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Abstract: We prove the emergence of chaotic behavior in the form of horseshoes and
strange attractors with SRB measures when certain simple dynamical systems are kicked
at periodic time intervals. The settings considered include limit cycles and stationary
points undergoing Hopf bifurcations.

This paper is about a mechanism for producing chaos. The scheme consists of peri-
odic kicks interspersed with long periods of relaxation. We apply it to some very tame
dynamical settings, such as limit cycles and stable equilibria undergoing Hopf bifurca-
tions, and prove the appearance of chaotic behavior under reasonable conditions.

The results in this paper, beginning with the statements in Sect. 1, are rigorous. The
rest of this introduction is devoted to a nontechnical discussion of some of the ideas and
issues surrounding this work.

Main results. In Theorem 1, we prove that when suitably kicked, all limit cycles can be
turned into strange attractors with strong stochastic properties.

Theorems 2 and 3 have to do with Hopf bifurcations. In the absence of forcing, the
picture for a supercritical Hopf bifurcation is classical and well known: a stable fixed
point loses its stability when a pair of complex conjugate eigenvalues crosses the imag-
inary axis, resulting in the appearance of a limit cycle which increases in diameter as
it moves away from the newly unstable fixed point. Subjecting this system to periodic
kicks, we prove that if there is a sufficiently strong “twist” at the fixed point and the
forcing is of a suitable type, then in lieu of the limit cycle, a strange attractor sometimes
emerges from the bifurcation.

The appearance of horseshoes is also proved in both situations.
The results above are related as follows. For arbitrary limit cycles, even though

the geometric principles are clear, it is difficult to formulate a quantitative statement
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without detailed knowledge of the local geometry. In Hopf bifurcations, this informa-
tion is contained in the first three derivatives at the bifurcating point. It can be condensed,
in fact, into a single number called the “twist factor”.

Horseshoes and strange attractors. We clarify what is meant by “horseshoes” and
“strange attractors”.

“Horseshoes” as introduced by Smale [S] are invariant Cantor sets on which the map
is hyperbolic and has positive topological entropy. Since they are not attracting, these
sets represent, from the observational point of view, transient chaos.

The term “strange attractor” is used in this paper to summarize a number of precisely
defined dynamical properties that together imply sustained, observable chaos. These
properties include, for example, positive Lyapunov exponents starting from almost all
initial conditions in the basin, statistical coherence in the sense of orbits in large sets orga-
nizing themselves according to certain special invariant measures called SRB measures,
and strong stochastic properties such as exponential correlation decay for sequences of
observations of the type ϕ, ϕ ◦ F, · · · , ϕ ◦ Fn, · · · . (See Sect. 1.1 for more detail.)

Horseshoes are created by “stretch-and-fold” type actions. They are robust; once they
develop, they persist. The creation of strange attractors with SRB measures requires a
balance that is considerably more subtle. For the logistic family, it has been proved that
two kinds of maps with opposite behaviors – those with invariant densities and those
with periodic sinks – partition parameter space in a complicated way; see e.g. [L]. There
is evidence of a similar picture for invertible maps in 2D; see e.g. [N, WY2]. Though yet
unsubstantiated, current thinking is that outside of the Axiom A category, SRB measures
in general is a “positive probability phenomenon” rather than one that occurs on open
sets of parameter space, even when the map has stretch-and-fold geometry.

Our results in Theorems 1–3 reinforce this emerging picture: Our a priori conditions
for the existence of strange attractors are more stringent than those for horseshoes. When
these conditions are met, we prove the presence of horseshoes for open sets of parame-
ters, and strange attractors for maps corresponding to parameters in a positive measure
set.

A mechanism for the production of chaos. Our scheme relies on the natural forces of
shear to exaggerate the irregularities brought on (deliberately) by the kick. We explain
– on an intuitive level – how this works in Hopf bifurcations in 2D.

For argument’s sake, let 0 be the fixed point and � = {r = √
µ} be the emerging

limit cycle, µ being the bifurcation parameter. Suppose we give the system a kick in the
radial direction, distorting the shape of � as shown in Fig. 1a. Generically, the unforced
system has a “twist”, meaning points at different distances from 0 rotate at different
speeds. During the relaxation period, some points on this distorted circle rotate ahead of
others. A stretch-and-fold action results if the twist is sufficiently strong; see Fig. 1b.

Supporting analysis. We focus on strange attractors as the corresponding proofs for
horseshoes are quite simple. Our analysis is based on [WY1] and [WY3], which together
contain one of the very few rigorous theories of strange attractors besides Axiom A the-
ory. We discuss briefly below the approach in these two papers and how to apply the
results.

[WY1] and [WY3] are about maps with attracting sets on which there is strong dis-
sipation and (in most places) a single direction of instability. Two-parameter families
{Ta,b} are considered. Roughly speaking, a is a parameter that allows us to effect changes
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(b)(a)
Fig. 1a, b. A Hopf attractor

along the unstable direction and b is the inverse of “dissipation”. The idea is to try to
pass to the singular limit at b = 0 to obtain a one-parameter family of 1D maps. Now
1-dimensional objects are considerably simpler than n-dimensional objects, and the the-
ory of 1D maps is fairly well developed. We proved in [WY1] and [WY3] that if the
singular limit above makes sense, and if the resulting family of 1D maps has certain
good properties, then some of these properties can be passed back to b > 0, and they in
turn allow us to prove the desired results on strange attractors for a positive measure set
of a.

Parts of the analysis in [WY1] and [WY3] have their origins in [BC], which contains
the pioneering work on Hénon attractors. Some of the ideas in [BC] in turn come from
the theory of 1D maps; see [J] in particular.

We emphasize that in contrast to earlier results, the theory in [WY1] and [WY3] is
“generic”, in the sense that the conditions under which it holds pertain only to certain
general characteristics of the maps and not to specific formulas or contexts. To prove
Theorems 1–3, we will show that the present setting fits into the framework of [WY1]
and [WY3], and then leverage the results in these two papers.

Relation to previous works. An application of [BC] to show the presence of strange
attractors (in a weaker sense than explained above) in 2D homoclinic bifurcations is
given in [MV].

The first evidence of chaotic behavior in periodically forced systems goes back to
the work of Cartwright and Littlewood on the van der Pol oscillator [CL]. Levinson
[Ln] made considerable progress on a simplified (linearized) model of this system, for
which thirty years later Levi [Li] proved the existence of horseshoes. Numerical work
by Zaslavsky [Z] suggested the presence of strange attractors for an even simpler second
order equation. Not knowing about [Z], we studied again the same equation recently and
proved (rigorously) the existence of horseshoes and strange attractors [WY2].

To our knowledge, the forcing of limit cycles had not been studied previously in
the generality of Theorem 1 of this paper. Also, to our knowledge, chaotic behavior in
connection with Hopf bifurcations had not been observed or predicted prior to this work.

We mention also a connection of a different kind. Not all of our perturbations are
small; large kicks are sometimes needed to “break” limit cycles. But under suitable cir-
cumstances, such as when the twist factor in a Hopf bifurcation is large, we prove that



512 Q. Wang, L.-S. Young

strange attractors may result from mild disturbances applied at infrequent time intervals.
In this regard our results are in the direction of Ruelle and Takens [RT]; see also [NRT].
Our mechanism, which relies on shear, is different and perhaps more natural.

1. Precise Statements of Results

1.1. Horseshoes and strange attractors. In this subsection we isolate and define pre-
cisely a number of dynamical properties commonly associated with chaos. These are the
properties which will appear in our results stated in Sects. 1.2–1.4.

