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Abstract: The aim of this paper is two-fold. First, we define symplectic maps be-
tween Hitchin systems related to holomorphic bundles of different degrees. We call
these maps the Symplectic Hecke Correspondence (SHC) of the corresponding Higgs
bundles. They are constructed by means of the modification of the underlying holomor-
phic bundles. SHC allows to construct Bäcklund transformations in the Hitchin systems
defined over Riemann curves with marked points. We apply the general scheme to the
elliptic Calogero-Moser (CM) system and construct SHC to an integrable SL(N,C)
Euler-Arnold top (the elliptic SL(N,C)-rotator). Next, we propose a generalization
of the Hitchin approach to 2d integrable theories related to the Higgs bundles of infi-
nite rank. The main example is an integrable two-dimensional version of the two-body
elliptic CM system. The previous construction allows us to define SHC between the
two-dimensional elliptic CM system and the Landau-Lifshitz equation.
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1. Introduction

Nowadays many examples of integrable one-dimensional and two-dimensional models
are known. The problem of listing all of them, up to some equivalence, was solved for
some particular forms of two-dimensional models [1]. The recently developed concept
of duality for one-dimensional models [2] can shed light on the classification problem in
analogy with string theory. In spite of this progress we are still far from understanding
the structure of this universe. Therefore, the classification of integrable systems, apart
from solving any individual equation, continues to be an actual task. We will consider
integrable systems that have the Lax or Zakharov-Shabat representations. In these cases
the gauge transformations of the accompanying linear equations lead essentially to the
same systems, though their equations of motion differ in a significant way. For example,
the non-linear Schrödinger model is gauge equivalent to the isotropic Heisenberg magnet
[3]. In such a manner the integrable system should be classified up to gauge equivalence,
though it is not the only equivalence principle in their possible classifications. The
crucial and delicate point of this approach is the exact definition of allowed gauge
transformations, and it will be discussed here.

We restrict ourselves to Hitchin systems [4] and their two-dimensional generalizations
that we will construct. The Hitchin construction establishes relations between finite
dimensional integrable systems and the moduli space of holomorphic vector bundles
over Riemann curves. The phase space of the integrable system is the cotangent bundle
to the moduli space and the dual variables� are called the Higgs fields. The pair (E,�),
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where E is a holomorphic bundle, is called the Higgs bundle. The Lax representation
arises immediately in this scheme as the equation of motion and the Lax operator is just
the Higgs field defined on shell. TheC∞ gauge transformations of the Lax pair define the
equivalent holomorphic bundles. The different gauge fixing conditions give equivalent
integrable systems.

We consider the generalization of the Hitchin systems based on the quasi-parabolic
Higgs bundles [5], where the Higgs fields are allowed to have the first order poles
at the marked points on the base curve. The gauge transformations preserve the flag
structures that arise at the marked points. The corresponding integrable systems were
considered in [6–9]. We loosen the smoothness condition of the gauge transformations
and allow them to have a simple zero or a pole at one of the marked points. This
type of gauge transformations (the upper and lower symplectic Hecke correspondence
(SHC)) is suggested by the geometric Langlands program. SHC changes the degree of
the underlying bundles on ±1. We assume, that HC is consistent with flag structures on
the source and target bundles. It allows to choose a canonical form of the modifications.
HC can be lifted as the symplectic correspondence (SHC) to the Higgs bundles. In
this way SHC define a map of Hitchin systems related to bundles of different degrees.
One can consider an arbitrary chain of consecutive SHC attributed to different marked
points. If the resulting transformation preserves the degree of bundle, then it defines
the Bäcklund transformations of the Hitchin system related to the initial bundle, or the
integrable discrete time map [10]. Our construction is similar to the scheme proposed by
Arinkin and Lysenko [11] in the investigations of the flat SL(2,C)- bundles over rational
curves and the geometric structure of the Bäcklund transformations in the Painléve 6
system [12].

