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Abstract: We define the renormalization group flow for a renormalizable interacting
quantum field in curved spacetime via its behavior under scaling of the spacetime metric,
g→ λ2g. We consider explicitly the case of a scalar field, ϕ, with a self-interaction of
the form κϕ4, although our results should generalize straightforwardly to other renorm-
alizable theories. We construct the interacting field – as well as its Wick powers and their
time-ordered-products – as formal power series in the algebra generated by the Wick
powers and time-ordered-products of the free field, and we determine the changes in the
interacting field observables resulting from changes in the renormalization prescription.
Our main result is the proof that, for any fixed renormalization prescription, the interact-
ing field algebra for the spacetime (M, λ2g) with coupling parameters p is isomorphic
to the interacting field algebra for the spacetime (M, g) but with different values, p(λ),
of the coupling parameters. The map p→ p(λ) yields the renormalization group flow.
The notion of essential and inessential coupling parameters is defined, and we define the
notion of a fixed point as a point, p, in the parameter space for which there is no change
in essential parameters under renormalization group flow.

1. Introduction

Theories of a classical field in Minkowski spacetime that are derived from an action
principle will automatically possess an invariance under a scaling of the global inertial
coordinates of spacetime (or, equivalently, under scaling of the field momenta) provid-
ed that a corresponding scaling of the field amplitude and coupling constants are also
performed in such a way that the action remains unchanged. If the quantum theory of
this field is renormalizable, it turns out that in perturbation theory there also is a similar
invariance of quantities of interest – such as the Green’s functions of the fields – under
scaling of the field momenta, but the required scaling of the field amplitudes and cou-
pling constants differs, in general, from the simple scaling laws for the classical theory.
This change of the “field strength normalization” and coupling constants under scaling
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is called the “renormalization group flow” of the theory. Important qualitative as well as
quantitative information about quantum field theories can be gained from an analysis of
their renormalization group flow.

For quantum field theories in Minkowski spacetime, there exist well known proce-
dures for calculating the renormalization group flow in perturbation theory. In many
cases, the picture obtained from low orders is believed to be at least in qualitative
agreement with the behavior that would hold in the full, nonperturbatively construct-
ed quantum field theory. Consequently, perturbative calculations of the renormalization
group flow have played an important role in arguments concerning fundamental proper-
ties of quantum field theories. In particular, they form the basis of the claim that certain
non-abelian gauge theories are “asymptotically free”, i.e., that the gauge coupling flows
towards zero at small distances (large momenta).

It is therefore of interest to know whether a similar scaling analysis can also be
performed for perturbative interacting quantum field theory on an arbitrary globally hy-
perbolic curved (Lorentzian) spacetime. As we shall briefly review in Sect. 2 below, the
construction of perturbative interacting quantum field theory in curved spacetime has
recently been achieved in [15, 16], based upon some earlier key results established in [3,
4] and other references. However, for at least the following two reasons, it does not seem
possible to give a straightforward generalization to curved spacetime of the usual scaling
analyses given for Minkowski spacetime. First, as already indicated above, the renormal-
ization group flow in Minkowski spacetime is usually formulated in terms of behavior
under the scaling of global inertial coordinates or, equivalently, scaling of the field mo-
menta. However, in curved spacetime a formulation in terms of scaling of coordinates
(or momenta) would introduce a very awkward and undesired coordinate dependence
into the constructions. Also, since the scaling of coordinates no longer corresponds to a
conformal isometry of the spacetime metric, one would not expect a simple behavior to
occur under scalings of any coordinates. Second, the quantities whose scaling behavior
is usually considered in studying the renormalization group flow in Minkowski space
are the Green’s functions of the interacting field or other quantities from which these can
be derived, such as the “effective action”. However, the Green’s functions depend on
a choice of state. For quantum field theories in Minkowski spacetime, this state would
naturally be chosen to be the (unique) Poincaré invariant vacuum state. However, even
for a free quantum field in a general curved spacetime, there is no “preferred vacuum
state” nor any other state that can be singled out for special consideration. Thus, even
if a renormalization group flow could be defined in terms of Green’s functions, there is
no reason to expect it to be independent of the choice of state used to define the Green’s
functions.

A solution to the second difficulty is achieved by formulating the theory via the al-
gebraic approach. In this approach, one views the observables as forming an abstract
algebra, and one views the quantum states as suitable linear functionals on this alge-
bra. This algebra is referred to as “abstract”, because no representation of this algebra
on a particular Hilbert space has been chosen from the outset, so that the (potentially
problematic) issue of choosing states is completely disentangled from the issue of con-
structing the observables of the theory. As we shall see, the renormalization group flow
can then be defined at the level of the algebra of observables1.

The first difficulty above is solved by defining the renormalization group flow in terms
of the behavior of the algebra of the interacting field under a scaling of the spacetime

1 An approach very different from ours that also treats the renormalization group flow at the level of
the algebra of observables is given in [6].
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metric, g → λ2g, as has previously been suggested by other authors [22, 19, 20]. In
Minkowski spacetime, the diffeomorphism defined by the rescaling of the global inertial
coordinates, xµ → λxµ, is a conformal isometry with constant conformal factor λ, so
rescaling the coordinates or momenta is equivalent to rescaling the spacetime metric.
However, in a general curved spacetime there will not exist any conformal isometries,
so rescaling the metric is not equivalent to any rescaling of coordinates or momenta.
As we shall see, in perturbation theory the interacting field has a well defined behavior
under scaling of the spacetime metric.

The results we shall obtain in this paper are based primarily on our previous unique-
ness theorems [15] for Wick polynomials and their time-ordered products for a free
quantum field. As we shall explain further in Sect. 2 below, these results imply that the
interacting field algebra is well defined up to certain renormalization ambiguities. In
particular, for the case of a renormalizable theory, the ambiguities in the interacting field
algebra correspond precisely to changes in the (finite number of) parameters appearing
in the interaction Lagrangian2. This observation gives rise to the following means to
define the renormalization group flow: Fix a renormalization prescription for defining
the free field Wick polynomials and their time ordered products. Now apply this renor-
malization prescription to define Wick polynomials and their time-ordered-products for
free quantum fields on the spacetime (M, λ2g), with all of the parameters of the theory
also scaled according to their “engineering dimension” (i.e., scaled in such a way as
to keep the classical action invariant). The free field algebra of observables W(M, g)

(defined in [15] and in Sect. 2 below) is naturally isomorphic to W(M, λ2g) with scaled
parameters, and we can use this isomorphism to define a new (λ-dependent) renormaliza-
tion prescription for Wick polynomials and their time-ordered products on the original
spacetime (M, g). We thereby obtain a new (λ-dependent) prescription for defining the
interacting field algebra. However, by our uniqueness results, this prescription must be
equivalent to the original prescription for defining the interacting field algebra modulo
a change of parameters appearing in the interaction Lagrangian. Consequently, we get a
λ-dependent “flow” in the parameter space of the interacting theory3. This flow defines
the action of the renormalization group for a quantum field in curved spacetime.

In order to implement the above ideas, we first must define the interacting quantum
field algebra and therefore must address the following two difficulties: (i) As in Minkow-

2 In other words, if one changes the prescription for defining Wick products and their time ordered
products for the free theory in a manner compatible with the axioms of [15 and 16], the new interacting
field algebra one obtains via the construction given in Sect. 3 below will correspond to the interacting
field algebra obtained with the original prescription, but with the interaction Lagrangian modified by
the addition of terms of the same form as appearing in the original Lagrangian. The definition of the
interacting field with the new prescription will also correspond up to a numerical factor to the definition
of the interacting field in the corresponding algebra obtained from the original prescription with the mod-
ified Lagrangian, i.e., the isomorphism of the interacting field algebras for the two different prescriptions
will map the interacting field to a multiple of the interacting field. It should be noted, however, that the
new definition of higher Wick powers of the interacting field (as well as time-ordered-products of Wick
powers of the interacting field) will not correspond to the definition of these quantities obtained from
the original prescription with the modified Lagrangian. Instead, under the isomorphism of the algebras,
a higher Wick power (or a time-ordered-product of Wick powers) will, in general, be mapped into a field
of the form specified in Eq. (52) below.

3 In other words, if we scale the spacetime metric and correspondingly scale the parameters, p0, of the
free Lagrangian, L0, according to their “engineering dimension”, then the resulting theory is equivalent
to a theory where the metric and parameters, p0, are not scaled, but the interaction Lagrangian, L1, is
modified by λ-dependent terms of the same form as appear in the (full) Lagrangian L = L0 + L1. It
should be emphasized that it is far from obvious that, for a perturbatively constructed interacting theory,
a change in a parameter appearing in L1 as occurs in the renormalization group flow is equivalent to a
corresponding change in that parameter in L0; see the end of Sect. 4.1 for further discussion.
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ski spacetime, the interacting quantum field is defined only perturbatively, and it is not
expected that the perturbation series converges. (ii) The usual formula for defining the
interacting field expresses it in terms of a free “in”-field [13]. Even if the theory under
consideration is such that in Minkowski spacetime the interacting field approaches a
free “in”-field in the asymptotic past in a suitable sense, there is no reason to expect any
such behavior to occur in an arbitrary globally hyperbolic curved spacetime.

As discussed in Sect. 3.1, we shall, in essence, sidestep issue (i) by treating the inter-
acting field algebra only at the level of a formal perturbation series. In other words, we
do not attempt to define the interacting field algebra at a finite value of a nonlinear cou-
pling parameter, κ , but simply consider the algebra generated by the formal perturbation
series expressions in κ . In this respect, our analysis is neither better nor worse than the
corresponding analyses for perturbative quantum field theory in Minkowski spacetime.
We note, however, that at least some of the difficulties encountered in making sense of
perturbative expansions for nonlinear quantum field theory may be due to the non-ana-
lytic behavior of ground states and/or “in” and “out” states. It appears conceivable that
at least some of the difficulties of perturbation theory could be averted if one works
strictly at the algebraic level and uses perturbation formulas only to obtain algebra-
ic relationships between interacting field observables (thereby defining the interacting
field algebra) rather than using perturbation theory to calculate quantities involving, say,
ground states or “in” and “out” states. However, we shall not attempt to pursue these
ideas in this paper.

On the other hand, difficulty (ii) can be genuinely overcome by properly taking limits
as the cutoff on the interaction is removed: The Bogoliubov formula defining the inter-
acting field (see Eq. (35) below) is well defined if the nonlinear coupling parameter, κ ,
is taken to be a smooth function of compact support, so that the nonlinear interaction is
“turned off” in the past and future. If one then attempts to take a limit where κ approaches
a constant, difficulties may arise if one demands that the interacting field remain fixed
in, say, the asymptotic past. However, no difficulties arise if, following the ideas of [4],
we demand that the interacting field remain fixed in the “interior” of the spacetime as κ

approaches a constant. This construction is given in Sect. 3.1.
The organization of this paper is as follows. In Sect. 2, we briefly review the main in-

gredients that we will need from free quantum field theory in curved spacetime, including
the definition and uniqueness properties of Wick powers and their time-ordered-prod-
ucts. In Sect. 3.1 we give the construction of the interacting field and in Sect. 3.2 we
characterize its renormalization ambiguities. The scaling behavior of the interacting the-
ory is analyzed in Sect. 4.1, and the renormalization group flow is defined. The notions
of essential and inessential coupling parameters and the notion of “fixed points” under
the renormalization group flow are defined in Sect. 4.2. In Appendix B, we will relate
our rather abstract formulation of renormalization theory and the renormalization group
flow at the algebraic level to more usual formulations in terms of Feynman diagrams.

In this paper, we will consider only a scalar field with Lagrangian density of the form

L = L0 + L1 ≡ 1

2
[(∇ϕ)2 +m2ϕ2 + ξRϕ2 + κϕ4]ε, (1)

where, R is the scalar curvature and ε is the volume element constructed from the space-
time metric g = gab. The self-interaction L1 = 1

2κϕ4ε will be treated perturbatively.
However, all of our analysis should generalize straightforwardly to other renormalizable
quantum field theories.

Our notation and conventions follow those of our previous papers [15, 16]. All space-
times (M, g) considered in this paper will be assumed to be globally hyperbolic and time
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oriented. We will denote the free quantum scalar field (defined by the Lagrangian (1)
with κ = 0) by ϕ and will use the generic notation � to denote other local covariant
fields in the free theory. The interacting field will be denoted ϕL1 and other local covari-
ant fields in the interacting theory will be denoted �L1 . In this paper, all fields will be
smeared with scalar densities (of unit weight); we will denote the space of smooth unit
weight scalar densities of compact support on M by D1(M).

2. The Free Quantum Field in Curved Spacetime

The perturbative construction of a self-interacting quantum scalar field in curved space-
time is based upon the construction of the free quantum field theory. In this section,
we consider the quantum field theory of a free scalar field ϕ, described by the classical
Lagrangian density

L0 = 1

2
[(∇ϕ)2 +m2ϕ2 + ξRϕ2]ε. (2)

Note that under a scaling of metric, g→ λ2g with λ a positive constant, the Lagrangian
density remains invariant provided that we also scale the field, ϕ, mass, m, and coupling
parameter ξ , by ϕ→ λ−1ϕ, m→ λ−1m, ξ → ξ . We refer to the power of λ appearing
in these scaling rules as the engineering dimension of the quantity. More generally, any
monomial, �, constructed out of ϕ and its derivatives, the curvature, and the coupling
constants m and ξ will have a well defined engineering dimension, denoted d�.

As is well known, in a general curved spacetime, there is no “preferred vacuum state”
nor even any preferred Hilbert space construction of the quantum theory corresponding
to the classical Lagrangian (2) (see, e.g., [23] for further discussion). Therefore, in our
view, it is essential to formulate the theory via the algebraic approach.