The following is a slight generalization of Smale’s horseshoe as introduced in [S]:

(i) Let f : M → M be a C1 embedding of a Riemannian manifold M into itself
with a compact invariant set �. We say f |� is uniformly hyperbolic if there is a
continuous splitting of the tangent bundle over � into DT -invariant subbundles
Eu ⊕Es such thatDf |Eu is expanding andDf |Es is contracting (i.e. ∃C > 0 and
λ > 1 s.t. for all v ∈ Eu, ‖Df n(v)‖ ≥ Cλn‖v‖ ∀n ≥ 0 etc.).

(ii) Let�n = {1, 2, · · · , n}Z, and let σ : �n → �n be the shift operator. Then (�n, σ )
is called the full shift on n symbols.

An embedding f : M → M is said to have a horseshoe if

(H) for some N, n ∈ Z
+, f N has a uniformly hyperbolic invariant set � ⊂ M such

that f N |� is topologically conjugate to (�n, σ ).

Horseshoes are robust in the sense that they persist under perturbations of f . Having
a horseshoe is a notion of topological chaos. It implies in particular that f has positive
topological entropy. But since horseshoes usually have Lebesgue measure zero, it is
entirely possible for a map to have a horseshoe and at the same time to have the orbit of
Lebesgue-almost every point tend to a stable equilibrium.

Next we describe a dynamical picture which is chaotic not only from the topological
but also from the probabilistic point of view; it represents a stronger form of chaos. Let
f be an embedding such that f (Ū) ⊂ U for some open set U . In this paper, we refer
to � := ∩n≥0f

n(Ū) as an attractor and U as its basin. Our dynamical results include
a number of properties frequently associated with “strange attractors”. (We regard the
term “strange attractor”, which embodies a wide range of ideas, as descriptive rather
than technically defined.) We give precise definitions of the relevant properties below,
and label them as (SA1)–(SA4). Later on, to remind the reader what (SA1)–(SA4) stands
for, we will refer to an attractor f |� having these properties as “a strange attractor with
(SA1)–(SA4)”.

First, we recall the definition of SRB measures. An invariant Borel probability mea-
sure ν for f is called an SRB measure if f has a positive Lyapunov exponent ν-almost
everywhere and the conditional measures of ν on unstable manifolds are equivalent to
the Riemannian volume on these leaves. See [Y] for more information.

The following are properties we associate with the idea of strange attractors:

(SA1) Positive Lyapunov exponents. For Lebesgue-a.e. x ∈ U , the orbit of x has a
positive Lyapunov exponent, i.e.

lim
n→∞

1

n
log ‖Df n(x)‖ > 0.

(This property is important enough that we state it separately; it, in fact, follows
from (SA2).)
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(SA2) Existence of SRB measures and basin property.
(a) f admits at least one and at most finitely many ergodic SRB measures all of

which have no zero Lyapunov exponents; we denote them by ν1, · · · , νr ;
(b) for Lebesgue-a.e. x ∈ U , ∃j = j (x) such that for every continuous function

ϕ : U → R,

1

n

n−1∑

i=0

ϕ(f ix) →
∫
ϕdνj .

(SA3) Statistical properties of dynamical observations.
(a) For every ergodic SRB measure ν and every Hölder continuous function

ϕ : � → R, the sequence {ϕ ◦ f i}i=0,1,··· obeys a Central Limit Theorem,
i.e. if

∫
ϕdν = 0, then 1√

n

∑n−1
0 ϕ ◦ f i converges in distribution to the nor-

mal distribution, and the variance is strictly positive unlessϕ◦f = ψ◦f−ψ
for some ψ .

(b) Suppose that for someN ≥ 1, f N has an SRB measure ν that is mixing. Then
given a Hölder exponent η, ∃τ = τ(η) < 1 such that for all ϕ,ψ : � → R

Hölder with exponent η, ∃K = K(ϕ,ψ) such that ∀n ≥ 1,
∣∣∣∣
∫
(ϕ ◦ f nN)ψdν −

∫
ϕdν

∫
ψdν

∣∣∣∣ ≤ K(ϕ,ψ)τn.

We remark that all ergodic SRB measures with no zero Lyapunov exponents
are mixing up to a finite factor.

The first part of (SA2) can sometimes be strengthened to

(SA4) Uniqueness of SRB measure and ergodic properties.
(a) f admits a unique (and hence ergodic) SRB measure ν;
(b) (f, ν) is mixing or, equivalently, isomorphic to a Bernoulli shift.

1.2. Chaotic behavior in periodically kicked limit cycles. A periodic orbit γ of a flow
is called a limit cycle if it is attractive, a hyperbolic limit cycle if the eigenvalues of its
section maps have moduli < 1. It is well known that hyperbolic limit cycles are robust,
so that given a flow ϕt with such a cycle and a time T , if κ is a small perturbation, then
under the iteration of ϕT ◦ κ , all points continue to be attracted to a simple closed curve.
Theorem 1 describes some possible scenarios if larger perturbations are permitted.

Theorem 1 (Creation of strange attractors from limit cycles). Let ϕt be a C4 flow
on an n-dimensional Riemannian manifold M . Assume that ϕt has a hyperbolic limit
cycle γ . For n = 2, assume also that the normal bundle to γ is orientable. Let U be
a neighborhood of γ , and let Emb3(U,M) be the space of C3 embeddings of U into
M . Then there is an open set E ⊂ Emb3(U,M) such that the following hold for every
κ ∈ E:

(i) ϕT ◦ κ has a horseshoe (i.e. Property (H)) for all large T ;
(ii) ϕT ◦ κ has a strange attractor with (SA1)–(SA4) for a positive measure set of T .

Remark. The ideas embodied in Theorem 1 can be expressed in many different ways.
The presence of a parameter is important, for as we will see in Sect. 2, our conclusion
will invariably be that maps corresponding to a positive measure set of parameters have
strange attractors. In Theorem 1, we have chosen – for convenience – this parameter
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to be T , the time interval between consecutive kicks. One can, for example, fix T and
use instead one or more parameter families of kick maps with suitable properties. We
leave these variants of our results to the reader, our intent here being only to illustrate
the general idea.

1.3. Periodically forced Hopf bifurcations in 2D. The following are the general equa-
tions for a Hopf bifurcation in 2D, written in normal form in complex coordinates:

ż = λµz+ aµz
2z̄+ bµz

3z̄2 + · · · , (1)

where µ ∈ R is a parameter, aµ, bµ ∈ C are constants, and λµ = µ + (ω + µγµ)i,
γµ, ω ∈ R, ω �= 0. That is to say, at the bifurcation parameter µ = 0, the linearized
equation at the bifurcation point z = 0 is ż = iωz, and that λµ crossses the imaginary
axis from left to right as µ increases past zero.

For our purposes, it is convenient to write these equations in polar coordinates:

ṙ = (µ− αµr
2)r + r5gµ(r, θ) ,

(2)
θ̇ = ω + γµµ+ βµr

2 + r4hµ(r, θ) .

Here ω, αµ, βµ, γµ ∈ R are constants, and gµ and hµ are functions which we will
assume to be of class C4; all depend smoothly on µ. (ω and γ are as in Eq. (1), while
a = −α + iβ.) In addition to assuming ω �= 0, we consider in this paper the case
α > 0, i.e. the case of a generic supercritical Hopf bifurcation. From the main terms
of Eq. (3), one sees that as µ increases from 0, an attracting invariant circle of radius

≈
√
µ
α

appears.
For references on Hopf bifurcations, see e.g. [H, GH, MM].
From here on we omit the subscript µ in the constants in our equations except where

the dependence on µ is at issue.
To the system described by Eq. (3), we give a kick which leaves 0 fixed and which is

radial in space and periodic in time, resulting in

ṙ = (µ− αr2)r + r5g(r, θ) + r�(θ)

∞∑

n=0

δ(t − nT ) ,

(3)
θ̇ = ω + γµ+ βr2 + r4h(r, θ) .

