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Abstract: We discuss a formulation of quantum field theory on quantum space time
where the perturbation expansion of the S-matrix is term by term ultraviolet finite.

The characteristic feature of our approach is a quantum version of the Wick product
at coinciding points: the differences of coordinates qj − qk are not set equal to zero,
which would violate the commutation relation between their components. We show that
the optimal degree of approximate coincidence can be defined by the evaluation of a
conditional expectation which replaces each function of qj − qk by its expectation val-
ue in optimally localized states, while leaving the mean coordinates 1

n
(q1 + · · · + qn)

invariant.
The resulting procedure is to a large extent unique, and is invariant under translations

and rotations, but violates Lorentz invariance. Indeed, optimal localization refers to a
specific Lorentz frame, where the electric and magnetic parts of the commutator of the
coordinates have to coincide [11].

Employing an adiabatic switching, we show that the S-matrix is term by term finite.
The matrix elements of the transfer matrix are determined, at each order in the perturbat-
ive expansion, by kernels with Gaussian decay in the Planck scale. The adiabatic limit
and the large scale limit of this theory will be studied elsewhere.

1. Introduction

Spacetime quantization was proposed earlier than renormalization theory as a possible
way of regularizing quantum field theory [19]. Recently, a deeper motivation was given
[10, 11]: the concurrence of the principles of quantum mechanics and of classical general
relativity leads to spacetime uncertainty relations; the natural geometric background that
implements those relations is a noncommutative model of spacetime. More precisely,
in order to give localization in spacetime an operational meaning, the energy transfer
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associated to the localization of an event by the Heisenberg uncertainty principle should
be limited so that the generated gravitational field does not trap the event itself inside an
horizon; otherwise the observation would be prevented. This principle implies spacetime
uncertainty relations which in a weaker form can be written as

�q0(�q1 +�q2 +�q3) � λ2
P ,

�q1�q2 +�q2�q3 +�q3�q1 � λ2
P ,

where λP is the Planck length
√
Gh̄c−3 � 1.6 × 10−33cm. It is possible to implement

exactly these relations by appropriate commutation relations between the components
of the spacetime coordinates qµ [11, 10].

[qµ, qν] = iλ2
PQ

µν, (1.1)

[qµ,Qνρ] = 0, (1.2)

QµνQ
µν = 0, (1.3)(

1

2
Qµν(∗Q)µν

)2

= I, (1.4)

where ∗Q is the Hodge dual ofQ. These relations are covariant under the full Poincaré
group. The irreducible representations of the spacetime commutation relations (1) take
the familiar form (in absolute units, where λP = 1)

[qµ, qν] = iσµνI, (1.5)

where σ is a real antisymmetric matrix in the manifold � defined by the conditions
(1.3, 1.4) with Qµν = σµνI . They evidently break Lorentz covariance. Interest in the
relations (1.5) was more recently raised by the occurrence of closely related forms of
noncommutativity also in string theory [8, 18]. There exists, however, an essentially
unique, fully covariant representation where the pairwise commuting, selfadjoint op-
erators Qµν have the full manifold � as their joint spectrum. The generalized Weyl
correspondence

W(g ⊗ f ) = g(Q)f (q)

extends to any symbol F ∈ C0(�×R
4), F̌ (σ, ·) ∈ L1(R4), where F̌ (σ, ·) is the inverse

Fourier transform ofF(σ, ·), for σ fixed. In the above equation, g(Q) is to be understood
in the sense of the joint functional calculus of the Qµνs, and

f (q) =
∫

R4
dk f̌ (k)eikq,

where f̌ (k) = (2π)−4
∫
dx f (x)e−ikx and kq = kµq

µ, kx = kµx
µ. The above corre-

spondence induces a generalized twisted product

(F1 � F2)(σ, ·) = F1(σ, ·) �σ F2(σ, ·),
on the symbols, by W(F1 � F2) = W(F1)W(F2). Moreover, W(F ) = W(F )∗. We
denote by E the enveloping C*-algebra of the resulting algebra; it is isomorphic to
C0(�,K), the C*-algebra of the continuous functions taking values in the algebra K of
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the compact operators on the separable, infinite dimensional Hilbert space, and vanishing
at infinity. The Poincaré group acts on the symbols in E by

(τ(a,Λ)F )(σ, x) = det Λ F(Λ−1σΛ−1t , Λ−1(x − a)).

The manifold � is the orbit of the standard symplectic matrix σµν0 =
(

0 −1
1 0

)
, under

the action σ �→ ΛσΛt of the full Lorentz group.
By definition, the states of E with optimal localization (both in space and in time)

minimize
∑
µ(�qµ)

2. This characterization is evidently invariant under rotations and
translations, but not under Lorentz boosts. It can be shown (see [11]) that the optimally
localized states are of the form

〈ωa, F 〉 =
∫
�1

µ(dσ)(ηaF )(σ ), F ∈ E,

where µ is any probability measure on the distinguished subset �1 of �, the orbit of σ0
under the action ofO(R3), and ηa : E → C(�1) is the localization map with localization
centre a ∈ R

4,

(ηaF )(σ ) =
∫

R4
dk F̌ (σ, k) exp


−1

2

3∑
µ=0

kµ
2


 eika. (1.6)

In what follows, we will need only the localization map with localization centre a = 0,
and in order to simplify the notation we will denote it by η. However, the results below
also hold for a general a ∈ R

4.
It is convenient to introduce the enveloping C*-algebra E1 generated by the restric-

tions γF = F ��1 of the symbols to�1. Then the localization map η is the composition
η = η(1) ◦ γ of the restriction map γ : E → E1, with a positive map η(1) from E1
to C(�1), which is a conditional expectation in the sense that1 η(1)(zF ) = zη(1)(F ),
z ∈ C(�1), F ∈ E1. η will also denote the normal extension to the multiplier algebra
M(E). Then,

〈
η, eikq

〉 = e
− 1

2

∑
µ kµ

2
, (1.7)

as a constant function of σ ∈ �1.
By analogy with the definition of f (q), the evaluation of an ordinary quantum field

φ on the quantum spacetime is given by

φ(q) =
∫

R4
dk eikq ⊗ φ̌(k)

and is to be interpreted as a map from states on E to smeared field operators,

ω �→ φ(ω) = 〈ω ⊗ id, φ(q)〉 =
∫

R4
dx φ(x)ψω(x),

where the r.h.s. is a quantum field on the ordinary spacetime, smeared with the test
function ψω defined by ψ̌ω(k) = 〈ω, eikq〉. If products of fields are evaluated in a state,
the r.h.s. will in general involve nonlocal expressions.

