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Abstract: This paper shows that the Camassa-Holm (CH) spectral problem yields two
different integrable hierarchies of nonlinear evolution equations (NLEEs), one is of
negative order CH hierachy while the other one is of positive order CH hierarchy. The
two CH hierarchies possess the zero curvature representations through solving a key
matrix equation. We see that the well-known CH equation is included in the negative
order CH hierarchy while the Dym type equation is included in the positive order CH
hierarchy. Furthermore, under two constraint conditions between the potentials and the
eigenfunctions, the CH spectral problem is cast in:

1. a new Neumann-like N -dimensional system when it is restricted into a symplectic
submanifold of R

2N which is proven to be integrable by using the Dirac-Poisson
bracket and the r-matrix process; and

2. a new Bargmann-like N -dimensional system when it is considered in the whole
R

2N which is proven to be integrable by using the standard Poisson bracket and the
r-matrix process.

In the paper, we present two 4 × 4 instead of N ×N r-matrix structures. One is for the
Neumann-like system (not the peaked CH system) related to the negative order CH hier-
archy, while the other one is for the Bargmann-like system (not the peaked CH system,
either) related to the positive order hierarchy. The whole CH hierarchy (an integro-dif-
ferential hierarchy, both positive and negative order) is shown to have the parametric
solutions which obey the corresponding constraint relation. In particular, the CH equa-
tion, constrained to a symplectic submanifold in R

2N , and the Dym type equation have
the parametric solutions. Moreover, we see that the kind of parametric solution of the CH
equation is not gauge equivalent to the peakons. Solving the parametric representation
of the solution on the symplectic submanifold gives a class of a new algebro-geometric
solution of the CH equation.
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1. Introduction

The shallow water equation derived by Camassa-Holm (CH) in 1993 [7] is a new integra-
ble system. This equation possesses the bi-Hamiltonian structure, Lax pair and peakon
solutions, and retains higher order terms of derivatives in a small amplitude expansion of
incompressible Euler’s equations for unidirectional motion of waves at the free surface
under the influence of gravity. In 1995 Calogero [8] extended the class of mechanical
system of this type. Later, Ragnisco and Bruschi [20] and Suris [22], showed that the CH
equation yields the dynamics of the peakons in terms of an N -dimensional completely
integrable Hamiltonian system. Such a dynamical system has Lax pair and an N × N

r-matrix structure [20].
Recently, the algebro-geometric solution on the CH equation and the CH hierar-

chy attracted much more attention. This kind of solution for most classical integrable
PDEs can be obtained by using the inverse spectral transform theory, see Dubrovin 1981
[12], Ablowitz and Segur 1981 [1], Novikov et al. 1984 [17], Newell 1985 [16]. This
is done usually by adopting the spectral technique associated with the corresponding
PDE. Alber and Fedorov [4, 5] studied the stationary and the time-dependent quasi-peri-
odic solution for the CH equation and Dym type equation using the methods of trace
formula [3] and Abel mapping and functional analysis on the Riemann surfaces. Later,
Alber, Camassa, Fedorov, Holm and Marsden [2] considered the trace formula under the
nonstandard Abel-Jacobi equations and, by introducing new parameters, presented the
so-called weak finite-gap piecewise-smooth solutions of the integrable CH equation and
Dym type equations. Very recently, Gesztesy and Holden [14] discussed the algebro-
geometric solutions for the CH hierarchy using the polynomial recursion formalism and
the trace formula, and connected a Riccati equation to the Lax pair of the CH equation.

The present paper provides another approach to algebro-geometric solutions of the
CH equation which is constrained to some symplectic submanifold. Our approach differs
from the ones pursued in Refs. [2–5, 14] and we will outline the differences next. Based
on the nonlinearization technique [9], we constrain the CH hierarchy to some symplectic
submanifold and use the constraint between the potentials and the eigenfunctions first
to give the parametric solution and then to give the algebro-geometric solution of the
CH equation on the symplectic submanifold.

The main results of this paper are twofold.

• First, we extend the CH equation to the negative order CH hierarchy, which is a hier-
archy of integrable integro-differential equations, through constructing the inverse
recursion operator. This hierarchy is proven to have Lax pair through solving a key
matrix equation. The CH spectral problem associated with this hierarchy is con-
strained to a symplectic submanifold and naturally gives a constraint between the
spectral function and the potential. Under this constraint, the CH spectral problem
(linear problem) is nonlinearized as a newN -dimensional canonical Hamiltonian sys-
tem of Neumann type. This N -dimensional Neumann-like system is not the peaked
dynamical system of the CH equation because the peakons do not come from the
CH spectral problem. The Neumann-like CH system is shown integrable by using
the so-called Dirac-Poisson brackets on the symplectic submanifold in R

2N and r-
matrix process. Here we present a 4 × 4 r-matrix structure for the Neumann-like
system, which is available to get the algebro-geometric solution of the CH equation
on this symplectic submanifold. The negative order CH hierarchy is proven to have
the parametric solution through employing the Neumann-like constraint relation. This
parametric solution does not contain the peakons [7], and vice versa. Furthermore,
solving the parametric representation of solution on the symplectic submanifold gives
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an algebro-geometric solution for the CH equation. We point out that our algebro-
geometric solution (see Eq. (3.104) and Remarks 3 and 4) is different from the ones
in Refs. [2–5, 14], and simpler in form.

• Second, based on the negative case, we naturally give the positive order CH hierarchy
by considering the recursion operator. This hierarchy is shown integrable also by solv-
ing the same key matrix equation. The CH spectral problem, related to this positive
order CH hierarchy, yields a new integrableN -dimensional system of Bargmann type
(instead of Neumann type) by using the standard Poisson bracket and r-matrix proce-
dure in R

2N .A 4×4 r-matrix structure is also presented for the Bargmann-like system
(not peaked CH system, either), which is available to get the parametric solution of a
Dym type equation contained in the positive order CH hierarchy. This hierarchy also
possesses the parametric solution using the Bargmann constraint relation.

Roughly speaking, our method works in the following steps (also see [19]):

– Start from the spectral problem.
– Find some constraint condition between the potentials and the eigenfunctions. Here,

for the negative CH hierarchy, we restrict it to a symplectic manifold in R
2N , but for

the positive CH hierarchy, we will have the constraint condition in the whole R
2N .

– Prove the constrained SPECTRAL PROBLEM is finite-dimensional integrable. Usu-
ally we use a Lax matrix and r-matrix procedure.

– Verify the above constrained potential(s) is (are) a parametric solution of the hier-
archy.

– Solve the parametric representation of a solution in an explicit form, then give the
algebro-geometric solutions of the equations on the symplectic manifold. In this pro-
cess, we separate the variables of the Jacobi-Hamiltonian system [21], then construct
the actional variables and angle-coordinates on the symplectic submanifold, and the
residues at two infinity points for some composed Riemann-Theta functions give the
algebro-geometric solutions.

The paper is organized as follows. The next section gives a general structure of
the zero curvature representations of the all vector fields for a given isospectral prob-
lem. The key point is to construct a key matrix equation. In Sect. 3, we present the
negative order CH hierarchy based on the inverse recursion operator. The well-known
CH equation is included in the negative order hierarchy, and the CH spectral problem
yields a new Neumann-like system which is constrained to a symplectic manifold. This
system has canonical form and is integrable by using the Dirac-Poisson bracket and
the r-matrix process. Here we obtain a 4 × 4 r-matrix structure for the Neumann-like
CH system. Furthermore, the whole negative order CH hierarchy constrained on the
symplectic submanifold has a parametric solution. In particular, the CH equation has
a parametric solution on the submanifold. Finally we give an algebro-geometric solu-
tion of the CH equation on the submanifold. In Sect. 4, we deal with the positive order
integrable CH hierarchy and give a new Bargmann-like integrable system. By the use
of a similar process as in Sect. 3, the CH spectral problem is nonlinearized to be an
integrable system under a Bargmann constraint. This integrable Bargmann system also
has an r-matrix structure of 4 × 4. Moreover, the positive order CH hierarchy is also
shown to have the parametric solution which obeys the Bargmann constraint relation. In
particular, the Dym type equation in the positive order CH hierarchy has the parametric
solution.
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Let us now give some symbols and convention in this paper as follows:

f (k) =






∂k

∂xk
f = fkx, k = 0, 1, 2, . . . ,

∫

. . .

∫

︸ ︷︷ ︸
−k

f dx, k = −1,−2, . . . ,

ft = ∂f
∂t

, fkxt = ∂k+1f

∂t∂xk
(k = 0, 1, 2, . . .), ∂ = ∂

∂x
, ∂−1 is the inverse of ∂ , i.e. ∂∂−1 =

∂−1∂ = 1, ∂kf means the operator ∂kf acts on some function g, i.e.

∂kf · g = ∂k(fg) =






∂k

∂xk
(fg) = (fg)kx, k = 0, 1, 2 . . . ,

∫

. . .

∫

︸ ︷︷ ︸
−k

fgdx, k = −1,−2, . . . .