As in [15], we shall take the algebra of observables of the free field to be the “extended
Wick polynomial algebra” W(M, g). As described in [15], this algebra can be construct-
ed by choosing an arbitrary quasifree Hadamard state, ω, on the “canonical commutation
algebra”, A(M, g), then considering the normal ordered field operators on the GNS rep-
resentation of ω, and showing [3] that one gets well defined operators by smearing these
normal ordered operators with suitable distributions rather than test functions. The re-
sulting algebra of operators can then be shown [15] to be independent of the choice of ω.

Following [9], we outline here a much more direct construction of W(M, g). This
construction is sufficiently different in appearance from that given in [15] that it is
worthwhile to explain the relationship between the constructions. First, recall the usual
construction of the canonical commutation algebra, A(M, g): Start with the free *-al-
gebra generated by the identity, �, and all expressions of the form ϕ(f ), where f is an
element of D1(M), the space of smooth scalar densities on M with compact support.
(Thus, this algebra consists of all finite linear combinations of � and terms containing
finitely many factors of the form ϕ(fi) and ϕ(fj )

∗.) Next, define the two-sided ideal
consisting of all elements of this algebra that contain at least one factor of any of the
following four types:

(i) ϕ(α1f1 + α2f2)− α1ϕ(f1)− α2ϕ(f2), with α1, α2 ∈ C;
(ii) ϕ(f )∗ − ϕ(f̄ );

(iii) ϕ((∇a∇a −m2 − ξR)f ); and
(iv) ϕ(f1)ϕ(f2) − ϕ(f2)ϕ(f1) − i�(f1, f2)�, where � denotes the advanced minus

retarded Green’s function for the Klein-Gordon operator.

Then A(M, g) is defined by factoring the free algebra by this ideal.
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It is useful to make the following trivial change in the construction of A(M, g): In-
stead of starting with the free algebra generated by the identity, �, and symbols of the
form ϕ(f ), we start with the free tensor algebra of smooth compactly supported scalar
test densities on M ,

F(M) ≡ C⊕
⊕

n≥1

⊗nD1(M), (3)

with a *-operation defined by complex conjugation. (Note that although the direct sum in
Eq. (3) is infinite, by definition, each element of F(M) has only finitely many non-zero
entries.) The *-algebra F(M) already incorporates the identifications corresponding to
(i) and (ii) above, and clearly is isomorphic to the free algebra of the previous paragraph
factored by the ideal generated by (i) and (ii). Thus, we can equivalently define A(M, g)

by factoring F(M) by the ideal generated by expressions (iii) and (iv) above. We will
incorporate this viewpoint in our notation by denoting elements of A(M, g) by their
representatives in F(M). Thus, for example, we will denote the element of A(M, g)

corresponding to the field operator smeared with f ∈ D1(M) by [f ] rather than ϕ(f ).
Next, we note that given any t ∈ F(M), the imposition of the commutation relations

(iv) above would allow us to choose a unique representative of t in the totally symmetric
tensor algebra. Thus, rather than imposing these commutation relations by factorization
as above, we may instead work with the totally symmetric tensor algebra. Hence, we
define

Fsym(M) ≡ C⊕
⊕

n≥1

⊗n
symD1(M), (4)

and we define a product, 	0, (which depends upon g) in Fsym(M) that corresponds to
taking the ordinary tensor product in F(M). Namely, if tn ∈ ⊗n

symD1(M) and sm ∈
⊗m

symD1(M), we define

(tn 	0 sm)n+m−2k(x1, . . . , xn+m−2k)

= n!m!

k!(n− k)!(m− k)!
S

∫

M2k

tn(y1, . . . , yk, x1, . . . , xn−k)

× sm(yk+1, . . . , y2k, xn−k+1, . . . , xn+m−2k)

k∏

i=1

i

2
�(yi, yk+i ), (5)

where “S” denotes total symmetrization in the variables x1, . . . , xn+m−2k and where the
integral is over the “y”-variables4. In other words, the right side of Eq. (5) gives the
totally symmetric representative of tn⊗ sm in the tensor algebra F(M) under imposition
of the commutation relations (iv). Since the algebra (4) with the product (5) already
incorporates conditions (i), (ii), and (iv) above, we consider the ideal consisting of all
elements of Fsym(M) that contain at least one factor of the form (∇a∇a −m2 − ξR)f .
We again obtain A(M, g) by factoring Fsym(M) by this ideal.

We now make an important further modification to the above construction by intro-
ducing a new (ω-dependent) product, 	, on Fsym(M) by replacing i

2� in Eq. (5) by ω,

4 Since tn and sm are densities, no volume element has to be specified in the integral.
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where ω is an arbitrary (“undensitized”) distribution in two variables that satisfies the
Klein-Gordon equation in each variable and whose antisymmetric part is equal to i

2�,

(tn 	 sm)n+m−2k(x1, . . . , xn+m−2k)

= n!m!

k!(n− k)!(m− k)!
S

∫

M2k

tn(y1, . . . , yk, x1, . . . , xn−k)

sm(yk+1, . . . , y2k, xn−k+1, . . . , xn+m−2k)

k∏

i=1

ω(yi, yk+i ), (6)

where the integral is again over the “y”-variables. Then, by the same argument as in
Lemma 2.1 of [15], it can be seen that Fsym(M) with the product 	 is naturally isomor-
phic to Fsym(M) with the product 	0. Therefore if we factor Fsym(M) with the product
	 by the ideal comprised by all elements of Fsym(M) that contain at least one factor of
(∇a∇a−m2− ξR)f , we again obtain an algebra isomorphic to A(M, g). It also should
be noted that for f1, f2 ∈ D1(M) we have

f1 	 f2 − f2 	 f1 = i�(f1, f2)�. (7)

Now, choose ω to be the two-point function of a Hadamard state. Then the product
(6) corresponds to Wick’s formula expressing the product of a normal-ordered n-point
function with a normal ordered m-point function in terms of normal ordered products,
where the normal ordering is done with respect to the quasi-free Hadamard state with
two-point function ω. It can thereby be seen that for any tn ∈ ⊗n

symD1(M) of the form
tn = f1⊗sym · · · ⊗sym fn with each fi ∈ D1(M), the algebraic element [tn] ∈ A(M, g)

corresponding to the equivalence class of tn is represented by the normal ordered product
:ϕ(f1) · · ·ϕ(fn) :ω in the GNS-representation of the state ω.

The key observation needed to define the algebra W(M, g) is to note that the wave-
front set properties of ω then imply that Eq. (6) continues to make sense when the test
function space ⊗n

symD1(M) in (4) is replaced by the much larger space5

E ′sym(M×n) = {compactly supp. symm. distr. tn |WF(tn) ⊂ T ∗Mn \ (V ×n
+ ∪ V ×n

− )},
(8)

where V± is the future/past lightcone with respect to the metric g, and where “WF”
denotes the wave-front set of a distribution [14]. We define W(M, g) to be the vector
space

E ′(M, g) ≡ C⊕
⊕

n≥1

E ′sym(M×n), (9)

with product (6), factored by the ideal comprised by all elements of the form (∇a∇a −
m2 − ξR)xi

tn(x1, . . . , xn). Thus, every element a ∈ W corresponds to an equivalence
class a = [s] of an element s = s0+

∑n
k=1 sk , where s0 ∈ C, and where sk ∈ E ′sym(M×k).

The product of two elements in W is given by [s] 	 [t] ≡ [s 	 t]. If f is a smooth scalar
density on M of compact support, then the equivalence class [f ] ∈ W corresponds
exactly to the smeared free field ϕ(f ).

5 Since the elements in E ′sym(M×n) are distributions, they automatically have the character of densi-

ties. The space⊗n
symD1(M) can therefore be naturally identified with a subspace of E ′sym(M×n), without

the need to specify a volume element on M .
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The definition of the algebra W a priori depends on some choice for ω, but it was
shown in [15] that different choices for ω give rise to isomorphic algebras. Therefore, as
an abstract algebra, W is independent of this choice. Since A is naturally a subalgebra
of W , we automatically know what elements of W correspond to the smeared field ϕ(f )

and its smeared n-point functions. However, it is not obvious what (if any) elements of
W correspond to smeared Wick powers of the field and time-ordered products of Wick
powers.

This issue was addressed in [15 and 16], where an axiomatic approach was taken. A
key condition imposed in [15 and 16] on the definition of Wick powers and their time-or-
dered-products was that they be local, covariant fields [5]. In order to define this notion,
it is necessary to think of the fields as being defined not only for a given, fixed spacetime,
but rather for all (globally hyperbolic) spacetimes, and we incorporate this viewpoint
here by indexing the field with the spacetime under consideration, such as �[M, g]. If
(M, g) and (M̃, g̃) are two spacetimes such that there is a causality preserving isometric
embedding, χ , of (M̃, g̃) into (M, g), then the algebra W(M̃, g̃) can be regarded as a
subalgebra of W(M, g) via a homomorphism αχ in a natural way [15], so that the free
field theory with algebra W(M, g) is a local, covariant field theory [5]. The requirement
that � be a local covariant field is then that

αχ(�[M̃, g̃](x)) = �[M, g](χ(x)). (10)

It was shown in [15] that this requirement together with a number of additional
requirements (such as commutation properties, continuity and analyticity conditions,
microlocal spectral conditions, and causal factorization) uniquely determines the defi-
nition of Wick powers and their time-ordered-product up to certain well defined renor-
malization ambiguities. Existence of Wick powers satisfying these properties also was
established in [15], and existence of their time-ordered-products was proven in [16].

The results of the present paper will rely heavily on the uniqueness theorem 5.2 of
[15] for time-ordered-products. The allowed ambiguity in the definition of time-ordered-
products as given in Theorem 5.2 of [15] is rather awkward to state, so we find it useful
to reformulate this theorem in the following manner (see [1, 9]). First, we introduce
an abstract vector space, V , comprised by finite linear combinations of basis elements
labeled by formal products of ϕ and its covariant derivatives,

V = spanC

{
� =

∏
∇(a1 · · · ∇ai )ϕ

}
. (11)

We refer to the elements of V as “formal” because we do not assume any relations
between the fields at this stage. In particular, we regard the field and its derivatives as
independent quantities which are not related by the field equation. Let

D1(M, V) ≡ {smooth densities on M of compact support with values in V} (12)

so that an element F ∈ D1(M, V) can be uniquely expressed as a finite sum F =∑
fi�i

with each �i a basis element of V and fi ∈ D1(M). It is convenient to think of a prescrip-
tion for defining Wick powers as a linear map from D1(M, V) into the algebra W(M, g).
Thus, a prescription for Wick powers associates to an element f (x)� ∈ D1(M, V) an
element �(f ) ∈W(M, g). Similarly, it is useful to view the n-fold time ordered product
of Wick powers as an n-times multilinear map

T :×nD1(M, V)→ W(M, g), (13)

(f1�1, . . . , fn�n)→ T
(∏

�i(fi)
)

. (14)
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The map defining Wick powers is, of course, the special case n = 1 of the map defining
time-ordered-products.

Let us now suppose that we have two prescriptions for defining time-ordered-prod-
ucts (and, in particular, two prescriptions for defining Wick powers). It is simplest and
most convenient to express the formula for the difference between these prescriptions in
terms of the local S-matrix, S(

∑
fi�i), for the formal sum

∑
fi�i , which is formally

defined by

S
(∑

fi�i

)
= �+

∑

n≥1

in

n!
T

(
n∏∑

�i(fi)

)
. (15)

(Of course, as discussed further at the beginning of Sect. 3.1 below, the series on the right
side of Eq. (15) is not expected to converge. It should be viewed as merely a bookkeeping
device that will allow us to write an infinite sequence of complicated equations – given
explicitly in Eq. (25) below – as a single equation.) Denote the image of the n-tuple
(f1�1, . . . , fn�n) ∈ ×nD1(M, V) under the first prescription as T (

∏
�i(fi)) and de-

note its image under the second prescription as T̃ (
∏

�̃i(fi)). Then, if both prescriptions
satisfy all of the requirements stated in [15, 16], Theorem 5.2 of [15] establishes that the
following relation holds between the corresponding local S-matrices:

S̃
(∑

fi�i

)
= S

(∑
fi�i + δ

(∑
fi�i

))
, (16)

where δ(
∑

fi�i) is given by the formal power series expression

δ
(∑

fi�i

)
=

∑

n≥1

in−1

n!
On

(×n ∑
fi�i

)
. (17)

Equation (16) is to be interpreted as an infinite sequence of equalities between terms
containing equal numbers of each of the fi’s under the formal substitutions (15) and
(17). In Eq. (17), the On’s are multilinear maps

On :×nD1(M, V)→ D1(M, V) (18)

of the form:

On(×n
i=1fi�i) =

∑

j

Fj�j , (19)

where �j are basis fields in V and the densities Fj are of the form

Fj (x) = ε(x)
∑

(a)=(a1)...(an)

Cj
(a)(x)

n∏

i=1

∇(ai )fi(x). (20)

In this formula, we have identified the densities fi with test functions on M using the
metric volume element ε and we have used the multi-index notation∇(a) = ∇(a1 · · · ∇as).
The quantities Cj

(a) are tensors that are monomials in the Riemann tensor, its covariant
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derivatives, and m2, with coefficients that are analytic functions of ξ . The quantities On

are further restricted by the requirement that

[T (On(×n
i=1fi�i)), ϕ(fn+1)]

=
n∑

k=1

T



On



f1�1, . . . , i
∑

(a)

(fn+1�(a)fk)
∂�k

∂∇(a)ϕ
, . . . , fn�n







 . (21)

Here, ∂�/∂∇(a)ϕ is the element in V obtained by formally differentiating the expression
� ∈ V with respect to ∇(a)ϕ (thereby viewing the latter as an “independent variable”),
(a) is a spacetime multi-index as above, and

(fn+1�(a)fi)(x) =
∫

M

fn+1(x)�(x, y)∇(a)fi(y), (22)

where � is the advanced minus retarded Green’s function, and where the integration
is over the “y”-variables. In addition, if dj

(a) is the engineering dimension of Cj
(a),

N(a) the number of covariant derivatives appearing explicitly in Eq. (20), and dj is the
engineering dimension of the field �j , then each of the terms in the sum (20) must
satisfy the power counting relation

n∑

i=1

d�i
= 4n+N(a) + dj

(a) + dj (23)

for all multi-indices (a) and all j . Furthermore, the quantities δ(f �) defined in Eq. (17)

satisfy the reality condition

δ(f �)∗ = δ(f �) (24)

for real valued f and hermitian �, which corresponds to the unitarity requirement,
S(f �)−1 = S(f �)∗, for real valued f and hermitian �. Equation (24) is equivalent to
the reality property On(×nf �)∗ = (−1)n−1On(×nf �).