1 Note that, while C(�1) is not a subalgebra of E1, it is a subalgebra (actually, the centre) of the
multiplier algebra M(E1).
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As in ordinary quantum field theory, due to the singular properties of fields, prod-
ucts of fields are not a priori well-defined. On the ordinary Minkowski spacetime,
well-defined products of fields are given by the so-called Wick products. They may
be defined by bringing the positive and negative frequency parts of the fields in the
product into “normal order”, which in momentum space corresponds to putting all de-
struction operators to the right. Another definition, which, contrary to normal-ordering
may also be applied on curved spacetimes, is given in terms of the formal evaluation
on the diagonal of a suitably subtracted product; one has, for instance, at second or-
der :φ(x)2 : = limx→y ( φ(x)φ(y)− (�, φ(x) φ(y)�) ). The two constructions, while
equivalent on the ordinary Minkowski spacetime, lead to inequivalent generalizations
on the quantum spacetime.

In [11], for instance, an interaction Lagrangian was given in terms of the usual normal
ordering of positive and negative frequency parts of φ(q)n,

LI (x) = :(φ � · · · � φ)(x) :. (1.8)

Another possibility will be investigated in [2]. There, we consider products of fields
at different points as they arise in the context of the Yang-Feldman equation, φ(q +
x1) · · ·φ(q + xn), xi ∈ R

4. We then define the so-called quasiplanar Wick products
by allowing only terms which are local in a certain sense to be subtracted, and show
that they are well-defined on the diagonal, i.e. in the limit of coinciding points where
xi = xj .

In this paper we consider yet another approach. The evaluation on the diagonal is
replaced by a suitable generalization compatible with the uncertainty relations, leading
to a regularized nonlocal effective interaction. The idea is that a product of fields at
different points, φ(q1) · · ·φ(qn), may be defined by interpreting q1, . . . , qn as mutually
independent quantum coordinates, that is, by defining

qj
µ = I ⊗ · · · ⊗ I ⊗ qµ ⊗ I ⊗ · · · ⊗ I (n factors, qµ in the j th slot), (1.9)

and

φ(q1) · · ·φ(qn) =
∫
dk1 · · · dkn φ̌(k1) · · · φ̌(kn)ei(k1q1+···+knqn).

Now, the different spacetime components of each variable qj − qk , j �= k, no longer
commute with one another, hence the limit qj − qk −→ 0 loses its natural meaning.
We can, however, identify the central elements, i.e. take [qµj , q

ν
j ] = iQµν for all j . This

amounts to taking the tensor products in (1.9) not over the complex numbers, but over the
centre Z = C0(�) of (the multiplier algebra of) E . The limit qj − qk −→ 0 will then be
replaced by a quantum diagonal map which on each function of qj −qk evaluates a state
minimizing the square Euclidean length, while leaving the mean coordinates invariant
(cf. [15, 7]).

As a consequence of taking the tensor product in (1.9) over Z, the mean coordinates
1
n

∑
j qj commute with the relative coordinates qj − qk (in the strong sense), e.g. for

n = 2,
[
(q1 + q2)

µ, (q1 − q2)
ν
] = [qµ, qν] ⊗ I − I ⊗ [qµ, qν] = 0. (1.10)

This fact turns out to be crucial for the construction of the quantum diagonal map and
provides an additional motivation for taking the tensor product over Z.
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Actually, the tensor product E ⊗Z E of Z-moduli can be defined as the completion
relative to the maximal C*-seminorm of the quotient of the algebraic tensor product over
C modulo the two sided ideal generated by the multiples in E � E of I � z − z � I ,
where z varies in Z. It may be equivalently described as the fibrewise tensor product
of bundles of C*-algebras (continuous fields of C*-algebras, in the terminology of [9])
over �.

Another motivation to use aZ-module tensor product is to view the componentsQµν

of the coordinates’ commutator as universal data which are the same for the different
variables corresponding to independent events. The Qµνs are thus treated as a point in-
dependent geometric background, which, however, is translation invariant and Lorentz
covariant.

Since the C*-algebra E describes the regular representations of (1), i.e. integrable to
a representation of the Weyl relations

eikqeihq = e−
i
2 kµhνQ

µν

ei(k+h)q,

the uniqueness theorem of von Neumann [16], applied to each fibre at σ ∈ �, ensures
that commutativity implies tensor factorization over Z. This fact will allow us to obtain
the desired map as a conditional expectation.

Furthermore, we will use the tensor product of n+1 copies of the basic algebra as an
auxiliary algebra, where the mean coordinates are (affiliated to the algebra) in the first
factor, and where the algebra to which the difference variables qj − qk are affiliated is
identified with a subalgebra of the auxiliary algebra, associated to the factors from slot
2 to n+ 1. The desired quantum diagonal map

E(n) : E ⊗Z · · · ⊗Z E −→ E1

is then obtained by evaluating γ ⊗Z η
n⊗Z on such tensor products, where η is the locali-

zation map (1.6) with localization centre a = 0, and where γ : E → E1 is the restriction
map. It turns out that the application of E(n) to functions whose symbols do not depend
on Q explicitly, yields expressions which in turn are independent of Q.

The quantum diagonal map replaces the ordinary evaluation at coinciding points.
Contrary to the ordinary case, it yields a well-defined expression when applied to a
product of fields,

φ(n)(q) = E(n)(φ(q1) · · ·φ(qn))
=
∫
d4k1 · · · d4kn rn(k1, . . . , kn) φ̌(k1) · · · φ̌(kn) ei(k1+···+kn)q ,

since a nonlocal regularizing kernel rn appears. We conclude that contrary to the ordinary
case, no infinite counterterms have to be subtracted and φ(n)(q)may be used directly to
define the interaction in the quantum theory. Regarding the combinatorics, it is, however,
convenient to additionally apply ordinary normal ordering, and to define a quantum Wick
power as

:φn(q) :Q = E(n)(:φ(q1) · · ·φ(qn) :)
=
∫
d4k1 · · · d4kn rn(k1, . . . , kn) : φ̌(k1) · · · φ̌(kn) : ei(k1+···+kn)q .