As an example, we consider a trivial holomorphic SL(N,C)-bundleECM (deg(ECM)
= 0) over an elliptic curve with a marked point. The corresponding quasi-parabolic Hi-
ggs bundle leads to the ellipticN -body Calogero-Moser system (CM system). The upper
SHC defines a map of the Higgs bundle related toECM to the Higgs bundle (Erot ,�rot )
with deg(Erot ) = 1. SHC is generated by theN th order matrix�with theta-functions de-
pending on coordinates of the particles as the matrix elements. The system (Erot ,�rot )

is the integrable SL(N,C)-Euler-Arnold top (SL(N,C)-elliptic rotator). The Lax pair
for this top was proposed earlier [13]. The consecutive upper and lower SHC define the
Bäcklund transformations of both systems. A construction of this type was suggested
in [14] for studying the Bäcklund transformations of the Ruijsenaars model. Another
way to find a Bäcklund transformation is achieved by applying N consecutive upper
modifications, since they lead to equivalent Higgs bundles.

In the second part of the paper we try to gain insight into the interrelation between
integrable theories in dimension one and two. It is known that some one-dimensional
integrable systems can be extended to the two-dimensional case without sacrificing the
integrability. For example, the Toda field theory comes from the corresponding Toda
lattice. To understand this connection we apply the Hitchin construction to two-dimen-
sional systems. For this purpose we consider infinite rank bundles over the Riemann
curves with marked points. The transition group of the bundles is the central extended
loop group L̂(GL(N,C)). If the central charge vanishes the theory in essence becomes
one-dimensional. In the two-dimensional situation the Higgs field is a gl(N,C) connec-
tion on a circle S1. In addition, we put coadjoint orbits of L̂(GL(N,C)) at the marked
points and in this way introduce the quasi-parabolic structure on the Higgs bundle of
infinite rank. The monodromy of the Higgs field is a generating function for the infinite
number of conservation laws. The equations of motion on the reduced phase space are
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the Zakharov-Shabat equations. A similar class of Hitchin type systems from a different
point of view was introduced recently by Krichever [15]. We consider in detail the case
of a L̂(SL(2,C))-bundle over an elliptic curve with n marked points. The Higgs bun-
dle corresponds to the two-dimensional version of the elliptic Gaudin system. For the
1 marked point case we come to the 2d two-body elliptic CM theory. The upper SHC
is working in the two-dimensional situation as well. It leads to the map of the 2-body
elliptic CM field theory to the Landau-Lifshitz equation.1 To summarize we consider
here the following diagram:

2− body elliptic CM
system −→ SL(2,C)− elliptic rotator

↓ ↓
2− body elliptic CM

field theory −→ Landau-Lifshitz equation

Fig. 1. Interrelation in integrable theories

In fact, the upper SHC can be applied to the SL(N,C) case. The quadratic Hamilto-
nian of the N -body elliptic CM field theory was constructed in [15], but the SL(N,C)
generalization of the Landau-Lifshitz equation is unknown.

It should be mentioned that the quantum version of SL(N,C) SHC appeared in a
different context long ago [16]. It was defined as a twist transformation of the quantum
R-matrices, and Hasegawa [17] constructed such types of twists that transform the dy-
namical ellipticR-matrix of Felder [18] to the non-dynamicalR-matrix of Belavin [19].
It was proved [20] that the dynamical R-matrix corresponds to the elliptic Ruijsenaars
system [21]. The later is the relativistic deformation of the elliptic CM system. In this
way the Hasegawa twist is the quantization of SHC we have constructed, since the ellip-
tic CM system and the elliptic Ruijsenaars system are governed by the same R-matrix
[22].

2. Hitchin Systems in the C̆ech Description

In this section we consider vector bundles with structure group G = GL(N,C), or any
simple complex Lie group.

2.1. The moduli space of holomorphic quasi-parabolic bundles
in the C̆ech description. Let E be a trivial rank r holomorphic vector bundle over a
Riemann curve �n with n marked points. Consider a covering of �n by open disks
Ua, a = 1, 2 . . .. Some of them may contain one marked point wα . The holomorphic
structure on E can be described by the differential d

′′
. On Ua it can be represented as

d
′′ = ∂̄a + Āa, Āa = h−1

a ∂̄aha, ∂̄a = ∂

∂z̄a
,

1 The equivalence of these models was pointed out by A. Shabat.
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where za is a local coordinate on Ua , and ha is a C∞ G-valued function on Ua . It is a
section of the local sheaf �0

C∞(�n,Aut E).
The transition functions gab = hah−1

b are defined on the intersections Uab = Ua∩Ub.
They are holomorphic since Āa = Āb on Uab

gab ∈ �0
hol(Uab,Aut E).

