebrane [35, 34], and they also gave a hope of giving an interpretation in
the physical gauge theory language of the torsion free sheaves which appear in various
interpretations of D-brane states [12, 13], in particular those responsible for the enthropy
of black holes realized via D5-D1 systems [37], and also entering the S-duality invariant
partition functions of N = 4 super-Yang-Mills theory [38]. In addition to the instantons
(which are particles in 4+1 dimensional theory), which represent the D0-D4 system, the
monopole-like solutions were found [23] in U(1) gauge theory in 3+1 dimensions. The
latter turn out to have a string attached to them. Both the string and the monopole at its
end are the noncommutative field theory realization of the D3-D1 system, where the D1
string ends on the D3 brane and bends at some specific angle towards the brane. One
can also find the solutions describing the string itself [24, 25], both the BPS and in the
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non-BPS states; also the dimensionally reduced solutions in 2+1 dimensions [25, 28],
describing the D0-D2 systems; finite length strings, corresponding to U(2) monopoles
[26].

This paper is devoted to the clarification of the issue of nonsingularity of the noncom-
mutative U(1) instantons. We shall show that one can find a gauge in which the solutions
are explicitly nonsingular, and well-defined over all of noncommutative R

4. Compared
to [11] we also relax the assumption on the noncommutativity. We shall only demand
that the Poisson tensor θij has non-negative Pfaffian: Pf(θ) �= 0 (and of course, that
the space is noncommutative, i.e. at least one of the eigen-values of θijGjkθkl must be
non-vanishing, G being the Euclidean metric on the space).

The paper is organized as follows. Section 2 contains a pedagogical introduction
into noncommutative gauge theories. Section 3 constructs instantons in noncommuta-
tive gauge theory on R4 for any group U(N). Section 4 presents explicit formulae for
the U(1) gauge group.

Note added. As this paper was ready for publication two related papers appeared. The
paper [28] also discusses codimension four solitons in noncommutative gauge theory,
using operators S, S† (which we introduce later in Sect. 4). These, however, are non-BPS
solutions (and the role of S and S† is reversed), and do not obey instanton equations.
The paper [33] overlaps with us in that it also uses the operators S, S† for constructing
instanton gauge fields. Also, some of the discussion of the relation of the torsion free
sheaves on C2 to the noncommutative instantons is similar.

2. Noncommutative Geometry and Noncommutative Field Theory

2.1. A brief mathematical introduction. It has been widely appreciated by mathemati-
cians (starting with the seminal works of Gelfand, Grothendieck, and von Neumann)
that the geometrical properties of a spaceX are encoded in the properties of the commu-
tative algebra C(X) of the continuous functions f : X → C with the ordinary rules of
point-wise addition and multiplication: (f+g)(x) = f (x)+g(x), f ·g(x) = f (x)g(x).

More precisely,C(X) knows only about the topology ofX, but one can refine the def-
initions and look at the algebra C∞(X) of the smooth functions or even at the DeRham
complex �·(X) to decipher the geometry of X.

The algebraA = C(X) is clearly associative, commutative and has a unit (1(x) = 1).
It also has an involution, which maps a function to its complex conjugate: f †(x) = f (x).

The points x of X can be viewed in two ways: as maximal ideals of A: f ∈ Ix ⇔
f (x) = 0; or as the irreducible (and therefore one-dimensional for A is commutative)
representations of A: Rx(f ) = f (x), Rx ≈ C.

The vector bundles over X give rise to projective modules over A. Given a bundle
E let us consider the space E = �(E) of its sections. If f ∈ A and σ ∈ E then clearly
f σ ∈ E . This makes E a representation of A, i.e. a module. Not every module over
A arises in this way. The vector bundles over topological spaces have the following
remarkable property, which is the content of the Serre-Swan theorem: for every vector
bundle E there exists another bundle E′ such that the direct sum E ⊕ E′ is a trivial
bundle X × CN for sufficiently large N . When translated to the language of modules
this property reads as follows: for the module E over A there exists another module E ′
such that E ⊕ E ′ = FN = A⊕N . We have denoted by FN = A⊗C CN the free module
over A of rank N . Unless otherwise stated the symbol ⊗ below will be used for tensor
products over C. The modules with this property are called projective. The reason for
them to be called in such a way is that E is an image of the free module FN under the
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projection which is identity on E and zero on E ′. In other words, for each projective
module E there exists N and an operator P ∈ Hom(FN, FN), such that P 2 = P , and
E = P · FN .

Noncommutative geometry relaxes the condition that A must be commutative, and
tries to develop a geometrical intuition about the noncommutative associative algebras
with anti-holomorphic involution † (C∗-algebras).