The quantum Wick power :φ(q)n :Q as well as φ(n)(q) may be understood as functions
of q, not explicitly depending onQ, taking values in the field operators. In other words,
:φ(q)n :Q and φ(n)(q) formally are elements of E1 ⊗ �, where � is the field algebra.
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Once products of fields are given a precise meaning, one may apply an appropriate
perturbative setup. Since sharp localization in time is compatible with the spacetime
uncertainty relations (at the cost of complete delocalization in space), one possibility
is, for instance, to follow the standard approach to perturbation theory in the interac-
tion representation, involving integrations at sharp fixed times [12]. If the Lagrangian
is symmetric, the resulting S-matrix is formally unitary by construction (at least before
renormalization).

In [11], such an approach was proposed, based on the interaction Lagrangian (1.8).
Unfortunately, the resulting perturbation theory is not free of ultraviolet divergences.
This fact was first observed in [13] where, however, instead of the interaction picture
used in [11], the theory was defined in terms of modified Feynman rules which may
be formally derived from a path integral formulation. As first observed in [14] the re-
sulting theory violates unitarity, a defect which may be traced back to the problem of
time ordering on a (space/time)-noncommutative theory, as discussed in [1]: the time
ordering naturally defined in the interaction picture formulation (cf. [11, Eq. (6.15)] and
subsequent comments, as well as Sect. 4 of the present paper) does not violate unitarity.
As a consequence, the formulation of the theory in terms of modified Feynman rules is
not equivalent to the one discussed here.

Another inequivalent approach, which, however, yields a unitary perturbation theory
was proposed in [1]. This approach is based on the Yang-Feldman equation and will be
discussed elsewhere [2].

Instead, we will again apply the standard approach to perturbation theory in the
interaction representation, this time employing the quantum Wick products.

The interaction Hamiltonian on the quantum spacetime is then given by

HI (t) = λ

∫
q0=t

d3q :φ(q)n :Q

as a constant operator–valued function of�1 (i.e. HI (t) is formally in C(�1)⊗�). While
in [11] one still had to handle the dependence of the Hamiltonian on σ , in the approach
adopted here, HI (t) is a constant function of σ ∈ �1. As a consequence, our procedure
leads to a unique prescription for the interaction Hamiltonian on quantum spacetime.

The resulting effective non-local Hamiltonian is

HI (t) = λ

∫
d3x Leff(t, x), (1.11)

where Leff is the effective nonlocal interaction Lagrangian

Leff(x) = cn

∫
R4n

da1 · · · dan :φ(x + a1) · · ·φ(x + an) :

exp


−1

2

∑
j,µ

a
µ
j

2


 δ(4)


1

n

n∑
j=1

aj


 . (1.12)

It will be shown in Sect. 3 that the corresponding perturbation theory is free of ultra-
violet divergences. The ultraviolet regularization arises as a point–split regularization by
convolution with Gaussian kernels, and we will show that, by insertion of an adiabatic
switch, the perturbation series is order by order finite, and each term is a well defined,
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closed operator with a common core. The only remaining source of divergences is then
given by possible infinite volume effects arising in the adiabatic limit, which will be
discussed elsewhere.

The ultraviolet finiteness of the theory presented in this paper is in accordance with
the expectation that noncommutativity of spacetime may regularize the theory. Other
examples for ultraviolet finite theories on noncommutative spaces were discussed in [6],
for instance compact spacetimes, corresponding to finite dimensional algebras.

It is noteworthy that the transition matrix elements will vanish as Gaussian functions
of the energies and momentum transfers expressed in Planck units.

While in the high energy limit the transition amplitudes vanish rapidly as a result of
the quantum delocalization of the interaction, in the low energy limit one would expect
that the corrections to the ordinary theory on Minkowski space vanish. This is clearly
possible only after a finite renormalisation; the structure of the needed counterterms and
the dependence upon the Planck length of the renormalisation constants will be studied
elsewhere.

Note that in the limit where the Planck length can be neglected, the renormalized
theory on quantum spacetime should coincide with the ordinary renormalized theory on
Minkowski space. At the physical values of the Planck length, the effect of the quantum
nature of spacetime should manifest itself as quadratic or higher order corrections, since
gravitation is not explicitly taken into account, but manifests itself only through the
commutator of the coordinates.

A weak point of the approach to quantum field theory on quantum spacetime present-
ed here is that, while, as was first shown in [11], the prescription leading to (1.8) does
not alter the free Hamiltonian, the prescription discussed here would indeed change it,
replacing it by a deformed operator which would no longer be the zero component of
a Lorentz vector. We therefore treat, in this paper, the interaction on a different footing
than the unperturbed Hamiltonian which we identify with that of the usual free theory2.
As a consequence, Lorentz invariance is violated in an essential way, since optimally
localized states are defined relative to a particular Lorentz frame. However, spacetime
translation and space rotation invariance are preserved. Moreover, the evaluation of opti-
mally localized states on the difference variables qj −qk automatically restricts the joint
eigenvalues σµν of Qµν to �1, the basis of �, where the electric and magnetic parts of
σ are equal or opposite. This gives an a posteriori motivation for a similar choice, made
in [11], which was motivated by simplicity and by the need of preserving space rotation
invariance.

2. The Quantum Diagonal Map

According to the previous discussion,

qj
µ = I ⊗Z · · · ⊗Z I ⊗Z q

µ ⊗Z I ⊗Z · · · ⊗Z I︸ ︷︷ ︸
n factors

, qµ in the j th slot,

2 There exists an alternative approach, based on the action principle, which avoids this unsatisfactory
feature. It will be discussed in a forthcoming publication [3].
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fulfill the relations (for any i, j = 1, · · · , n)

[qi
µ, qj

ν] = iλ2
P δijQµν, (2.1)

[qj
µ,Qνρ] = 0, (2.2)

QµνQµν = 0, (2.3)(
1

2
Qµν(∗Q)µν

)2

= I. (2.4)

The correspondence

W(n)(g ⊗ f ) = g(Q)f (q1, . . . , qn), g ∈ C0(�), f ∈ C0(R
4n), f̌ ∈ L1(R4n),

extends to the generalized symbols F = F(σ, x1, . . . , xn) as usual, where

f (q1, . . . , qn) =
∫
dk1 . . . , kn f̌ (k1, . . . , kn)e

i(k1q1+···+knqn).