The transformation ha → faha by a function holomorphic on Ua (fa ∈ �0
hol(Ua,

Aut E)) does not change Āa . Similarly, the transformation hb → fbhb by fb ∈
�0
hol(Ub,Aut E) does not change Āb. Then the holomorphic structures described by

the transition functions gab and fagabf
−1
b are equivalent. Globally we have the collec-

tion of transition maps

LC� = {gab(za) = ha(za)h−1
b (zb(za)), za ∈ Uab, a, b = 1, 2 . . . , }. (2.1)

They define holomorphic structures on E or P = AutE depending on the choice of the
representations.

The definition of the holomorphic structures by the transition functions works as well
in the case if deg(E) �= 0 (G = GL(N,C)). They should satisfy the cocycle condition

gab(z)gbc(z)gca(z) = Id, z ∈ Ua ∩ Ub ∩ Uc, (2.2)

and
gab = g−1

ba . (2.3)

The degree of the bundle E is defined as the degree of the linear bundle L = det g.
We choose an open subset of stable holomorphic structures LC,st� in LC� . The gauge

group Ghol� acts as the automorphisms of LC,st� ,

gab → fagabf
−1
b , fa = f (za), fb = fb(zb(za)), f ∈ Ghol� . (2.4)

We prescribe the local behavior of the gauge transformations Ghol� at the marked points.
Let

P1, . . . , Pα, . . . , Pn

be parabolic subgroups of G attributed to the marked points. Then we assume that

fa=
{
f̃
(0)
α + zαf (1)α + . . . , f̃ (0)α ∈ Pα, if zα = z− wα, wα is a marked point,
f
(0)
a + zaf (1)a + . . . , f (0)a ∈ G if a �= α, (Ua does not contain a marked point).

(2.5)
It follows from (2.4) that the left action of the gauge group at the marked points

preserves the flags

Eα(s) ∼ Pα \G, Eα = F l1(α) ⊃ · · · ⊃ F lsα (α) ⊃ F lsα+1(α) = 0. (2.6)

The moduli space of the stable holomorphic bundles Mn(�,G) with the quasi-para-
bolic structure at the marked points is defined in Ref.[23] as the factor space under this
action

Mn = Ghol� \LC,st� . (2.7)

ForG = GL(N,C)we have a disjoint union of components labeled by the corresponding
degrees d = c1(detE) : Mn(�,G) =

⊔
M(d)

n .
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The tangent space to Mn(�,G) is isomorphic to h1(�,EndE). Its dimension can
be extracted from the Riemann-Roch theorem and for curves without marked points
(n = 0)

dim h0(�,EndE)− dim h1(�,EndE) = (1− g) dimG.

For stable bundles h0(�,EndE) = 1 and

dim M0(�,G) = (g − 1)N2 + 1

for GL(N,C), and
dim M0(�,G) = (g − 1) dimG

for simple groups. For elliptic curves one has

dim h1(�,EndE) = dim h0(�,EndE),

and
dim Md

0 = g.c.d.(N, d). (2.8)

In this case the structure of the moduli space for the trivial bundles (i.e. with deg(E) = 0
and, for example, for bundles with deg(E) = 1 are different. We use this fact below.

For the quasi-parabolic bundles we have

dim Md
n = dim Md

0 +
n∑
α=1

fα, (2.9)

where fα is the dimension of the flag variety Eα . In particular, for G = GL(N,C), we
get

fα = 1

2

(
N2 −

sα∑
i=1

m2
i (α)

)
, mi(α) = dim F li(α)− dim F li+1(α). (2.10)

The space LC� is a sort of a lattice 2d gauge theory. Consider the skeleton of the
covering {Ua, a = 1, . . .}. It is an oriented graph whose vertices Va are some fixed inner
points in Ua and edges Lab connect those Va and Vb for whose Uab �= ∅. We choose an
orientation of the graph, saying that a > b on the edge Lab and put the holomorphic
function zb(za) which defines the holomorphic map from Ua to Ub. Then the space LC�
can be defined by the following data. To each edgeLab, a > bwe attach a matrix valued
function gab ∈ G along with zb(za). The gauge fields fa are living on the vertices Va
and the gauge transformation is given by (2.4).