In the following the function m stands for potential, λ is assumed to be a spec-
tral parameter, and the domain of the spatial variable x is � which becomes equal to
(−∞, +∞) or (0, T ), while the domain of the time variable tk is the positive time axis
R

+ = {tk| tk ∈ R, tk ≥ 0, k = 0,±1,±2, . . .}. In the case � = (−∞, +∞), the
decaying condition at infinity and in the case � = (0, T ), the periodicity condition for
the potential function is imposed.
(R2N, dp ∧ dq) stands for the standard symplectic structure in Euclid space R

2N =
{ (p, q)| p = (p1, . . . , pN), q = (q1, . . . , qN)}, pj , qj (j = 1, . . . , N) are N pairs of
canonical coordinates, 〈·, ·〉 is the standard inner product in R

N ; in (R2N, dp∧ dq), the
Poisson bracket of two Hamiltonian functions F,H is defined by [6]

{F,H } =
N∑

j=1

(
∂F

∂qj

∂H

∂pj
− ∂F

∂pj

∂H

∂qj

)

=
〈
∂F

∂q
,
∂H

∂p

〉

−
〈
∂F

∂p
,
∂H

∂q

〉

. (1.1)

λ1, . . . , λN are assumed to be N distinct spectral parameters, � = diag(λ1, . . . , λN),
and I2×2 = diag(1, 1). Denote all infinitely times differentiable functions on real field
R and all integers by C∞(R) and by Z, respectively.

2. The Camassa-Holm (CH) Spectral Problem
and Zero Curvature Representation

Let us consider the Camassa-Holm (CH) spectral problem [7]:

ψxx = 1

4
ψ − 1

2
mλψ (2.1)

with the potential function m.
Equation (2.1) is apparently equivalent to

yx = Uy, U = U(m, λ) =
(

0 1
1
4 − 1

2mλ 0

)

, (2.2)
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where y = (y1, y2)
T = (ψ,ψx)

T . It is easy to see Eq. (2.2)’s spectral gradient

∇λ ≡ δλ

δm
= λy2

1 (2.3)

satisfies the following Lenard eigenvalue problem

K · ∇λ = λJ · ∇λ (2.4)

with the pair of Lenard’s operators

K = −∂3 + ∂, J = ∂m+m∂. (2.5)

They yield the recursion operator

L = J−1K = (∂m+m∂)−1(∂ − ∂3), (2.6)

which also has the product form L = 1
2m

− 1
2 ∂−1m− 1

2 (∂ − ∂3).
Apparently, the Gateaux derivative matrix U∗(ξ) of the spectral matrix U in the

direction ξ ∈ C∞(R) at point m is

U∗(ξ)

= d

dε

∣
∣
∣
∣
ε=0

U(m+ εξ) =
(

0 0
− 1

2λξ 0

)

(2.7)

which is obviously an injective homomorphism.
For any given C∞-function G, we construct the following matrix equation with

respect to V = V (G):

Vx − [U,V ] = U∗(K ·G− λJ ·G). (2.8)

Theorem 1. For the CH spectral problem (2.2) and an arbitrary C∞-function G, the
matrix equation (2.8) has the following solution:

V = V (G) = λ

( − 1
2Gx −G

1
2Gxx − 1

4G+ 1
2mλG

1
2Gx

)

. (2.9)

Proof. Directly substituting Eqs. (2.9), (2.5) and (2.7) into Eq. (2.8), we can complete
the proof of this theorem. ��
Theorem 2. Let G0 ∈ Ker J = {G ∈ C∞(R) | JG = 0} and G−1 ∈ Ker K = {G ∈
C∞(R) | KG = 0}. We define Lenard’s sequences as follows:

Gj =
{

Lj ·G0, j ≥ 0,
Lj+1 ·G−1, j < 0,

j ∈ Z (2.10)

Then,

1. all the vector fields Xk = J ·Gk, k ∈ Z satisfy the following commutator represen-
tation:

Vk,x − [U,Vk] = U∗(Xk), ∀k ∈ Z; (2.11)
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2. the following hierarchy of nonlinear evolution equations

mtk = Xk = J ·Gk, ∀k ∈ Z, (2.12)

possesses the zero curvature representation

Utk − Vk,x + [U,Vk] = 0, ∀k ∈ Z, (2.13)

where

Vk =
∑

Vjλ
k−j−1,

∑
=






∑k−1
j=0, k > 0,

0, k = 0,
−∑−1

j=k, k < 0,
(2.14)

and Vj = V (Gj ) is given by Eq. (2.9) with G = Gj .

Proof. 1. For k = 0, it is obvious. For k < 0, we have

Vk,x − [U,Vk] = −
−1∑

j=k

(
Vj,x − [U,Vj ]

)
λk−j−1

= −
−1∑

j=k
U∗

(
K ·Gj − λK ·Gj−1

)
λk−j−1

= U∗




−1∑

j=k
K ·Gj−1λ

k−j −K ·Gjλk−j−1





= U∗
(
K ·Gk−1 −K ·G−1λ

k
)

= U∗(K ·Gk−1)

= U∗(Xk).

For the case of k > 0, it is proved similarly.
2. Noticing Utk = U∗(mtk ), we obtain

Utk − Vk,x + [U,Vk] = U∗(mtk −Xk).

The injectiveness of U∗ implies item 2 holds. ��

3. Negative Order CH Hierarchy, Integrable Neumann-like System
and Algebro-Geometric Solution

3.1. Negative order CH hierarchy. Let us first give the negative order hierarchy of the
CH spectral problem (2.2) by considering the kernel element of Lenard’s operator K .
The kernel of operator K has the following three seed functions:

G1
−1 = 1, (3.1)

G2
−1 = ex, (3.2)

G3
−1 = e−x, (3.3)
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where all possible linear combinations form the whole kernel ofK . LetG−1 ∈ Ker K ,
then

G−1 =
3∑

l=1

alG
l
−1, (3.4)

where al = al(tn), l = 1, 2, 3, are three arbitrarily given C∞-functions with respect
to the time variables tn (n < 0, n ∈ Z), but independent of the spacial variable x.
Therefore, G−1 directly generates an isospectral (λtk = 0, k < 0, k ∈ Z) hierarchy of
nonlinear evolution equations for the CH spectral problem (2.2),

mtk = JLk+1 ·G−1, k < 0, k ∈ Z, (3.5)

which is called the negative order CH hierarchy because of k < 0. In Eq. (3.5), the
operator J is defined by Eq. (2.5) and L−1 is given by

L−1 = K−1J = ∂−1ex∂−1e−2x∂−1ex(∂m+m∂). (3.6)

Here,

K−1 = ∂−1ex∂−1e−2x∂−1ex. (3.7)

With setting m = u− uxx , we obtain another form of L−1:

L−1 = u+ ex∂−1e−2x∂−1ex
(
u∂ + 2ux + ∂−1m

)
∂. (3.8)

By Theorem 2, the negative CH hierarchy (3.5) has the zero curvature representation

Utk − Vk,x + [U,Vk] = 0, k < 0, k ∈ Z, (3.9)

Vk = −
−1∑

j=k
Vjλ

k−j−1, (3.10)

i.e.





yx =
(

0 1
1
4 − 1

2mλ 0

)

y,

ytk = −∑−1
j=k

( − 1
2Gj,x −Gj

1
2Gj,xx − 1

4Gj + 1
2mλGj

1
2Gj,x

)

λk−j y,

k = −1,−2, . . . ,

(3.11)

where Gj = Lj+1 ·G−1, j < 0, j ∈ Z. Thus, all nonlinear equations in the negative
CH hierarchy (3.5) are integrable.

Let us now give some special reductions of Eq. (3.5).

• In the case of a1 = −1, a2 = a3 = 0, i.e. G−1 = −G1
−1 = −1, because G−2 =

L−1 ·G−1 = −u, the second equation of Eq. (3.5) reads

mt−2 = −(∂m+m∂) · u, (3.12)
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i.e. (here noticing m = u− uxx)

ut−2 − uxx,t−2 + 3uux = 2uxuxx + uuxxx, (3.13)

which is exactly the Camassa-Holm equation [7]. According to Eq. (3.11), the CH equa-
tion (3.13) possesses the following zero curvature representation:






yx =
(

0 1
1
4 − 1

2mλ 0

)

y,

yt−2 =
( − 1

2ux −u− λ−1

1
2muλ+ 1

4u− 1
4λ

−1 1
2ux

)

y,

(3.14)

which is equivalent to
{
ψxx = 1

4ψ − 1
2mλψ,

ψt−2 = 1
2uxψ − uψx − λ−1ψx.

(3.15)

Equation (3.15) coincides with the one in Ref. [7].

• In the cases of a1 = 0, a2 = 1, a3 = 0 and a1 = 0, a2 = 0, a3 = 1, i.e. G−1 =
ex, e−x , we can write them in a uniform expression:

G−1 = eεx, ε = ±1.

The first equation of Eq. (3.5) reads

mt−1 = (mx + 2εm)eεx, (3.16)

which is a linear PDE.
Because G−2 = L−1 · G−1 = (

u+ εu(−1)
)
eεx , the second equation of Eq. (3.5)

reads

mt−2 =
(
mx

(
u+ εu(−1)

)
+ 2m

(
ux + 2εu+ u(−1)

))
eεx, (3.17)

where m = u− uxx . This equation has the following zero curvature representation:





yx =
(

0 1
1
4 − 1

2mλ 0

)

y,

yt−2 = V−2y,

(3.18)

where

V−2 = −V (G−2)λ
−1 − V (G−1)λ

−2

= eεx




1
2

(
ux + 2εu+ u(−1)

)
+ ελ−1 u+ εu(−1))+ λ−1

3
2 εux+ 7

4u+ 3
4 εu

(−1)+ 1
2m

(
u+εu(−1)

)
λ+ 1

4λ
−1 − 1

2

(
ux+2εu+ u(−1)

)
+ ελ−1



.