Here δ(·) is the usual δ-function, � : S1 → R is a C3 function, and T is the period
of the kick. Equation (3) is to be interpreted as follows: Since the kicks are radial, they
do not affect the θ -coordinate. At times t = nT , n = 0, 1, 2, · · · , the r-coordinate
changes abruptly from r−(nT ) to r+(nT ), where r+(nT ) := limε→0 rε(ε) and rε(t) is
the solution of ṙε = 1

ε
rε�(θ) with rε(0) = r−(nT ), that is to say,

r+(nT ) = r−(nT ) e�(θ(nT )).
During the time interval (nT , (n+1)T ), the system evolves according to (2) with initial
position (r+(nT ), θ(nT )) and final position (r−((n+ 1)T ), θ((n+ 1)T )). For each µ,
let Fµ,T : R

2 → R
2 denote the time-T -map of the system defined by (3).

Theorem 2. Assume β0
α0

�= 0, and let�0 : S1 → R be aC3 function with nondegenerate
critical points. We consider forcing functions � of the form � = A�0, A ∈ (0,∞).
In (1) and (2) below, we assert that if |β0

α0
|A is sufficiently large, then there is a set of

parameters (µ, T ) for which Fµ,T has chaotic behavior.
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(1) (Existence of horseshoes). There exists K0 = K0(�0) such that if |β0
α0

|A > K0,

then for all µ in some interval (0, µ0), there exist T0(µ) = O( 1
µ
) and an open

set �0(µ) ⊂ (T0,∞), �0(µ) roughly 2π
ω

-periodic, such that for all T ∈ �0(µ),

Fµ,T has a horseshoe, i.e. Property (H). If |β0
α0

|A is sufficiently large, then�0(µ) =
(T0,∞).

(2) (Existence of strange attractors). There exists K1 = K1(�0) such that if |β0
α0

|A >
K1, then the following hold for all µ in some interval (0, µ1): There exist T1(µ) =
O( 1

µ
) and a positive Lebesgue measure set �1(µ) ⊂ (T1,∞), �1(µ) roughly 2π

ω
-

periodic, such that for all T ∈ �1(µ), Fµ,T has a strange attractor with (SA1)–
(SA3). If |β0

α0
|A is sufficiently large, then Fµ,T has property (SA4) as well.

In general, the larger the twist factor |β0
α0

|, the weaker the forcing required. If |β0
α0

| >>
1, then very mild disturbances (with e.g. �(θ) = ε sin θ ) at periodic time intervals can
give rise to strange attractors. Also, T1 is usually >> T0.

Remark. Our purpose here is to bring to light the phenomenon of chaos appearing in
periodically-kicked Hopf bifurcations, and to call the reader’s attention to a relevant
set of mathematical tools. No attempt has been made to formulate the most general
results. In Theorems 1 and 2, for example, kicks that are not radial can be considered.
To gain more insight into what kind of kicks are suitable, see the intuitive explanation
in the introduction. For alternate formulations regarding parameters, see the Remark
following Theorem 1.

1.4. Hopf bifurcations in higher dimensions. The following is a direct generalization of
our results in 2D: Consider as before a 1-parameter family of equations on R

n having
a stationary solution at 0. Suppose that for µ < 0, the eigenvalues at 0 all have strictly
negative real parts, and that at µ = 0, a pair of complex conjugate eigenvalues crosses
the imaginary axis. We decompose the tangent space at 0 into R

n = V c⊕V s , where V c

is the 2-dimensional subspace corresponding to the leading pair of eigenvalues and V s

is the invariant subspace corresponding to the rest. The existence of a center manifold
Wc tangent to V c is well known. We assume that the bifurcation is supercritical, and that
the unforced equation restricted to Wc is in normal form. (See Sect. 4.5 for the precise
meaning of this last condition.)

To this bifurcation, we add a forcing that is radial. Let Sn−1 = {u ∈ R
n : ‖u‖ = 1},

�̄0 : Sn−1 → R, and ū = u
‖u‖ . We consider a forcing of the formA�̄0(ū)u

∑∞
n=0 δ(t −

nT ).

Theorem 3. Let α and β be as in Eq. (3) for the unforced equation restricted toWc, and
assume �̄0|(Sn−1∩V c) is C3 with nondegenerate critical points. Then results analogous
to those in Theorems 2 hold.

2. Sufficient Conditions for Strange Attractors (and Horseshoes)

In this section we recall some results on the existence of strange attractors of certain
types. The framework here is considerably more general than that in Sect. 1; it is unre-
lated to Hopf bifurcations or limit cycles. We will focus primarily on conditions that
guarantee (SA1)–(SA4). Weaker conditions that guarantee the presence of horseshoes
are discussed in Sect. 2.3.
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2.1. Conditions for (SA1)–(SA4). We recall in this subsection some earlier results which
will be used in this paper. [WY1], which contains a 2D version of the results below, is
the backbone of the strange attractor results in all of our theorems. A couple of useful
modifications of the conditions in [WY1] are pointed out in [WY2]. The n-dimensional
version of [WY1] is proved in [WY3]. This version is used in the proofs of Theorems 1
and 3.

We consider a family of maps Ta,b : M = S1 ×D → M , where D is the closed unit
disk in R

n−1, a ∈ [a0, a1] ⊂ R and b ∈ B0, where B0 is any subset of R \ {0} with an
accumulation point at 0.1 Points in M are denoted by (x, y) with x ∈ S1 and y ∈ D.

Very roughly, the parameters a and b can be thought of as having the following mean-
ings: a moves points along S1 × {0}, which, in most places, is a direction of instability,
while 1

|b| can be interpreted as a measure of dissipation. In particular, Ta,0 has infinite
dissipation; it sends all of M to a one-dimensional object (see (C1) below).

(C0) Regularity conditions
(i) For each b ∈ B0, the function (x, y, a) �→ Ta,b(x, y) is C3;

(ii) each Ta,b is an embedding of M into itself;
(iii) there exists K > 0 independent of (a, b) such that for all (a, b),

| detDTa,b(z)|
| detDTa,b(z′)| ≤ K ∀z, z′ ∈ S1 ×D.

(C1) Existence of singular limit. There exist Ta,0 : M → S1 × {0}, a ∈ [a0, a1],
such that as b → 0, the maps (x, y, a) �→ Ta,b(x, y) converge in the C3 norm to
(x, y, a) �→ Ta,0(x, y).
Identifying S1 × {0} with S1, we refer to Ta,0 as well as its restriction to S1 × {0},
i.e. the family of 1D maps fa : S1 → S1 defined by fa(x) = Ta,0(x, 0), as the
singular limit of Ta,b. The rest of our conditions are imposed on the singular limit
alone.
The next condition in [WY1] or [WY3] is the existence of a∗ ∈ [a0, a1] such that
f = fa∗ satisfies the so-called Misiurewicz condition. In practice, we have found
that (C2) below is more directly checkable, albeit a little more cumbersome to
state. That (C2) implies the condition in [WY1] and [WY3] is proved in [WY2],
Appendix A.