The relations between the two prescriptions for time-ordered-products given implic-
itly in Eq. (16) can be written out explicitly as

T̃

(
n∏

i=1

�̃i(fi)

)
= T

(
n∏

i=1

�i(fi)

)
+

∑

P

T

(
∏

I∈P
O|I |(×j∈I fj�j )

∏

i /∈I ∀I∈P
�i(fi)

)
,

(25)

where, P is a collection of pairwise disjoint subsets I1, I2, . . . of the set {1, . . . , n}, not
all of which can be empty, and |I | is the number of elements of such a set. Equation (25)
corresponds to our previous formulation of the uniqueness theorem given in Theorem 5.2
of [15], except that, for simplicity, we assumed in the statement of that theorem that the
“untilded” prescription for defining Wick products was given by “local normal order-
ing” with respect to a local Hadamard parametrix. In Minkowski spacetime a proof that
Eq. (25) corresponds to the formal expansion of Eq. (16) is given in [21, Thm. 6.1]; the
combinatorical arguments given there can be generalized in a straightforward manner
to the present case.

If we take
∑

fi�i to be the interaction Lagrangian density, then Eq. (16) corresponds
to the familiar statement in perturbative quantum field theory in Minkowski spacetime
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that the “renormalization ambiguities” in the S-matrix6 correspond simply to adding
“counterterms” to the Lagrangian of the appropriate “power counting” dimension. The
only significant difference occurring when one goes to curved spacetime is that addi-
tional counterterms involving the spacetime curvature may occur.

We conclude this section by reviewing the scaling properties of Wick powers and
their time-ordered-products. Fix a Wick power �[M, g, p] and consider the 1-parame-
ter family of Wick powers �[M, λ2g, p(λ)] defined on the spacetimes (M, λ2g), with
coupling constants

p(λ) = (λ−2m2, ξ). (26)

These quantities belong (when smeared with a test density) to different algebras,

�[M, λ2g, p(λ)](f ) ∈W(M, λ2g, p(λ)) (27)

(where we now have indicated explicitly the dependence of this algebra and the field
on the coupling parameters p), and hence cannot be compared directly. However, as
observed in [15], one can define a natural *-isomorphism

σλ : W(M, λ2g, p(λ))→W(M, g, p), σλ([tn]) ≡ λ−n[tn]. (28)

In other words, σλ maps the element of W(M, λ2g, p(λ)) corresponding to : ϕ(f1) · · ·
ϕ(fn) :ωλ in the GNS-representation of the quasi-free Hadamard state ωλ into the el-
ement of W(M, g, p) corresponding to : ϕ(f1) · · ·ϕ(fn) :ω in the GNS-representation
of the quasi-free Hadamard state ω, where the two-point functions of ωλ and ω are re-
lated by ωλ(x1, x2) = λ−2ω(x1, x2). Using this isomorphism, we can then identify the
Wick product �[M, λ2g, p(λ)] with a local covariant field σλ(�[M, λ2g, p(λ)]) for the
unscaled metric and unscaled coupling constants g, p.

The free field ϕ has the homogeneous scaling behavior

σλ(ϕ(f )) = λ−1ϕ(f ), (29)

where the field on the left side of this equation is defined in terms of the scaled metric λ2g
and scaled coupling constants p(λ), whereas the field on the right side of this equation is
defined in terms of the unscaled metric g and unscaled coupling constants p. The high-
er order Wick powers and their time-ordered-products have an “almost” homogeneous
scaling behavior in the sense that7

6 We should emphasize that our interest here is not in determining the renormalization ambiguities
in a global scattering matrix (which will, in general, not even be defined) but rather in determining the
renormalization ambiguities in the interacting field itself (as well as its Wick powers and the time-ordered-
products of its Wick powers). However, the formulas expressing these ambiguities are most conveniently
expressed in terms of the relative S-matrix, which is defined in terms of the local S-matrix (see Sect.
3.2 below), so a knowledge of the ambiguities in the local S-matrix will enable us to determine the
ambiguities in the interacting field.

7 The fact that the non-homogeneous terms on the right side of Eq. (30) take the form of local, covariant
fields that depend polynomially on log λ was taken as an axiom in [15], the consistency of which was
proven in [16]. The specific form of these terms follows from the uniqueness theorem of [15].
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σλ

(
T

(
n∏

i=1

�i(fi)

))
= λ−dT T

(
n∏

i=1

�i(fi)

)

+ λ−dT
∑

P

T

(
∏

I∈P
O|I |(λ;×j∈I fj�j )

∏

i /∈I ∀I∈P
�i(fi)

)
,

(30)

where dT is the engineering dimension of the time-ordered-product and the quantities

On(λ;×n
i=1fi�i) =

∑

j

Fj (log λ)�j (31)

have the same properties as the quantities Eq. (20) in our uniqueness theorem, with the
only difference that the scalar densities Fj (log λ) now have an additional polynomial
dependence on log λ.

As we will see, the fields in the interacting quantum field theory will not have this
almost homogeneous scaling behavior in general.

3. Interacting Fields in Curved Spacetime

3.1. Definition of the interacting field. In this section, we consider the interacting field
theory described by the Lagrangian density (1). Our main aim is to define the interacting
field, ϕL1 , as well as its Wick powers and the time-ordered-products of its Wick powers.
We use the generic notation �L1 to denote any Wick power and TL1(

∏
�i) to denote

any time-ordered-product of Wick powers of the interacting field.
The first step is to define a suitable algebra, X (M, g), of which these interacting

fields will be elements. The interacting field algebra will then be defined to be a suitable
subalgebra, BL1(M, g), of X (M, g) (see Eq. (46) below). Unfortunately, even in Min-
kowski spacetime, if κ = 0 there is no known way to construct the fields for this theory
other than on the level of perturbation theory. Furthermore, the perturbative formulae
for the quantities that are normally calculated – such as Green’s functions and S-matrix
elements – are not expected to converge. In this regard, however, we note that quantities
such as Green’s functions and S-matrix elements do not depend solely on the algebraic
properties of the fields themselves, but also involve properties of the vacuum state or
ground state and, in many instances, also “in” and “out” states. However, even if, in
some suitable sense, the algebra of fields were to vary analytically under changes of the
parameter κ , there is no reason that certain states of the theory, such as the ground state,
need vary analytically. This suggests the possibility that if perturbation theory were used
solely for the purpose of calculating algebraic relations involving the interacting field
– rather than properties involving states – then perhaps at least some of the difficulties
with the convergence of perturbative expansions would not arise. In other words, rath-
er than using perturbation theory to calculate Green’s functions, S-matrix elements, or
other quantities that depend upon states, we suggest that it may be more fruitful to use
perturbation theory to attempt to find analytic relations between the field observables
that hold to all orders in perturbation theory.

However, we shall not attempt to pursue any such program here, but rather will only
attempt to construct the interacting theory at the level of formal power series in the
coupling constant κ . Thus, we shall take X (M, g) to be

X (M, g) =×∞n=0W(M, g), (32)
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where an element A ∈ X (M, g) of the form A = (A0, A1, A2, . . . ) should be interpreted
as corresponding to the formal power series

A =
∞∑

n=0

Anκ
n. (33)

The multiplication law in X (M, g) is then defined to be that corresponding to the mul-
tiplication of the formal power series expressions (33), i.e., if A = (A0, A1, A2, . . . )

and B = (B0, B1, B2, . . . ), then A 	 B = (A0 	 B0, A1 	 B0 + A0 	 B1, . . . ). Note
that the interacting field algebra BL1(M, g) ⊂ X (M, g) that we will define in Eq. (46)
below will then formally correspond to the entire one parameter family of interacting
field algebras for all values of κ , rather than the interacting field algebra for a specific
value of κ .

To define the interacting field, we first consider a situation in which the interaction
is turned on only in some finite spacetime region, i.e., we choose a cutoff function, θ , of
compact support on M which is equal to 1 on an open neighborhood of the closure, V̄ ,
of some globally hyperbolic open region V with the property that � ∩ V is a Cauchy
surface for V for some Cauchy surface � in M . This cutoff will be removed in a later
step (see below). We define the relative S-matrix for f � with respect to the interaction
Lagrangian density θL1 by

SθL1(f �) = S(θL1)
−1 	 S(θL1 + f �), (34)

where the local S-matrix, S(f �), was defined in Eq. (15) above. Then the Wick power,
�θL1 , for the interacting theory with Lagrangian density θL1 corresponding to the Wick
power � of the free theory is defined by [2]

�θL1(f ) ≡ ∂

i∂α
SθL1(αf �)

∣∣∣∣
α=0

. (35)

Here the right side of Eq. (35) should be viewed as (rigorously) defining an element
of X (M, g), which is obtained by formally expanding S(θL1)

−1 and S(θL1 + f �)

in powers of the coupling constant κ and then collecting all of the (finite number of)
terms that multiply κn for each n (see Eq. (33) above and Eq. (37) below). Similarly, the
time-ordered-product of Wick powers of the interacting field with Lagrangian density
θL1 is defined by

TθL1

(
n∏

i=1

�i(fi)

)
≡ ∂n

in∂α1 . . . ∂αn

SθL1

(
∑

i

αifi�i

) ∣∣∣∣
α1=···=αn=0

. (36)

Note that the definition of �θL1 (as well as that of TθL1(
∏

�i)) has been adjust-
ed so that �θL1 coincides with the corresponding free field � before the interaction is
“switched on”. This can be seen explicitly by expressing �θL1(f ) in terms of the “totally
retarded products”8

�θL1(f ) = �(f )+
∑

n≥1

in

n!
R(f �; θL1, . . . , θL1︸ ︷︷ ︸

n f actors

). (37)

8 This formula is known as “Haag’s series,” since an expansion of this kind was first derived in [13]
for Minkowski spacetime; see also [12].
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Since the R-products have support

suppR ⊂ {(y, x1, . . . , xn) | xi ∈ J−(y) ∀i}, (38)

it follows that all terms in the above sum will vanish if the support of f does not intersect
the causal future of the support of θ .

Below, we will need to know how the fields (36) change under a change of the cutoff
function θ . Now if θ and θ ′ are two cutoff functions, each of which are 1 in an open
neighborhood of V̄ as above, then there exists a smooth function h− of compact support
on M which is equal to θ − θ ′ on the causal past of the region V , and whose support
does not intersect the causal future of V . The unitary U(θ, θ ′) defined by

U(θ, θ ′) = SθL1(h−L1) (39)

is then independent of the particular choice for h−, and one has [4, Thm. 8.6]

U(θ, θ ′) 	 TθL1

(∏
�i(fi)

)
	 U(θ, θ ′)−1 = Tθ ′L1

(∏
�i(fi)

)
, (40)

for all fields �i and all smooth scalar densities fi of compact support in V .
We now remove the cutoff θ . Formulas (35) and (36) will not, in general, make sense

if we straightforwardly attempt to take the limit θ → 1. Indeed if θ could be set equal to
1 throughout the spacetime in Eq. (35), then the resulting formula for �L1 would define
an interacting field in the sense of Bogoliubov [2], with the property that the interact-
ing field approaches the free field in the asymptotic past. However, even in Minkowski
spacetime, it is far from clear that such an asymptotic limit of the interacting field will
exist (particularly for massless fields), and it is much less likely that any such limit would
exist in generic globally hyperbolic curved spacetimes that are not flat in the asymptotic
past.

In order to remove the cutoff in a manner in which the limit will exist, we will not
try to take a limit where the field remains fixed in the asymptotic past but rather – fol-
lowing the ideas of [4] – we will take a limit where the field remains fixed in regions of
increasing size in the interior of the spacetime. To make this construction precise, it is
useful to have the following lemma:

Lemma 3.1. Let (M, g) be a globally hyperbolic spacetime. Then there exists a se-
quence of compact sets, {Kn}, with the properties that (i) for each n, Kn ⊂ Vn+1, where
Vn+1 ≡ int(Kn+1) (ii) ∪nKn = M , and (iii) for each n, Vn is globally hyperbolic and
� ∩ Vn is a Cauchy surface for Vn, where � is a Cauchy surface for M .