Equation (3.18) can be changed to the following Lax form:
{
ψxx = 1

4ψ − 1
2mλψ,

ψt−2 = (
u+ εu(−1) + λ−1

)
eεxψx − 1

2

(
ux + 2εu+ u(−1) + λ−1

)
eεxψ.

(3.19)

Both of the two cases: ε = ±1 for Eq. (3.17) are integrable.
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3.2. r-matrix structure for the Neumann-like CH system. Consider the following matrix
(called “negative” Lax matrix)

L− (λ) =
(
A− (λ) B− (λ)
C− (λ) −A− (λ) ,

)

, (3.20)

where

A− (λ) = − 〈p, q〉 λ−1 +
N∑

j=1

pjqj

λ− λj
, (3.21)

B− (λ) = λ−2 + 〈q, q〉 λ−1 −
N∑

j=1

q2
j

λ− λj
, (3.22)

C− (λ) = 1

4
λ−2 − 〈p, p〉 λ−1 +

N∑

j=1

p2
j

λ− λj
. (3.23)

We calculate the determinant of L−(λ):

1

2
λ2 detL− (λ) = −1

4
λ2TrL2

− (λ) = −1

2
λ2

(
A2

− (λ)+ B− (λ) C− (λ)
)

=
1∑

j=−2

Hjλ
j +

N∑

j=1

E−
j

λ− λj
, (3.24)

where Tr stands for the trace of a matrix, and

H−2 = −1

8
,

H−1 = 1

2
〈p, p〉 − 1

8
〈q, q〉 , (3.25)

H0 = 〈p, q〉 〈�p, q〉 − 〈p, q〉2 ,

H1 = − 〈p, q〉
〈
�−1p, q

〉
+ 〈p, q〉2 ,

E−
j = 〈p, q〉 λjpjqj − 1

2

(〈q, q〉 λj + 1
)
p2
j

−1

2

(

〈p, p〉 λj − 1

4

)

q2
j + 1

2
λ2
j	

−
j , j = 1, 2, . . . , N, (3.26)

	−
j =

N∑

l �=j,l=1

(pjql − plqj )
2

λj − λl
.

Let

Fk =
N∑

j=1

λk+1
j E−

j , k = −1,−2, . . . , (3.27)
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then it reads

Fk = 1

2

〈
�k+1p, p

〉
− 1

8

〈
�k+1q, q

〉

+1

2

−2∑

j=k

(〈
�j+2q, q

〉 〈
�k−jp, p

〉
−

〈
�j+2p, q

〉 〈
�k−jp, q

〉)
, (3.28)

k = −1,−2,−3, . . . .

Obviously, F−1 = H−1.
Now, we consider the following symplectic submanifold in R

2N

M =
{

(q, p) ∈ R
2N

∣
∣
∣
∣ F ≡ 1

2
(〈�q, q〉 − 1) = 0, G ≡ 〈�q, p〉 = 0

}

(3.29)

and introduce the Dirac bracket on M

{f, g}D = {f, g} + 1
〈
�2q, q

〉 ({f, F }{G, g} − {f,G}{F, g}) (3.30)

which is easily proven to be bilinear, skew-symmetric and satisfy the Jacobi identity.
In particular, the Hamiltonian system (H−1)D: qx = {q,H−1}D, px = {p,H−1}D

on M reads

(H−1)D :






qx = p,

px = 1
4q − 1+4〈�p,p〉

4〈�2q,q〉 �q,
〈�q, p〉 = 0, 〈�q, q〉 = 1.

(3.31)

We call this a Neumann-like system on M. Let

m = 1 + 4 〈�p,p〉
2
〈
�2q, q

〉 , (3.32)

y1 = qj , y2 = p, λ = λj , j = 1, . . . , N. (3.33)

Then, the Neumann-like flow (H−1)D on M exactly becomes

yx = U(m, λ)y, y = (y1, y2)
T , (3.34)

which is nothing else but the CH spectral problem (2.2) with the potential function m.
Therefore, we can call the canonical Hamiltonian system (3.31) the Neumann-like CH
system on M.

A long but direct computation leads to the following key equalities:

{A−(λ), A−(µ)}D = {B−(λ), B−(µ)}D = 0,

{C−(λ), C−(µ)}D = 1 + 4 〈�p,p〉
〈
�2q, q

〉

(
λ

µ
A−(λ)− µ

λ
A−(µ)

)

+ 4λµ
〈
�2q, q

〉 (C−(λ)A−(µ)− C−(µ)A−(λ)) ,
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{A−(λ), B−(µ)}D = 2

µ− λ
(B−(µ)− B−(λ))+ 2

λ
B−(µ)+ 2

µ
B−(λ)

− 2λµ
〈
�2q, q

〉B−(λ)B−(µ),

{A−(λ), C−(µ)}D = 2

µ− λ
(C−(λ)− C−(µ))− 2

λ
C−(µ)− 2

µ
C−(λ)

+ 2λµ
〈
�2q, q

〉B−(λ)C−(µ)− (1 + 4 〈�p,p〉)λ
2
〈
�2q, q

〉
µ

B−(λ),

{B−(λ), C−(µ)}D = 4

µ− λ
(A−(µ)− A−(λ))+ 4

λ
A−(µ)+ 4

µ
A−(λ)

− 4λµ
〈
�2q, q

〉B−(λ)A−(µ).

Let L−
1 (λ) = L− (λ) ⊗ I2×2, L−

2 (µ) = I2×2 ⊗ L− (µ), where L− (λ) , L− (µ)
are given through Eq. (3.20). In the following, we search for a general 4 × 4 r-matrix
structure r−12 (λ, µ) such that the fundamental Dirac-Poisson bracket:

{
L− (λ) ⊗, L− (µ)

}

D
= [

r−12 (λ, µ) , L
−
1 (λ)

] − [
r−21 (µ, λ) , L

−
2 (µ)

]
(3.35)

holds, where the entries of the 4 × 4 matrix
{
L− (λ) ⊗, L− (µ)

}

D
are

{
L− (λ) ⊗, L− (µ)

}

Dkl,mn
= {

L− (λ)km , L− (µ)ln
}

D
, k, l,m, n = 1, 2,

and r−21 (λ, µ) = Pr−12 (λ, µ) P, with

P = 1

2



I2×2 +
3∑

j=1

σj ⊗ σj



 =






1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




 ,

where σ ′
j are the Pauli matrices.

Theorem 3.

r−12 (λ, µ) = 2λ

µ(µ− λ)
P + S− (3.36)

is an r-matrix structure satisfying Eq. (3.35), where

S− = λ (1 + 4 〈�p,p〉)
2µ

〈
�2q, q

〉

(
0 0
1 0

)

⊗
(

0 0
1 0

)

+ 2λµ
〈
�2q, q

〉

(
0 0
0 1

)

⊗
(−B−(λ) 0

2A−(µ) B−(λ)

)

=








0 0 0 0
0 0 0 0
0 0 − 2λµ

〈�2q,q〉B−(λ) 0
λ(1+4〈�p,p〉)

2µ〈�2q,q〉 0 4λµ
〈�2q,q〉A−(µ) 2λµ

〈�2q,q〉B−(λ)







.

Apparently, our r-matrix structure (3.36) is 4×4 and is different from the one in Ref.
[20].
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3.3. Integrability. Because there is an r-matrix structure satisfying Eq. (3.35),
{
L2

− (λ) ⊗, L2
− (µ)

}

D
= [

r̄−12 (λ, µ) , L
−
1 (λ)

] − [
r̄−21 (µ, λ) , L

−
2 (µ)

]
, (3.37)

where

r̄−ij (λ, µ) =
1∑

k=0

1∑

l=0

(
L−

1

)1−k
(λ)

(
L−

2

)1−l
(µ) r−ij (λ, µ)

(
L−

1

)k
(λ)

(
L−

2

)l
(µ) ,

ij = 12, 21.

Thus,
4
{

TrL2
− (λ) ,TrL2

− (µ)
}

D
= Tr

{
L2

− (λ) ⊗, L2
− (µ)

}

D
= 0. (3.38)

So, by Eq. (3.24) we immediately obtain the following theorem.

Theorem 4. The following equalities

{E−
i , E

−
j }D = 0, {Hl,E−

j }D = 0, {Fk,E−
j }D = 0, (3.39)

i, j = 1, 2, . . . , N, l = −2,−1, 0, 1, k = −1,−2, . . . ,

hold. Hence, the Hamiltonian systems (Hl)D and (Fk)D on M

(Hl)D : qx = {q,Hl}D, px = {p,Hl}D, l = −2,−1, 0, 1, (3.40)

(Fk)D : qtk = {q, Fk}D, ptk = {p, Fk}D, k = −1,−2, . . . , (3.41)

are completely integrable.

In particular, we obtain the following results.

Corollary 1. The Hamiltonian system (H−1)D defined by Eq. (3.31) is completely inte-
grable.