In particular, the notion of a vector bundle over X is replaced by the notion of the
projective module over A. Now, when A is noncommutative, there are two kinds of
modules: left and right ones. The left A-module is the vector space Ml with the oper-
ation of left multiplication by the elements of the algebra A: for m ∈ Ml and a ∈ A

there must be an element am ∈ Ml , such that for a1, a2: a1(a2m) = (a1a2)m. The
definition of the right A-module Mr is similar: for m ∈ Mr and a ∈ A there must
be an element ma ∈ Mr , such that for a1, a2: (ma1)a2 = m(a1a2). The free module
FN = A⊕ . . .N times ⊕A = A⊗CN is both a left and right one. The projectiveA-modules
are defined just as in the commutative case, except that for the left projective A-module
E the module E ′, such that E ⊕ E ′ = FN , also must be left, and similarly for the right
modules.

The manifolds can be mapped one to another by means of smooth maps: g : X1 →
X2. The algebras of smooth functions are mapped in the opposite way: g∗ : C∞(X2) →
C∞(X1), g∗(f )(x1) = f (g(x1)). The induced map of the algebras is the algebra homo-
morphism:

g∗(f1f2) = g∗(f1)g
∗(f2), g

∗(f1 + f2) = g∗(f1)+ g∗(f2).

Naturally, the smooth maps between two manifolds are replaced by the homomor-
phisms of the corresponding algebras. In particular, the maps of the manifold to itself
form the associative algebraHom(A,A). The diffeomorphisms would correspond to the
invertible homomorphisms, i.e. automorphismsAut(A). Among those there are internal
ones, generated by the invertible elements of the algebra:

a �→ g−1ag.

The infinitesimal diffeomorphisms of the ordinary manifolds are generated by the vector
fields V i∂i , which differentiate functions,

f �→ f + εV i∂if.

In the noncommutative setup the vector field is replaced by the derivation of the algebra
V ∈ Der(A):

a �→ a + εV (a), V (a) ∈ A
and the condition that V (a) generates an infinitesimal homomorphism reads as:

V (ab) = V (a)b + aV (b),

which is just the definition of the derivation.Among various derivations there are internal
ones, generated by the elements of the algebra itself:

Vc(a) = [a, c] := ac − ca, c ∈ A.
These infinitesimal diffeomorphisms are absent in the commutative setup, but they have
close relatives in the case of the Poisson manifold X.
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2.2. Flat noncommutative space. The basic example of the noncommutative algebra
which will be studied here is the enveloping algebra of the Heisenberg algebra. Con-
sider the Euclidean space Rd with coordinates xi , i = 1, . . . , d. Suppose a con-
stant antisymmetric matrix θij is fixed. It defines a Poisson bi-vector field θij ∂i∂j
and therefore the noncommutative associative product on Rd . The coordinate functions
xi on the deformed noncommutative manifold will obey the following commutation
relations:

[xi, xj ] = iθ ij . (1)

We shall call the algebra Aθ (over C) generated by the xi satisfying (1), together
with convergence conditions on the allowed expressions of the xi – the noncommu-
tative space-time. The algebra Aθ has an involution a �→ a† which acts as a com-
plex conjugation on the central elements (λ · 1)† = λ̄ · 1, λ ∈ C and preserves xi :
(xi)† = xi . The elements of Aθ can be identified with ordinary complex-valued func-
tions on Rd , with the product of two functionsf andg given by the Moyal formula (or star
product):

f 	 g (x) = exp

[
i

2
θij

∂

∂xi1

∂

∂x
j
2

]
f (x1)g(x2)|x1=x2=x. (2)

Fock space formalism. By an orthogonal change of coordinates we can map the Poisson
tensor θij onto its canonical form:

xi �→ za, z̄a, a = 1, . . . , r ; yb, b = 1, . . . , d − 2r,

so that:

[ya, yb] = [yb, za] = [yb, z̄a] = 0, [za, z̄b] = −2θaδab, θa > 0 (3)

ds2 = dx2
i + dy2

b = dzadz̄a + dy2
b .

Since z(z̄) satisfy (up to a constant) the commutation relations of creation (annihilation)
operators we can identify functions f (x, y) with the functions of the ya valued in the
space of operators acting in the Fock space Hr of r creation and annihilation operators:

Hr =
⊕

�n
C |n1, . . . , nr 〉,

ca = 1√
2θa

z̄a, c†
a = 1√

2θa
za, [ca, c

†
b] = δab,

ca|�n〉 = √
na|�n− 1a〉, c†

a|�n〉 =
√
na + 1|�n+ 1a〉. (4)

Let n̂a = c
†
aca be the ath number operator.

The Hilbert space Hr is an example of a left projective module over the algebra Aθ .
Indeed, consider the element P0 = |�0〉〈�0| ∼ exp − ∑

a
za z̄a
θa

. It obeys P 2
0 = P0, i.e.

it is a projector. Consider the rank one free module F1 = Aθ and let us consider its
left sub-module, spanned by the elements of the form: f 	 P0. As a module it is clearly
isomorphic to Hr , the isomorphism being: |�n〉 �→ |�n〉〈�0|. It is a projective module, the
complementary module being Aθ (1 − P0) ⊂ Aθ .
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The procedure that maps ordinary commutative functions onto operators in the Fock
space acted on by za, z̄a is called Weyl ordering and is defined by:

f (x) �→ f̂ (za, z̄a) =
∫
f (x)

d2rx d2rp

(2π)2r
ei(p̄aza+paz̄a−p·x). (5)

It is easy to see that

if f �→ f̂ , g �→ ĝ then f 	 g �→ f̂ ĝ. (6)

Symmetries of the flat noncommutative space. The algebra (1) has an obvious symme-
try: xi �→ xi + εi , for εi ∈ R. For invertible Poisson structure θ it is an example of the
internal automorphism of the algebra:

a �→ eiθij ε
ixj ae−iθij ε

ixj . (7)

In addition, there are rotational symmetries which we shall not need.