Proof. Let t be a time function on (M, g) with range−∞ < t <∞whose level surfac-
es are Cauchy surfaces, �t , that foliate M [11, 8]. Let � = �0. Choose any complete
Riemannian metric, qab, on �, choose x0 ∈ �, and let Bn be the closed ball (on �) of
radius n about x0 with respect to qab. Define

Kn = D(Bn) ∩ J−(�n) ∩ J+(�−n), (41)

where D denotes the domain of dependence and J− and J+ denote the causal past and
future, respectively. Then Kn is closed. Furthermore, since Bn is compact it follows that
J+(Bn)∩J−(�n) and J−(Bn)∩J+(�−n) are compact. Since Kn is a subset of the union
of these two sets, it follows that Kn is compact. Clearly, we have Vn ⊂ Vn+1. However,
if x lies on the boundary of Kn, then it must lie on the boundary of D(Bn) and/or lie on
�n or �−n; in all cases, it follows immediately that x ∈ Vn+1. Thus, Kn ⊂ Vn+1. To
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prove property (ii), let y ∈ M with, say, y ∈ J+(�). Since J−(y) ∩ � is compact, it
must be contained in some ball of radius r about x0 (with respect to the metric qab on
�). Then y ∈ D(Br), so y ∈ Kn for any n such that n > r and n > t(y), as we desired
to show. Finally, the fact that Vn is globally hyperbolic with Cauchy surface Vn ∩ �

follows immediately from the fact that Vn is the interior of the domain of dependence
of Bn for the spacetime I−(�n) ∩ I+(�−n). ��

Let {Kn}, n = 1, 2, . . . , be a sequence of compact sets with the properties stated in
Lemma 3.1. For each n, let θn be a smooth function with support contained in Kn+1 such
that θn = 1 on an open neighborhood of Kn. Let U1 = � and let Un = U(θn, θn−1) for all
n > 1, where U(θn, θn−1) was defined in Eq. (39) above. Write un = U1 	U2 	 · · · 	Un.
Our definition of the interacting field, its Wick powers, and their time-ordered-products
is:

TL1

(∏
�i(fi)

)
≡ lim

n→∞Ad(un) TθnL1

(∏
�i(fi)

)
, (42)

where we use the notation Ad(un)A = un 	A	u−1
n for any A ∈ X (M, g). The existence

of the limit is a direct consequence of the following proposition:

Proposition 3.1. Suppose that N is such that the support of each fi is contained in KN .
Then for all n, m ≥ N we have

Ad(un) TθnL1

(∏
�i(fi)

)
= Ad(um) TθmL1

(∏
�i(fi)

)
. (43)

Proof. It suffices to show that for any n ≥ N we have

un+1 	 Tθn+1L1

(∏
�i(fi)

)
	 u−1

n+1 = un 	 TθnL1

(∏
�i(fi)

)
	 u−1

n . (44)

But by Eq. (40) we have

Un+1 	 Tθn+1L1

(∏
�i(fi)

)
	 U−1

n+1 = TθnL1

(∏
�i(fi)

)
(45)

from which the desired result follows immediately by applying Ad(un) to both sides.
��

Now, given any compact set K ⊂ M and any family of compact sets Kn satisfying
properties (i) and (ii) of the above lemma, then there always exists9 an N such that
K ⊂ KN . Given any smeared time-ordered-product of Wick powers, we choose K to be
the union of the supports of all of the (finite number of) test functions appearing in the
time-ordered product. By the above proposition, there exists an N such that the sequence
appearing on the right side of Eq. (42) is constant for all n > N . Therefore, the limit
exists.

The meaning of the sequence Ad(un) TθnL1(
∏

�i(fi)), n = 1, 2, . . . , is easily under-
stood as follows. Since u1 = �, the first element of this sequence is just the Bogoliubov
formula for this interacting field quantity with cutoff function θ1. The second element
of this sequence modifies the Bogoliubov formula with cutoff function θ2 in such a way
that, according to Eq. (40) above, the modified Bogoliubov formula with cutoff function

9 Proof. Otherwise, one could find a sequence {xn} ∈ K such that xn /∈ Kn for all n. However, this
sequence would have an accumulation point, x, which must lie in the interior of some KN , resulting in
a contradiction.
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θ2 agrees with the unmodified Bogoliubov formula with cutoff function θ1 when the
supports of all of the fi are contained within K1. For the third element of the sequence,
the unitary map U3 first modifies the Bogoliubov formula with cutoff function θ3 so that
it agrees in region K2 with the Bogoliubov formula with cutoff function θ2. The action
of the unitary U2 then further modifies this expression so that it agrees in region K2 with
the modified Bogoliubov formula of the previous step. In this way, we have implemented
the idea of “keeping the interacting field fixed in the interior of the spacetime” as the
cutoff is removed.

We define the interacting field algebra BL1(M, g) to be the subalgebra of X (M, g)

generated by the interacting field, its Wick powers, and their time-ordered-products, i.e.,

BL1(M, g) ≡
{

algebra generated by TL1

(∏
�i(fi)

)
| fi ∈ D1(M), �i ∈ V

}
. (46)

This definition of BL1(M, g) as a subalgebra of X (M, g) depends on a choice of a
family of compact sets Kn satisfying the properties of Lemma 3.1 as well as a choice
of cutoff functions θn. If we were to choose a different family, K̃n, of compact sets
and a corresponding different family, θ̃n, of cutoff functions, we will obtain a different
subalgebra B̃L1(M, g) ⊂ X (M, g) of interacting fields. However, the algebra B̃L1(M, g)

is isomorphic to BL1(M, g). To see this, focus attention on the subalgebras B̃L1(K, g)

and BL1(K, g) generated by fields that are smeared with test functions with support in
a fixed compact set K . Let n be such that K ⊂ Kn and K ⊂ K̃n. Let

Xn = un 	 U(θ̃n, θn) 	 ũ−1
n . (47)

Then Xn is a unitary element of X (M, g). However, for any F̃ ∈ B̃L1(K, g), it follows
from Eqs. (40) and (42) together with Proposition 3.1 that Ad(Xn)F̃ is the corresponding
interacting field quantity F ∈ BL1(K, g). This shows that the map γK : B̃L1(K, g)→
BL1(K, g) which associates to any element of B̃L1(K, g) the corresponding interacting
field quantity in BL1(K, g) is well defined and is a *-isomorphism. However, since K is
arbitrary, this argument actually shows that the map γ : B̃L1(M, g)→ BL1(M, g) which
associates to any element of B̃L1(M, g) the corresponding element of BL1(M, g) also is
well defined and is a *-isomorphism of these algebras10. Thus, as an abstract algebra,
BL1(M, g) is independent of the choices of Kn and θn that entered in its construction.
In the following we assume that we have made an arbitrary, but fixed, choice for Kn and
θn in every spacetime.

In the free theory, the notion of a local and covariant field was defined relative to a
natural injective *-homomorphism αχ : W(M̃, g̃)→W(M, g) associated with causal-
ity preserving isometric embeddings χ of a spacetime (M̃, g̃) into another spacetime
(M, g). The Wick products of the free field and their time-ordered-products were then
seen to be local, covariant fields in the sense that Eq. (10) holds. In order to get a cor-
responding natural injective *-homomorphism, αχ : BL1(M̃, g̃)→ BL1(M, g), for the
interacting field algebra, we must compose the natural action of αχ on BL1(M̃, g̃) with
the map γ constructed above in order to compensate for the fact that the choices for Kn

and θn on (M, g) may not correspond to the choices of K̃n and θ̃n on (M̃, g̃). It then
follows that the interacting field, its Wick powers and their time-ordered-products as

10 Note, however, that there need not exist a unitary element X ∈ X (M, g) whose action on B̃L1 (M, g)
coincides with γ .
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defined above are local and covariant fields in the sense that for any causality preserving
isometric embedding, χ , we have

αχ (�L1 [M̃, g̃](x)) = �L1 [M, g](χ(x)), (48)

with an analogous equation holding for the interacting time-ordered-products.
Finally, we comment upon how the theory we have just defined is to be interpreted,

i.e., how the mathematical formulas derived above for the interacting field relate to
predictions of physically observable phenomena. In many discussions of quantum field
theory in Minkowski spacetime, the interpretation of the theory is made entirely via the
(global) S-matrix. Here it is assumed that in the asymptotic past and future, states of
the field can be identified with states of a free field theory, which have a natural particle
interpretation. It is also assumed that one can prepare states corresponding to desired
incoming particle states and that one can measure the properties of the state of outgoing
particles, so that the S-matrix can be determined. A wide class of predictions of the
theory – including essentially all of the ones that can be measured in practice – can
thereby be formulated in terms of measurements of the S-matrix for particle scattering,
without the need to even mention local fields. Indeed, when this viewpoint on quantum
field theory is taken to the extreme, the local quantum fields, in effect, play the role of
merely being tools used for calculating the S-matrix.

An alternative, but closely related, viewpoint on interpreting the theory in Minkow-
ski spacetime makes crucial use of the existence of a preferred vacuum state. Here, one
focuses attention on the correlation functions of the field in this state, which are assumed
to be measurable – at least in the asymptotic past and future and for sufficiently large
spatial separation of the points. The interpretation of the theory can be formulated in
terms of its predictions for these correlation functions. This viewpoint on the interpre-
tation of the theory is closely related to the first one, since the particle measurements in
the S-matrix interpretation can be viewed as really corresponding to measuring certain
properties of these correlation functions.

However, for quantum fields in a general, globally hyperbolic curved spacetime, we
do not expect to have asymptotic, free particle states or any globally preferred states.
It therefore would not appear fruitful to attempt to interpret the theory in a manner
analogous to the above ways in which the theory is normally interpreted in Minkowski
spacetime. Rather, it would seem much more fruitful to view the interacting field itself –
together with its Wick powers and other local covariant fields in BL1(M, g) – as the
fundamental observables in the theory. To make “measurements”, we assume that we
have access to some external systems that couple to the field observables of interest via
known interaction Lagrangians, and that we can then measure the state of the external
systems at different times. It is clear that by making sufficiently many measurements of
this sort, we can test any aspect of the theory and – if the theory is valid – we also can
determine any unknown coupling parameters in the theory. However, it is not straight-
forward to give a simple, universal algorithm for doing so, since the properties of the
states will depend upon the spacetime under consideration, and a type of experiment that
would most usefully probe the theory for a particular spacetime may not be as useful for
another spacetime.

To make the remarks of the previous paragraph more explicit, consider a typical
experiment in Minkowski spacetime wherein one prepares a system of particles in a
given incoming state and measures the particle content of the outgoing particles. Both
the “state preparation” and the “measurement” of the “particles” in their final state really
consist of introducing certain external systems that have desired couplings to the quan-
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tum field, preparing the initial state of these external systems suitably, and measuring
their final state. In a curved spacetime, one could presumably introduce external sys-
tems with couplings to the field that are similar to those of systems used in Minkowski
spacetime, although it should be noted that there is not any obvious, general notion of
what it means to have “the same” system in a curved spacetime as one had in Minkow-
ski spacetime, unless one goes to a limit where the size of the system is much smaller
than any curvature scales. However, even if one considers an external system in curved
spacetime that corresponds to a system of “particle detectors” in Minkowski spacetime,
it may not be possible to give any consistent interpretation of the outcome of the curved
spacetime measurements in terms of “particles”. Nevertheless, such measurements still
provide information about the states of the quantum field, and it is clear that all aspects of
the quantum field theory can be probed by coupling the field to suitable external systems
and measuring the state of these external systems.

In should be noted that the above situation is not significantly different from the case
of classical field theory. Suppose that a classical field ϕ with Lagrangian (1) can be mea-
sured via its effect on the motion of scalar test charges, which feel a force proportional
to ∇aϕ. In Minkowski spacetime, one could set up an experiment where a global family
of inertial observers release test particles at some time in the distant past. By studying
the test particle motion for a brief interval of time, they could reconstruct ϕ (up to a
constant) in that region of spacetime and associate a noninteracting solution with the
state of the field in the distant past. By repeating this procedure in the distant future
they could obtain a corresponding non-interacting solution there, and they could thereby
determine the classical S-matrix. A great deal of information about the interacting the-
ory is encoded in the classical S-matrix. However, it does not seem straightforward to
give a simple algorithm for making measurements with a similar interpretative content
in a general curved spacetime, where there are no asymptotic regions and no globally
preferred families of observers. Nevertheless, it is clear that the classical field theory in
curved spacetime is as meaningful and interpretable as in Minkowski spacetime, and that
all of the predictions of the curved spacetime theory can be probed by doing experiments
that study the motion of a sufficiently wide class of test particles.

3.2. Renormalization ambiguities for the interacting field. In the previous subsection
we explained the construction of the interacting Wick products and their time-ordered-
products in the interacting field theory classically described by the Lagrangian L given
by (1). These constructions were based on a prescription for defining the Wick products
and their time-ordered-products in the corresponding free field theory. As we discussed
in Sect. 2, the definition of these quantities is subject to some well-specified ambiguities.
Therefore, the quantities in the interacting field theory also will be subject to ambiguities.

The purpose of this section is to give a precise specification of these ambiguities.
We shall show that a change in the prescription for the Wick products and their time-or-
dered-products (within the class of “allowed prescriptions” specified by our uniqueness
theorem) corresponds to a shift of coupling parameters of the theory appearing in the
Lagrangian (1). More precisely, the interacting field algebra obtained with the new pre-
scription will be isomorphic to the interacting field algebra obtained with the original
prescription, but with the interaction Lagrangian modified by the addition of “counter-
terms”, which – for a renormalizable theory, as considered here – are of the same form
as those appearing in the original Lagrangian. This isomorphism of the interacting field
algebras for the two different prescriptions will map the interacting field to a multiple of
the interacting field. However, the relationship between the higher Wick powers of the
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interacting field and their time-ordered-products as defined by the two prescriptions is
more complicated: the isomorphism between the algebras will map a higher Wick power
(or a time-ordered-product of Wick powers) into a field of the form specified in Eq. (52)
below.

To make the above statements more explicit, suppose that we are given two prescrip-
tions for defining the Wick products and their time ordered products in the free field
theory, both satisfying the assumptions of our uniqueness theorem. These prescriptions
will give rise to two different constructions of interacting fields, which we shall denote
as TL1(

∏
�i) respectively T̃L1(

∏
�̃i), and we write BL1(M, g) respectively B̃L1(M, g)

for the algebras generated by these fields. Then the relation between the tilde inter-
acting fields and the untilde interacting fields can be stated as follows: There exists a
*-isomorphism

r : B̃L1(M, g)→ BL1+δL1(M, g) (49)

such that

r
(
ϕ̃L1(f )

) = ZϕL1+δL1(f ), (50)

for all f ∈ D1(M). The field ϕ̃L1 on the left side of Eq. (50) is the interacting field
defined using the “tilde prescription” with respect to the interaction Lagrangian density
L1, whereas the field ϕL1+δL1 on the right side of this equation is defined using the “un-
tilde prescription” with respect to the interaction Lagrangian density L1 + δL1, where
δL1 is given by

δL1 = 1

2
[δz(∇ϕ)2 + δξRϕ2 + δm2ϕ2 + δκϕ4]ε. (51)

The parameters in this expression (including δκ), as well the parameter Z in Eq. (50) are
formal power series in κ with real coefficients. The generalization of formula (50) for
the action of r on an arbitrary interacting time-ordered-product in the tilde prescription
is given by

r

(
T̃L1

(
n∏

i=1

�̃i(fi)

))
= TL1+δL1

(
n∏

i=1

Zi�i(fi)

)

+
∑

P

TL1+δL1




∏

I∈P
O |I |(×i∈I fi�i)

∏

j /∈I ∀I∈P
Zj�j (fj )



 .