Corollary 2. All composition functions f (Hl, Fk), f ∈ C∞ (R), k = −1,−2, . . . ,
are completely integrable Hamiltonians on M.

3.4. Parametric solution of the negative order CH hierarchy restricted onto M. In the
following, we consider the relation between constraint and nonlinear equations in the
negative order CH hierarchy (3.5). Let us start from the following setting:

G1
−1 =

N∑

j=1

∇λj , (3.42)

whereG1
−1 = 1, and ∇λj = λjq

2
j is the functional gradient of the CH spectral problem

(2.2) corresponding to the spectral parameter λj (j = 1, . . . , N).
Apparently Eq. (3.42) reads

〈�q, q〉 = 1. (3.43)

After we do one time derivative with respect to x, we get

〈�p, q〉 = 0, p = qx. (3.44)

This equality together with Eq. (3.43) forms the symplectic submanifold M we need.
Apparently, derivating Eq. (3.44) leads to the constraint relation (3.32).
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Remark 1. Because M defined by Eq. (3.29) is not the usual tangent bundle, i.e. M �=
T SN−1 =

{
(q, p) ∈ R

2N
∣
∣ F̃ ≡ 〈q, q〉 − 1 = 0, G̃ ≡ 〈q, p〉 = 0

}
and Eq. (3.32) is not

the usual Neumann constraint on T SN−1, Eq. (3.31) is therefore a new kind of Neumann
system. In Subsect. 3.3 we have proven its integrability.

Since the Hamiltonian flows (H−1)D and (Fk)D on M are completely integrable and
their Poisson brackets {H−1, Fk}D = 0 (k = −1,−2, . . .), their phase flows gxH−1

, g
tk
Fk

commute [6]. Thus, we can define their compatible solution as follows:

(
q(x, tk)

p(x, tk)

)

= gxH−1
g
tk
Fk

(
q(x0, t0k )

p(x0, t0k )

)

, k = −1,−2, . . . , (3.45)

where x0, t0k are the initial values of phase flows gxH−1
, g

tk
Fk

.

Theorem 5. Let q(x, tk), p(x, tk) be a solution of the compatible Hamiltonian systems
(H−1)D and (Fk)D on M. Then

m = 1 + 4 〈�p(x, tk), p(x, tk)〉
2
〈
�2q(x, tk), q(x, tk)

〉 (3.46)

satisfies the negative order CH hierarchy

mtk = JLk+1 · 1, k = −1,−2, . . . , (3.47)

where the operators J and L−1 are given by Eqs. (2.5) and (3.6), respectively.

Proof. On one hand, the recursion operator L acts on Eq. (3.42) and results in the
following:

JLk+1 ·G1
−1 = J ·

〈
�k+2q, q

〉

= mx

〈
�k+2q, q

〉
+ 4m

〈
�k+2q, p

〉

= 2(1 + 4 〈�p,p〉)
〈
�2q, q

〉2

(〈
�2q, q

〉 〈
�k+2q, p

〉
−

〈
�2q, p

〉 〈
�k+2q, q

〉)
.

(3.48)

In this procedure, Eqs. (2.4) and (3.31) are used.
On the other hand, we directly make the derivative of Eq. (3.46) with respect to tk .

Then we obtain

mtk = 4
〈
�2q, q

〉 〈
�2p, ptk

〉 − (1 + 4 〈�p,p〉) 〈�2q, qtk
〉

〈
�2q, q

〉2 , (3.49)

where q = q(x, tk), p = p(x, tk). But,

qtk = {q, Fk}D, ptk = {p, Fk}D, k = −1,−2, . . . , (3.50)
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where Fk are defined by Eq. (3.28), i.e.

qtk =
−1∑

j=k

(〈
�j+2q, q

〉
�k−jp −

〈
�j+2q, p

〉
�k−j q

)
, (3.51)

ptk = 1 + 4 〈�p,p〉
4
〈
�2q, q

〉
(〈
�2q, q

〉
�k+1q −

〈
�k+2q, q

〉
�q

)

+
−1∑

j=k

(〈
�j+2q, p

〉
�k−jp −

〈
�j+2p, p

〉
�k−j q

)
. (3.52)

Therefore after substituting them into Eq. (3.49) and calculating it, we have

mtk = 2(1 + 4 〈�p,p〉)
〈
�2q, q

〉2

(〈
�2q, q

〉 〈
�k+2q, p

〉
−

〈
�2q, p

〉 〈
�k+2q, q

〉)

which completes the proof. ��

Lemma 1. Let q, p satisfy the integrable Hamiltonian system (H−1)D . Then on the
symplectic submanifold M, we have

1.

〈q, q〉 − 4 〈p, p〉 = 0. (3.53)

2.

u = 〈q(x, tk), q(x, tk)〉 , k,= −1,−2, . . . , (3.54)

satisfies the equation m = u − uxx , where m is given by Eq. (3.46), and q(x, tk),
p(x, tk) is a solution of the compatible integrable Hamiltonian systems (H−1)D and
(Fk)D on M.

Proof.

(〈q, q〉 − 4 〈p, p〉)x = 2 〈q, p〉 − 8 〈p, px〉
= 0

completes the proof of the first equality.
As for the second one, we have

u− uxx = 〈q, q〉 − 2 〈p, p〉 − 2

〈

q,
1

4
q − 1

2
m�q

〉

= 1

2
〈q, q〉 − 2 〈p, p〉 +m

= m.

In particular, with k = −2, we obtain the following corollary. ��
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Corollary 3. Let q(x, t−2), p(x, t−2) be a solution of the compatible integrable
Hamiltonian systems (H−1)D and (F−2)D on M. Then

m = m(x, t−2) = −1 + 4 〈�p(x, t−2), p(x, t−2)〉
2
〈
�2q(x, t−2), q(x, t−2)

〉 , (3.55)

u = u(x, t−2) = 〈q(x, t−2), q(x, t−2)〉 , (3.56)

satisfy the CH equation (3.12). Therefore, u = 〈q(x, t−2), q(x, t−2)〉, is a solution of
the CH equation (3.13) on M. Here H−1 and F−2 are given by

H−1 = 1

2
〈p, p〉 − 1

8
〈q, q〉 ,

F−2 = 1

2

〈
�−1p, p

〉
− 1

8

〈
�−1q, q

〉
+ 1

2

(
〈q, q〉 〈p, p〉 − 〈q, p〉2

)
.

Proof. Via some direct calculations, we obtain

mt−2 = −2(1 + 4 〈�p,p〉)
〈
�2q, q

〉2

(〈
�2q, q

〉
〈q, p〉 −

〈
�2q, p

〉
〈q, q〉

)
.

And Lemma 1 gives

−J · u = −JL−1 ·G1
−1

= J · < q, q >

= −2(1 + 4 〈�p,p〉)
〈
�2q, q

〉2

(〈
�2q, q

〉
〈q, p〉 −

〈
�2q, p

〉
〈q, q〉

)

= mt−2 ,

which completes the proof. ��
By Theorem 5, the constraint relation given by Eq. (3.32) is actually a solution of the

negative order CH hierarchy (3.5). Thus, we also call the system (H−1)D (i.e. Eq. (3.31))
a negative order restricted CH flow (Neumann-like) of the spectral problem (2.2)
on the symplectic submanifold M. All Hamiltonian systems (Fk)D, k < 0, k ∈ Z

are therefore called the negative order integrable restricted flows (Neumann-type)
on M.

Remark 2. Of course, we can also consider the integrable Bargmann-like CH system
associated with the positive order CH hierarchy (4.1). Please see Sect. 4. A systematic
approach to generate new integrable negative order hierarchies can be seen in Ref. [18].

3.5. Comparing parametric solution with peakons. Let us now compare the Neumann-
like CH system (H−1)D with the peakons dynamical system.

Let Pj ,Qj (j = 1, 2, . . . , N) be peakons dynamical variables of the CH equation
(3.13), then with [7]

u(x, t) =
N∑

j=1

Pj (t)e
−|x−Qj (t)|, (3.57)

m(x, t) =
N∑

j=1

Pj (t)δ(x −Qj(t)), (3.58)
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where t = t−2 and δ(x) is the δ-function, the CH equation (3.13) yields a canonical
peaked Hamiltonian system






Q̇j (t) = ∂H
∂Pj

=
N∑

k=1
Pk(t)e

−|Qk(t)−Qj (t)|,

Ṗj (t) = − ∂H
∂Qj

= −Pj
N∑

k=1
Pk(t)sgn

(
Qk(t)−Qj(t)

)
e−|Qk(t)−Qj (t)|,

(3.59)

with

H(t) = 1

2

N∑

i,j=1

Pi(t)Pj (t)e
−|Qi(t)−Qj (t)|. (3.60)

In Eq. (3.59), “sgn” means the signal function. The same meaning is used in the
following.

A natural question is: what is the relationship between the peaked Hamiltonian system
(3.59) and the Neumann-like systems (3.31) and (F−2)? Apparently, the peaked system
(3.59) does not include the systems (3.31) and (F−2) because the system (3.59) is only
concerned about the time part.