(C2) Existence of a sufficiently expanding map from which to perturb. There exists
a∗ ∈ [a0, a1] such that f = fa∗ has the following properties: There are numbers
c1 > 0, N1 ∈ Z

+, and a neighborhood I of the set C := {f ′ = 0} such that
(i) f is expanding on S1 \ I in the following sense:

(a) if x, f x, · · · , f n−1x �∈ I, n ≥ N1, then |(f n)′x| ≥ ec1n;
(b) if x, f x, · · · , f n−1x �∈ I and f nx ∈ I , any n, then |(f n)′x| ≥ ec1n;

(ii) f nx �∈ I ∀x ∈ C and n > 0;
(iii) in I , the derivative is controlled as follows:

(a) |f ′′| is bounded away from 0;
(b) by following the critical orbit, every x ∈ I \C is guaranteed a recovery

time n(x) ≥ 1 with the property that f jx �∈ I for 0 < j < n(x) and
|(f n(x))′x| ≥ ec1n(x).

1 The formulation here (with b �= 0) together with (C1) is equivalent to that in [WY1] and [WY3].
We have elected to state (C1) as a separate condition because in applications, the definition of Ta,b for
b �= 0 usually comes for free while the existence of the singular limit Ta,0 has to be proved.



Strange Attractors and Hopf Bifurcations 517

Next we introduce the notion of smooth continuations. Let Ca denote the critical
set of fa . For x = x(a∗) ∈ Ca∗ , the continuation x(a) of x to a near a∗ is the
unique critical point of fa near x. If p is a hyperbolic periodic point of fa∗ , then
p(a) is the unique periodic point of fa near p having the same period. It is a fact
that in general, if p is a point whose fa∗ -orbit is bounded away from Ca∗ , then
for a sufficiently near a∗, there is a unique point p(a) with the same symbolic
itinerary under fa .

(C3) Parameter transversality. For each x ∈ Ca∗ , let p = f (x), and let x(a) and
p(a) denote the continuations of x and p respectively. Then

d

da
fa(x(a)) �= d

da
p(a) at a = a∗.

(C4) Nondegeneracy at “turns”.

∂

∂y
Ta∗,0(x, 0) �= 0 ∀x ∈ Ca∗ .

(C5) Conditions for mixing.
(i) ec1 > 2 where c1 is in (C2).

(ii) Let J1, . . . , Jr be the intervals of monotonicity of fa∗ , and let P = (pi,j )

be the matrix defined by

pi,j =
{

1 if f (Ji) ⊃ Jj ,

0 otherwise.

Then there exists N2 > 0 such that PN2 > 0.

Theorem A ([WY1], [WY3]). Suppose {Ta,b} satisfies conditions (C0)–(C4). Then for
all sufficiently small b ∈ B0, there is a positive measure set of a for which Ta,b has
properties (SA1), (SA2) and (SA3).

Theorem B ([WY1, WY3] and appendix of [WY2]). In the sense of Theorem A,

(C0)− (C5) �⇒ (SA1)− (SA4).

2.2. Model singular limit maps. In this subsection, we consider an (abstractly defined)
class of 1D maps which satisfy Conditions (C2), (C3) and (C5) in Sect. 2.1. The maps
in this class will be shown later on to arise as singular limits in the situations of interest.

Proposition 2.1. Let � : S1 → R be a C3 function with nondegenerate critical points.
Then there exist L1 and δ depending on� such that if L ≥ L1 and � : S1 → R is a C3

function with ‖�‖C2 ≤ δ and ‖�‖C3 ≤ 1, then the family

fa(θ) = θ + a + L(�(θ)+�(θ)), a ∈ [0, 1],

satisfies (C2) and (C3) in Sect. 2.1. (C5) holds if L1 is sufficiently large.

This is a slightly more general setting than that treated in Sects. 5.2 and 5.3 of [WY2],
but the proofs are identical.
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2.3. Conditions for horseshoes. It is a general fact that the existence of an SRB measure
with nonzero Lyapunov exponents implies the presence of horseshoes. This follows from

Theorem 2 ([K]). Let f : M → M be a C1+α diffeomorphism of a compact Riemann-
ian manifold, and let µ be an invariant probability measure with (i) nozero Lyapunov
exponents and (ii) hµ(f ) > 0. Then f has a horseshoe.

In general, horseshoes appear considerably before strange attractors. We give a suf-
ficient condition in the spirit of Sect. 2.1. The following applies to one value of a at a
time, so let a = a0 = a1 in the notation of Sect. 2.1.

Lemma 2.1. Assume (C0)(i),(ii) and (C1) with C3 replaced by C1, and also (C2)(i)(a).
Let I be as in (C2). If there is a point in

⋂
n≥0 f

−n(S1 \ I ) which is not eventually
periodic, then Ta,b has a horseshoe for all small b.

Proof. Relaxing c1 to c1
2 , (C2)(i)(a) continues to hold (for the same N1) if I in (C2)

is replaced by a slightly smaller neighborhood Ĩ of the critical set. This implies there
exists ε > 0 such that for all x with x, f x, . . . , f nx ∈ S1 \ I , there is a small interval J
containing x such that J, f (J ), . . . .f n(J ) ⊂ S1 \ Ĩ and f n(J ) = [f nx − ε, f nx + ε].
Let N ≥ N1 be such that all intervals having the same N -itinerary have lengths < ε.
Consider {x : f ix ∈ S1 \ Ĩ for 0 ≤ i ≤ N}, and let J1, . . . , Jr be the components of this
set corresponding to distinct itineraries. Define a transition matrix A on {1, 2, . . . , r}
by letting aij = 1 if and only if f NJi ⊃ Jj , and let �+ = �+

N,A = {x ∈ S1 : ∀j ≥
0, ∃i(j) s.t. f Njx ∈ Ji(j) and ai(j)i(j+1) = 1}. We claim that

⋂

n≥0

f−n(S1 \ I ) ⊂ �+ ⊂
⋂

n≥0

f−n(S1 \ Ĩ ).

The first containment above is a consequence of our choice of ε and N : if x is such that
x, f x, . . . , f Nx ∈ (S1\I ), x ∈ Ji, f Nx ∈ Jj , thenf NJi ⊃ [f Nx−ε, f Nx+ε] ⊃ Jj .
Our assumption on ∩f−n(S1 \ I ) ensures that f N |�+ is a nontrivial shift of finite type.
From this it follows from a standard argument that for some k, n, f Nk|�+ has an invari-
ant set topologically conjugate to (�+

n , σ ), the one-sided full shift on n symbols. The
second containment in the displayed expression is obvious; it ensures that f N |�+ is
expanding. The existence of a horseshoe now follows immediately from invariant cones
arguments. ��

3. Periodically-Kicked Limit Cycles

This section contains geometric ideas leading to the proof of Theorem 1.

3.1. Existence of singular limits. The setting is as follows. Let ϕt be a flow on a Rie-
mannian manifold M with a periodic orbit γ . We assume γ is a hyperbolic limit cycle,
i.e. if � is a codimension one disk transversal to γ at x, and g : � → � is the return
map, then all the eigenvalues of Dg(x) have modulus < 1. We consider a periodically
kicked system represented by the iteration of ϕT ◦ κ , where κ : M → M is a map and
T is a long period of relaxation. We will prove in this subsection that under very mild
conditions, singular limits in the sense of Sect. 2.1 exist for ϕT ◦ κ as T → ∞.
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First we introduce the relevant geometric objects. Let V = {x ∈ M : ϕt (x) → γ as
t → ∞}. For each x ∈ γ , let Wss(x) denote the strong stable manifold through x, i.e.