(52)

Here, the Zi are formal power series in κ whose coefficients are real provided the
corresponding field �i is (formally) hermitian. The On are multilinear maps from
×nD1(M, V)→ D1(M, V) that depend on the interaction Lagrangian L1 and have sim-
ilar properties to the maps On in our uniqueness theorem for the time-ordered products of
Wick products in the free theory: First, the On can be given an analogous representation
to the quantities On in the free theory given in Eq. (19),

On(×n
i=1fi�i) =

∑

j

cjGj�j . (53)
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The densities Gj have the same form as the the corresponding expressions Fj in the free
theory (see Eq. (20)), and the cj are formal power series in κ . If the terms appearing
on the right side of Eq. (53) are written out in terms of geometrical tensors (and the
coupling constants in the free theory), then the engineering dimensions of each term
will satisfy a “power counting relation” identical to that in the free theory, Eq. (23).

In terms of the generating functional

SL1

(∑
fi�i

)
= �+

∑

n≥1

in

n!
TL1

(
n∏∑

�i(fi)

)
(54)

for the interacting Wick products and time-ordered-products, and the generating func-
tional

δL1

(∑
fi�i

)
≡

∑

n≥1

in−1

n!
On

(×n ∑
fi�i

)
, (55)

relations (52) can be rewritten more compactly as

r
(
S̃L1(

∑
fi�i)

)
= SL1+δL1

(∑
Zifi�i + δL1

(∑
fi�i

))
. (56)

In the preceding discussion, we have highlighted the analogies between the structure
of the renormalization ambiguities in the free and interacting theories. However, there
are also some key differences. Firstly, in our identity (25) specifying the renormaliza-
tion ambiguities of the time-ordered-products in the free theory, the tilde and untilde
time-ordered-products are defined both “with respect to the same Lagrangian”. By con-
trast, in the corresponding formula (52) in the interacting theory, the tilde and untilde
time-ordered-products are defined with respect to different Lagrangians. A second key
difference between formulas (25) and (52) the free and interacting theories is the ap-
pearance of the “field strength renormalization factors,” Zi , in the interacting theory,
which are absent in the free theory. Third, while the maps On and On in the free and
interacting theories satisfy a number of similar properities, the map On does not satisfy
the commutator property, Eq. (21), satisfied by On in the free theory. Fourth, we note
the appearance of the isomorphism r in our formula (52) for the renormalization am-
biguity of the interacting time-ordered-products, which is absent in the corresponding
formula (25) in the free theory.

Proof of Eq. (52). Let θ be a cutoff function of compact support as above which is 1 in
an open neighborhood of the closure, V̄ of a globally hyperbolic subset V of M such
that V ∩ � is a Cauchy surface of V for some Cauchy surface � of M . Equation (16)

implies that

S̃θL1(f �) = S(θL1 + δ(θL1))
−1 	 S(f �+ θL1 + δ(f �+ θL1)). (57)

In order to bring this equation into a more convenient form, let us define the following
elements in X (M, g):

δn(θL1; f1�1, . . . , fn�n) ≡ ∂n

in−1∂α1 . . . ∂αn

δ

(
θL1 +

n∑

i=1

αifi�i

) ∣∣∣∣
α1=···=αn=0

.

(58)
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It follows from our uniqueness theorem that we can write δ0(θL1) as a sum (over n and
j ) of terms of the general form

Fn,j (x)�j = ε(x)
∑

(a)=(a1)...(an)

Cn,j
(a)(x)

n∏

i=1

∇(ai )θ(x)�j , (59)

where C(a)
n,j are monomials in the Riemann tensor, its derivatives, and m2. Since θL1

has engineering dimension 4, it follows from Eq. (23) that each term in (59) must have
engineering dimension 4. Since θL1 is hermitian, it follows from Eq. (24) that the C

(a)
n,j

must be real and that the fields �j must be hermitian. We now divide the terms (59)

appearing in δ0(θL1) into a group consisting of all terms not containing any derivatives
of θ and a second group of terms each containing at least one derivative of θ . This gives
a decomposition of δ0(θL1) into the following two groups of terms:

δ0(θL1) = ε
∑

n≥1

κnθn
∑

j

cn,j�j +
∑

n≥1

κn
∑

j

fn,jΛj . (60)

Here, cn,j are real constants, �j runs through all hermitian fields of engineering dimen-
sion 4 (including fields with dimensionful couplings such as m2ϕ2 or R2�), the fn,j are
compactly supported smooth densities on M whose support does not intersect on open
neighborhood of V̄ , and Λj are hermitian fields of engineering dimension less than 4.
In the decomposition (60), we may replace the smooth functions θn in the first sum by
the function θ at the expense of adding new terms of the kind appearing in the second
sum, except that these new terms will have engineering dimension equal to 4. If this is
done, we obtain the decomposition

δ0(θL0) = θδL1 +
∑

j

hjΛj . (61)

Here δL1 is the real linear combination ε
∑

aj�j , where �j is running over all hermitian
fields of engineering dimension 4 (including again fields with dimensionful coupling)
and where aj =

∑
n≥1 cn,j κ

n. The second sum in the above decomposition (61) of
δ0(θL1) contains only real test densities hj of compact support that vanish on an open
neighborhood of V̄ . The quantities Λj are now hermitian fields of engineering dimension
≤ 4.

The field (density) δL1 in Eq. (61) is therefore of the form claimed in Eq. (51), except
that it may contain (i) terms of the form Cj�, where Cj is a monomial in the Riemann
tensor, its covariant derivatives and m2, and (ii) a term proportional to ϕ∇a∇aϕ. In prin-
ciple these terms should be included in Eq. (51). However, the terms (i) proportional to
the identity do not contribute to the relative S-matrix given by Eq. (57) and can therefore
be dropped. Furthermore, it can be seen that the term (ii) can always be eliminated in
favor of the term m2ϕ2+ξRϕ2 together with a sum of products of curvature tensors and
m2 of engineering dimension 4 times the identity �, if the following additional condition
is imposed on the time-ordered-products:

T

(
ϕ(∇a∇a −m2 − ξR)ϕ(f0)

n∏

i=1

�i(fi)

)
= T




∑

j

Kj�(f0)

n∏

i=1

�i(fi)



 (62)
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for all �i and all fi ∈ D1(M), where Kj are monomials in the Riemann tensor, its
derivatives and m2 of engineering dimension 4. For the case of theWick power ϕ(∇a∇a−
m2− ξR)ϕ itself, this condition was shown to hold by Moretti [18, Eq. (47)] for the “lo-
cal normal ordering prescription” given in [15] and Eq. (105) below. Using the methods
of [16], it can be shown that this additional normalization condition can also be satisfied
for general time-ordered-products of the form (62). Therefore, we will assume that a
condition of the form Eq. (62) has been imposed11. It then follows that δL1 has the form
claimed in Eq. (51).

Again, using the properties of the maps On in our uniqueness theorem, we can write

δ1(θL1; f �) = f δZ�+O1(f �), (63)

where δZ is a formal power series in the coupling constant κ . If � is hermitian, then it
follows again from Eq. (24) that these power series have real coefficients. The element
O1(f �) is of the form

∑
ZjGj�j , where the Gj can be written as

Gj(x) = ε(x)
∑

(a)

Cj
(a)(x)∇(a)f (x), (64)

where we have identified the density f with a smooth function on M via the metric vol-
ume element ε and where the Cj

(a) are monomials in the Riemann tensor, its derivatives
and m2 of the correct dimension. The Zj are formal power series in κ and the �j are local
covariant fields with fewer powers in the free field than �. Moreover, for n ≥ 2, we define

On(×n
i=1fi�i) ≡ δn(θL1; f1�1, . . . , fn�n). (65)

Using the properties of On given in our uniqueness theorem for the time-ordered-prod-
ucts in the free theory, we can again conclude that the On must have the form stated
below Eq. (52), and that, in particular, they are independent of the particular choice of θ

so long as the support of f is contained in the region where θ is equal to 1. If we finally
define δθL1(f �) as in Eq. (55) and set Z = 1 + δZ, then we can recast Eq. (57) into
the following form:

S̃θL1(f �) = Sθ(L1+δL1)+
∑

hj �j
(Zf �+ δL1(f �)). (66)

On J (V ) = J+(V ) ∪ J−(V ) (the union of causal future and causal past of V ), we
decompose hj = hj− + hj+, where hj± has compact support which does not intersect
J∓(V ). If we now set

W(θ) = Sθ(L1+δL1)

(∑
hj−Λj

)
, (67)

then we obtain by [4, Thm. 8.1],

S̃θL1(f �) = W(θ) 	 Sθ(L1+δL1)(Zf �+ δL1(f �)) 	 W(θ)−1, (68)

which holds for all f ∈ D1(M) with compact support in V . More generally, an analo-
gous formula will hold if the expression f � is replaced by a sum of the form

∑
αifi�i ,

where each fi has compact support in V .
We now obtain the desired formula Eq. (52) from Eq. (68) by removing the cutoff

θ in the same way as in our definition of the interacting field in Sect. 3.1: We consider
11 We will give a systematic analysis elsewhere of conditions that can be imposed on Wick powers and

time-ordered-products involving derivatives.
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a sequence of cutoff functions θn which are equal to 1 on globally hyperbolic open
regions Vn with compact closure that exhaust M . The interacting fields TL1+δL1(

∏
�i)

are then given in terms of the corresponding fields with cutoff interaction θn(L1+ δL1)

via Eq. (42), and the interacting fields T̃L1(
∏

�̃i) are likewise given in terms of the
corresponding fields with cutoff interaction θnL1 by the tilde version of Eq. (42). Using
that the interacting fields with cutoff θn are related via the unitary W(θn) (see Eq. (68)),
one can now easily obtain a *-isomorphism r : B̃L1(M, g)→ BL1+δL1(M, g) satisfying

r
(S̃L1(f �)

) = SL1+δL1(Zf �+ δL1(f �)), (69)

where f is now an arbitrary test density of compact support. We can replace f � in the
above formula by a sum

∑
αifi�i and differentiate the formula n times with respect to

the parameters αi (setting these parameters to zero afterwards). This gives us the desired
identity (52). ��

4. The Renormalization Group in Curved Spacetime

4.1. Scaling of interacting fields. As explained in the previous section, it is possible to
give a perturbative construction of the interacting quantum field theory that defines the
interacting field, its Wick products, and their time ordered products as local, covariant
fields. The construction of this theory depends on a prescription for defining Wick pow-
ers and their time-ordered-products in the corresponding free theory. As also explained,
the definition of these quantities involves some ambiguities, and consequently the defi-
nition of the interacting field theory is also ambiguous. Nevertheless we showed in the
previous subsection that these ambiguities can be analyzed in much the same way as in
the free theory. The result of this analysis was summarized in Eq. (52).

In the present section we want to investigate the behavior of the interacting field, its
Wick powers, and their time-ordered products in the interacting theory under a rescaling
of the metric by a constant conformal factor λ. As explained in the introduction, this
analysis corresponds to a definition of the renormalization group in curved spacetime.

For the Wick powers and time-ordered-products in the free theory, the scaling be-
havior was analyzed at the end of Sect. 2 using the “scaling map”, σλ, (introduced in
Eq. (28) above), which associates to every element of W(M, λ2g, p(λ)) a corresponding
element of W(M, g, p), where p(λ) = (λ−2m2, ξ) are the rescaled coupling constants.
Choose an arbitrary, but fixed, prescription for defining Wick powers and their time-
ordered-products in the free theory that satisfy the axioms of [15 and 16]. Let λ be an
arbitrary, but fixed, positive real number, and let � be a Wick power with engineering
dimension d. We define

λ�[M, g, p](f ) = λd σλ

(
�[M, λ2g, p(λ)](f )

)
, (70)

and we similarly define λT (
∏

λ�i)[M, g, p]. It follows immediately that λ� and
λT (

∏
λ�i) provide prescriptions for defining Wick powers and their time-ordered-prod-

ucts that also satisfy all of the axioms of [15 and 16]. As we have already noted, it then
follows that the relation of this new λ-dependent prescription to the original prescription
is of the form given by Eq. (30) (but without the factors of λ−dT occurring on the right
side of that equation).

In order to analyze the scaling behavior of the fields in the interacting theory defined
by the interaction Lagrangian density L1 = κϕ4ε, we proceed as follows. Our new λ-de-
pendent prescription, Eq. (70), for defining Wick powers and their time-ordered-products
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for the free field gives rise, via the construction of Sect. 3.1, to a new λ-dependent pre-
scription for the perturbative construction of the corresponding interacting fields, which
we denote by λ�L1 and λTL1(

∏
λ�i), respectively. These quantities span an algebra

of interacting fields denoted by λBL1(M, g). From the uniqueness result, Eq. (52), for
the interacting Wick powers and their time-ordered-products derived in the preceding
subsection we then immediately get, for each λ > 0, a *-isomorphism

rλ : λBL1(M, g)→ BL1+δL1(λ)(M, g). (71)

Here, δL1(λ) is the λ-dependent counterterm Lagrangian of the form (51), whose λ-de-
pendent coupling parameters are given by formal power series in κ . The coefficients in
these power series are polynomials in log λ whose degree increases with n, i.e.