It induces a product and an involution on the generalized n-symbols, and the enveloping
C*-algebra of the resulting algebra is precisely E (n) = E ⊗Z · · · ⊗Z E .

Remark 2.1. Note that, since K⊗K ∼ K as C*-algebras, E⊗Z · · ·⊗ZE ∼ E ∼ C(�,K).
Closed 2-sided ideals J in E ⊗Z · · · ⊗Z E are then in a 1-1 correspondence with closed
ideals in Z (the kernel of the restriction to Z of the canonical extension to M(E) of the
projection map mod J ), hence are in a 1-1 correspondence with the closed subsets of�.

Let us now introduce the coordinates of the mean event, denoted mean coordinates
for short,

q̄ = 1

n
(q1 + · · · + qn)

as well as the separations
qij = qi − qj .

Then

qi = q̄ + 1

n

∑
j

qij . (2.5)

Since the commutator [qjµ, qj ν] = iQµν does not depend on j , the following strong
commutation relations hold:

eikµq̄
µ

eik
′
µq̄

µ = e−i
1

2n (Qµνkµk
′
ν )ei(k+k

′)µq̄µ, (2.6)

eikµq̄
µ

e
ik′µq

µ
ij = e

ik′µq
µ
ij eikµq̄

µ

. (2.7)

We have the following factorization. Let q̃ be coordinates with characteristic length
1/

√
n, i.e. [q̃µ, q̃ν] = i

n
Qµν . Define

q̄µ := q̃µ ⊗Z I
n⊗Z , qij

µ = I ⊗Z qij
µ, (2.8)

and

qi := q̄ + 1

n

∑
j

qij . (2.9)
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We immediately check that the above elements also fulfill the relations (2.1–2.4) in
the regular form, where [qj

µ, qj
ν] = iQµν . By von Neumann uniqueness (at each fixed

σ ; see [11]), there exists a faithful *-homomorphism

β(n) : E(n) �→ M(E (n+1))

such that

β(n)(qi) = qi .

This follows from the fact that regularity implies that the map qµi �→ q
µ
i determines

a *-homomorphism βi : E → M(E (n+1)) (whose canonical extension to M(E) will
still be denoted by βi); the ranges of βi and βj commute for i �= j and βi �Z is an
isomorphism independent of i. By the universal properties of the tensor product and its
uniqueness for nuclear C*-algebras (as E), there is a *-homomorphism β(n) of E (n) to
M(E (n+1)), s.t. β(A1 ⊗Z · · · ⊗Z An) = β1(A1) · · ·βn(An), Aj ∈ E . By assumption,
β(n) is faithful on Z, hence, by Remark 2.1 on p. 228, β(n) is faithful.

Explicitly,

β(n) (g(Q)f (q1, . . . , qn)) = g(Q)f (q1, . . . , qn),

where, of course,

f (q1, . . . , qn) =
∫
dk1 · · · dkn f̌ (k1, . . . , kn)e

ik1q1 · · · eiknqn .

Definition 2.2. The quantum diagonal map E(n) : E (n) → E1 is defined as

E(n) =
(
γ ⊗Z η ⊗Z · · · ⊗Z η︸ ︷︷ ︸

n factors

)
◦ β(n),

where η, γ are the localization map and the restriction to �1 (projection of E onto E1),
respectively. Note that the generators q̃µ of the algebra in which E(n) takes values have
characteristic length 1/

√
n.

To motivate this choice, let us recall that the difference variables qij µ/
√

2 fulfill the
commutation relations (1.1–1.4), and a short computation yields

〈
η ⊗Z · · · ⊗Z η︸ ︷︷ ︸

n factors

, eikµqij
µ/

√
2
〉

= 〈
η, eikµq

µ 〉

(as constant functions of σ ∈ �1; compare with (1.7)). In other words, ηn⊗Z minimizes
the Euclidean separation

∑
µ(qi

µ − qj
µ)2. E(n) will also denote the normal extension

of the above map to the multiplier algebra M(E (n)).
Note also that, had we used ηa instead of η = η0, we would have defined the same

map E(n), since the separations qi − qj are invariant under translations.
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Proposition 2.3. Let f ∈ C0(R
4n), f̌ ∈ L1(R4n). The explicit form of the quantum

diagonal map on f is given by

E(n)(f (q1, . . . , qn)) =
∫

R4n
dk1 · · · dknf̌ (k1, . . . , kn)rn(k1, . . . , kn)e

i(
∑
i ki)q̃ ,

where

rn(k1, . . . , kn) = exp


−1

2

3∑
µ=0


 n∑
j=1

kj
2
µ

− 1

n

n∑
j,l=1

kjµklµ




 . (2.10)

Equivalently,

E(n) (f (q1, . . . , qn)) = h(q̃),

where

h(x) = cn

∫
R4n

da1 · · · dan f (x + a1, . . . , x + an)r̂n(a1, . . . , an),

with cn = n2(2π)−8(n−1) and, with |a|2 = ∑3
µ=0 aµaµ,

r̂n(a1, . . . , an) = exp

(
−1

2
|a1|2 − · · · − 1

2
|an|2

)
δ(4)


 1

n

n∑
j=1

aj


 .

In particular, E(n) (f (q1, . . . , qn)) is a constant function of σ ∈ �1.

Proof. A simple computation yields, by the definition (2.9) of qi ,

exp


i

∑
j

kjqj


 = exp


i


∑

j

kj


 q̄


 ⊗Z exp


i

∑
j

(
kj − 1

n

∑
l

kl

)
qj


 .

By the above and (2.6), (2.7), we have〈
γ ⊗Z η

n⊗Z , f (q1, . . . , q1)
〉

=
∫
dk1 · · · dknf̌ (k1, . . . , kn) exp


i


∑

j

kj


 q̃




×
n∏
j=1

〈
η, exp

{
i

(
kj − 1

n

∑
l

kl

)
qj

}〉

as a constant function of σ ; (2.10) then follows by a straightforward computation. Stan-
dard computations provide the configuration space kernel. ��

The quantum diagonal map takes a particular simple form if evaluated in optimal-
ly localized states. Indeed, let η̃a denote the localization map ηa applied to the mean
position coordinates q̃. Then a simple calculation yields the formula

η̃a ◦ E(n) = η
⊗n
Z

a .