Wss(x) = {y ∈ M : d(ϕt (x), ϕt (y)) → 0 as t → ∞}.
Then V is foliated by Wss-leaves each one of which is an immersed codimension one
submanifold meeting γ in exactly one point. Let π : V → γ be the projection map
obtained by sliding along Wss-leaves, i.e. for y ∈ V , π(y) is the unique point x ∈ γ

such that y ∈ Wss(x).
Next we introduce a family of maps in the spirit of Sect. 2.1. Let p be the period of

γ , and let bn, n = 1, 2, . . . , be a (any) monotonically decreasing sequence of numbers
accumulating at 0. For n = 1, 2, . . . and a ∈ [0, p), we define

Ta,bn = ϕnp+a ◦ κ,
where κ is the “kick”.

Proposition 3.1. Let ϕ : M × R → M be any C4 flow with a hyperbolic limit cycle γ ,
and let U be a tubular neighborhood of γ . We assume κ : Ū → M is a C3 embedding
with κ(Ū) ⊂ V . Then for all large n, Ta,bn(U) ⊂ U and the following are true:

(i) {Ta,bn} is of the form specified in the paragraph before (C0) in Sect. 2.1;
(ii) conditions (C0) and (C1) in Sect. 2.1 are satisfied; and

(iii) the singular limit Ta,0 is of the form

Ta,0 = ϕa ◦ π ◦ κ .
Proof. First, we argue that pointwise for each y ∈ U , Ta,bn(y) → Ta,0(y) as n → ∞:
For y ∈ U , we have z := κ(y) ∈ V , and by definition of Wss ,

d(ϕt (z), ϕt (π(z))) → 0 as t → ∞.

That ϕnp+a(π(z))) = ϕa(π(z)) follows immediately from the fact the period of the
cycle is p. Since κ(Ū) is a compact subset of V , the convergence above is, in fact,
exponentially fast and uniform for all y ∈ Ū . To prove (C0)(iii), let J be such that
| det(Dϕp(z))| = e−J for all z ∈ γ . The exponential convergence above implies that
| det(DTa,bn)(z)| differs from e−Jn by at most a constant for all z ∈ Ū . The verification
of (C0) is complete.

(C1) requires that we prove a stronger form of convergence than that in the last
paragraph. Observe that (a, z) �→ Ta,bn(z) can be written in the composite form

(a, z) �→ (a, κ(z)) �→ (a, (ϕp)
n(κ(z))) �→ ϕa((ϕp)

n(κ(z))) .

Since the first map is C3 and the last is C4, to prove the asserted C3-convergence, it
suffices to show that (ϕp)n converges inC3 to π as n → ∞. Recall from standard stable
manifolds theory that for a C4 flow, each Wss(x)-leaf is locally a C4 embedded disk
[HPS]. This together with the fact that all the leaves of Wss are ϕt -images of Wss(x)

for some x implies that as a foliation, Wss is also C4. The required convergence is thus
tantamount to the following calculus lemma:

Lemma 3.1. Let I = (0, 1), D = {y ∈ R
n−1 : |y| < 1}, and consider H : I × D →

I ×D of the form
H(x, y) = (x, h(x, y)),

where
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(i) h(x, 0) = 0 for all x ∈ I ,
(ii) for all i, |∂yi h| ≤ λ for some λ < 1, and

(iii) ‖H‖C4 < K for some K > 0.

Then as n → ∞, Hn converges in the C3-norm to H0, where H0(x, y) = (x, 0).

Proof of Lemma 3.1. For notational simplicity, we give a proof only in two dimensions.
Let us write Hn(x, y) = (x, hn(x, y)). Since |hn(x, y)| ≤ λn, convergence in C0 is
assured as explained earlier. Computing recursively, we obtain

∂1hn(·) =
n−1∑

k=0

∂2h(H
n−1·) · · · ∂2h(H

k+1·)∂1h(H
k·),

∂2hn(·) = ∂2h(H
n−1·)∂2h(H

n−2·) · · · ∂2h(·) .
It follows immediately that |∂2hn| ≤ λn. Using also |∂1h(x, y)| ≤ K|y|, we see that
each term in ∂1hn(·) is bounded above by λn−k−1 ·Kλk , so that |∂1hn| ≤ Knλn−1.

Moving on to second derivative estimates, since ∂ijhn is computed by differentiating
each factor in each term of ∂jhn, we observe that ∂ijhn has ≤ 2n2 terms, and each
term has ≤ (n + 1) factors. Moreover, if ∂2h(H

k·) is differentiated, then our previ-
ous estimate of |∂2h(H

k·)| ≤ λ is replaced by one of the following: |∂12h(H
k·)| ≤ K ,

|∂22h(H
k·)∂1hk(·)| ≤ K2kλk−1 (K in the case k = 0), or |∂22h(H

k·)∂2hk(·)| ≤ Kλk . If
∂1h(H

k·) is differentiated, then our previous estimate of |∂1h(H
k·)| ≤ Kλk is replaced

by |∂11h(H
k·)| ≤ Kλk or estimates identical to those above for |∂12h(H

k·)|. We con-
clude that |∂ijhn| ≤ 2n2 · const · n2λn−2.

A similar argument gives |∂ijkhn| ≤ const nαλn−3 for some α. (The boundedness of
the fourth derivative of H is used to control ∂111h.) ��

3.2. Creation of strange attractors from limit cycles. We now use the ideas developed
in Sect. 3.1 to prove Theorem 1, which says that when suitably kicked, any hyperbolic
limit cycle will exhibit chaotic behavior. See Sect. 1.2 for the precise statement.

Proof of Theorem 1. First we produce an open set E ⊂ Emb3(U,M) consisting of
suitable kicks. This step is not necessary, but some readers may find it helpful to first
“straighten out” the Wss-foliation. More precisely, we may assume, via a C4 change
of coordinates, that γ = {y = 0} and the Wss-manifolds are codimension one planes
perpendicular to γ . That this can be done is explained in Sect. 3.1.

One way to choose E is to begin by selecting a C3 map� : S1 → R with nondegen-
erate critical points. Proposition 2.1 gives an open set of L and � such that fa(θ) :=
θ + a +L(�(θ)+�(θ)) satisfies Conditions (C2), (C3) and (C5). These choices of L
and � give rise to a collection of f0, which constitutes an open set Ê0 of C3 maps from
S1 to itself. From Ê0, we construct an open set E0 ⊂ Emb3(γ,M) consisting of κ0 such
that π ◦ κ0 = f0. Given f0, the existence of κ0 is trivial in dimensions > 2: simply lift
the image of κ(γ ) in the “vertical” direction to avoid self-intersections. An argument
(which we leave as an exercise for the reader) is needed for 2D: use (i) f0 has degree
one and (ii) our limit cycle γ has an orientable normal bundle. From E0 we construct
E ⊂ Emb3(U,M), where κ ∈ E is obtained by extending κ0 ∈ E0 to U in such a way
that ∂yi (π ◦ κ) �= 0 for some i at points whose θ -coordinates are near the critical points
of π ◦ κ0. This completes our construction of E .
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For each κ ∈ E , we now introduce, as in Sect. 3.1, a 2-parameter family of maps
from a tubular neighborhood of γ to itself, namely Ta,bn = ϕnp+a ◦ κ , where p is the
period of the cycle and a ∈ [0, p). Proposition 3.1 says that this family is of the type
considered in Sect. 2.1, and that (C0) and (C1) are valid provided κ(U) remains in the
basin of attraction of γ . By design, the singular limit is what we started with in the last
paragraph, so (C2), (C3), (C4) and, if we so desire, (C5), are met. Thus [WY3] (the
relevant portion of which is summarized in Theorems A and B in Sect. 2.1) applies.2

[WY3] tells us that for each sufficiently large n, there is a positive Lebesgue measure
set �n ⊂ [0, p) such that for all a ∈ �n, Ta,bn has a strange attractor with the prop-
erties in (SA1)–(SA4). Thus the dynamical description in Theorem 1(2) holds for all
T ∈ {np + a : a ∈ �n, n ≥ n0 for some n0 ∈ Z

+}. (There is no relation between“T ”,
the period of the kicks, and Ta,bn ; we regret the unfortunate notation.)