δm2(λ) =
∞∑

n=1

pn(log λ)κn, (72)

where the pn’s are polynomials12, and similarly for δz(λ), δξ(λ), δκ(λ).
It is not difficult to see that the relation between λ�L1 and �L1 is simply

λ�L1 [M, g, p](f ) = λd σλ

(
�L1 [M, λ2g, p(λ)](f )

)
, (73)

where here we have again denoted by σλ the obvious extension of σλ from W to X .
A similar formula holds for the time-ordered-products of the interacting fields. Con-
sequently, if we compose σλ with rλ constructed above, we obtain a *-isomorphism
Rλ = rλ ◦ σλ,

Rλ : BL1(M, λ2g, p(λ))→ BL1+δL1(λ)(M, g, p), (74)

where we indicate explicitly the dependence on the parameters p in the free theory. Since
the scaling map σλ in the free theory satisfies σλ ◦ σλ′ = σλλ′ , it follows that

Rλ ◦Rλ′ = Rλλ′ . (75)

Using Eq. (52) we find that the action of Rλ on an interacting time-ordered-product
in the algebra BL1(M, λ2g, p(λ)) is given by

Rλ

(
TL1

(
n∏

i=1

�i(fi)

))

= λ−dT TL1+δL1(λ)

(
n∏

i=1

Zi(λ)�i(fi)

)

+λ−dT
∑

P

TL1+δL1(λ)




∏

I∈P
O |I |(λ;×i∈I fi�i)

∏

j /∈I ∀I∈P
Zj (λ)�j (fj )



 . (76)

Here, the λ-dependent field strength renormalization factors, Zi(λ), can be written as
Zi(λ) = 1+∑

n≥1 zi,n(log λ)κn, where the coefficients zi,n depend at most polynomi-
ally on log λ. The terms On(λ;×ifi�i) have the same form as Eq. (52), and each of the

12 It is possible to derive inequalities for the maximum degree of the polynomials pn as a function of
the order n in perturbation theory.
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terms in the sum on the right side of this equation is a formal power series in κ , whose
coefficients are geometric tensors times polynomials in log λ. For the special case of the
interacting field ϕL1 , the above formula simplifies to

Rλ(ϕL1(f )) = λ−1Z(λ)ϕL1+δL1(λ)(f ). (77)

Equation (76) is our desired formula for the scaling behavior of the fields in the inter-
acting quantum field theory. Although Eq. (76) has many obvious similarities to the cor-
responding formula Eq. (30) in the free theory, it should be noted that there are a number
of important differences, in parallel with the differences in the general renormalization
ambiguities of the free and interacting fields (see Sect. 3.2 above). Most prominently,
in the free field theory, the scaling relations (30) relate rescaled time-ordered-products
to the unscaled time-ordered-products defined with respect to the “same Lagrangian”,
whereas the scaling relations Eq. (76) in the interacting theory13 relate the rescaled
time-ordered-products for the interaction Lagrangian L1, to the unscaled time-ordered-
products defined with respect to the interaction Lagrangian L1(λ) = L1 + δL1(λ).
Another important difference between the scaling relations (76) and (30) is the occur-
rence of the field strength renormalization factors, Zi(λ), in the interacting field theory,
while such factors are absent in the free theory. As a consequence, the interacting fields
do not in general have an almost homogeneous scaling behavior.

Given any fixed renormalization prescription, Eq. (74) shows that the theory defined
for the rescaled metric and rescaled parameters of the free theory is equivalent to the
original theory with a Lagrangian modified by δL1(λ). The λ-dependence of the
parameters δm2(λ), δz(λ), δξ(λ), and δκ(λ) in δL1(λ) define the renormalization group
flow of the theory. As already mentioned δm2, δz, δξ , and δκ are formal power series in
κ . These quantities also depend upon the parameters appearing in L0, so δm2, δz, δξ ,
and δκ should be viewed as effectively being functions of κ, m2, and ξ , as well as of λ.
However, it should be noted that the renormalization group flow is independent of the
spacetime metric g.

The physical meaning of the renormalization group flow can perhaps be best ex-
plained by imagining that a quantum field theory textbook from an ancient civilization
has been discovered. This textbook contains a complete description of perturbative ren-
ormalization theory for the scalar field (1) as well as complete instructions on how to
build apparatuses to prepare states of the theory and to make measurements (see the
discussion at the end of Sect. 3.1). It also records the results of these measurements and
compares them with theoretical predictions (to some appropriately high order in per-
turbation theory), thereby fixing the parameters of the theory. However, the one piece
of information that is missing is the system of units used by the ancient civilization;
in other words, the lengthscale, l, used by the ancient civilization to define the funda-
mental unit of length (in terms of which other units, such as mass, are defined in the
standard way) is not presently known. This lengthscale enters both the renormalization
prescription given in the book (since, the specification of a particular locally constructed
Hadamard parametrix and the renormalization prescription for defining time-ordered-

13 For the classical interacting field, the scaling relations also do not involve a modification of the
interaction Lagrangian, as can be seen from the fact that the classical Lagrangian L (and the correspond-
ing classical nonlinear equations of motion) is manifestly invariant under transformation g → λ2g,
ϕ→ λ−1ϕ, m2 → λ−2m2 and ξ → ξ . This can also be seen, more indirectly, in the present formalism
if one keeps explicitly the dependence of our constructions on �, so that the corresponding classical theory
corresponds to the limit �→ 0. This is most naturally done by introducing � as an explicit parameter in
our definition of the product “	”, Eq. (6), in our algebra W (and likewise X ); see [9].
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products require a specification of a unit of length) as well as the instructions for building
the apparatuses and making the measurements. Suppose, now, that a physicist from the
present era tries to verify the experimental claims made in the book. He makes a guess,
l′, as to the value of l, which, as it turns out, differs from l by a factor of λ−1, i.e.,
l′ = l/λ. Since the present-day physicist will normalize the spacetime metric so that a
rod of length l′ will have unit length (whereas the ancient civilization assumed that a rod
of length l has unit length), the spacetime metric g′ used by the present-day physicist
will differ from the metric g that would have been used by the ancient civilization by
g′ = λ2g. Correspondingly, all of the experimental apparatuses built by the present-day
physicist will be a factor of λ smaller in all linear dimensions than intended by the au-
thor of the ancient textbook. When the present day physicist completes his experiments,
he will find that his results disagree with the results reported in the book. He will find
that this disagreement will be alleviated when he compares his results to the theoretical
predictions obtained from the renormalization prescription given in the book by using
the mass parameter m′ = λ−1m in L0 rather than m, but disagreements will still remain.
However, if, in addition to the substitution m′ = λ−1m in L0, the present-day physicist
also modifies the interaction Lagrangian L1 by Eq. (51) (with δz(λ), δm2(λ), etc. given
by Eq. (72)), then he will find exact agreement with the theoretical predictions obtained
from the renormalization prescription given in the book, provided that he also redefines
the field variables in accordance with the *-isomorphism Rλ given by Eq. (76). In other
words, when the properties of the scalar field are investigated on a scale different from
that used by the ancient civilization, its properties will be found to differ by a “running
of coupling constants” in the interaction Lagrangian.

The quantity δκ(λ) can be viewed as modifying the nonlinear coupling parameter κ

appearing in the original interaction Lagrangian L1. However, it should be noted that
the quantities δm2(λ), δz(λ), and δξ(λ) all correspond to parameters appearing in the
original free Lagrangian, L0, rather than L1. It would be natural to try to interpret these
terms in L1 as corresponding to changes in the coupling constants m2, z = 1, and ξ

appearing in L0. However, we do not know how to justify such an interpretation because
we have only constructed the interacting theory at the level of a formal perturbation
expansion. Therefore, we cannot compare an interacting theory based on the free La-
grangian L0 with an interacting theory based on the free Lagrangian L0 + δL0, where
δL0 = 1

2 [δz(∇ϕ)2 + δξRϕ2 + δm2ϕ2]ε.
Finally, as we have already noted, the renormalization group flow occurs in the

parameter space of the theory and is independent of the spacetime metric. Thus, in
order to calculate (or measure) the renormalization group flow, it suffices to restrict
attention to a single spacetime, provided that the spacetime is not so special that pos-
sible curvature couplings do not occur. Thus, for example, in the theory with Lagran-
gian (1), the only coupling to curvature occurs in the term ξRϕ2, so it would suffice
to calculate the renormalization group flow in any spacetime with nonvanishing sca-
lar curvature. We will indicate how to calculate renormalization group flow in curved
spacetime in terms of Feynman diagrams in Appendix B. However, we point out here
that a great deal of information about the renormalization group flow can be deduced
from dimensional considerations as well as from some simple properties that hold in
special spacetimes14. From dimensional considerations alone, it follows that the depen-
dence of δm2(λ), δz(λ), δξ(λ), δκ(λ) on the parameters m2, ξ , and κ must be of the
form δm2(λ) = m2Fm2(λ, ξ, κ), δz(λ) = Fz(λ, ξ, κ), δξ(λ) = Fξ (λ, ξ, κ), δκ(λ) =

14 We are indebted to K.-H. Rehren, C.J. Fewster, and K. Fredenhagen for bringing this point to our
attention.
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Fκ(λ, ξ, κ). However, it is possible (and would be very natural) to choose a prescription
for defining free field Wick products and their time-ordered-products in an arbitrary
spacetime such that in the special case of Minkowski spacetime, this prescription does
not depend upon the irrelevant parameter ξ . It follows immediately that with such a
renormalization prescription, the renormalization group flow cannot depend upon ξ in
Minkowski spacetime and, therefore – since the flow is independent of the spacetime
metric – the flow cannot depend upon ξ in any spacetime. More generally, it is possible
(and would be very natural) to choose a prescription for defining free field Wick products
and their time-ordered-products in an arbitrary spacetime such that in the special case
of a spacetime with constant scalar curvature R (such as deSitter spacetime), the only
dependence of the prescription on the parameters m2 and ξ occurs in the combination
m2+ ξR. This condition implies that (in all spacetimes), the renomalization group flow
must take the form

δm2 = m2G1(λ, κ),

δξ = ξG1(λ, κ)+G2(λ, κ),

δz = G3(λ, κ),

δκ = G4(λ, κ). (78)

The functions G1, G3, and G4 can all be determined by calculations done entirely in Min-
kowski spacetime; the function G2 cannot be determined by calculations in Minkowski
spacetime but could be determined by calculations done, e.g., in deSitter spacetime.

4.2. Fixed points, essential vs. inessential coupling parameters. In the previous section
we have seen that a rescaling of the spacetime metric by a constant conformal factor,
g→ λ2g, (a “change of length scale”) gives rise to different definitions of the interacting
field theory. The relation between the definitions of the field theory at different length
scales is given by the renormalization group. It is of interest to ask at what points in the
parameter space of the theory the definition of a field theory is actually “independent”
of the scale at which it is defined. Such points are usually referred to as “fixed points”.

Naively, one might attempt to define a fixed point as a point in parameter space at
which the λ-derivatives of δm2(λ), δz(λ), δξ(λ), and δκ(λ) all vanish. However, this
definition would be too restrictive because it excludes points where the renormalization
group flow is nonvanishing but corresponds merely to a redefinition of field variables.
One would like to define the notion of fixed points so that it also includes points in
parameter space where the renormalization group flow is nonvanishing but is tangent to
a trivial flow corresponding to a field redefinition.

To see more explicitly the nature of such trivial flows, consider a field theory with
Lagrangian L(ϕ) and consider a mapping ϕ → F(ϕ) on field space such that F(ϕ)(x)

depends only on ϕ(x) and finitely many of its covariant derivatives at the point x. Then,
although the Lagrangian L(ϕ) and L(F (ϕ)) may look very different (i.e., different kinds
of couplings and different values of coupling parameters), they nevertheless would de-
fine an equivalent classical field theory. Thus, at the classical level, there is a wide class
of trivial flows in parameter space that correspond to field redefinitions. However, the
situation is far more restrictive for a field with Lagrangian (1) if we want the field redefi-
nition to keep the Lagrangian in a perturbatively renormalizable form. It is not difficult to
see that (in 4 dimensions) this leaves us only with the possibility to multiply the field by
a constant, i.e., the only possible form of F is F(ϕ) = sϕ. The new classical Lagrangian
L(s) ≡ L(F (ϕ)) is then
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L(s) = 1

2
[s2(∇ϕ)2 + s2(m2 + ξR)ϕ2 + s4κϕ4]ε. (79)

If one splits this Lagrangian into its free and interacting parts via L(s) = L0 + L1(s)

with L0 = 1
2 [(∇ϕ)2 +m2ϕ2 + ξRϕ2]ε, the interaction Lagrangian takes the form

L1(s) = 1

2
[(s2 − 1)(∇ϕ)2 + (s2 − 1)(m2 + ξR)ϕ2 + s4κϕ4]ε. (80)

Therefore, one might expect that the “one-parameter flow” defined by Eq. (80) – with
s taken to be an arbitrary power series in κ – would correspond to a trivial flow in the
parameter space of the theory in the sense that the theory constructed from the interac-
tion Lagrangian L1(s) would be equivalent to the theory constructed from the original
interaction Lagrangian L1 = 1

2κϕ4ε.
However, the actual situation is somewhat more complicated than the above consid-

erations might suggest. The theories constructed from the interaction Lagrangians L1(s)

and L1 will depend upon the specific choice of renormalization prescription, and, for
any given prescription, we see no reason why these two theories need be equivalent.
Indeed, it appears far from clear that there exists any renormalization prescription that
gives equivalence of the two theories. Nevertheless, we shall now show that, for any fixed
renormalization prescription, there exists some one-parameter family of interaction La-
grangians, K1(s), such that the theories constructed from K1(s) are equivalent to the
theory constructed from L1 in the sense that the algebras BK1(s)(M, g) and BL1(M, g)

are isomorphic. Furthermore, the action of this isomorphism on the interacting field cor-
responds to the simple field redefinition F(ϕ) = N(s)ϕ, where N(s) is a formal power
series with the property N(s = 1) = 1. The precise statement of this result is as follows:

Theorem 4.1. Let s = 1 +∑
i≥1 siκ

i be a formal power series in κ with real coeffi-
cients. Then there exists an interaction Lagrangian K1(s) of the same form as the orig-
inal Lagrangian, a formal power series N(s) and a *-isomorphism ρs : BL1(M, g)→
BK1(s)(M, g) such that

ρs

[
ϕL1(f )

] = N(s)ϕK1(s)(f ) (81)

for all f ∈ D1(M), and such that N(s = 1) = 1 and K1(s = 1) = L1.