Since the function a → ηa(f ) may be understood as the best commutative analogue
of an element f of the noncommutative algebra, this formula provides an additional
justification of the present approach. (Cf. also the discussion in [11] and [6].)
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3. A Class of Ultraviolet Finite Theories on the Quantum Spacetime

The uncertainty relations (2) are compatible with sharp localization in time, at the cost
of total delocalization in space. Consistently, the centre valued map

g(Q)f (q) �→ g(Q)

∫
d3x f (t, x)

extends to a positive partial trace
∫
q0=t d

3q (see [11] for details), which commutes with
the restriction γ to �1.

For a fixed choice of a frame of reference, we formulate a traditional perturbative
setup in the spirit of [12, 4]. Consider for simplicity the λφn interaction; then the formal
interaction Hamiltonian will be defined as

HI (t) = λ

∫
q0=t

d3q LI (q),

where the interaction Lagrangian LI (q) may be either the nth quantum Wick power,
defined by evaluating the quantum diagonal map on a normally ordered product of
fields3,

:φn(q) :Q = E(n)(:φ(q1) · · ·φ(qn) :)
=
∫
d4k1 · · · d4kn rn(k1, . . . , kn) : φ̌(k1) · · · φ̌(kn) : ei(k1+···+kn)q ,

or the regularized product, defined by evaluating the quantum diagonal map on a product
of fields as it stands, without application of normal order,

φ(n)(q)

= E(n)(φ(q1) · · ·φ(qn))
=
∫
d4k1 · · · d4kn rn(k1, . . . , kn) φ̌(k1) · · · φ̌(kn) ei(k1+···+kn)q

=
∫
dkeikq

∫
dye−iky

∫
d4x1 · · · d4xn r̂n(y − x1, . . . , y − xn) φ(x1) · · ·φ(xn).

Clearly, the first definition yields a well-defined expression, but, contrary to the ordinary
case, normal ordering is not necessary due to the regulating kernel rn which renders the
second product well-defined as well4. In fact, both the quantum Wick power :φ(q)n :Q
as well as φ(n)(q) may be understood as functions of q, not explicitly depending on Q,
taking values in the field operators. In other words, :φ(q)n :Q and φ(n)(q) formally are
elements of E1 ⊗ �, where � is the field algebra5.

In the following, however, we will base our investigation on an interaction given by
a quantum Wick power. For one thing, it simplifies the combinatorics, and in view of

3 We recall that a monomial A = a�(ψ1) · · · a�(ψn) in the creation and destruction operators (a� =
a, a†) is called normally ordered or Wick ordered and denoted :A :, if all creation operators stand left of
the destruction operators.

4 That this is true may be either checked by expanding the product of fields in normally ordered prod-
ucts and check that all integrals are finite, or by employing the method of wavefront sets to show that
Diag ◦ (r̂n × (φ . . . φ)), where × denotes the ordinary convolution, is well-defined.

5 In more rigorous mathematical terms, :φ(q)n :Q and φ(n)(q) are affine maps from states on E to
quadratic forms.



232 D. Bahns, S. Doplicher, K. Fredenhagen, G. Piacitelli

the adiabatic limit, which we hope to study in a later paper, normal ordering may even
be necessary.

The resulting Hamiltonian HI (t) is formally affiliated to C(�1)⊗ �, where � is the
free Bose field algebra on the ordinary spacetime. Roughly speaking, HI (t) is a function
from �1 to (formal) field operators, i.e. to quadratic forms.

In order to retrieve the Hamiltonian of the equivalent theory on the ordinary space-
time, one has to integrate over some probability measure µ over �1, defining HI (t) =∫
dµ HI (t). Since, however, HI (t) is a constant function of σ , the choice of µ is

irrelevant. This fact should be contrasted with the case considered in [11], where the
non-irrelevant choice of a particular measure — though the most reasonable in that
context — was to some extent arbitrary, as well as the special rôle played by �1.

The resulting HamiltonianHI (t) for the equivalent theory on the ordinary spacetime
can then be put in the form (1.11), where the effective nonlocal Lagrangian is given by

Leff(x) =
∫
dk Ľeff(k)e

ikx,

Ľeff(k) =
∫
d4k1 · · · d4kn rn(k1, . . . , kn): φ̌(k1) · · · φ̌(kn) : δ(4)


k −

n∑
j=1

kj


 .

Note that in the perturbation series ((3.1) here below) the time ordering of products
HI (t1) · · ·HI (tN) will refer to the variables t1, . . . , tN rather than to the integration
variables in (1.12).

The fundamental result of this section is that the finite 4-volume theory yields a finite
perturbation series. More precisely, we turn the coupling constant λ into a smooth func-
tion of x vanishing at infinity sufficiently fast, of the form λ(t, x) = λ′(t)λ′′(x), and
we show that the corresponding Dyson series is well defined at all orders. Well-known
methods from ordinary quantum field theory are employed.

Proposition 3.1. For any Schwartz function λ of the form λ(t, x) = λ′(t)λ′′(x), λ′ ∈
S(R), λ′′ ∈ S(R3), the formal series

S[λ] = T exp

{
−i

∫
d4x λ(x)Leff(x)

}
= I +

∞∑
N=1

(−i)NS(N)[λ] (3.1)

is finite at all orders. More precisely, it is possible — by Wick reduction — to put theN th

order contribution in the form of a finite sum of closable operators with common core
DS (the subspace of the Fock space consisting of the vectors with finitely many particles
and with Schwartz n-particle components for each n). By construction, S[λ] is unitary.

Remark 3.2. While the existence of the adiabatic limit λ → 1 is questionable due to the
breakdown of Lorentz covariance, the infinite volume limit λ′′ → 1 (with λ′ fixed) of
the Gell-Mann–Low formula for S[λ′ ⊗ λ′′]/〈S[λ′ ⊗ λ′′]〉0 exists as a quadratic form.
Indeed, the only terms in the perturbation expansion of S[λ′ ⊗ λ′′] which are divergent
in the limit λ′′ → 1 (with λ′ fixed) are precisely those containing vacuum–vacuum parts.
The actual behaviour of the full adiabatic limit will be investigated elsewhere.