2.3. Gauge theory on noncommutative space. In an ordinary gauge theory with gauge
groupG the gauge fields are connections in some principalG-bundle. The matter fields
are the sections of the vector bundles with the structure group G. Sections of the non-
commutative vector bundles are elements of the projective modules over the algebra
Aθ .

In the ordinary gauge theory the gauge field arises through the operation of covari-
ant differentiation of the sections of a vector bundle. In the noncommutative setup the
situation is similar. Suppose M is a projective module over A. The connection ∇ is the
operator

∇ : Rd ×M → M, ∇ε(m) ∈ M, ε ∈ Rd , m ∈ M,
where Rd denotes the commutative vector space, the Lie algebra of the automorphism
group generated by (7). The connection is required to obey the Leibnitz rule:

∇ε(aml) = εi(∂ia)ml + a∇εml, (8)

∇ε(mra) = mrε
i(∂ia)+ (∇εmr)a. (9)

Here, (8) is the condition for the left modules, and (9) is the condition for the right mod-
ules. As usual, one defines the curvature Fij = [∇i ,∇j ] - the operator�2Rd ×M → M

which commutes with the multiplication by a ∈ Aθ . In other words,Fij ∈ EndA(M). In
ordinary gauge theories the gauge fields come with gauge transformations. In the non-
commutative case the gauge transformations, just like the gauge fields, depend on the
module they act in. For the module M the group of gauge transformations GM consists
of the invertible endomorphisms of M which commute with the action of A on M:

GM = GLA(M).

All the discussion above can be specified to the case where the module has a Hermitian
inner product, with values in A.
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Fock module and connections there. Recall that the algebra Aθ for d = 2r and non-
degenerate θ has an important irreducible representation, the left module Hr . Let us now
ask, what kind of connections does the module Hr have?

By definition, we are looking for a collection of operators ∇i : Hr → Hr , i =
1, . . . , 2r , such that:

[∇i , a] = ∂ia

for any a ∈ A. Using the fact that ∂ia = iθij [xj , a] and the irreducibility of Hr we
conclude that:

∇i = iθij x
j + κi, κi ∈ C. (10)

If we insist on unitarity of ∇, then iκi ∈ R. Thus, the space of all gauge fields suitable
for acting in the Fock module is rather thin, and is isomorphic to the vector space Rd

(which is canonically dual to the Lie algebra of the automorphisms of Aθ ). The gauge
group for the Fock module, again due to its irreducibility is simply the group U(1),
which multiplies all the vectors in Gr by a single phase. In particular, it preserves κi’s,
so they are gauge invariant. It remains to find out what is the curvature of the gauge field
given by (10). The straightforward computation of the commutators gives:

Fij = iθij , (11)

i.e. all connections in the Fock module have the constant curvature.

Free modules and connections there. If the right (left) moduleM is free, i.e. it is a sum
of several copies of the algebra Aθ itself, then the connection ∇i can be written as

∇i = ∂i + Ai,

where Ai is the operator of the left (right) multiplication by the matrix with Aθ -valued
entries:

∇iml = ∂iml +mlAi, ∇imr = ∂imr + Aimr. (12)

In the same operator sense the curvature obeys the standard identity:

Fij = ∂iAj − ∂jAi + AiAj − AjAi .

Given a module M over some algebra A one can multiply it by a free module A⊕N
to make it a module over an algebra MatN×N(A) of matrices with elements from A.
In the non-abelian gauge theory over A we are interested in projective modules over
MatN×N(A). If the algebra A (or perhaps its subalgebra) has a trace, Tr, then the alge-
bra MatN×N(A) has a trace given by the composition of a usual matrix trace and Tr.

It is a peculiar property of the noncommutative algebras that the algebras A and
MatN×N(A) have much in common. These algebras are called Morita equivalent and
under some additional conditions the gauge theories over A and over MatN×N(A) are
also equivalent. This phenomenon is responsible for the similarity between the “abelian
noncommutative” and “non-abelian commutative” theories.

If we represent ∂i as iθij [xj , ·] then the expression for the covariant derivative
becomes:

∇iml = iθij x
jmr +mrDi, ∇imr = −mriθij x

j +D
†
i mr, (13)

where

Di = −iθij xj + Ai. (14)
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3. Instantons in Noncommutative Gauge Theories

We would like to study the non-perturbative objects in noncommutative gauge theory.
Specifically we shall be interested in four dimensional instantons. They either appear

as instantons themselves in the Euclidean version of the four dimensional theory (the-
ory on Euclidean D3-brane), as solitonic particles in the theory on D4-brane, i.e. in
4+1 dimensions, or as instanton strings in the theory on D5-brane (and are related to
little strings [21]). They also show up as “freckles” in the gauge theory/sigma model
correspondence [14].