A proof of this theorem is given in Appendix A.
According to the above theorem, it is natural to view the interaction Lagrangians

L1 and K1(s) as defining the same quantum field theories and ρs as implementing the
field redefinition. If we choose coordinates on the space of parameters in the Lagran-
gian so that the coordinate vector field of one of the coordinates is tangent to the flow
defined by K1(s), then we refer to this coordinate as an inessential parameter of the
theory (see, e.g., [24]). We define a fixed point of the renormalization group flow to be
a point at which only the inessential parameter changes under the flow. More precisely,
if λ→ L1(λ) is the renormalization group flow, then we say that we are at a fixed point
if there is a 1-parameter family λ→ s(λ) such that

L1(λ) = K1(s(λ)) for all λ > 0. (82)

This relation can be differentiated with respect to log λ, thereby relating a fixed point to
a zero of a suitably defined β-function. For this, we write L1(λ) = L1 + δL1(λ), and
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K1(s) = L1 + δK1(s), and we denote the parameters in δL1(λ) by δz(λ), δκ(λ), etc.
and the parameters in δK1(s) by δz̃(s), δκ̃(s), etc. We define15

βκ ≡ ∂

∂ log λ
δκ − ∂

∂s
δκ̃

(
∂

∂s
δz̃

)−1
∂

∂ log λ
δz

∣∣∣∣
λ=s=1

. (83)

Then a fixed point16 corresponds to a zero of βκ (together with a zero of similarly defined
beta functions βm2 , βξ ).
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A. Appendix A

In this appendix we give a proof of Theorem 4.1. Mainly for notational simplicity, we
will assume throughout this proof that ξ = m2 = 0, so that L0 = 1

2 (∇ϕ)2ε; the
general case can be treated in exactly the same way. Consider the Lagrangian density
δL0 = 1

2δs(∇ϕ)2ε with δs = s2 − 1, and a cutoff function θ which is equal to 1 in a
neighborhood of the closure V̄ of a globally hyperbolic neighborhood V with compact
closure and with a Cauchy surface of the form � ∩ V , where � is a Cauchy surface for
M . Although δL0 is, of course, only quadratic in the field ϕ, we may consider it as an
“interaction Lagrangian,” and we can define, by Eqs. (35) respectively (36) (with L1
in those equations replaced by δL0), the corresponding “interacting” fields as formal
power series in δs (or, more properly, as formal power series in κ , since s itself is a
formal power series in κ).

The first step in our proof is to show that the “interacting fields” ϕθδL0(f ) with f a
smooth test density of compact support in V satisfy exactly the same algebraic relations
as the fields s−1ϕ(f ). Furthermore, we show that the “interacting time-ordered-prod-
ucts” TθδL0(

∏
�i(fi)) (with the support of fi contained in V ) satisfy commutation

relations with the field ϕθδL0(f ) that have exactly the same form as the commutation
relations of s−NT (

∏
�i(fi)) with s−1ϕ(f ) given in [16], where N is the number of

free field factors in the time-ordered-product. We formulate this result as a lemma.

Lemma A.1. For all smooth test densities with support in V , we have that

ϕθδL0(∇a∇af ) = 0, ϕθδL0(f )∗ = ϕθδL0(f̄ ),

[ϕθδL0(f1), ϕθδL0(f2)] = is−2�(f1, f2)� (84)

in the sense of formal power series17 in κ . More generally it holds that

15 If K1(s) were actually of the form (80), then the β-function for κ would be given by βκ ≡
∂

∂ log λ (δκ(λ)− 2κδz(λ))|λ=1.
16 It should be noted that since the interacting theory has been constructed only at the level of a formal

perturbation expansion, it will not be possible to reliably determine fixed points unless they occur near
κ = 0.

17 For example, s−1 is defined as the formal power series
∑

n(−1)n(
∑

i≥1 siκ
i )n.
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[
TθδL0

(
n∏

i=1

�i(fi)

)
, ϕθδL0(fn+1)

]

= s−2
n∑

j=1

TθδL0



�1(f1) . . . i
∑

(a)

∂�j

∂∇(a)ϕ
(fn+1�(a)fj ) . . . �n(fn)



 , (85)

where fn+1�(a)fj was defined in Eq. (22).

Proof. In order to prove the first relation in Eq. (84), we first expand

ϕθδL0(f ) = ϕ(f )+
∑

n≥1

(iδs)n

n!
R(f ϕ; θL0, . . . , θL0︸ ︷︷ ︸

n f actors

). (86)

Since L0 is only quadratic in the field ϕ, the totally retarded products (86) can be given
in closed form in terms of the retarded Green’s function �ret for ∇a∇a ,

R(ϕ(x);
n∏

i=1

L0(yi)) = in
∑

i1···in
�ret (x, yi1)

←
∇
→
∇

×�ret (yi1 , yi2)
←
∇
→
∇ · · ·�ret (yin−1), yin)

←
∇
→
∇ϕ(yin), (87)

where the summation over the spacetime index has been suppressed in the expression
←
∇
→
∇ . We now use this expression to analyze the operator R(∇a∇af ϕ;×nθδL0), where

f is a test density supported in V . In order to do this, we perform the following steps: We
use∇a∇a�ret = δ to turn the first retarded Green’s function on the right side of Eq. (87)

into a delta-function. We then use that θ is 1 in V and that f has support in V and perform

n successive partial integrations in order to turn the
←
∇
→
∇ derivatives into

→
∇
→
∇ derivatives

which will now hit a single retarded Green’s function, thus resulting each time in a new
delta-function. If this is done, then one obtains R(∇a∇af ϕ;×nθδL0) = 0, thereby
proving the first equation in (84). The second equation in (84) follows from the unitarity
of the relative S-matrix SθδL0(f ϕ) for real-valued f .

We will demonstrate Eq. (85) in the case of Wick powers of the form ϕk; Wick pow-
ers with derivatives and time-ordered-products can be treated similarly. The proof of the
last relation in Eq. (84) is included as the special case k = 1. Our starting point is the
relation [9]18

[
ϕk

θδL0
(x1), ϕθδL0

(x2)
]

=
∑

n≥0

(iδs)n

n!

∫

M×n

∏

j

θ(yj )

×


R(ϕk(x1);ϕ(x2)

n∏

j=1

L0(yj ))− R(ϕ(x2);ϕk(x1)

n∏

j=1

L0(yj ))



 , (88)

where the integral is over the “y”-variables. We will now simplify the terms under
the sum in the above equation, starting with the terms R(ϕk(x1);ϕ(x2)

∏n
j=1 L0(yj )).

18 A general formula of this kind which holds within the LSZ-framework in Minkowski spacetime was
first given by [12].
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For this, we use the fact that the time ordered products with a factor ϕ can be shown
to satisfy the following requirement in addition to any other requirements imposed
so far19:

(∇a∇a)xT (ϕ(x)

n∏

j=1

�j(yj ))

= i

n∑

j=1

∑

(b)

∇(b)δ(yj , x)T (�1(y1) · · · ∂�j

∂∇(b)ϕ
(yj ) · · ·�n(yn)) (89)

for all fields �j . It can be seen that this implies

R(ϕk(x1);ϕ(x2)

n∏

j=1

L0(yj )) = i

n∑

l=1

∇a�ret (yl, x2)R(ϕk(x1); ∇aϕ(yl)
∏

j =l

L0(yj ))

+i�ret (x1, x2)R



∂ϕk

∂ϕ
(x2);

n∏

j=1

L0(yj )



 (90)

for the retarded products appearing in Eq. (88). Now the retarded products in the sum
on the right side of Eq. (90) again contain a factor ϕ, and we can use a similar argument
as above to further simplify each of these terms. Repeating this procedure n times, we
can rewrite the right side of Eq. (90) as

i

n∑

N=0

iN
∑

l1···lN
�ret (x1, yl1)

←
∇
→
∇�ret (yl1 , yl2)

←
∇
→
∇ · · ·�ret (ylN , x2)

× R



∂ϕk

∂ϕ
(x2);

∏

j =l1,...,lN

L0(yj )



 . (91)

The second term R(ϕ(x2);ϕk(x1)
∏n

j=1 L0(yj )) under the sum in Eq. (88) can be writ-
ten in the form of expression (91) with x1 and x2 exchanged. We now substitute these
expressions back into (88) and perform the following steps: We use that x1, x2 ∈ V , that
θ ≡ 1 on V and the support property supp �ret ⊂ {(x1, x2) ∈ M ×M | x1 ∈ J+(x2)}
to bring in turn each of the

←
∇
→
∇ derivatives on the variables ylj into a

→
∇
→
∇ derivative

acting on a single retarded Green’s function via a partial integration. We then use that
∇a∇a�ret = δ and use these delta-functions to get rid of the string of retarded Green’s
functions in (91). We now exploit the relation �ret (x1, x2) = �adv(x2, x1) (with �adv

the advanced Green’s function), as well as � = �adv − �ret , which enables one to
get rid of all retarded Green’s functions in favor of commutator functions. We finally
collect similar terms and use the geometric series

∑∞
N=0(δs)

N = s−2 (here it must be
used that s has the special form 1 +∑

i≥1 siκ
i , or else the formal power series s−2 is

not well-defined). If all this is done, then one obtains (85) for the special case of a Wick
product of the form ϕk . ��

19 A proof of this equation for Minkowski spacetime appears in [10]. This proof can be generalized to
curved spacetimes by suitably modifying the constructions of time ordered products given in [16].
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It follows from Eqs. (84) and (85) that the linear map

ρθ

[
ϕ(f1) 	 · · · 	 ϕ(fn)

] ≡ sn ϕθδL0(f1) 	 · · · 	 ϕθδL0(fn) (92)

defines a *-homomorphism from the canonical commutation relation algebra A(V , g)

into the subalgebra of X (M, g) spanned by products of the fields ϕθδL0(f ), where f is
an arbitrary test density supported in V . Since the algebra A(V , g) is simple, ρθ is injec-
tive. It is possible to see that the homomorphism ρθ can be extended by continuity20 to
a unique *-homorphism from W(V , g), (and therefore also from X (V , g)) to X (M, g).
We will denote this extension by the same symbol ρθ .

We will now construct for any set of test densities fi of compact support in V and
for any set of fields �i ∈ V an element F(s;×ifi�i) ∈ X (V , g) such that

ρθ

[
F(s;×n

i=1fi�i)
] = sN TθδL0

(
n∏

i=1

�i(fi)

)
, (93)

where N is the number of factors of ϕ in the time-ordered-product. Furthermore, we
claim that quantities F(s;×ifi�i) are independent of the particular choice of θ and V

and define in fact a new, s-dependent prescription for defining time-ordered-products in
the free theory, i.e. that

T̃

(
n∏

i=1

�̃i(fi)

)
≡ F(s;×n

i=1fi�i) (94)

satisfies all the requirements of our uniqueness theorem for time-ordered-products in
the free theory.

Before we sketch the proof of Eq. (93) and the claims following that equation, we
would like to mention that we see no obvious reason why the prescription T̃ should
coincide with the original prescription T . As we will see below, the possible failure of
T̃ to coincide with T is the reason why the Lagrangian K1(s) in the theorem need not
have the simple form expected from the classical theory.

It follows from the relation

ρθ ′ = Ad(U(θ ′, θ)) ◦ ρθ (95)

(with U(θ, θ ′) defined as in Eq. (39), but with L1 in that equation replaced by δL0) that
if elements F(s;×ifi�i) satisfying Eq. (93) exist, then they must be independent of θ .
We now explain how to construct these elements. By definition of ρθ given in Eq. (92)

we already know that Eq. (93) holds for the field sϕθδL0(f ) with F(s; f ϕ) given by
ϕ(f ) in that case. The construction of F(s;×ifi�i) for a general time-ordered-prod-
uct sNTθδL0(

∏
�i(fi)) is as follows: On the algebra W(M, g), we consider, for all

ti ∈ E ′(M, g), the (commutative, associative) product21

×nW(M, g)→W(M, g), ×n
i=1[ti]→ W(×n

i=1[ti]) ≡ [t1 ⊗sym · · · ⊗sym tn].

(96)

20 It was shown in [15] that the Hörmander topology on the spaces E ′sym(M×n) (see Eq. (8)) induces a
natural topology on the algebra W(V , g) and likewise on the algebra X (M, g). It can then be seen that
the map ρθ defined in Eq. (92) is continuous with respect to this topology.

21 If the ti are given by smooth densities fi on M , then the product W([f1], . . . , [fn]) corresponds to
the normal ordered product : ϕ(f1) · · ·ϕ(fn) :ω , where the normal ordering is done with respect to the
quasifree state ω used in the definition of the algebra W .
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We also denote by W the corresponding product on X (M, g) when each ti is a formal
power series in κ with coefficients in E ′(M, g). Then it follows from the third equation
in (84) that, within V , we have

[W(×n
k=1ϕθδL0(xk)), ϕθδL0(xn+1)] = s−2

n∑

k=1

i�(xk, xn+1)W(×j =kϕθδL0(xj )). (97)

Since the time-ordered-products TθδL0(
∏

�i(fi)) satisfy similar commutation relations
with the field ϕθδL0(f ) (see Eq. (85)), it is possible to prove that, within V , these time-
ordered-products can expanded in terms of the products W(×iϕθδL0(xi)) in a manner
analogous to the usual Wick expansion,

TθδL0

(
n∏

i=1

ϕki (xi)

)
=
∑

j≤k

(
k

j

)
τk1−j1...kn−jn(x1, . . . , xn)

×W(ϕθδL0(x1), . . . , ϕθδL0(x1)︸ ︷︷ ︸
j1 t imes

, . . . , ϕθδL0(xn), . . . , ϕθδL0(xn)︸ ︷︷ ︸
jn times

),

(98)

where the coefficients τk1−j1···kn−jn are distributional and we use a multi-index notation
j = (j1, . . . , jn), j ! = ∏

ji!, etc. The proof of this statement is similar to the proof of
the Wick expansion for the time-ordered-products in the free field theory given in [16].
Namely, we assume inductively that Eq. (98) has been demonstrated for all multi-indi-
ces k with |k| = ∑

ki < m. In order to prove it for a multi-index k with |k| = m, we
consider the expression

Dθ(x1, . . . , xn) = TθδL0

(
n∏

i=1

ϕki (xi)

)
−

∑

0 =j≤k

(
k

j

)
τk1−j1...kn−jn(x1, . . . , xn)

×W(ϕθδL0(x1), . . . , ϕθδL0(x1)︸ ︷︷ ︸
j1 t imes

, . . . , ϕθδL0(xn), . . . , ϕθδL0(xn)︸ ︷︷ ︸
jn times

),

(99)

where the only term τk1···kn that is not yet known by the induction hypothesis has been
omitted from the sum in (99). The commutation relations for the individual terms on
the right side of this equation now imply the commutation relation [Dθ(x1, . . . , xn),

ϕθδL0(y)] = 0 within V . The above statements will still be true for a suitable V contain-
ing a neighborhood of some Cauchy surface � of M . In this case, one can easily prove
using Eq. (86) and the above commutation relation that Dθ must in fact be a multiple of
the identity. We define τk1...kn to be this multiple.