Proof. We shall follow standard conventions (see e.g. [17]): in particular, a(g), a†(g)

are the destruction and creation operators on the symmetric Fock space exp(L2(R3)),
g ∈ L2(R3), and
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a(g) =
∫

R3
dk a(k)g(−k), a†(g) =

∫
R3
dk a†(k)g(k),

(3.2)
φ(t, x) = 1

(2π)3/2

∫
R3

dk√
2ω(k)

{
eikµx

µ

a†(k)+ e−ikµx
µ

a(k)
}

as quadratic forms on DS ×DS , where ω(k) =
√

|k|2 +m2, and k = (ω(k), k).
The cutoff Lagrangian H(λ)

I (t) is given by

H
(λ)
I (t) =

∫
R3
dx λ(t, x)Leff(t, x) = λ′(t)

∫
R3
dx λ′′(x)Leff(t, x).

We introduce the following compact notations:

aµ = (a
µ
1 , . . . , a

µ
n ) ∈ R

n, (3.3)

a = (a1, . . . , an) ∈ R
3n, (3.4)

a = (a0, a) = (a1, . . . , an) ∈ R
4n. (3.5)

The translation of all the 4-vectors in a by the same 4 vector x will be denoted by

a − x = (a1 − x, a2 − x, · · · , an − x), x, aj ∈ R
4. (3.6)

The symbol · will denote the canonical Euclidean scalar product in R
n, R

3n, R
4n,

depending on the context; then

a b = aµ · bµ = a0 · b0 − a · b, (3.7)

|a|2 = a · a. (3.8)

Moreover,

da = da0da =
3∏

µ=0

daµ =
3∏

µ=0

n∏
j=1

da
µ
j . (3.9)

Finally, for any function g = g(x) of R
4, we write

g(n)(x) = g(x1) · · · g(xn), (3.10)

and, in particular,

:φ(n)(x) : = :φ(x1) . . . φ(xn) :. (3.11)

Standard computations yield

SN [λ] =
∫

R4nN
da1 · · · daN


 ∏

1≤M<N
θ
(
κ0(a0

M+1 − a0
M)

)

Gλ(a1) · · ·Gλ(aN) :φ(n)(a1) : · · · :φ(n)(aN) :,
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where κ0(a0) is the time component of the mean point

κ(a) = (κ0(a0), κ(a)) = 1

n

n∑
j=1

aj ∈ R
4 (3.12)

of a = (a1, . . . , an), and

Gλ(a) = λ(κ(a))e−
1
2 |a−κ(a)|2 (3.13)

is a Schwartz function.
With P(In) the set of all subsets of In = {1, · · · , n} (including the trivial subsets),

we shall write J• for any choice of N elements of P(In), namely J• = {J1, . . . , JN }
with JM ∈ P(In), M = 1, · · · , N . Then, by (3.2), we get

SN [λ] =
∑
J•

∫
R3nN

dk1 · · · dkN
K
J•
λ (k1, . . . , kN)√

ω(n)(k1) · · ·ω(n)(kN)

×

 ∏
u1∈J1

a†(ku1)




 ∏
v1∈In\J1

a(kv1)


 · · ·

· · ·

 ∏
uN∈JN

a†(kuN )




 ∏
vN∈In\JN

a(kvN )


 , (3.14)

where

K
J•
λ (k1, . . . , kN)

= cn,N

∫
R4nN

da1 · · · daN


 ∏

1≤M<N
θ
(
κ0(a0

M+1 − a0
M)

)Gλ(a1) · · ·Gλ(aN)

× exp

{
i

N∑
M=1

kMµ · (UMaM)µ
}
. (3.15)

Here UM is a diagonal n× n matrix, with diagonal entries

UMuu =
{

1, u ∈ JM,
−1, u ∈ In\Jn, (3.16)

and

k̃ = (k̃1, . . . , k̃M).

By the second Wick theorem, each term in the above sum may be written as a sum of
terms with contractions, where the surviving creation and destruction operators appear
in normal order (creation on the left), and the contracted pairs are replaced by δ(3) dis-
tributions. Since each integration variable kMj appears as the argument of precisely one
operator a�, (a� = a, a†), then the arising product of δs is well defined by the following
elementary
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Remark 3.3. The map

f �→
∫
da1 · · · dadf (a1, · · · , ad)

s∏
j=1

δ(lj (a1, . . . , ad)), s ≤ d, (3.17)

on the Schwartz functions, with lj a real linear functional on R
d , j = 1, . . . , s, is a well

defined distribution if and only if the functionals l1, . . . , ls are linearly independent. By
performing s integrations, the above distribution always takes the form

∫
db1 · · · dbd−s f (a1(b1, · · · , bd−s), . . . , ad(b1, · · · , bd−s)) ,

where the linear maps aj = aj (b1, · · · , bd−s), j = 1, d , provide a linear injection of
R
d−s into R

d .

After complete Wick reduction, the generic term will be of the form

∫
R6k

dp1 · · · dpr+sW(p1, . . . ,pr+s)a†(p1) · · · a†(pr )a(pr+1) · · · a(pr+s),

where

W(p1, . . . ,pr ,pr+1, . . . ,pr+s)

= K
J•
λ (k1(p1, . . . ,pr+s), . . . , kN(p1, . . . ,pr+s)√

ω(n)(k1(p1, . . . ,pr+s)) · · ·ω(n)(kN(p1, . . . ,pr+s))

for a suitable set of linear maps (see Remark 3.3)

k1 = k1(p1 · · · pr+s), . . . , kN = kN(p1 · · · pr+s)

with r + s ≤ nN .6 The proof is complete by [17, Theorem X.44], if we show that the
function W is in L2(R3(r+s)). To this end, it is enough to prove that |KJ•

λ | is bounded
by a Schwartz function. Due to the form of λ, the integrations over the space and time
variables in (3.15) factorize, and KJ•

λ is the product of a function with Gaussian decay
with the Fourier transform — evaluated at some point continuously depending on the
kM ’s — of an L1 function; the latter is then a bounded, continuous function. Indeed, we
will show in Appendix 4 that KJ•

λ is a Schwartz function, by carrying out explicitly the
above mentioned computations. ��

Note that the kernels W(p1, . . . ,pr ,pr+1, . . . ,pr+s) appearing in the above proof
are transition amplitudes of scattering processes with s incoming and r outgoing par-
ticles. They decay as Gaussian functions of the energies and momentum transfers
expressed in Planck units.