By Corollary 3, we know that

u = u(x, t) = 〈q(x, t), q(x, t)〉 =
N∑

j=1

q2
j (x, t), (3.61)

is a solution of the CH equation (3.13) on M, where we set t−2 = t , and qj (x, t), pj =
∂qj (x,t)

∂x
satisfies the two integrable commuted systems (H−1)D, (F−2)D on the sym-

plectic submanifold M.
Assume Pj (t), Qj (t) are the solutions of the peaked system (3.59); we make the

following transformation (when Pj (t) < 0, we use
√
Pj (t) = i

√−Pj (t)):

qj (x, t) =
√

Pj (t)e
− 1

2 |x−Qj (t)|, (3.62)

which implies

pj (x, t) = d

dx
qj (x, t) = −1

2
sgn(x −Qj(t))qj . (3.63)

Hence, we obtain

d

dx
pj (x, t) = d2

dx2 qj (x, t) = −δ(x −Qj(t))qj + 1

4
qj . (3.64)

However, on M we have the constraints< �q, q >= 1, < �q, p >= 0 which implies

N∑

j=1

λjq
2
j δ(x −Qj) = 1

2
, ∀x ∈ R. (3.65)

This equality is obviously not true! So, the CH peakon system (3.59) does not coincide
with the nonlinearized CH spectral problem (3.31).
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Let us now furthermore compute the derivative with respect to t . Inserting the peakon
system (3.59), we get

q̇j (x, t) = d

dt
qj (x, t)

= 1

2
qj

N∑

k=1

Pk(t)
[
sgn(x −Qj(t))− sgn

(
Qk(t)−Qj(t)

)]
e−|Qk(t)−Qj (t)|.

(3.66)

On the other hand, from the Neumann-like system (F−2)D we have

q̇j (x, t) = {qj , F−2}D
= λ−1

j pj − 〈q, p〉 qj

= 1

2
qj

(
N∑

k=1

Pk(t)sgn(x−Qk(t))e
−|x−Qk(t)| − λ−1

j sgn(x−Qj(t))

)

. (3.67)

Apparently, (3.66) = (3.67) iff when x = Qj(x, t), i.e. for other x, they do not equal.
Thus, the peakon system (3.59) is not the Neumann-like Hamiltonian system (F−2)D ,
either.

So, by the above analysis, we conclude: the two solutions (3.57) and (3.61) of the
CH equation (3.13) are not gauge equivalent. In the next subsection we will concretely
solve Eq. (3.61) on M in the form of Riemann-Theta functions.

3.6. Algebro-geometric solution of the CH equation on M. Now, let us re-consider the
Hamiltonian system (H−1)D on M under the substitution of λ → λ−1, λj → λ−1

j (here
we choose non-zero λ, λj ). Then, the Lax matrix (3.20) has the following simple form:

L−(λ) = −λ3LCH(λ), (3.68)

where

LCH(λ) =
(

0 −λ−1

− 1
4λ

−1 0

)

+
N∑

j=1

λ−1

λ− λj

(
pjqj −q2

j

p2
j pjqj

)

≡
(
ACH(λ) BCH(λ)

CCH(λ) −ACH(λ)

)

, (3.69)

and the symplectic submanifold M becomes

M =
{

(q, p) ∈ R
2N

∣
∣
∣
∣ F ≡ 1

2

(〈
�−1q, q

〉
− 1

)
= 0, G ≡

〈
�−1q, p

〉
= 0

}

,

(3.70)

where �−1 = diag(λ−1
1 , . . . , λ−1

N ).
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A direct calculation yields the following theorem.

Theorem 6. On the symplectic submanifoldM the Hamiltonian system (H−1)D defined
by Eq. (3.31) has the Lax representation:

∂

∂x
LCH = [MCH, LCH], (3.71)

where

MCH =
(

0 1
1
4 − 1+4〈�p,p〉

4〈�2q,q〉 λ−1 0

)

. (3.72)

Notice. On M the Hamiltonian system (H−1)D is 2N − 2-dimensional, that is, there
only exist 2N − 2 independent dynamical variables in all 2N variables q1, . . . , qN ;
p1, . . . , pN . Without loss of generality, we assume the Hamiltonian system (H−1)D
has the independent dynamical variables q1, . . . , qN−1; p1, . . . , pN−1 (N > 1) on M .
Then, on M we have

q2
N = λN −

N−1∑

j=1

λN

λj
q2
j , (3.73)

pN = −
N−1∑

j=1

λN

λjqN
qjpj , (3.74)

where qN in the latter is given by the former in terms of q1, . . . , qN−1.
We will concretely give the expression u = 〈q(x, t), q(x, t)〉 , t = t−2 in an explicit

form. By Eq. (3.73), rewrite the entry BCH (λ) in the Lax matrix (3.69) as

BCH (λ) = − 1

λ− λN



1 +
N−1∑

j=1

(λj − λN)λ
−1
j

λ− λj
q2
j





≡ −Q(λ)
K (λ)

, (3.75)

where

Q(λ) =
N−1∏

j=1

(
λ− λj

) +
N−1∑

j=1

λj − λN

λj
q2
j

N−1∏

k=1,k �=j
(λ− λk) , (3.76)

K (λ) =
N∏

α=1

(λ− λα) . (3.77)

Apparently, Q(λ) is a N − 1 (N > 1) order polynomial of λ. Choosing its N − 1
distinct zero points µ1, . . . , µN−1, we have

Q(λ) =
N−1∏

j=1

(
λ− µj

)
, (3.78)

〈q, q〉 =
N∑

α=1

λα −
N−1∑

j=1

µj . (3.79)
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Additionally, choosing λ = λj in Eqs. (3.76) and (3.78) leads to an explicit form of qj
in terms of µl :

q2
j = αjN

N−1∏

l=1

(λj − µl), αjN = λj
∏N
k=1(λj − λk)

, (3.80)

which is similar to the result in Ref. [2]. By Eq. (3.79), we get an identity about µl :

N∑

j=1

αjN

N−1∏

l=1

(λj − µl) =
N∑

α=1

λα −
N−1∑

j=1

µj .

Remark 3. The dynamical variable pj corresponding to qj is

pj = dqj

dx
= −αjN

2qj

N−1∑

k=1

dµk

dx

N−1∏

l=1,l �=k
(λj − µl), (3.81)

therefore,

p2
j = αjN

4
∏N−1
l=1 (λj − µl)




N−1∑

k=1

dµk

dx

N−1∏

l=1,l �=k
(λj − µl)





2

. (3.82)

Substituting Eqs. (3.79) and (3.82) into the Hamiltonian H−1 = 1
2 〈p, p〉 − 1

8 〈q, q〉
directly gives an expression in terms of µl :

H−1 = 1

8

N∑

j=1

αjN
∏N−1
l=1 (λj − µl)




N−1∑

k=1

dµk

dx

N−1∏

l=1,l �=k
(λj − µl)





2

+ 1

8

N−1∑

j=1

µj − 1

8

N∑

k=1

λk.

(3.83)

This is evidently different from the Hamiltonian function in Ref. [2] (see there Sect. 3).
Here our H−1 comes from the nonlinearized CH spectral problemn, i.e. it is composing
of a Neumann-like system onM , which is shown integrable in subsection 3.3 by r-matrix
process. It is because of this difference that our parametric solution does not include the
peakons (also see last subsection) and we will in the following procedure present a class
of new algebro-geometric solution for the CH equation constrained on the symplectic
submanifold M .

Let
πj = ACH

(
µj

)
, j = 1, . . . , N − 1, (3.84)

then it is easy to prove the following proposition.

Proposition 1.

{µi, µj }D = {πi, πj }D = 0, {πj , µi}D = δij , i, j = 1, 2, . . . , N − 1, (3.85)

i.e. πj , µj are conjugated, and thus they are the variables which can be separated [21].
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Write

− detLCH (λ) = A2
CH (λ)+ BCH (λ) CCH (λ)

= 1

λ2

(
1

4
+

N∑

α=1

Eα

λ− λα

)

= 1

λ(λ− λN)

(
1

4
+
N−1∑

α=1

(λα − λN)λ
−1
α

λ− λα
Eα

)

≡ P (λ)

λK (λ)
, (3.86)

where Eα is defined by

Eα = −p2
α + 1

4
q2
α − 	α, 	α =

N∑

k=1,k �=α

(pαqk − qαpk)
2

λα − λk
, (3.87)

P(λ) = 1

4

N−1∏

j=1

(
λ− λj

) +
N−1∑

j=1

λj − λN

λj
q2
j

N−1∏

k=1,k �=j
(λ− λk) , (3.88)

and obviously P (λ) is an N − 1 order polynomial of λ whose first term’s coefficient is
1
4 . Then we have

π2
j = P

(
µj

)

µjK
(
µj

) , j = 1, . . . , N − 1. (3.89)

Notice. OnM we always have
∑N
α=1 λ

−1
α Eα = 1

4 . Therefore, we assumeE1, . . . , EN−1
are independent. Then,

EN = 1

4
λN −

N−1∑

α=1

λN

λα
Eα.

Actually in Eq. (3.86) we already used this fact.
Now, we choose the generating function

W =
N−1∑

j=1

Wj

(
µj , {Eα}N−1

α=1

)

=
N−1∑

j=1

∫ µj

µ0

√
P (λ)

λK (λ)
dλ, (3.90)

where µ0 is an arbitrarily given constant. Let us view Eα (α = 1, . . . , N − 1) as action
variables, then angle-coordinates Qα are chosen as

Qα = ∂W

∂Eα
, α = 1, . . . , N − 1,
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i.e.