The theory depends on the dimensionful parameters θα which enter the commutation
relation between the coordinates of the space: [x, x] ∼ iθ .

We treat only the bosonic fields, but these could be a part of a supersymmetric multi-
plet, with N = 2 supersymmetry or higher. Such field theories arise on the world volume
of D3-branes in the presence of a background constant B-field along the D3-brane.

A D3-brane can be surrounded by other branes as well. For example, in the Euclidean
setup, a D-instanton could approach the D3-brane. In fact, unless the D-instanton is dis-
solved inside the brane, the combined system breaks supersymmetry [36]. The D3-D(-1)
system can be rather simply described in terms of a noncommutativeU(1) gauge theory
– the latter has instanton-like solutions [11]. It is the purpose of this note to explore these
solutions in greater detail.

More generally, one can have a stack of k Euclidean D3-branes withN D( -1)-branes
inside. This configuration will be described by chargeN instantons inU(k) gauge theory.

Let us work in four Euclidean space-time dimensions, µ = 1, 2, 3, 4. As we said
above, we shall look at the purely bosonic Yang-Mills theory on the space-time Aθ with
the coordinates functions xµ obeying the Heisenberg commutation relations:

[xµ, xν] = iθµν. (15)

We assume that the metric on the space-time is Euclidean:

ds2 =
∑
µ

(dxµ)2. (16)

The action describing our gauge theory is given by:

S = − 1

4g2
YM

TrF ∧ 	F + θ

8π2 TrF ∧ F, (17)

where g2
YM is the Yang-Mills coupling constant, and

F = Fµνdx
µ ∧ dxν, Fµν = ∇µ∇ν − ∇ν∇µ. (18)

The covariant derivatives ∇µ act in some module E over the algebra Aθ of functions on
the noncommutative R4.
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3.1. Instantons. The equations of motion following from (17) are:

∇µFµν = 0. (19)

In general these equations are as hard to solve as the equations of motion of the ordinary
non-abelianYang-Mills theory. However, just like in the commutative case, there are spe-
cial solutions, which are simpler to analyze and which play a crucial role in the analysis
of the quantum theory. These are the so-called (anti-)instantons. The (anti-)instantons
solve the first order equation:

Fµν = ±1

2
εµνκλFκλ. (20)

These equations are easier to solve. The solutions are classified by the instanton charge:

N = − 1

8π2 TrF ∧ F. (21)

3.2. ADHM construction. In the commutative case all solutions to (20) with the finite
action (17) are obtained via the so-called Atiyah-Drinfeld-Hitchin-Manin (ADHM) con-
struction. If we are concerned with the instantons in the U(k) gauge group, then the
ADHM data consists of

1. the pair of the two complex vector spaces V and W of dimensions N and k respec-
tively;

2. the operators: B1, B2 ∈ Hom(V , V ), and I ∈ Hom(W, V ), J ∈ Hom(V ,W);
3. the dual gauge group GN = U(N), which acts on the data above as follows:

Bα �→ g−1Bαg, I �→ g−1I, J �→ Jg; (22)

4. Hyperkähler quotient [15] with respect to the group (22). It means that one takes the
set Xk,N = µ−1

r (0) ∩ µ−1
c (0) of the common zeroes of the three moment maps:

µr = [B1, B
†
1 ] + [B2, B

†
2 ] + II † − J †J,

µc = [B1, B2] + IJ,

µ̄c = [B†
2 , B

†
1 ] + J †I †, (23)

and quotients it by the action of GN .

The claim of ADHM is that the points in the space Mk,N = X◦
k,N/GN parameterize

the solutions to (20) (for θ = 0) up to the gauge transformations. Here X◦
k,N ⊂ Xk,N is

the open dense subset of Xk,N which consists of the solutions to �µ = 0 such that their
stabilizer in GN is trivial. The explicit formula for the gauge field Aµ is also known.
Define the Dirac-like operator:

D+ =
(−B2 + z2 B1 − z1 I

B
†
1 − z̄1 B

†
2 − z̄2 J

†

)
: V ⊗ C2 ⊕W → V ⊗ C2. (24)
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Here z1, z2 denote the complex coordinates on the space-time:

z1 = x1 + ix2, z2 = x3 + ix4, z̄1 = x1 − ix2, z̄2 = x3 − ix4.