6 Of course, the case r + s = nN corresponds to the term with no contractions; in that case, the above
mentioned linear maps reduce to renaming the integration variables.
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4. Time-Ordering and Diagrammatics

We complement our discussion with some formal remarks aiming to clarify the relation
between the approach followed here and the usual formulation of the perturbation the-
ory in terms of Feynman diagrams. We have already shown in [1] that the perturbative
setup dealt with in [11] (as well as the approach based on theYang-Feldman equation) is
inequivalent to the by now standard setup in terms of the modified Feynman rules [13].
In this section we will make explicit that in the framework of the regularized interaction
proposed in this paper, Feynman propagators are no longer available at all.

In this discussion we ignore all problems which may arise in the adiabatic limit, and
use the formal (i.e. defined with constant coupling constant λ) time dependent interaction
Hamiltonian HI (t) throughout,

HI (t) = λ

∫
R4n

dx1 · · · dxn wt (x1, . . . , xn):φ(x1) · · ·φ(xn) :,

where the integral kernel wt is of the form

wt(x1, . . . , xn) = w′(x1, . . . , xn) δ
(1)


t − 1

n

∑
j

xj
0


 ,

and the Gaussian kernel w′ does not depend on t . Introducing the time ordered kernels

Tt1,...,tN =
∑
π∈PN

θ
(
tπ(1) − tπ(2)

)
. . . θ

(
tπ(N−1) − tπ(N)

)
wtπ(1) ⊗ · · · ⊗ wtπ(n) ,

formal computations yield the formal Dyson expansion (see [12])

S = I +
∞∑
N=1

(−iλ)N
N !

∫
dt1 . . . dtN

∫
d4nx1 . . . d

4nxN,

Tt1,...,tN (x1, . . . xN):φ
n(x1) : . . . :φ

n(xN) :,

where we use the notations (3.3–3.10).
By integrating over the time variables tj , we obtain

S = I +
∞∑
N=1

(−iλ)N
N !

∫
d4nx1 . . . d

4nxN

w(x1) · · ·w(xN)AT :φn(x1) : . . . :φ
n(xN) :.

HereAT is the ordering of the Wick monomials with respect to the average time, i.e. the
time of the mean position of each xj : more precisely, with

τ(x) = κ0(x0) = x0
1 + · · · + x0

n

n
(4.1)

the time component of the four vector (x1 + · · · + xn)/n, we have

AT :φn(x1) : · · · :φn(xN) :
≡

∑
π∈Pn

θ
(
τ(xπ(1))− τ(xπ(2))

) · · · θ (τ(xπ(N−1))− τ(xπ(N))
)

:φn(xπ(1)) : · · · :φn(xπ(N)) :,



Ultraviolet Finite Quantum Field Theory on Quantum Spacetime 237

τ(x)
(y)τ

space

tim
e y

x

Fig. 4.1. Multi-vertices are represented by the points within a circle; τ(x) is the average time of the
multi-vertex x, and the shadowed area represents its causal completion

where xj = (xj,1, . . . , xj,n) can be thought of as a “fat vertex”, i.e. a multi-vertex
actually consisting of n Minkowski vectors.

The time ordering thus defined, as well as the one discussed in [11], arises from
ordering the variables t1, . . . , tN in products HI (t1) · · ·HI (tN).

However, in both approaches causality is violated at the Planck length scale (cf. al-
so [5]). A typical manifestation of the violation of causality is the following: suppose
that

AT :φn(x) ::φn(y) : = :φn(x) ::φn(y) :,

i.e. τ(x) < τ(y), then it is not forbidden that x0
i > y0

i′ for some i, i′ ∈ {1, . . . , n}. In
other words, a single field φ(xi) belonging to the first Wick monomial can be subsequent
in time to some field φ(yi′).

Note however, that the above picture is consistent with the request that the large scale
limit should reproduce the ordinary (non-regularized) theory with :φn : interaction; in
particular, as λP → 0, the multi-vertices shrink to their mean positions, and the above
average time-ordering reduces to the usual one.

We conclude our discussion by showing that it is not possible to absorb the time
ordering in Feynman propagators, i�F (x − y) = (�, T [φ(x), φ(y)]�), as one usually
does in the framework of ordinary local theories. In fact, in the approach followed here,
we cannot construct Feynman propagators at all, while in the original Hamiltonian ap-
proach based on (1.8) as well as in the approach based on the Yang-Feldman equation it
is still possible to rewrite the time ordering in terms of Feynman propagators together
with advanced and retarded propagators [1].

To see what happens in the approach adopted here, consider as an example the sec-
ond order contribution to the Dyson series with two internal contractions in quantum
φ4-interaction, as depicted in Fig. 4.1.

Here, the two multi-vertices are sets of four distinguishable points,
{x1, x2, x3, x4} and {y1, y2, y3, y4}, and at most one line originates from each of these
points. A kernel w′ belongs to each multi-vertex. The internal contractions lead to pos-
itive and negative frequency parts of the commutator function, �±(xi − yi′), where
i, i′ ∈ {1, . . . , 4}. , while the time ordering is done with respect to the time com-
ponents of the mean coordinates of each vertex, leading to the Heaviside functions
θ
(± (

(x0
1 + · · · + x0

4 )− (y0
1 + · · · + y0

4 )
))

. We may thus conclude that the distributions
arising in the fish graph will not yield Feynman propagators at all.

This is consistent with the fact that the usual interpretation of Feynman graphs as
pictorial representations of scattering processes (“first A is annihilated, then B is cre-
ated”) should break down on quantum spacetime, as it needs sharply localized events,
which are no longer available.
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Appendix

In this appendix, we explicitly compute the kernel KJ•
λ , for future reference.