Qα =
N−1∑

k=1

∫ µk

µ0

K(λ)

2
√
λK (λ) P (λ)

· λα − λN

λα(λ− λα)(λ− λN)
dλ

≡ λα − λN

λα

N−1∑

k=1

∫ µk

µ0

ω̃α, (3.91)

where

ω̃α =
∏N−1
k �=α,k=1 (λ− λk)

2
√
λK (λ) P (λ)

dλ, α = 1, . . . , N − 1.

Therefore, on the symplectic submanifold
(
M2N−2, dEα ∧ dQα

)
the Hamiltonian

function

H−1 = 1

2
〈p, p〉 − 1

8
〈q, q〉 = −1

2

N∑

α=1

Eα

= −1

8
λN − 1

2

N−1∑

α=1

λα − λN

λα
Eα (3.92)

produces a linearized x-flow of the CH equation
{
Qα,x = ∂H−1

∂Eα
= −λα−λN

2λα
;

Eα,x = 0,
(3.93)

as well, the Hamiltonian function

F−2 = 1

2
〈�p,p〉 − 1

8
〈�q, q〉 + 1

2

(
〈q, q〉 〈p, p〉 − 〈q, p〉2

)
= −1

2

N∑

α=1

λαEα

= −1

8
λ2
N − 1

2

N−1∑

α=1

λ2
α − λ2

N

λα
Eα (3.94)

yields a linearized t-flow of the CH equation
{

Qα,t = ∂F−2
∂Eα

= −λ2
α−λ2

N

2λα
,

Eα,t = 0.
(3.95)

The above two flows imply

Qα = λN − λα

2λα

[
x + (λN + λα)t − 2Q0

α

]
, (3.96)

Eα = constant, α = 1, . . . , N − 1, (3.97)

where Q0
α is an arbitrarily chosen constant. Therefore we have

N−1∑

k=1

∫ µk

µ0

ω̃α = −1

2

[
x + (λN + λα)t

]
+Q0

α. (3.98)
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Choose a basic system of closed paths αi, βi (i = 1, . . . , N − 1) of Riemann surface
	̄: µ2 = λP (λ)K (λ) with N − 1 handles. ω̃j (j = 1, . . . , N − 1) are exactly N − 1
linearly independent holomorphic differentials of the first kind on the Riemann surface
	̄. Let ω̃j be normalized as ωj = ∑N−1

l=1 rj,l ω̃l , i.e. ωj satisfy
∮

αi

ωj = δij ,

∮

βi

ωj = Bij ,

whereB = (
Bij

)

(N−1)×(N−1) is symmetric and the imaginary part ImB ofB is a positive
definite matrix.

By the Riemann Theorem [15] we know: µk satisfy

N−1∑

k=1

∫ µk

µ0

ωj = φj ,

φj = φj (x, t)
d=
N−1∑

l=1

rj,l

(

Q0
l − 1

2

[
x + (λN + λl)t

])

,

j = 1, . . . , N − 1,

iff µk are the zero points of the Riemann-Theta function �̃ (P ) = �(A (P )− φ − K)

which has exactly N − 1 zero points, where

A (P ) =
(∫ P

P0

ω1, · · · ,
∫ P

P0

ωN−1

)T

,

φ = φ (x, t) = (φ1 (x, t) , · · · , φN−1 (x, t))
T ,

K = (K1, . . . , KN−1)
T ∈ C

N−1 is the Riemann constant vector, P0 is an arbitrarily
given point on the Riemann surface 	̄ (�-function and the related properties are seen in
the Appendix).

Because of [10],
1

2πi

∮

γ

λd ln �̃ (P ) = C1
(
	̄
)
, (3.99)

where the constant C1
(
	̄
)

has nothing to do with φ; γ is the boundary of a simple
connected domain obtained through cutting the Riemann surface 	̄ along closed paths
αi, βi . Thus, we have a key equality

N−1∑

k=1

µk = C1
(
	̄
) − Resλ=∞1λd ln �̃ (P )− Resλ=∞2λd ln �̃ (P ) , (3.100)

where Resλ=∞k (k = 1, 2) mean the residue at points ∞k:

∞1
d=
(

0,
√

z−1P
(
z−1

)
K

(
z−1

)
∣
∣
∣
∣
z=0

)

,

∞2
d=
(

0,−
√

z−1P
(
z−1

)
K

(
z−1

)
∣
∣
∣
∣
z=0

)

.

Now, we need to calculate the above two residues.



Camassa-Holm Hierarchy 331

Lemma 2.

Resλ=∞1λd ln �̃ (P ) = −2
∂

∂x
ln�(φ + K + η1) , (3.101)

Resλ=∞2λd ln �̃ (P ) = 2
∂

∂x
ln�(φ + K + η2) , (3.102)

where η1, η2 are two different N − 1 dimensional constant vectors.

Proof. Consider the following smooth superelliptic curve 	̄: µ2 = λP (λ)K (λ).
Because λP (λ)K (λ) is a 2N th order polynomial with respect to λ, ∞ is not a branch
point, i.e. on 	̄ there are two infinity points ∞1 and ∞2. All points P on 	̄ are
denoted by (λ,±µ). On 	̄ we choose a group of basis of normalized closed paths
α1, · · · , αN−1;β1, · · · , βN−1. They are mutually independent, and their intersection
number are

αi ◦ αj = βi ◦ βj = 0, αi ◦ βj = δij .

It is easy to see that ω̃j (j = 1, . . . , N − 1) areN−1 linearly independent holomorphic
differential forms on 	̄.

Let us now come to calculate the residues of λd ln �̃ (P ) at the two infinity points:
∞1,∞2. At ∞1, the j th variable Ij of �̃ (z) produces the following result through
multiplying by −1 (please note that the local coordinate at ∞1 and ∞2 is z = λ−1):

−Ij = φj +Kj + η1,j −
N−1∑

l=1

rj,l

∫ z

0
ω̃l

= φj +Kj + η1,j +
N−1∑

l=1

rj,l

∫ z

0

∏N−1
α �=l,α=1 (λ− λα)

2
√
λP (λ)K (λ)

∣
∣
∣
∣
∣
λ=z−1

z−2dz

= φj +Kj + η1,j +
N−1∑

l=1

rj,l

∫ z

0

z−N − (
∑N−1
j=1 λj − λl)z

−N+1 + · · ·√
z−2N + · · · dz

= φj +Kj + η1,j +
N−1∑

l=1

rj,l

∫ z

0

1 +O (z)√
1 +O (z)

dz

= φj +Kj + η1,j +
N−1∑

l=1

rj,lz+O
(
z2
)
,

where η1,j = ∫ P0
∞1
ωj , j = 1, · · · , N − 1.

Because

∂�

∂x
= 1

2

N−1∑

j=1

N−1∑

l=1

∂�

∂Ij
rj,l

and �̃ (z) has the expansion formula

�̃ (z) = �(φ + K + η1)−
N−1∑

j=1

N−1∑

l=1

∂�

∂Ij
rj,lz+O

(
z2
)
,
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where η1 = (η1,1, . . . , η1,N−1)
T . Therefore,

�̃ (z) = �(φ + K + η1)− 2
∂�

∂x
z+O

(
z2
)
.

So, we obtain the following residue:

Resλ=∞1λd ln �̃ (P ) = Resz=0z
−1d ln �̃ (z) = Resz=0

1

z

�̃z (z)

�̃ (z)

= Resz=0
1

z

−2�x +O (z)

�− 2�xz+O
(
z2
)

= Resz=0
1

z

−2�x +O (z)

�
(
1 − 2�−1�xz+O

(
z2
))

= −2�x
�

= −2
∂

∂x
ln�(φ + K + η1) .

In a similar way, we can obtain the second residue formula.
So, by Eq. (3.79) and this lemma, we immediately have

〈q (x, t) , q (x, t)〉 =
N∑

α=1

λα − C1
(
	̄
) + 2

∂

∂x

(

ln
�(φ + K + η2)

� (φ + K + η1)

)

, (3.103)

where the j th component of ηi (i = 1, 2) is ηi,j = ∫ P0
∞i
ωj .

So, the CH equation (3.13) has the following explicit solution, called the algebro-
geometric solution:

u(x, t) = R + 2
∂

∂x

(

ln
�(φ + K + η2)

� (φ + K + η1)

)

, (3.104)

where R = ∑N
α=1 λα − C1

(
	̄
)

is a constant. ��

Theorem 7. The algebro-geometric solution of the CH equation (3.13) can be given
through Eq. (3.104).

Remark 4. Here the algebro-geometric solution (3.104) is smooth and occurs in the
x-direction (spacial variable) derivative, and apparently differs from the piecewise
smooth algebro-geometric solution in the t-direction derivatives given in Ref. [2]. It is
also different from the results in Ref. [3–5, 14], because we are studying the CH equation
constrained onM . In the paper, we do not need to calculate each qj (j = 1, . . . , N − 1)
but the sum

∑N−1
j=1 q

2
j , which we know from Eqs. (3.79) and (3.56). From the above

subsection’s comparison and these comments, therefore we think Eq. (3.104) is a class
of new solution of the CH equation (3.13). Apparently, Eq. (3.104) is simpler in form
than in Ref. [2].
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4. Positive Order CH Hierarchy, Integrable Bargmann System,
and Parametric Solution

4.1. Positive order CH hierarchy. Let us now give the positive order hierarchy of Eq.
(2.2) through employing the kernel element of Lenard’s operator J .