The kernel of the operator (24) is the x-dependent vector space Ex ⊂ V ⊗ C2⊕W . For
generic x, Ex is isomorphic to W . Let us denote by � = �(x) this isomorphism. In
plain words, � is the fundamental solution to the equation:

D+� = 0, � : W → V ⊗ C2⊕W. (25)

If the rank of� is x-independent (this property holds for generic points in M), then one
can normalize:

�†� = Idk, (26)

which fixes � uniquely up to an x-dependent U(k) transformation �(x) �→ �(x)g(x),
g(x) ∈ U(k). Given � the anti-self-dual gauge field is constructed simply as follows:

∇µ = ∂µ + Aµ, Aµ = �†(x)
∂

∂xµ
�(x). (27)

The space of (B0, B1, I, J ) for which�(x) has maximal rank for all x is an open dense
subset MN,k = X◦

N,k/GN in M. The rest of the points in XN,k/GN describes the
so-called point-like instantons. Namely,�(x) has maximal rank for all x but some finite
set {x1, . . . , xl}, l ≤ k. Equation (26) holds for x �= xi, i = 1, . . . , l, where the left
hand side of (26) simply vanishes.

The noncommutative deformation of the gauge theory leads to the noncommutative
deformation of the ADHM construction. It turns out to be very simple yet surprising.
The same data V,W,B, I, J, . . . is used. The deformed ADHM equations are simply

µr = ζr , µc = ζc, (28)

where we have introduced the following notations. The Poisson tensor θij entering the
commutation relation [xi, xj ] = iθ ij can be decomposed into the self-dual and anti-
self-dual parts θ±. If we look at the commutation relations of the complex coordinates
z1, z2, z̄1, z̄2, then the self-dual part of θ enters the following commutators:

[z1, z2] = −ζc [z1, z̄1] + [z2, z̄2] = −ζr . (29)

It turns out that as long as |ζ | = ζ 2
r + ζcζ̄c > 0 one needs not distinguish between X̃N,k

and X̃◦
N,k , in other words the stabilizer of any point in X̃N,k = µ−1

r (−ζr ) ∩ µ−1
c (−ζc)

is trivial. Then the resolved moduli space is M̃N,k = X̃N,k/GN .
By making an orthogonal rotation on the coordinates xµ we can map the algebra

Aθ onto the sum of two copies of the Heisenberg algebra. These two algebras can have
different values of “Planck constants”. Their sum is the norm of the self-dual part of θ ,
i.e. |ζ |, and their difference is the norm of anti-self-dual part of θ :

[z1, z̄1] = −ζ1, [z2, z̄2] = −ζ2, (30)

where ζ1 + ζ2 = |θ+|, ζ1 − ζ2 = |θ−|. By the additional reflection of the coordinates, if
necessary, one can make both ζ1 and ζ2 positive (however, one should be careful, since
if the odd number of reflections was made, then the orientation of the space was changed
and the notions of the instantons and anti-instantons are exchanged as well).
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The next step in the ADHM construction was the definition of the isomorphism �

between the fixed vector space W and the fiber Ex of the gauge bundle, defined as the
kernel of the operator D+. In the noncommutative setup one can also define the operator
D+ by the same formula (24). It is a map between two free modules over Aθ :

D+
x :

(
V ⊗ C2 ⊕W

) ⊗
Aθ →

(
V ⊗ C2

) ⊗
Aθ (31)

which commutes with the right action of Aθ on the free modules. Clearly,

E = KerD+

is a right module over Aθ , for if D+s = 0, then D+(s · a) = 0, for any a ∈ Aθ .
E is also a projective module, for the following reason. Consider the operator D+D.

It is a map from the free module V ⊗C2 ⊗ Aθ to itself. Thanks to (28) this map actually
equals �⊗ IdC2 , where � is the following map from the free module V ⊗ Aθ to itself:

� = (B1 − z1)(B
†
1 − z̄1)+ (B2 − z2)(B

†
2 − z̄2)+ II †. (32)

We claim that � has no kernel, i.e. no solutions to the equation �v = 0, v ∈ V ⊗ Aθ .
Recall the Fock space representation H of the algebra Aθ . The coordinates zα, z̄α , obey-
ing (30), with ζ1, ζ2 > 0, are represented as follows:

z1 =
√
ζ1 c

†
1, z̄1 =

√
ζ1 c1, z2 =

√
ζ2 c

†
2, z̄2 =

√
ζ2 c2, (33)

where c1,2 are the annihilation operators and c†
1,2 are the creation operators for the

two-oscillators Fock space

H =
⊕
n1,n2≥0

C |n1, n2〉.

Let us assume the opposite, namely that there exists a vector v ∈ V ⊗ Aθ such that
�v = 0. Let us act by this vector on an arbitrary state |n1, n2〉 in H. The result is the
vector νn̄ ∈ V ⊗ H which must be annihilated by the operator �, acting in V ⊗ H via
(33). By taking the Hermitian inner product of the equation�νn̄ = 0 with the conjugate
vector ν†

n̄ we immediately derive the following three equations:

(B
†
2 − z̄2)νn̄ = 0,

(B
†
1 − z̄1)νn̄ = 0, (34)

I †νn̄ = 0.