Recall that, for any k ∈ R
3, we write k̃ = (ω(k), k), and k̃ = (k̃1, . . . , k̃n). Let

f ∈ S(R3nN) be any Schwartz function, and λ(t, x) = λ′(t)λ′′(x). By Eq. (3.15),

〈KJ•
λ , f 〉 =

∫
R3nN

dk1 · · · dkN FJ•
λ (k̃1, . . . , k̃N )f (k1, . . . , kN),

where FJ•
λ ∈ C(R4nN) is given by

F
J•
λ (k1, . . . , kN)

= cn,N

∫
R4nN

da1 · · · daN


 ∏

1≤M<N
θ(κ0(a0

M+1 − aM))


Gλ(a1) · · ·Gλ(aN)

× exp

{
i

N∑
M=1

kMµ · (UMaM)µ
}

;

the orthogonal matrix UM is given by (3.16).
We now set

ξ = n−1/2(1, 1, . . . , 1) ∈ Rn.

Then, if P is the orthogonal projection of R
n onto Rξ , we set P ′ = (P,P ) as a pro-

jection onto R
4n, P ′ = P ⊕ P ⊕ P ⊕ P ; in the same spirit, ξ ′ = (ξ , ξ) ∈ R

4n.
Finally, U ′

M = (UM,UM), and I ′ = (I, I ) is the identity. We finally need the maps
Vξ (a) = ξ ·a,Ven(a) = en·a from R

n to R, with the corresponding mapsV ′
ξ = (Vξ ,V ξ ),

V ′
en

= (Ven,V en
) from R

4n to R
4.

With these notations, we have

κ0(a0) = ξ · a0

√
n

=
Vξ (a

0)
√
n
,

κ(a) =
V ′
ξ (a

0)
√
n
, κ(a) =

V ξ (a)√
n
.

Moreover, the function Gλ defined by (3.13) may be written as

Gλ(a) = λ

(
V ′
ξ · a
√
n

)
exp

{
−1

2
|(I ′ − P ′)a|2

}
,

and

F
J•
λ (k1, . . . , kN)

= cn,N

∫
R4nN

da1 · · · daN


 ∏

1≤M<N
θ(ξ · (a0

M+1 − aM))



(

N∏
M=1

λ

(
V ′ξ · aM√

n

)

× exp

{
−1

2

N∑
M=1

|(I ′ − P ′)aM |2
}

exp

{
i

N∑
M=1

kMµ · (UMaM)µ
}
.
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We may now take a n× n real orthogonal matrix R, such that

Rξ = en = (0, 0, . . . , 0, 1) ∈ Rn.

Then, E = RtPR is the orthogonal projection of R
n onto Ren, and E′ = (E,E), as

usual. Furthermore,V ′
en
(Ra) = V ′

ξ (a). With the change of integration variables b = Ra,

we obtain

F
J•
λ (k1, . . . , kN)

= cn,N

∫
R4nN

db1 · · · dbN


 ∏

1≤M<N
θ(e′n · (b0

M+1 − bM))



(

N∏
M=1

λ

(
V ′
en
(bM)√
n

))

× exp

{
−1

2

N∑
M=1

|(I ′ − E′)bM |2
}

exp

{
i

N∑
M=1

(
RUMkM0

) · b0
M

}

× exp

{
−i

N∑
M=1

(
RUMkM

)
· bM

}
.

The integration over the variables bMn ∈ R
4,M = 1, . . . , N , is completely separated

from the integration over the variables b∗
M = (bM1, . . . , bMn−1) ∈ R

4(n−1). Hence

F
J•
λ (k1, . . . , kN)

= cn,N

(∫
R4(n−1)N

db∗
1 · · · db∗

N exp

{
−1

2

N∑
M=1

|b∗
M |2

}

× exp

{
−i

N∑
M=1

(
RUMkM

)∗ · b∗
M

}
exp

{
i

N∑
M=1

(
RUMkM0

)∗ · b0
M

∗
})

×

∫

R4N
db1n · · · dbNn


 ∏

1≤M<N
θ(en · (bM+1n

0 − bMn
0))



(

N∏
M=1

λ

(
bMn

0

√
n

))

× exp

{
i

N∑
M=1

(V ′
en
(RUMkM)µbMn

µ

})
.

The first factor is a Fourier transform of a Gaussian function. Renaming the integration
variables bMn = βM = (β0

M,βM) ∈ R
4,

F
J•
λ (k1, . . . , kN)

= cn,N

(2π)4(n−1)N
exp

{
−1

2

N∑
M=1

∣∣(I ′ − P ′)U ′
MkM

∣∣2
}

×

∫

R4N
dβ1 · · · dβN


 ∏

1≤M<N
θ(β0

M+1 − β0
M)



(

N∏
M=1

λ

(
βM√
n

))

× exp

{
i

N∑
M=1

(
V ′
ξ (UMkM)

)
µ
β
µ
M

})
,
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where we used∣∣(R′U ′
MkM

)∗∣∣ = ∣∣(I ′ − E′)R′U ′
MkM

∣∣ = ∣∣(I ′ − P ′)U ′
MkM

∣∣.
Due to the form of λ = λ′ ⊗ λ′′, the integral in the above expression may be fur-

ther factorized as an integral over the variables β1, . . . ,βN , times an integral over the
variables β0

1 , . . . , β
0
N :

F
J•
λ (k1, . . . , kN)

= cn,N

(2π)4(n−1)N
exp

{
−1

2

N∑
M=1

∣∣(I ′ − P ′)U ′
MkM

∣∣2
}

×
{∫

R3N
dβ1 · · · dβN

(
N∏

M=1

λ′′
(

βM√
n

))
exp

{
−i

(
V ξ (UMkM)

)
· βM

}
.

}

×
{∫

RN
dβ0

1 · · · dβ0
N exp

{
i
(
Vξ (UMk

0
M)

)
β0
M

}( N∏
M=1

λ′
(
β0
M√
n

))

×

 ∏

1≤M<N
θ(β0

M+1 − β0
M))




 .

The integral over β0
1 , . . . , β

0
M in the above expression is the Fourier transform of

an L1 function, hence it vanishes at infinity. Moreover, it is the product of a Schwartz
function in k1, . . . , kN , times a C∞ function of k10, . . . , kN 0, vanishing at infinity. As
a consequence,

(k1, . . . , kN) �→ K
J•
λ (k1, · · · , kN) = F

J•
λ (k̃1, · · · , k̃N )

is a Schwartz function.
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