As for Theorem 1(1), if L in the singular limit is sufficiently large, then Lemma 2.1
says that horseshoes are present for all a provided that bn is sufficiently small, i.e. they
are present for all T ≥ some T0. ��

3.3. More on production of chaos: Example and Discussion. Section 3.2 contains an
abstract existence result. We now turn to a more practical question: given an arbitrary
limit cycle (the way it is embedded in the ambient manifold), what kinds of kicks will
result in chaotic behavior?

Example 3.1. A linear model. Consider

θ̇ = 1 + σ · y , (4)

ẏ = −�y + A�(θ)v(θ)
∞∑

n=0

δ(t − nT ),

where θ ∈ S1, y ∈ R
n−1, σ is a fixed vector in R

n−1, and� is an (n−1)×(n−1)matrix
all of whose eigenvalues have strictly positive real parts. For simplicity, we assume the
kicks are perpendicular to the limit cycle {y = 0}, with the amplitude of the kicks at
(θ, y) given by A�0(θ) and the direction by v ∈ Sn−2. The Wss-manifolds here are a
family of parallel codimension one planes. A simple computation gives

fa(θ) = θ + a + A�(θ)σ t�−1v(θ) .

Observe that the effect of the kick is magnified by σ t�−1v, an amount determined by
the competition between shear and rate of contraction in the direction of v. In particular,
for n = 2, where σ, λ = � ∈ R and v = +1 or −1, we have the following:

Proposition 3.2. (cf. [WY2], Theorems 2 and 3). In dimension 2, given a C3 function
�0 with nondegenerate critical points, there exists K1 = K1(�0) such that if

σ

λ
A := shear

contraction
· amplitude of kick > K1,

then the time-T -map of (4) has a horseshoe, i.e. Property (H), for all large T and a
strange attractor with (SA1)–(SA4) for a positive measure set of T .

This follows from a direct application of [WY1] (see Sect. 2.1). For (C2), (C3) and
(C5), see Proposition 2.1. (C4) is satisfied since ∂yTa,0 = σ

λ
�= 0.

2 Orientability of the normal bundle to γ is assumed in the setup in [WY1] and [WY3], although it is
not essential in the proofs.
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(θ, 0)

Wss
− leaves

λ
σ

0

0

(θ + −ΑΦ  (θ), 0)

(θ, ΑΦ  (θ))

Fig. 2. Geometric view of singular limit for Eq. (4) in dimension 2

Remark on general situation. Consider now a completely arbitrary limit cycle in any
dimension. For the linearized equation, theWss-plane through a point can be computed
from the cumulative action as the point moves once around the cycle. When a kick-force
is added, its effect is, as in the example above, determined by the angles theWss-planes
make with the periodic orbit γ and the directions of the kick in relation to the Wss-
planes. An explicit solution may not be available, but the geometric principles behind it
are clear.

The picture rendered by the linearized equation, however, may not be an accurate
reflection of that for the nonlinear flow: The smaller the angles between the limit cycle
and theWss-leaves, the more prominent is the role played by curvature (or second deriv-
atives). If these angles are small, and if to obtain the singular limit we have to slide a
nontrivial distance along (curved)Wss-leaves (see Sect. 3.1), then the information given
by the linearized equation is even less meaningful. Finally, for our scheme to work, care
must be taken to ensure that the kick does not take us outside of the basin of attraction.

From the discussion above, we see that in general, the answer to when chaotic behav-
ior arises depends on fairly detailed information along the limit cycle. In the case of
Hopf bifurcations, this information is contained in the first few derivatives at a single
point. This together with the frequent occurrence of Hopf bifucations makes it a natural
setting for the type of results formulated here.

4. Proof of Results on Hopf Bifurcations

For the 2D result, the situation can be summarized as follows:

1. The dynamical properties in our theorems are derived from the “abstract theory” in
[WY1] and [WY3]. In these two papers, we proved that these and other properties
are enjoyed by maps satisfying a certain set of conditions. The aim of this section is
to prove that these conditions are met by the system defined by Eq. (3).

2. The conditions in [WY1] and [WY3], which for the convenience of the reader we have
reproduced in Sect. 2.1, are primarily of two types: the first concerns the existence of
a singular limit; the second concerns the properties of the maps in the singular limit.
These two aspects are discussed separately in the next two paragraphs.

3. The existence of a singular limit has been proved in a much more general setting than
is needed here; see Proposition 3.1.

4. Instead of verifying the remaining conditions directly for Eq. (3), we have identified
a class of model 1D maps and proved that if a singular limit belongs in this class,
then it has many of the desired properties. See Proposition 2.1.
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5. In this section we will prove that the singular limits of Eq. (3) belong in the class
in Propositin 2.1. The delicateness of the situation stems from the fact that we are
dealing with a degenerate problem. The degeneracy here is twofold: as µ → 0, the
limit cycle degenerates to a point, at the same time that it loses its hyperbolicity.

The remainder of this section is organized as follows: The 2D case is treated in Sects.
4.1–4.4. We will focus on proving the presence of strange attractors. The proof for horse-
shoes follows from a (considerably simpler) version of our arguments here together with
Lemma 2.1. The reduction of the n-dimensional result to 2D is carried out in Sect. 4.5.

4.1. Standardizing coordinates. We begin by blowing up the neighborhoods of 0. The
purpose of this coordinate change is to standardize the size and position of the limit

cycle for all µ. Let y = r
√
α
µ

− 1. Then Eq. (3) in Sect. 1.3 becomes

θ̇ = ω̂ + β

α
µ(y + 2)y + µ2 ĥ(θ, y) ,

(5)

ẏ = −µ(y2 + 3y + 2)y + µ2ĝ(θ, y)+ (y + 1)�(θ)
∞∑

n=0

δ(t − nT ),

where y ∈ (−1,∞), θ ∈ R/(2πZ), and

ω̂ = ω +
(
γ + β

α

)
µ ,

ĝ(θ, y) = 1

α2 (y + 1)5g

(
θ,

√
µ

α
(y + 1)

)
, (6)

ĥ(θ, y) = 1

α2 (y + 1)4h

(
θ,

√
µ

α
(y + 1)

)
.

Observe that the presence of the ω̂-term in Eq. (5) prevents us from getting rid of the
degeneracy at µ = 0 by a simple rescaling of time.

4.2. Singular limit in the absence of higher order terms. In this subsection, we set
ĝ = ĥ = 0, and consider the flow ϕt generated by the unforced equation

θ̇ = ω̂ + σ(y)y ,

ẏ = −λ(y)y, (7)

where

σ(y) = β

α
µ(y + 2) , λ(y) = µ(y2 + 3y + 2) .

Let µ be fixed for the rest of this subsection. As explained in Sect. 3.1, the singular limit
maps are related to limn→∞ ϕtn , where tn = 2nπ

ω̂
.

Proposition 4.1. For all small µ > 0 and −1 < y < ∞,

lim
n→∞ϕtn(θ, y) =

(
θ + β

α
ln(y + 1), 0

)
.
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Let (θ(t), y(t)) denote the solution of (7) with initial conditions (θ0, y0). Proposition
4.1 follows immediately from Lemma 4.1 by letting n → ∞.

Lemma 4.1.

θ(t) = θ0 + ω̂t + β

α
ln

(
y0 + 1

y(t)+ 1

)
.