Using (28) we can also represent �x in the form:

� = (B
†
1 − z̄1)(B1 − z1)+ (B

†
2 − z̄2)(B2 − z2)+ J †J. (35)

From this representation another triple of equations follows:

(B2 − z2)νn̄ = 0,

(B1 − z1)νn̄ = 0, (36)

Jνn̄ = 0.
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Let us denote by ei , i = 1, . . . , N some orthonormal basis in V . We can expand νn̄ in
this basis as follows:

νn̄ =
N∑
i=1

ei ⊗ vin̄, vin̄ ∈ H.

Equations (34), (36) imply:

(Bα)
i
j v
j
n̄ = zαv

i
n̄, (B†

α)
i
j v
j
n̄ = z̄αv

i
n̄, α = 1, 2, (37)

in other words the matrices Bα,B†
α form a finite-dimensional representation of the Hei-

senberg algebra which is impossible if either ζ1 or ζ2 �= 0. Hence νn̄ = 0, for any
n̄ = (n1, n2) which implies that v = 0.

Thus the Hermitian operator� is invertible. It allows to prove the following theorem:
each vector ψ in the free module (V ⊗ C2 ⊕W)⊗ Aθ can be decomposed as a sum of
two orthogonal vectors:

ψ = �ψ ⊕ Dχψ, D+�ψ = 0, χψ ∈ (V ⊗ C2)⊗ Aθ , (38)

where the orthogonality is understood in the sense of the following Aθ -valued Hermitian
product:

〈ψ1, ψ2〉 = TrV⊗C2⊕W
(
ψ

†
1ψ2

)
.

The component �ψ is annihilated by D+, that is �ψ ∈ E . The image of D is another
right module over A (being the image of the free module (V ⊗ C2)⊗ Aθ ):

E ′ = D(V ⊗ C2 ⊗ Aθ )

and their sum is a free module:

E ⊕ E ′ = F :=
(
V ⊗ C2 ⊕W

)
⊗ Aθ ,

hence E is projective. It remains to give the expressions for �ψ, χψ :

χψ = 1

D+DD+ψ, �ψ = �ψ, � =
(

1 − D 1

D+DD+
)
. (39)

The noncommutative instanton is a connection in the module E which is obtained simply
by projecting the trivial connection on the free module F down to E . To get the covariant
derivative of a section s ∈ E we view this section as a section of F , differentiate it using
the ordinary derivatives on Aθ and project the result down to E again:

∇s = � ds. (40)

The curvature is defined through ∇2, as usual:

∇∇s = F · s = d� ∧ d� · s, (41)

where we used the following relations:

�2 = �, �s = s. (42)
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Let us now show explicitly that the curvature (41) is anti-self-dual, i.e.

[∇µ,∇ν] + 1
2εµνλρ[∇λ,∇ρ] = 0. (43)

First we prove the following lemma: for any s ∈ E :

d� ∧ d�s = �dD 1

D+D dD+s. (44)

Indeed,

d� ∧ d� = d

(
D 1

D+DD+
)

∧ d

(
D 1

D+DD+
)
,

d

(
D 1

D+DD+
)

= �dD 1

D+DD+ + D 1

D+D dD+�,

D+� = 0,

hence

d

(
D 1

D+DD+
)

∧ d

(
D 1

D+DD+
)

= �dD 1

D+D dD+�+ D 1

D+D dD+� dD 1

D+DD+,

and the second term vanishes when acting on s ∈ E , while the first term gives exactly
what Eq. (44) states.

Now we can compute the curvature more or less explicitly:

F · s = 2�




1
�
f3

1
�
f+ 0

1
�
f− − 1

�
f3 0

0 0 0


 · s, (45)

where f3, f+, f− are the basic anti-self-dual two-forms on R4:

f3 = 1
2 (dz1 ∧ dz̄1 − dz2 ∧ dz̄2), f+ = dz1 ∧ dz̄2, f− = dz̄1 ∧ dz2. (46)

Thus we have constructed the nonsingular anti-self-dual gauge fields over Aθ . The
interesting feature of the construction is that it produces the non-trivial modules over the
algebra Aθ , which are projective for any point in the moduli space. This feature is lacking
in the ζ → 0, where it is spoiled by the point-like instantons. This feature is also lacking
if the deformed ADHM equations are used for construction of gauge bundles directly
over a commutative space. In this case it turns out that one can construct a torsion free
sheaf over C2, which sometimes can be identified with a holomorphic bundle. However,
generically this sheaf will not be locally free. It can be made locally free by blowing up
sufficiently many points on C2, thereby effectively changing the topology of the space
[31]. The topology change is rather mysterious if we recall that it is purely gauge theory
we are dealing with. However, in the supersymmetric case this gauge theory is an α′ → 0
limit of the theory on a stack of Euclidean D3-branes. One could think that the topology
changes reflect the changes of topology of D3-branes embedded into flat ambient space.
This is indeed the case for monopole solutions, e.g. [16, 43, 18, 19]. It is not completely
unimaginable possibility, but so far it has not been justified (besides the fact that the DBI
solutions [36, 41] are ill-defined without a blowup of the space).What makes this unlikely
is the fact that the instanton backgrounds have no worldvolume scalars turned on.
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At any rate, the noncommutative instantons constructed above are well-defined and
nonsingular without any topology change.