2.2. Hitchin systems. The Hitchin systems in the C̆ech description can be constructed in
the following way [24]. We start from the cotangent bundle T ∗LC�n to the holomorphic
structures on P = AutE (2.1). Now

T ∗LC�n = {ηab, gab| ηab ∈ �
(1,0)
hol (Uab, (EndE)∗), gab ∈ �0

hol(Uab, P )}. (2.11)

The one forms ηab are called the Higgs fields. This bundle can be endowed with a
symplectic structure by means of the Cartan-Maurer one-forms on �0

hol(Uab, P ).
Let �ba(βγ ) be an oriented edge in Uab with the end points in the triple intersections

β ∈ Uabc = Ua ∩ Ub ∩ Uc, γ ∈ Uabd . The fields ηab, gab are attributed to the edge
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�ba(βγ ). If we change the orientation �ba(βγ )→ �ab (γβ) the fields should be replaced
on gba = g−1

ab (see (2.3)) and

ηab(za) = gab(za)ηba(zb(za))g−1
ab (za). (2.12)

For this reason the integral∫
�ba(βγ )

tr
(
ηab(za)Dgabg

−1
ab (za)

)
(2.13)

is independent of the orientation.
We can put the data (2.11) on the graph {�ba} corresponding to the covering {Ua}.

Taking into account (2.13) we define the symplectic structure

ωC =
∑
edges

∫
�ba(βγ )

Dtr
(
ηab(za)Dgabg

−1
ab (za)

)
. (2.14)

Since ηab and gab are both holomorphic in Uab, the integral is independent of the choice
of the path �ba within Uab. It is worthwhile to note that the cocycle condition (2.2) does
not yield the additional constraints.

The symplectic form is invariant under the gauge transformations (2.4) supplemented
by

ηab → faηabf
−1
a . (2.15)

The set of invariant commuting Hamiltonians on T ∗LC� is

ICj,k =
∑
edges

∫
�ba(βγ )

νC(j,k)(za)tr(η
dj
ab(za)), (k = 1, . . . , nj ), (2.16)

where dj are the orders of the basic invariant polynomials corresponding to G and νCj,k
are (1 − dj , 0)-differentials. They are related locally to the (1 − j, 1)-differentials by
νDj,k = ∂̄νCj,k and

nj = h1(�, T ⊗(dj−1)) = (2dj − 1)(g − 1)+ (dj − 1)n, (j = 1, . . . , r)

for the simple groups, and

nj =
{
(2j − 1)(g − 1)+ (j − 1)n, (j = 2, . . . , N)
g, j = 1

for GL(N,C). The total number of independent Hamiltonians is equal to

N∑
j=1

nj =Md
0 +

1

2
r(r + 1)n.

This number is greater than the dimension of the moduli space Md
n (2.9). There are rn

highest weight integrals, (j = r), that become Casimir elements of coadjoint orbits after
the symplectic reduction, that we will consider below.
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Perform the symplectic reduction with respect to the gauge action (2.4), (2.15) of
Ghol�n

(2.5). The moment map is

µGhol�
(ηab, gab) : T ∗LC� → Lie∗(Ghol� ).

Here the Lie coalgebra Lie∗(Ghol� ) is defined with respect to the pairing

∑
edges

∫
�ba(βγ )

tr(ξaεa), εa ∈ Lie(Ghol� ).

Then locally we have

ξa =




(
z−1
a ξ̃a + z−2

a ξ
(−2)
a + . . .

)
dza, ξ̃a ∈ Lie∗(Pα), (Ua contains a marked

point wα)(
z−1
a ξ

(−1)
a + z−2

a ξ
(−2)
a + . . .

)
dza, ξ

(−1)
a ∈ Lie∗(G)(Ua does not contain wα).

(2.17)
The canonical gauge transformations (2.4),(2.15) of the symplectic form (2.14) are
generated by the Hamiltonian

Fεhol =
∑
edges

∫
�ba(βγ )

tr(ηab(za)ε
hol
a (za))− tr(ηab(za)gab(za)ε

hol
b (zb(za))gab(za)

−1)

=
∑
a

∫
�a

∑
b

tr(ηab(za)ε
hol
a (za)),

where �a is an oriented contour around Ua .
The non-zero moment is fixed in a special way at the neighborhoods of the marked

points. Let G̃α ⊂ Pα be the maximal semi-simple subgroup of the parabolic group
Pα defined at the marked point wα . We drop for a moment the index α for simplicity.
We choose an ordering in the Cartan subalgebra h ∈Lie(G), which is consistent with
the embedding P ⊂ G. Let h̃ = h ∩ G̃ be the Cartan subalgebra in G̃. Consider the
orthogonal decomposition of h∗,

h∗ = h̃∗ + h′∗.