Obviously, G0 = cm− 1
2 form all kernel elements of J , where c = c(tn) ∈ C∞(R)

is an arbitrarily given function with respect to the time variables tn (n ≥ 0, n ∈ Z),
but independent of the spacial variable x. G0 and the recursion operator (2.6) yield the
following hierarchy of the CH spectral problem (2.2):

mtk = cJLk ·m− 1
2 , k = 0, 1, 2, . . . , (4.1)

where the operators J and L are defined by Eqs. (2.5) and (2.6), respectively, and L and
J have a further product form

L = J−1K = 1

2
m− 1

2 ∂−1m− 1
2 (∂ − ∂3), (4.2)

J−1 = 1

2
m− 1

2 ∂−1m− 1
2 . (4.3)

Because Eq. (4.1) is related to the Camassa-Holm spectral problem (2.2) for the case of
k ≥ 0, k ∈ Z, it is called the positive order Camassa-Holm (CH) hierarchy. Equation
(4.1) has the following representative equations:

mt0 = 0, trivial case, (4.4)

mt1 = −c
(
m− 1

2

)

xxx
+ c

(
m− 1

2

)

x
. (4.5)

Apparently, with c = −1, Eq. (4.5) becomes a Dym type equation

mt1 =
(
m− 1

2

)

xxx
−

(
m− 1

2

)

x
, (4.6)

which has an extra term −
(
m− 1

2

)

x
more than the usual Harry-Dym equation mt1 =

(
m− 1

2

)

xxx
. Therefore, Eq. (4.1) gives an extended Dym hierarchy corresponding to the

isospectral case: λtk = 0.
By Theorem 2, the whole positive order CH hierarchy (4.1) has the zero curvature

representation

Utk − Vk,x + [U,Vk] = 0, k > 0, k ∈ Z, (4.7)

Vk =
k−1∑

j=0

Vjλ
k−j−1, (4.8)

where U is given by Eq. (2.2), and Vj = V (Gj ) is given by Eq. (2.9) with G = Gj =
Lj ·G0 = cLj ·m− 1

2 , j > 0, j ∈ Z. Thus, all nonlinear equations in the positive CH
hierarchy (4.1) are integrable. Therefore we obtain the following theorem:
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Theorem 8. The positive order CH hierarchy (4.1) possesses the Lax pair





yx =
(

0 1
1
4 − 1

2mλ 0

)

y,

ytk = ∑k−1
j=0

( − 1
2Gj,x −Gj

1
2Gj,xx − 1

4Gj + 1
2mλGj

1
2Gj,x

)

λk−j y

k = 0, 1, 2, . . . .

(4.9)

Equation (4.9) can be reduced to the following Lax pair:

{
ψxx = 1

4ψ − 1
2mλψ

ψtk = ∑k−1
j=0

( 1
2Gj,xλ

k−jψ −Gjλ
k−jψx

)
, k = 0, 1, . . . .

(4.10)

In particular, the Dym type equation (4.6) has the Lax pair

{
ψxx = 1

4ψ − 1
2mλψ

ψt1 = − 1
2

(
m− 1

2

)

x
λψ +m− 1

2 λψx.
(4.11)

Remark 5. This Lax pair coincides with the one obtained by the usual method of finite
power expansion with respect to the spectral parameter λ. However, we here present the
positive hierarchy (4.1) mainly by Lenard’s operators pair satisfying Eq. (2.4). Because
it contains the spectral gradient ∇λ in Eq. (2.4), this procedure of generating evolution
equations from a given spectral problem is called the spectral gradient method.

Using this method, how to determine a pair of Lenard’s operators associated with
the given spectral problem mainly depends on the concrete forms of spectral problems
and spectral gradients, and some computational techniques. From this method, we have
already derived the negative order CH hierarchy and the positive order CH hierarchy.

4.2. r-matrix structure and integrability for the Bargmann CH system. Consider the
following matrix (called “positive” Lax matrix):

L+ (λ) =
(
A+ (λ) B+ (λ)
C+ (λ) −A+ (λ)

)

, (4.12)

where

A+ (λ) =
N∑

j=1

λjpjqj

λ− λj
, (4.13)

B+ (λ) = −
N∑

j=1

λjq
2
j

λ− λj
, (4.14)

C+ (λ) = 1

2 〈�q, q〉 +
N∑

j=1

λjp
2
j

λ− λj
. (4.15)
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We calculate the determinant of L+(λ):

−1

2
detL+(λ) = 1

4
TrL2

+(λ) = 1

2

(
A2

+ (λ)+ B+ (λ) C+ (λ)
)

=
N∑

j=1

E+
j

λ− λj
, (4.16)

where Tr stands for the trace of a matrix, and

E+
j = − 1

4 〈�q, q〉λjq
2
j − 1

2
	+
j , j = 1, 2, . . . , N, (4.17)

	+
j =

N∑

l �=j,l=1

λjλl(pjql − plqj )
2

λj − λl
. (4.18)

Let

Fk =
N∑

j=1

λkjE
+
j , k = 0, 1, 2, . . . , (4.19)

then it reads

Fk = −
〈
�k+1q, q

〉

4 〈�q, q〉 + 1

2

k−1∑

j=0

(〈
�j+1q, p

〉 〈
�k−j q, p

〉
−

〈
�j+1q, q

〉 〈
�k−jp, p

〉)
,

(4.20)

where k = 0, 1, 2, . . .. A long but direct computation leads to the following key
equalities:

{A+(λ), A+(µ)} = {B+(λ), B+(µ)} = 0,

{C+(λ), C+(µ)} = 2

〈�q, q〉2 (λA+(λ)− µA+(µ)) ,

{A+(λ), B+(µ)} = 2

µ− λ
(µB+(µ)− λB+(λ)),

{A+(λ), C+(µ)} = 2

µ− λ
(λC+(λ)− µC+(µ))− 1

〈�q, q〉2 λB+(λ),

{B+(λ), C+(µ)} = 4

µ− λ
(µA+(µ)− λA+(λ)).

Let L+
1 (λ) = L+ (λ) ⊗ I2×2, L+

2 (µ) = I2×2 ⊗ L+ (µ), where L+ (λ) , L+ (µ)
are given through Eq. (4.12). In the following, we search for a 4 × 4 r-matrix structure
r+12 (λ, µ) such that the fundamental Poisson bracket [13]:

{
L+ (λ) ⊗, L+ (µ)

} = [
r+12 (λ, µ) , L

+
1 (λ)

] − [
r+21 (µ, λ) , L

+
2 (µ)

]
(4.21)

holds, where the entries of the 4 × 4 matrix
{
L+ (λ) ⊗, L+ (µ)

}
are

{
L+ (λ) ⊗, L+ (µ)

}

kl,mn
= {

L+ (λ)km , L+ (µ)ln
}
, k, l, m, n = 1, 2,
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and r21 (λ, µ) = Pr12 (λ, µ) P, with

P = 1

2



I2×2 +
3∑

j=1

σj ⊗ σj



 =






1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




 ,

where σ ′
j are the Pauli matrices.

Theorem 9.

r+12 (λ, µ) = 2λ

µ(µ− λ)
P + λ

〈�q, q〉2 S
+ (4.22)

is an r-matrix structure satisfying Eq. (4.21), where

S+ = σ− ⊗ σ− =
(

0 0
1 0

)

⊗
(

0 0
1 0

)

.

In fact, the r-matrix satisfying Eq. (4.21) is not unique [19]. Obviously, this r-matrix
structure is also of 4 × 4 and different from the one in Ref. [20].

Because there is an r-matrix structure satisfying Eq. (4.21),

{
L2

+ (λ) ⊗, L2
+ (µ)

}
= [

r̄+12 (λ, µ) , L
+
1 (λ)

] − [
r̄+21 (µ, λ) , L

+
2 (µ)

]
, (4.23)

where

r̄+ij (λ, µ) =
1∑

k=0

1∑

l=0

(
L+

1

)1−k
(λ)

(
L+

2

)1−l
(µ) rij (λ, µ)

(
L+

1

)k
(λ)

(
L+

2

)l
(µ) ,

ij = 12, 21.

Thus,

4
{

TrL2
+ (λ) ,TrL2

+ (µ)
}

= Tr
{
L2

+ (λ) ⊗, L2
+ (µ)

}
= 0. (4.24)

So, by Eq. (4.16) we immediately obtain the following theorem.

Theorem 10. The following equalities

{E+
i , E

+
j } = 0, {Fk,E+

j } = 0, (4.25)

i, j = 1, 2, . . . , N, k = 0, 1, 2, . . . ,

hold. Hence, all Hamiltonian systems (Fk)

(Fk) : qtk = {q, Fk} = ∂Fk

∂p
, ptk = {p, Fk} = −∂Fk

∂q
, (4.26)

k = 0, 1, 2, . . . ,

are completely integrable.
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Furthermore, we find the following Hamiltonian function:

H+ = 1

2
〈p, p〉 − 1

8
〈q, q〉 − 1

4 〈�q, q〉 (4.27)

is involutive with E+
j , Fk , i.e.

{H+, E+
j } = 0, {H+, Fk} = 0, (4.28)

j = 1, 2, . . . , N, k = 0, 1, 2, . . . .