Also note that we have constructed instantons for an arbitrary noncommutativity ten-
sor θµν , the only requirement being the positivity of the Pfaffian Pf(θ) ∝ ζ1ζ2 > 0 (for
Pf(θ) < 0 our formulae define anti-instantons).

3.3. The identificator �. In the noncommutative case one can also try to construct the
identifying map �. It is to be thought as of the homomorphism of the modules over A:

� : W ⊗ Aθ → E .
The normalization (26), if obeyed, would imply the unitary isomorphism between the
free moduleW ⊗ Aθ and E . We can write:� = ��† and the elements s of the module
E can be cast in the form:

s = � · σ, σ ∈ W ⊗ Aθ . (47)

Then the covariant derivative can be written as:

∇s = �d(� · σ) = ��†d (�σ) = � (dσ + Aσ) , (48)

where

A = �†d� (49)

just like in the commutative case. Introducing the background independent operators
Dµ = iθµνx

ν + Aµ, we can write:

Dµ = i�†θµνx
ν�. (50)

4. Abelian Instantons

Let us describe the case of U(1) instantons in detail. In our notations above we have:
k = 1. It is known, from [30], that for ζr > 0, ζc = 0 the solutions to the deformed
ADHM equations have J = 0. Let us denote by V the complex Hermitian vector space
of dimensionality N , where Bα , α = 1, 2 act. Then I is identified with a vector in V .
We can choose our units and coordinates in such a way that ζr = 2, ζc = 0.

4.1. Torsion free sheaves on C2. Let us recall at this point the algebraic-geometric inter-
pretation of the space V and the triple (B1, B2, I ). The space X̃N,1 parameterizes the
rank one torsion free sheaves on C2. In the case of C2 these are identified with the ideals
I in the algebra C[z1, z2] of holomorphic functions on C2, such that V = C[z1, z2]/I
has dimension N . An ideal of the algebra O ≈ C[z1, z2] is a subspace I ⊂ O, which is
invariant under the multiplication by the elements of O, i.e. if g ∈ I then fg ∈ I for
any O.

An example of such an ideal is given by the space of functions of the form:

f (z1, z2) = zN1 g(z1, z2)+ z2h(z1, z2).

The operators Bα are simply the operations of multiplication of a function, representing
an element of V by the coordinate function zα , and the vector I is the image in V of
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the constant function f = 1. In the example above, following [31] we identify V with
C[z1]/zN1 , the operator B2 = 0, and in the basis ei = √

(i − 1)!zN−i
1 the operator B1 is

represented by a Jordan-type block: B1ei = √
2(i − 1)ei−1, and I = √

2NeN .
Conversely, given a triple (B1, B2, I ), such that the ADHM equations are obeyed the

ideal I is reconstructed as follows. The polynomial f ∈ C[z1, z2] belongs to the ideal,
f ∈ I if and only if f (B1, B2)I = 0. Then, from the ADHM equations it follows that
by acting on the vector I with polynomials in B1, B2 one generates the whole of V .
Hence C[z1, z2]/I ≈ V and has dimension N , as required.

4.2. Identificator� and projector P . Let us now solve the equations for the identifica-
tor: D†� = 0, �†� = 1. We decompose:

� =

ψ+
ψ−
ξ


 , (51)

where ψ± ∈ V ⊗ Aθ , ξ ∈ Aθ . The normalization (26) is now:

ψ
†
+ψ+ + ψ

†
−ψ− + ξ†ξ = 1. (52)

It is convenient to work with rescaled matricesB:Bα = √
ζαβα , α = 1, 2. The equation

D†� = 0 is solved by the substitution:

ψ+ = −
√
ζ2(β

†
2 − c2)v, ψ− =

√
ζ1(β

†
1 − c1)v (53)

provided

�̂v + Iξ = 0, �̂ =
∑
α

ζα(βα − c†
α)(β

†
α − cα) (54)

Fredholm’s alternative states that the solution ξ of (54) must have the property, that for
any ν ∈ H, χ ∈ V , such that

�̂(ν ⊗ χ) = 0, (55)

the equation (
ν† ⊗ χ†

)
Iξ = 0 (56)

holds. It is easy to describe the space of all ν ⊗ χ obeying (55): it is spanned by the
vectors:

e
∑
β

†
αc

†
α |0, 0〉 ⊗ ei, i = 1, . . . , N, (57)

where ei is any basis in V . Let us introduce a Hermitian operator G in V :

G = 〈0, 0|e
∑
βαcα I I †e

∑
β

†
αc

†
α |0, 0〉. (58)

It is positive definite, which follows from the representation:

G = 〈0, 0|e
∑
βαcα

∑
ζα(β

†
α − cα)(βα − c†

α)e
∑
β

†
αc

†
α |0, 0〉
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and the fact that βα − c†
α has no kernel in H ⊗V . Then define an element of the algebra

Aθ

P = I †e
∑
β

†
αc

†
α |0, 0〉G−1〈0, 0|e

∑
βαcα I, (59)

which obeys P 2 = P , i.e. it is a projector. Moreover, it is a projection onto anN -dimen-
sional subspace in H, isomorphic to V .