We fix a vector p(0) ∈ h∗ such that it is a generic element in h′∗ and

〈p(0), h̃∗〉 = 0, (2.18)

where 〈 , 〉 is the Killing scalar product in h∗. Since h′∗ ⊂Lie∗(P ), we can take µGhol�

in the form

µGhol�
= µ0 =

n∑
α=1

p(0)α z−1
α dzα, p

(0) ∈ h′∗, (2.19)

where zα = z − wα is a local coordinate in Uα . The moment equation µGhol�
= µ0

can be read off from Fεhol . It follows from the definition of Lie∗(G0,hol
� ) that ηab is the

boundary value of some holomorphic or meromorphic one-form Ha defined on Ua via

ηab(za) = Ha(za), for za ∈ Uab, Ha ∈ �(1,0)hol (Ua,End∗(E)), (2.20)
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where

Ha =
{
z−1
a p

(0)
α +H(0)

a + zaH(1)
a + . . . , if Ua contains a marked point wα

H
(0)
a + zaH(1)

a + . . . , if Ua does not contain a marked point.
(2.21)

The gauge fixing means that the transition functions gab are elements of the moduli
space Md

n(�,E). The symplectic quotient

Hd
n = Ghol� \\T ∗LC� = Ghol� \µ−1(µ0) (2.22)

is called the Higgs bundle with the quasi-parabolic structures. We set off the zero modes
g
(0)
αb of the transition functions in the symplectic form on the reduced space (see (2.14))

ωC =∑edges

∫
�ba(βγ )

Dtr
(
ηab(za)Dgabg

−1
ab (za)

)
+ 2πi

∑n
α=1

∑
b Dtr

(
p
(0)
α Dg

(0)
αb (g

(0)
αb )
−1
)
. (2.23)

The last sum defines the Kirillov-Kostant symplectic forms on the set of coadjoint orbits
O(n) = (O1, . . .Oα, . . . ,On), where

Oα = {pα ∈ Lie∗(G) | pα = (g(0)α )−1p(0)α g(0)α }. (2.24)

Note that dim(Oα) = 2fα (2.10).

Remark 2.1. It is possible to construct another type of orbit O′α of the same dimension.

There exist elements p
′(0)
α that belong to the complements of Lie∗(G̃α) in Lie∗(Pα) such

that the orbit
O′α = {pα = (g(0)α )−1p

′(0)
α g(0)α }

is symplectomorphic to the cotangent bundles to the corresponding flags Eα (2.6) with-
out the zero section T ∗Eα \O(Eα), while Oα (2.24) is a torsor over O′α . Globally, Hd

n

(2.22) is a torsor over T ∗Md
n.

2.3. Standard description of the Hitchin system. The standard approach of the Hitchin
systems [4] is based on the description of the holomorphic bundles in terms of the
operator d ′′. The upstairs phase space has the form

T ∗LD�n = {�, d ′′ | � ∈ �
(1,0)
C∞ (�n,End∗ E)}, (2.25)

where � is called the Higgs field. The symplectic form

ωD =
∫
�n

tr(D� ∧DĀ) (2.26)

is invariant under the action of the gauge group

GC∞� = {f ∈ �0
C∞(�n,Aut V )},

�→ f−1�f, Ā→ f−1∂̄f + f−1Āf. (2.27)
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The gauge invariant integrals take the evident form (compare with (2.16))

IDj,k =
∫
�n

νD(j,k)tr(�
dj ), (k = 1, . . . , nj ), (2.28)

where νDj,k are (1− j, 1)-differentials on �n. The symplectic reduction with respect to
this action leads to the moment map

µ : T ∗LD�n → Lie∗(GC∞� ) µ = ∂̄�+ [Ā,�].

The Higgs field � is related to η in a simple way,

ηab = h−1
a �ha|Uab ,

and Āa = h−1
a ∂̄aha . The holomorpheity of η is equivalent to the equation µ(�, Ā) = 0,

and� has the same simple poles as Ha (2.20). For simplicity, we call η the Higgs field.
The bundle E equipped with the one-form η is called the Higgs bundle.