Here, E+
j are N independent functions.

Therefore, we obtain the following results.

Corollary 4. The canonical Hamiltonian system (H+):

(H+) :

{
qx = ∂H+

∂p
= p,

px = − ∂H+
∂q

= 1
4q − 1

2〈�q,q〉2�q.
(4.29)

is completely integrable.

Corollary 5. All composition functions f
(
H+, F+

k

)
, f ∈ C∞ (R), k = 0, 1, 2, . . ., are

completely integrable Hamiltonians.

Let

m = 1

〈�q, q〉2 , (4.30)

ψ = qj , λ = λj , j = 1, . . . , N. (4.31)

Then, the integrable flow (H+) defined by Eq. (4.29) also exactly becomes the CH
spectral problem (2.1) with the potential function m.

Remark 6. Equation (4.30) is a Bargmann constraint in the whole space R
2N . Therefore,

the Hamiltonian system (H+) is of integrable Bargmann type.

4.3. Parametric solution of the positive order CH hierarchy. In the following, we shall
consider the relation between constraint and nonlinear equations in the positive order
CH hierarchy (4.1). Let us start from the following setting

G0 = −
N∑

j=1

∇λj , (4.32)

where G0 = −m− 1
2 , and ∇λj = λjq

2
j is the functional gradient of the CH spectral

problem (2.2) corresponding to the spectral parameter λj (j = 1, . . . , N).
Apparently Eq. (4.32) reads

m = 1

〈�q, q〉2 (4.33)

which coincides with the constraint relation (4.30).
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Since the Hamiltonian flows (H+) and (Fk) are completely integrable and their Pois-
son brackets {H+, Fk} = 0 (k = 0, 1, 2, . . .), their phase flows gx

H+ , g
tk
Fk

commute [6].
Thus, we can define their compatible solution as follows:

(
q(x, tk)

p(x, tk)

)

= gx
H+g

tk
Fk

(
q(x0, t0k )

p(x0, t0k )

)

, k = 0, 1, 2, . . . , (4.34)

where x0, t0k are the initial values of phase flows gx
H+ , g

tk
Fk

.

Theorem 11. Let q(x, tk), p(x, tk) be a solution of the compatible Hamiltonian systems
(H+) and (Fk). Then

m = 1

〈�q(x, tk), q(x, tk)〉2 (4.35)

satisfies the positive order CH equation

mtk = −JLk ·m− 1
2 , k = 0, 1, 2, . . . , (4.36)

where the operators J and L are given by Eqs. (2.5) and (2.6), respectively.

Proof. This proof is similar to the negative case. ��
In particular, with k = 1, we obtain the following corollary.

Corollary 6. Let q(x, t1), p(x, t1) be a solution of the compatible integrable Hamilto-
nian systems (H+) and (F1). Then

m = m(x, t1) = 1

〈�q(x, t1), q(x, t1)〉2 , (4.37)

is a solution of the Dym type equation (4.6). Here H+ and F1 are given by

H+ = 1

2
〈p, p〉 − 1

8
〈q, q〉 − 1

4 〈�q, q〉 ,

F1 = −
〈
�2q, q

〉

4 〈�q, q〉 + 1

2

(
〈�q, p〉2 − 〈�q, q〉 〈�p,p〉

)
.

By Theorem 11, the Bargmann constraint given by Eq. (4.30) is actually a solution
of the positive order CH hierarchy (4.1). Thus, we also call the system (H+) (i.e. Eq.
(4.29)) a positive order constrained CH flow (i.e. Bargmann type) of the spectral
problem (2.2). All Hamiltonian systems (Fk), k ≥ 0, k ∈ Z are therefore called the
positive order integrable Bargmann flows in the whole R

2N . In a further procedure,
we can also discuss the algebro-geometric solutions for the positive order CH hierarchy.
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Appendix. Abel Mapping and the Θ-Function

1. If the genus of a Riemann surface is g, this surface is homomorphic to a sphere with
g handles. Such a basic system of closed paths (or contours) α1, . . . , αg, β1, . . . , βg
can be chosen such that the only intersections among them are those of αi and βi with
the same number i. Let the Riemann surface be covered with charts (Ui, zi), where zi
are local parameters in open domains Ui , the transition from zi to zj in intersections
Ui ∩ Uj being holomorphic. If in any Ui a differential ϕi (zi) dzi with meromor-
phic ϕi (zi) is given and in the common parts Ui ∩ Uj , ϕi (zi) dzi = ϕj

(
zj
)
dzj ,

then we say that there is an Abel differential � on the whole surface with restric-
tions �|vi = ϕi (zi) dzi . The Abel differential is of the first kind if all the ϕi (zi)
are holomorphic. There are exactly g linearly independent differentials of the first
kind ω1, . . . , ωg . They are normed if

∫

αi
ωj = δij , which condition determines them

uniquely. We shall always assume them normed. The numbers
∫

βi
ωj = Bij are called

β-periods. The matrix B = (
Bij

)
has the following properties: 1) Bij = Bji , 2) τ=

Im B is a positive definite matrix.

We consider a g-dimensional vector A (P ) =
{∫ P
P0
ωj

}
, where P0 is a fixed point of

the Riemann surface and P is an arbitrary point. This vector is not uniquely deter-
mined, but depends on the path of integration. If the latter is changed then a linear
combination of α and β-periods with integer coefficients can be added: (A (P ))j �→
(A (P ))j +∑g

1 niδij +∑g
1 miBij , i.e. A (P ) �→ A (P )+∑

niδi +
∑
miBi , where

δi is the vector with coordinates δij , Bi is the vector with coordinates Bij . Thus
A (P ) determines a mapping of the Riemann surface on the torus J = C

g/T, where
T is the lattice generated by 2g vectors {δi, Bi} (which are linearly independent over
R). This mapping is called the Abel mapping, and the torus J is the Jacobi manifold
or the Jacobian or the Riemann surface. The Abel mapping extends by linearity to
the divisors:

A
(∑

nkPk

)
=

∑
nkA (Pk) .

2. Abel Theorem. Those and only those divisors go to zero of the Jacobian by the Abel
mapping which are principal. The latter means that they are divisors of zeros and
poles of meromorphic functions on the surface. If Pk is a zero of the function, then
nk > 0 and nk is the degree of this zero. If Pk is a pole, then nk < 0 and |nk| is the
degree of this pole.

Of special interest is the case of divisors of degree g with all nk = 1, i.e. of
non-ordered sets of g points P1, . . . , Pg of the Riemann surface. All the sets of such
kind form the symmetrical gth power of the Riemann surface. The Abel mapping has
the form

A (
P1, . . . , Pg

) =





g∑

j=1

∫ P

P0

ωj





, j = 1, . . . , g.

The symmetrical gth power is a complex manifold of the complex dimension g and
it is mapped on the Jacobian which is a manifold of the same dimension. A problem
of conversion arises (the Jacobi inverse problem). It can be solved with the help of
the �-function.
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3. For arbitrary P ∈ C
g , let

�(P ) =
∑

Z∈Zg

exp {πi (BZ,Z)+ 2πi (P,Z)} ,

(BZ,Z) =
g∑

i,j=1

Bij zizj , Z = (z1, . . . , zg)
T ,

(P, Z) =
g∑

i=1

pizi, P = (p1, . . . , pg)
T .

The series converges owing to the properties of the matrix B. The�-function has the
properties

�(−P) = �(P )

� (P + δk) = �(P )

� (P + Bk) = �(P ) exp {−πi (Bkk + 2pk)} .
Note that the�-function is not defined on the Jacobian because of the latter property.

4. Riemann Theorem. There are constants K = {ki}, i = 1, . . . , g (Riemann constants)
determined by the Riemann surface such that the set of pointsP1, . . . , Pg is a solution
of the system of equations

g∑

i=1

∫ Pi

P0

ωj = lj , L = {lj } ∈ J, j = 1, . . . , g,

if and only if P1, . . . , Pg are the zeros of the function �̃ (P ) = �(A (P )− L − K)

(which has exactly g zeros). Note that while the function �̃ (P ) is not uniquely
determined on the Riemann surface (it is multivalued) its zeros are multivalued,
since distinct branches of �̃ (P ) differ by exponents.

5. We define now Abel differentials of the second and of the third kind. The Abel dif-
ferential of the second kind,�(k)P , k = 1, 2, . . . , has the only singularity at the point
P which is a pole of the order k+ 1. The differential can be represented at this point
as dz−k+ (holomorphic differential), z being the local parameter at this point. Such a

differential is uniquely determined if it is normed:
∫

αi
�
(k)
P = 0, ∀i.

TheAbel differential of the third kind�PQ has only singularities which are simple
poles at the points P andQ with the residues +1 and −1, respectively. It is uniquely
determined by the same condition.

6. Proposition. If z is a local parameter in a neighbourhood of the point P and ωi =
ϕi (z) dz is the Abel differential of the first kind, then

1

2πi

∫

βi

�
(k)
P = − 1

(k − 1)!

dk−1

dzk−1 ϕi (z)

∣
∣
∣
∣
z=0

, i = 1, . . . , g,

and

1

2πi

∫

βi

�PQ =
∫ P

Q

ωi, i = 1, . . . g,

which is also seen in Ref. [11].
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