Dual gauge invariance. The normalization condition (26) is invariant under the action
of the dual gauge group GN ≈ U(N) on Bα, I . However, the projector P is invariant
under the action of a larger group - the complexification GC

N ≈ GLN(C):

(Bα, I ) �→ (g−1Bαg, g
−1I ), (B†

α, I
†) �→ (g†Bαg

†,−1, I †g†,−1). (60)

This makes the computations of P possible even when the solution to the µr = ζr part
of the ADHM equations is not known. The moduli space M̃N,k can be described both in
terms of the hyperkahler reduction as above, or in terms of the quotient of the space of
stable points Y sN,k ⊂ µ−1

c (0) by the action of GC
N (see [29, 30] for related discussions).

The stable points (B1, B2, I ) are the ones where B1 and B2 commute, and generate all
of V by acting on I : C[B1, B2] I = V , i.e. precisely those triples which correspond to
the codimension N ideals in C[z1, z2].

Instanton gauge field. Clearly, P annihilates ξ , thanks to (56). Let S be an operator in
H which obeys the following relations:

SS† = 1, S†S = 1 − P. (61)

The existence of S is merely a reflection of the fact that as Hilbert spaces HI ≈ H. So
it just amounts to relabeling the orthonormal bases in HI and H to construct S.

Now, �̂ restricted at the subspace S†H ⊗ I ⊂ H ⊗ V , is invertible. We can now
solve (54) as follows:

ξ = �− 1
2 S†, v = − 1

�̂
Iξ, (62)

where

� = 1 + I † 1

�̂
I. (63)

� is not an element of Aθ , but�−1 and�S† are. Finally, the gauge fields can be written
as:

Dα =
√

1

ζα
S�− 1

2 cα�
1
2 S†, D̄ᾱ = −

√
1

ζα
S�

1
2 c†
α�

− 1
2 S†. (64)
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Ideal meaning of P . We can explain the meaning of P in an invariant fashion. Con-
sider the ideal I in C[z1, z2], corresponding to the triple (B1, B2, I ) as explained above.
Any polynomial f∈I defines a vector f (

√
ζ1c

†
1,

√
ζ2c

†
2)|0, 0〉 and their totality span a

subspace HI ⊂ H of codimension N . The operator P is simply an orthogonal pro-
jection onto the complement to HI . The fact I is an ideal in C[z1, z2] implies that
c†
α(HI) ⊂ HI , hence:

c†
αS

†η = S†η′

for any η ∈ Aθ , and also �− 1
2 S† = S†η′′ for some η′, η′′ ∈ Aθ .

Notice that the expressions (64) are well-defined. For example, the D̄ᾱ component
contains a dangerous piece �

1
2 c†
α . . . in it. However, in view of the previous remarks it

is multiplied by S† from the right and therefore well-defined indeed.

4.3. Charge one instanton. In this case: I = √
2, one can take Bα = 0, �̂ = ∑

ζαnα ,

� = M + 2

M

M = ∑
α ζαnα,

∑
α ζα = 2. Let us introduce the notation N = n1 + n2. For the

pair n̄ = (n1, n2) let ρn̄ = 1
2N(N − 1) + n1. The map n̄ ↔ ρn̄ is one-to-one. Let

S†|ρn̄〉 = |ρn̄ + 1〉. Clearly, SS† = 1, S†S = 1 − |0, 0〉〈0, 0|.
The formulae (64) are explicitly non-singular. Let us demonstrate the anti-self-duality

of the gauge field (64) in this case.

∑
α

DαD̄ᾱ = −S 1

ζα
(nα + 1)

M

M + 2

M + 2 + ζα

M + ζα
S†,

∑
α

D̄ᾱDα = S
1

ζα
nα

M − ζα

M + 2 − ζα

M + 2

M
S†.

A simple calculation shows:

∑
α

[Dα, D̄ᾱ] = − 2

ζ1ζ2
= −

(
1

ζ1
+ 1

ζ2

)
, [Dα,Dβ ] = 0, (65)

hence ∑
α

Fαᾱ = 0 (66)

as

i
∑
α

θαᾱ = 1

ζ1
+ 1

ζ2
.

This is a generalization of the charge one instanton constructed in [11], written in the
explicitly non-singular gauge.
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Remark on gauges. The gauge which was chosen in the examples considered in [11] and
subsequently adopted in [32, 20] had ξ = ξ†. It was shown in [32] that this gauge does
not actually lead to the canonically normalized identificator�: one had�†� = 1 −P .
Our paper showed that this gauge is in some sense an analogue of the ’t Hooft singular
gauge for commutative instantons: it leads to singular formulae, if the gauge field is con-
sidered to be well-defined globally over Aθ . However, as we showed above, there are
gauges in which the gauge field is globally well-defined, non-singular, and anti-self-dual.
They simply have ξ �= ξ†.
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