The products on the right side of Eq. (98) can be written in terms of ordinary products
using the formula

W
(
×N

i=1ϕθδL0(xi)
)
=

∑

P

∏

j /∈I ∀I∈P
ϕθδL0(xj )

∏

P�I={i1,i2}
ωθδL0(xi1 , xi2), (100)

where P runs over all sets of mutually disjoint subsets I = {i1, i2} of {1, . . . , N} with
2 elements and where ωθδL0(x1, x2) = ω(ϕθδL0(x1)ϕθδL0(x2)). Thus, since we already
know that sϕθδL0(x) is the image of ϕ(x) under ρθ , we get from formula (100) an al-
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gebraic element whose image under ρθ is W(×iϕθδL0(xi)). Once we have found those
elements, we then get via Eq. (98) algebraic elements F(s;×ifi�i) in X (V , g) whose
image under ρθ is sN TθδL0(

∏
�i(fi)).

It can be shown explicitly that the quantities F(s;×ifi�i) are (s-dependent) local
and covariant fields in the sense of our definition of local and covariant fields in the free
theory (see Eq. (10)), and that they have a smooth/analytic dependence on the metric
under smooth/analytic variations of the metric. It is straightforward to show that the
quantities F(s;×ifi�i) satisfy the causal factorization property

F(s;×n
i=1fi�i) = F(s;×i∈I fi�i) 	 F (s;×j∈J fj�j ) (101)

whenever J−(supp fi)∩ supp fj = ∅ for all (i, j) ∈ I ×J , where I ∪J = {1, . . . , n} is
a partition into disjoint sets. It can be shown from Eq. (85) that the fields F(s;×ifi�i)

also satisfy the commutator property with a free field. Thus, these fields give a prescrip-
tion T̃ (

∏
�̃i(fi)) for defining time-ordered-products to which our uniqueness theorem

described in Sect. 2 can be applied22.
By this uniqueness result, the relation between the prescription T̃ and the original

prescription T for time-ordered-products in the free theory is given by Eq. (16). This is
equivalent to

ρθ

[
S
(∑

fi�i

)]
= SθδL0

(
sMi

∑
fi�i + δ

(
s;

∑
fi�i

))
, (102)

where the δ was introduced in Eq. (17), and where Mi is the number of factors of ϕ in
the field �i . (Note that δ now has an additional s-dependence, due to the fact that the
prescription T̃ is s-dependent.) Equation (102) is the key identity for this proof. In order
to exploit it, we introduce a cutoff function θ ′ which equals 1 on V and which is such
that the support of θ ′ is contained in the region where θ equals 1. If we now apply ρθ to
the element Sθ ′L1(

∑
fi�i), use Eq. (102) and proceed in a similar way as in the proof

of Eq. (52) in Sect. 3.2 to bring the resulting expression into a convenient form, then we
obtain the identity

Ad(V (θ, θ ′)) ◦ ρθ

[
Sθ ′L1

(∑
fi�i

)]

= Sθ ′K1(s)

(∑
Ni(s)fi�i + δL1

(
s;

∑
fi�i

))
(103)

for all test densities fi with support in V . Here, V (θ, θ ′) is a unitary that is defined in a
similar way as the unitary W(θ) in the proof of Eq. (52) in Sect. 3.2, Ni(s) are formal
power series in s, δL1 is defined as in Eq. (55), and K1(s) is the interaction Lagrangian
given by

K1(s) = (s2 − 1)L0 + s4L1 + δ(s; θL1)|θ=1. (104)

Finally, the desired *-isomorphism ρs is then obtained from Eq. (103) by removing the
cutoff represented by θ and θ ′ in the same way as in our construction of the interact-
ing field given in Sect. 3.1. Equation (81) corresponds to the special case � = ϕ of
Eq. (103).

22 Note however that the time-ordered-products T̃ (
∏

�̃i ) are by construction only defined as formal
power series in X (V , g) rather than W(V , g), since they may depend on s which is itself a formal power
series in κ . It is however not difficult to see that our uniqueness theorem can nevertheless still be applied.
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We finally remark that, as indicated above, if the prescription T̃ given by Eq. (93) were
actually equal to the original prescription T for defining the time-ordered-products, then
the term δ(s;∑ fi�i) appearing in Eq. (102) would be zero. This would imply that the
factors Ni(s) in Eq. (103) are equal to sMi (where Mi is the number of factors of ϕ in the
field �i), the term δL1(s;

∑
fi�i) in Eq. (103) would vanish, and the Lagrangian K1(s)

would be equal to L1(s) given by Eq. (80) as in the classical theory. Thus, Eq. (81) in the
statement of the theorem would be simplified to ρs[ϕL1(f )] = sϕL1(s)(f ), in complete
analogy with the classical theory.

B. How to Calculate the Renormalization Group in Terms of Feynman Diagrams

In the previous sections we have set up a general framework for describing how a giv-
en perturbative interacting field theory in curved spacetime changes under a change
of lengthscale, or, more properly, under a rescaling of the metric. This has led us to a
completely satisfactory notion of the renormalization group flow in curved spacetime,
without thereby having to introduce arbitrary vacuum states, bare couplings, cutoffs or
arbitrary mass scales into the theory.

However, our construction is rather abstract and it may not be obvious how one
would calculate this flow in practice (to a given order in perturbation theory). We will
now outline how this can be done, and we will thereby establish the connection be-
tween the framework explained above and the formalism of Feynman diagrams, which
is commonly used to define the renormalization group flow in Minkowski spacetime23.

To begin, we define [15, 16], for sufficiently nearby points, “locally normal ordered”
fields :

∏
ϕki (xi) :H by

:
n∏

i=1

ϕki (xi) :H ≡ δ|k|

i|k|δf (x1)k1 . . . δf (xn)kn
exp

[
iϕ(f )+ 1

2
H(f, f )

]
, (105)

where |k| =∑
ki and where

H(x1, x2) = U(x1, x2)P (σ−1)+ V (x1, x2) log |σ | (106)

is the “local Hadamard parametrix”. Since :ϕk(x) :H itself is a prescription for defining
Wick powers to which our uniqueness theorem applies [15], it is possible to expand the
Wick powers ϕk(x) in a “local Wick expansion” in terms of these locally normal ordered
fields [15],

ϕk(x) =
∑

j≤k

(
k

j

)
tk−j (x) :ϕj (x) :H , (107)

where tk are finite sums of terms of the form local curvature terms times parameters in
the free theory, of the appropriate engineering dimension. Of course, if the prescription
for defining Wick powers is chosen to be that of “local normal ordering” with respect

23 We have already noted at the end of Sect. 4.1 that the functions G1, G3, G4 appearing in the ren-
ormalization group flow (see Eq. (78)) can be determined in Minkowski spacetime, and they can be
calculated by standard methods. However, the function G2 must be calculated in curved spacetime.
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to H , then the expansion of Eq. (107) is trivial, i.e., we have t0 = 1 and tj = 0 for all
j > 0. A similar expansion is possible also for the time-ordered-products [16],

T

(
n∏

i=1

ϕki (xi)

)
=

∑

j≤k

(
k

j

)
tk1−j1···kn−jn(x1, . . . , xn) :

n∏

i=1

ϕji (xi) :H , (108)

where the tj1···jn are certain distributions that are defined locally and covariantly in terms
of the metric24, and where in Eq. (108) we use the multi-index notation j = (j1, · · · , jn),
j ! =∏

i ji!, etc.
The local Hadamard parametrices H appearing in Eqs. (107) and (108) could be

chosen so that in Minkowski spacetime it coincides with the symmetrized two-point
function of the unique, Poincaré invariant vacuum state. In that case, when restricted
to Minkowski spacetime, the “local normal ordering” prescription for defining Wick
powers would coincide with the (globally defined) normal ordering with respect to the
Poincaré invariant vacuum state. Thus, in Minkowski spacetime, the expansion (108)
could be viewed as expressing time-ordered-products in terms of normal ordered prod-
ucts with repect to the usual vacuum state. In curved spacetime, it also would be possible
to choose a globally defined “vacuum state” (i.e., a quasi-free Hadamard state), ω, and
perform Wick expansions in terms of Wick products that are normal ordered with respect
to ω. This would have the advantage that the resulting coefficients t would be globally
defined rather than being defined only on a neighborhood of the total diagonal. Howev-
er, it would have the major disadvantages that (i) the expansion (107) would always be
nontrivial (since a local, covariant field cannot coincide with a normal ordered field on
all spacetimes [15]) and (ii) the t would no longer be locally and covariantly constructed
out of the metric, so one could not evaluate the t by local computations.

The distributions t can further be decomposed into contributions from individual
Feynman diagrams as follows. Let F (k) be the set of all Feynman diagrams consisting
of n vertices located at the points x1, . . . , xn that are connected by a single kind of
line, with the properties that the lines may emerge and end on two different vertices or
they may emerge and end on the same vertex, and the ith vertex has precisely ki edges
emerging/ending on it. If � is such a Feynman graph, then we denote by E(�) the set of
edges and by V (�) the set of vertices. If e is an edge, then we write s(e) for the source
of e and t (e) for its target. If v is a vertex, then we write n(v) for twice the number of
edges that have v both as their starting and endpoint. For points x1, . . . , xn such that
xi = xj for all i, j , we then have

tk1...kn(x1, . . . , xn) =
∑

�∈F (k)

c�
∏

e∈E(�)

HF (xs(e), xt (e))
∏

v∈V (�)

tn(v)(xv)

≡
∑

�∈F (k)

t�(x1, . . . , xn), (109)

where c� are combinatorical factors and HF is the “local Feynman parametrix” given
by

HF (x1, x2) = U(x1, x2)(σ + i0)−1 + V (x1, x2) log(σ + i0). (110)

24 However, it should be noted that tj1...jn is not actually a local, covariant (c-number) field in the
sense of [5], since one cannot give a local, covariant prescription for how to choose the convex normal
neighborhood that enters the definition of H .
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Equation (109) can be viewed as giving the “Feynman rules” in curved spacetime. Mainly
for simplicity, we have only considered explicitly time-ordered-products of Wick powers
without derivatives. Our discussion can be generalized to give similar Feynman rules
also for time-ordered-products containing derivatives.

The Feynman rules in curved spacetime are thus very similar to those in Minkowski
spacetime, with the local Feynman parametrix (110) replacing the usual Feynman prop-
agator. However, there is one key difference in that if the prescription used for defining
Wick powers does not coincide with “local normal ordering”, then the Wick expansion
(107) will be nontrivial, and there will be correspondingly nontrivial Feynman diagrams
containing lines that begin and end at the same vertex.

The distributions t� in Eq. (109) are locally and covariantly constructed from the
metric and the coupling parameters in the free theory. They describe the contribution
of an individual Feynman graph to a time-ordered-product. Formula (109) only deter-
mines them as distributions on the product manifold M×n minus the union of all of its
partial diagonals. A prescription for the extension of all time-ordered-products to all of
M×n is usually called “renormalization”. The existence of a renormalization prescrip-
tion satisfying a list of necessary properties was proven in [16] without going through
the intermediate step of expanding the tk1...kn in terms of Feynman diagrams.

Given the distributions t� corresponding to a given prescription T for defining time
ordered products, we can now obtain the corresponding rescaled prescription λT (see
Eq. (70)) as follows: If p = (m2, ξ) and p(λ) = (λ−2m2, ξ), we first set

t�λ [M, g, p] ≡ λ2|E(�)| · t�[M, λ2g, p(λ)] (111)

as well as

Hλ[M, g, p] ≡ λ2 ·H [M, λ2g, p(λ)]. (112)

The rescaled prescription λT is then given by

λT

(
n∏

i=1

λϕki (xi)

)
=

∑

j≤k

∑

�∈F (k−j)

t�λ (x1, . . . , xn) :
n∏

i=1

ϕji (xi) :Hλ . (113)

Given the rescaled prescription λT , we can now compute the maps On(λ;×ifi�i) (see
Eq. (30)), which relate the rescaled prescription to the original prescription T . The
renormalization group flow L1(λ) is then given in terms of these quantities by

δL1(λ) =
∞∑

n=1

in−1

n!
On(λ;×nθL1)

∣∣∣∣
θ=1

. (114)

Each term in the sum (114) is of the form (51) for some real coupling constants δm2(n),
δz(n), δξ (n), and δκ(n), each of which is a polynomial in log λ. These quantities are the
renormalization group flow at nth order in perturbation theory.

This completes our brief discussion on how to calculate the renormalization group
flow in terms of Feynman diagrams. We note, however, that the calculation of the β-
function as defined by (83) is more complicated since it also requires the calculation of
K1(s) (see Appendix A).
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