Proof. The reader can verify that this is the solution by direct differentiation. We arrived
at the formula above by formally substituting ds = − 1

λ(y)
dy into the integral in

θ(t) = θ0 + ω̂t +
∫ t0

0
σ(y(s))ds,

obtaining

∫ t

0
σ(y(s))yds = −

∫ y(t)

y0

σ(y)

λ(y)
dy = −β

α

∫ y(t)

y0

1

1 + y
dy . ��

Let π be the projection map in Sect. 3.1. We observe:

(i) π(θ, y), which is the limit in Proposition 4.1, is defined for all θ ∈ S1 and y > −1.
(ii) From the formula for π , we deduce the following geometric information about the

Wss-foliation: its leaves are invariant under translations in the θ -direction; their
slopes have the same sign (either positive or negative) everywhere; near y = 0,
the slopes are ≈ −β

α
; they tend to +∞ or −∞ as y → ∞ and to 0 as y → −1.

(iii) As µ → 0+, π(θ, y) → (θ + β0
α0

ln(y + 1), 0), where α0 and β0 are the values
of α and β at µ = 0. This is a strong indication that in spite of the weakening
hyperbolicity, the Wss-structure remains robust up to µ = 0.

4.3. Effects of higher order terms. We continue to consider the unforced equation. Let
ϕt and ϕ̃t denote respectively the flows with and without higher order terms. When it is
useful to identify the parameter µ, we will write ϕµ,t and ϕ̃µ,t . In this subsection and
the next, if X is a quantity or object pertaining to ϕt , then the corresponding quantity or
object for ϕ̃t is denoted by X̃.

For each small µ > 0, let γµ denote the limit cycle for ϕt , and call its period pµ.
To compare ϕt and ϕ̃t , we make a time change for ϕ̃t to synchronize their periods, i.e.
to set p̃µ = pµ. From the magnitudes of the higher order terms, we see that this time
change, which will be assumed for the rest of the proof, is of order 1 ± O(µ2). We also
introduce ιµ : γ̃µ → γµ by letting

ιµ(ϕ̃t (0, 0)) = ϕt (0, y0),

where (0, y0) is the point in γµ whose θ -coordinate is 0. Next we fix a compact domain
of the infinite cylinder S1 × R in which all the action will take place: let −1 < A0 <

emin� − 1 and A1 > emax� − 1, and let A = S1 × [A0, A1]. The main result of this
subsection is

Proposition 4.2. For µ > 0 sufficiently small, πµ is defined on A, and

‖(ι−1
µ ◦ πµ)− π̃µ‖C3 → 0 as µ → 0 .
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Even though the higher order terms in Eq. (5) tend to zero as µ → 0, this alone
is insufficient justification for Proposition 4.2 because as µ → 0, the unforced part of
Eq. (5) tends to the totally degenerate, completely integrable system

θ̇ = ω, ẏ = 0 .

Let �µ = ϕµ,[ 1
µpµ

]pµ
and �̃µ = ϕ̃µ,[ 1

µpµ
]pµ

, where [x] is the greatest integer ≤ x.

Lemma 4.2. There exists M such that for all small µ > 0, the following hold on A:

(a) ‖�µ‖C4 , ‖�̃µ‖C4 ≤ M;
(b) ‖�µ − �̃µ‖C3 = O(µ).
Proof of Proposition 4.2 assuming Lemma 4.2. The task here is to deduce singular limit
information, which depends on an infinite number of iterates, from the finite-time infor-
mation provided by Lemma 4.2.

Observe that both�µ and �̃µ leave points on their limit cycles fixed, and have uniform
“hyperbolic” estimates, i.e. the smaller eigenvalues are uniformly bounded away from
1 and the angles between the stable and neutral directions are uniformly bounded away
from 0.

Let qµ = (0, y0) ∈ γµ. From Lemma 4.2(a) and the uniformness of hyperbolicity, we
see that there exists ε̂ > 0 such that for all smallµ > 0, the local stable manifolds of�µ
through qµ and �̃µ through (0, 0) are well defined as graphs of τµ, τ̃µ : [−ε̂, ε̂] → S1.
We claim that

‖τµ − τ̃µ‖C3 → 0 as µ → 0.

This is true because from Lemma 4.2(a), the set N := {�µ, �̃µ;µ ∈ (0, µ0)} is bounded
in theC4-norm, and so it is relatively compact with respect to theC3-topology. The map-
ping G → τG is continuous with respect to the C3 topologies for both G and τG (see
[HPS]). Hence it is uniformly continuous on N . The convergence to 0 of ‖τµ − τ̃µ‖C3

now follows from Lemma 4.2(b).
As noted in the last paragraph of Sect. 4.2, the Wss-leaves of �̃µ run from top to

bottom of the annular region A. Since each of these (long) Wss-leaves is contained in
the (ϕ̃t )−1-image of graph(τ̃µ) for some t ≤ T1, it follows that the leaves of the Wss-
foliation for ϕt behave similarly and that the two foliations are asymptotically close in
C3 as µ → 0 (meaning there exist diffeomorphisms which converge to the identity
in C3 carrying the leaves of one to those of the other). By an argument similar to that in
the last paragraph, we see also that as µ → 0, γµ converges in C3 to γ̃µ = {y = 0}, and
ιµ converges in C3 to the identity map. The assertion in Proposition 4.2 follows. ��

The proof of Lemma 4.2 uses the following elementary fact:

Lemma 4.3. Let � ∈ R
N be a convex open domain, and let W and Z be C1 vector

fields on �. Suppose that for t ∈ [0, t0], ξ(t), η(t) ∈ � are solutions of

dξ

dt
= W(ξ) and

dη

dt
= Z(η)

with ξ(0) = η(0). Then for all t ∈ [0, t0],

‖ξ(t)− η(t)‖ ≤ C1

C2
(eC2t − 1),

where C1 := supx∈� ‖W(x)−Z(x)‖ and C2 := ∑N
i=1 supx∈� ‖DZi(x)‖, Zi being the

component functions of Z.
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Proof. Writing

dξ

dt
− dη

dt
= (W(ξ)− Z(ξ)) + (Z(ξ)− Z(η)),

we see that ‖ξ(t) − η(t)‖ ≤ x(t) where x(t) satisfies the growth condition dx
dt

=
C1 + C2x, x(0) = 0. The solution of this equation is x(t) = C1

C2
(eC2t − 1). ��

Proof of Lemma 4.2. We rescale time (for both equations) by letting t ′ = µt but con-
tinue to write t instead of t ′, i.e. ϕt is now the flow generated by

θ̇ = ω̂

µ
+ β

α
(2 + y)y + µ ĥ(θ, y),

(8)

ẏ = −(2 + 3y + y2)y + µ ĝ(θ, y).

The analogous time change is made for the equation with no higher order terms.
First we verify that for t ∈ [0, 1) and µ ∈ (0, µ0), the first four derivatives of ϕt |A

are uniformly bounded. For ϕt itself, we have |y(t)− y(0)| = O(µ). Let X denote the
vector field in Eq. (8). Since

Dϕt(·) = I +
∫ t

0
DX(ϕs(·))Dϕs(·)ds

and DX and ϕt are uniformly bounded (the only unbounded term, ω̂
µ

, does not appear),
it follows that Dϕt is uniformly bounded. Bootstrapping our way up, we see that the
same result holds for Di(ϕt ), i = 2, 3, 4. A similar argument works for ϕ̃t , proving (a).