2.4. Modified C̆ech description of the moduli space. We modify the C̆ech description of
the moduli space of GL(N,C)-vector bundles in the following way. Consider a formal
(or rather small) disk D embedded into � in such way that its center maps to the point
w.

Consider first the case of G = PGL(N,C)-bundles. The moduli space Md
n is the

quotient of the space GD∗ ofG-valued functions g on the punctured diskD∗ by the right
action of the group Gout of G-valued holomorphic functions on the complement to w
and by the left action of the group Gint of G-valued holomorphic functions on the disk:

Md
n = Gint\GD∗/Gout , g→ hintghout .

We assume that these transformations preserve the quasi-parabolic structure of the vector
bundle E.

Now consider GL(N,C)-bundles. The group GL(N,C) is not semi-simple. One has
an action of the Jacobian Jac(�) on the moduli space of vector bundles by the ten-
sor multiplication, and the quotient is equal to the space of PGL(N,C)-bundles. This
follows from the exact sequence

1→ O∗ → GL(N,O)→ PGL(N,O)→ 1.

Hence locally the moduli space of vector bundles is the product of the Jacobian of the
curve and moduli space of PGL(N,C)-bundles. We associate to the pair (g, L) the bun-
dle which is equal to C

N ⊗L on the complement of a point, and the transition function
on the punctured disk is g.

Assume for simplicity that there is only one marked point and it coincides with the
center of D∗. Let z be the local coordinate on D∗. Then the gauge group GD∗ can be
identified with the loop groupL(GL(N,C)). A parabolic subgroup ofL(GL(N,C)) has
the form

Gint ∼ P · expL+(gl(N,C)), L+(gl(N,C)) =
∑
j>0

gj z
j , gj ∈ gl(N,C),
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where P is a parabolic subgroup in GL(N,C). The quotient LF(s) = Gint\GD∗ is the
infinite-dimensional flag variety, corresponding to the finite-dimensional flag E(s) (see
(2.6)),

LFl(s) = · · · ⊃ LFlr,k ⊃ LFlr+1,k ⊃ · · · ⊃ LFls,k ⊃ LF0,k−1 ⊃ · · · , (2.29)

LFlr,k = zkF lr +
∑
j<k

Ezj ) (LF ls+1,k = LFl0,k−1).

The GL(N,C) Higgs bundle Hd
n (2.22) can be identified with the Hamiltonian

quotient

Gin\\T ∗GD∗ × T ∗Jac(�)//Gout .
The cotangent bundle of T ∗GD∗ is identified with the space of pairs (g, η), where η is a
Lie∗(G)-valued one-form. The canonical one-form is equal to resw(tr(ηDgg−1)). The
second component T ∗Jac(�) is the pair (t, L), where L is a point of Jac(�) and t
is the corresponding co-vector. The canonical one-form is 〈t, DL〉Jac and the brackets
denote the pairing between vectors and co-vectors on the Jacobian.

The group Gout acts as (g, η)→ (ghout , η). The corresponding momentum constraint
can be reformulated as the following condition: gηg−1 is the restriction of some Lie∗(G)-
valued form on the complement tow. The group Gint acts as (g, η)→ (hintg, hintηh

−1
int ).

The momentum constraint means that η is holomorphic in Uw if w is a generic point, or
it has the first order pole if w is a marked point.

3. Symplectic Hecke Correspondence

In this section we consider only GL(N,C)-bundles.

3.1. Hecke correspondence. Let E and Ẽ be two bundles over � of the same rank.
Assume that there is a map �+ :E → Ẽ (more precisely a map of the sheaves of sec-
tions �(E) → �Ẽ) such that it is an isomorphism on the complement to w and it has
one-dimensional cokernel at w ∈ � :

0→ E
�+→ Ẽ→ C|w → 0. (3.1)

It is the so-called upper modification of the bundleE at the pointw. On the complement
to the point w consider the map

E
�−← Ẽ,

such that �−�+ =Id. It defines the lower modification H−w at the point w.

Definition 3.1. The upper Hecke correspondence (HC) at the point w ∈ � is an
auto-correspondence H+w on the moduli space of Higgs bundles H related to the
upper modification �+ (3.1).
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HC H+w has components placed only at M(d) ×M(d+1). The lower HC is defined in a
similar way. In this form the HC was used in the Hitchin systems in Ref. [15, 25].