Next we wish to apply Lemma 4.3 with dξ
dt

= W(ξ) representing the zeroth through

third variational equations of ϕt ,
dη
dt

= Z(η) the corresponding equations for ϕ̃t , and

t0 = 1. We claim that C1 = O(µ). This is because all the terms involving ĝ or ĥ have a
copy of µ in front, and the first time change (made at the beginning of Sect. 4.3) creates
a difference of O(µ) in the lower degree terms: before the second time change, this
difference is O(µ2); it gets multiplied by 1

µ
in the second time change. The uniform

boundedness of ‖DZi‖ is justified above. The conclusion of Lemma 4.3 is precisely the
claim in Lemma 4.2(b). ��

4.4. Completing the proof. We now include back the forcing term in the equation. In
the coordinates of Sect. 4.1, we see from Sect. 1.3 that the effect of the kick at time 0 is
given by

κ(θ, y) := (θ, y+) = (θ, (y + 1)e�(θ) − 1) ,

so that starting from |y| small, (ϕt ◦ κ)(θ, y) ∈ A for all t > 0. We continue to use ϕµ,t
and ϕ̃µ,t to denote the time-t-maps of the flows with and without higher order terms,
synchronizing for each µ the periods of the limit cycles as before.

Proof of Theorem 2. Let Ta,0,µ = limn→∞(ϕµ,npµ+a ◦ κ), and define T̃a,0,µ, fa,µ and

f̃a,µ accordingly. As explained in the beginning of this section, it suffices to verify
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for given � that Ta,0,µ and fa,µ satisfy Conditions (C2)–(C5) on a parameter interval
(0, µ0). Combining the formula for κ with Proposition 4.1, we have that for a ∈ [0, pµ),

T̃a,0,µ(θ, y) =
(
θ + a + β

α
(ln(1 + y)+�(θ)), 0

)
, (9)

so that

f̃a,µ(θ) = θ + a + β

α
�(θ) = θ + a + β

α
A�0(θ) . (10)

Identifying γ̃µ = S1 × {0} with S1 and using ιµ : γ̃µ → γµ as conjugating map, we
obtain fa,µ : S1 → S1 as

fa,µ(θ) = (ι−1
µ ◦ πµ) ◦ (κ ◦ ιµ)(θ)+ a .

By Proposition 4.2 and the fact that κ ◦ ιµ → κ , we have that ‖fa,µ − f̃a,µ‖C3 → 0 as
µ → 0. Thus if |β

α
|A is sufficiently large, then fa satisfies the conditions in Proposition

2.1. Also, ∂yTa,0 ≈ ∂yT̃a,0 = β
α

. Part (1) of Theorem 2 now follows from Lemma 2.1;
Part (2) follows from Theorems A and B (see Sect. 2.1). ��

4.5. Hopf bifurcations in n-dimensions. The hypotheses and notation are as in Sect.
1.4. First we make precise what is meant by “the unforced equation restricted to Wc

is in normal form”. Let h : V c → V s be such that Wc = graph(h), and let � : R
n =

V c ⊕ V s → V c be the projection map. Let ϕt be the given flow on R
n, and let ϕ∗

t be
the flow on V c defined by ϕ∗

t (z) = � ◦ ϕt (z, h(z)). Our assumption is that the equation
for ϕ∗

t has the form of Eq. (3). The twist condition in Theorem 4 is computed from this
equation.

Proof of Theorem 3. We carry out in detail the strange attractor part of the proof, leaving
the horseshoe part (which is considerably simpler) to the reader as before.

I. Structure of unperturbed flow near 0. There exist µ0 > 0 and neighborhoods R of 0
in R

n such that the following hold for all µ ∈ [0, µ0):
(i) ϕt (R) ⊂ R for all t > 0.
(ii) Defined everywhere on R is a codimension twoDϕt -invariant strong stable sub-

bundle roughly parallel to V s . We denote this subbundle by Es,2 and the invariant
manifolds tangent to it by Ws,2. By the Invariant Section Theorem, Ws,2 as a foliation
is C3 assuming the flow is C4 (see [HPS]). Let π2 : R → Wc be projection by sliding
along Ws,2-leaves.

(iii)ϕt has a limit cycle γ contained inWc. Through each point in γ passes a codimen-
sion one strong stable manifold which we denote byWs,1. (These are theWss-manifolds
in previous sections.) Let π1 be the projection onto γ by sliding alongWs,1-leaves. Note
that wherever Ws,1 is defined, its leaves contain those of Ws,2.

II. Reduction of problem. For each µ, let Ta,bn be defined as in Sect. 3.1. We are guaran-
teed for general reasons the existence of a well defined singular limit Ta,0. The problem
is reduced to proving (C2)–(C5) for this singular limit.

Since Ta,0 alone matters, and (C4) requires only that we guarantee a nonzero deriv-
ative for Ta,0 in some direction normal to γ , while (C2), (C3) and (C5) pertain to
the restriction of Ta,0 to γ , it may be sufficient to restrict the domain of Ta,0 to Wc,
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that is to say, the problem is reduced to one in 2D, involving the flow ϕt |Wc and kick
κ̂ := π2 ◦ κ|Wc .

Now the hypotheses of Theorem 3 are on the kick-system (ϕ∗
t , κ|V c ) (note that κ

leaves V c fixed). To make use of this information, we project the kick-system (ϕt |Wc, κ̂)

to V c, resulting in (ϕ∗
t , κ

∗), where the kick map κ∗ : V c → V c is given by κ∗(z) =
� ◦ π2 ◦ κ(z, h(z)).

The problem is thus reduced to comparing the two systems (ϕ∗
t , κ|V c ) and (ϕ∗

t , κ
∗),

the objective being to deduce singular limit information about the second from that of
the first.

III. Magnified coordinates. The proof of Theorem 2 is carried out in blown-up coor-
dinates. Accordingly, we consider an O(√µ)-neighborhood of 0 in R

n and magnify
coordinates (in all directions) by a factor ∼ 1√

µ
, obtaining for ϕ∗

t a limit cycle of radius

≈ O(1). Since magnification decreases higher derivatives, Wc and the Ws,2-leaves are
increasingly “straight” as µ → 0. More precisely, in coordinates magnified by ∼ 1√

µ
,

‖h‖C3 and ‖� ◦ π2 −�‖C3 tend to 0 as µ → 0.
As for κ , since this map is scale invariant, meaning κ(rz) = rκ(z), r > 0, we have,

in magnified coordinates, ‖κ|A‖C3 = O(1), where A = { 3
4 < |z| < 5

4 }. (It is necessary
to bound the domain away from 0 because κ is not differentiable at 0.)

IV. Comparison of (ϕ∗
t , κ|V c ) and (ϕ∗

t , κ
∗) in magnified coordinates. We write κ∗ −κ|V c

as

� ◦ π2 ◦ κ(z, h(z))− κ(z, 0)

= [(� ◦ π2 −�) ◦ κ(z, h(z))] + [� ◦ (κ(z, h(z))− κ(z, 0))] . (11)

From the fact that ‖h‖C3 = o(1), ‖κ‖C3 = O(1) in the relevant region, and ‖� ◦ π2 −
�‖C3 = o(1), we see that ‖κ∗ −κ|V c‖C3 = O(1) and ‖κ∗ −κ|V c‖C2 = o(1) asµ → 0.
It follows that in these coordinates, the singular limit maps Ta,0 corresponding to the
two kick-systems are also C3-bounded and C2-near each other.

By our assumptions on (ϕ∗
t , κ|V c ) and from our proof in the 2D case, we know that

for this system fa is in the model class considered in Sect. 2.2. By Proposition 2.1, this
model class is robust under the type of perturbations above, and maps in this class satisfy
(C2), (C3) and (C5). Similarly, information for (C4) is passed from one system to the
other.

The desired result for the n-dimensional system is proved. ��
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