Now consider two quasi-parabolic bundles E and Ẽ with the flag structure at the
marked points. While the flag Eα(s) at wα corresponding to E has the form (2.6), for Ẽ
we declare the following flag structure:

Ẽα(s) = F̃ l1(α) ⊃ · · · ⊃ F̃ lsα (α) ⊃ F̃ lsα+1(α) = 0,

where F̃ lk ∼ F lk−1/F lsα for sα + 1 ≥ k ≥ 2. We define Ẽ in terms of the sheaves of
sections �(E). Let �+α be a map of the sheaves of sections �(E)→ �(Ẽ) such that it
is an isomorphism on the complement to a marked point wα ∈ �. Let σ ∈ �(E) and
�+α : σ → σ̃ ∈ �(Ẽ). If σ |wα ∈ F lk−1, then σ̃ |wα ∈ ˜F lk . The section σ can be
singular of order one if its principle part belongs to F lsα .

All together this means that �+α acts as the shift on the infinite flag (2.29) at the
marked point

�+α (LF lr,k) = LFlr−1,k. (3.2)

We call�+α the upper modification of the quasi-parabolic bundleE. The lower modifica-
tion of the quasi-parabolic bundles acts in the opposite direction. It looks like the upper
modification (3.1), but we temporally do not assume that �+α has a one-dimensional
cokernel.

Definition 3.2. The upper Hecke correspondence of the quasi-parabolic bundles at
the marked point wα is an auto-correspondence H+w on M related to the the upper
modification �+ (3.2).

Let the flag Eα (2.6) have a one-dimensional subspace (dim(F lsα ) = 1). In this case
the upper modification�+α can be fixed in the following way. Let (e1, . . . , eN) be a basis
of local sections of E compatible with the flag structure

F l1 → (e1, . . . , eN), . . . , F lsα → (eN).

It follows from Definition 3.2 that �+α can be gauge transformed to the canonical form

�+α =
(

0 IdN−1
zα 0

)
. (3.3)

It is just the Coxeter transformation in the loop algebra L(gl(N,C)), that has been
defined on the punctured disk D∗α ⊂ Uα in Subsect. 2.4. The Coxeter transformation
provides the upper modification Ed → Ẽd+1. In fact, the sheaf of sections �(Ẽ) co-
incides with the sheaf of sections �(E) with a singularity of the first order at wα and
the singular section lies in the kernel of �+ (see Ref.[11]). For the local basis of �(E)
we have (eNz−1, e1, . . . , eN−1). In this way the HC of the quasi-parabolic bundles is
described by the diagram (3.1).

In a similar way the lower modification can be transformed to the form

�+α =
(

0 z−1
α

IdN−1 0

)
. (3.4)



Hitchin Systems – Symplectic Hecke Correspondence 105

3.2. Symplectic Hecke correspondence. We define a map of the Higgs bundlesf : (E, η)
→ (Ẽ, η̃) as the bundle map f : E→ Ẽ such that

f η = η̃f. (3.5)

Consider two Higgs bundles (E, η) and (Ẽ, η̃), whereE is a quasi-parabolic bundle and
Ẽ is the upper modification �+α of E at wa ∈ �. We call (Ẽ, η̃) the upper modification
of (E, η) �+α η = η̃�+α .

Definition 3.3. The upper symplectic Hecke correspondence (SHC) S+α at a point wα
is an auto-correspondence on T ∗M related to the upper modification �+α of the Higgs
bundles.

The lower SHC S−a is defined in a similar way.
Let wα be a marked point. The Higgs field η has the first order poles at wα (2.21)

and the residue p(0)α of η defines an orbit Oα .

Lemma 3.1. The gauge transforms �±α corresponding to H±α :
• do not change singularity of the Higgs field at wα;
• are symplectic;
• preserve the Hamiltonians (2.16).

Proof. The choice of p(0)α (2.18) is consistent with the canonical forms (3.3), (3.4) of
�±α and their action does not change the order of the pole. The action is symplectic with

respect to (2.23) since �±α depends only on p(0)α . The invariance of the Hamiltonians
follows from (3.5). ��

In particular, Lemma 3.1 means that �±α preserves the whole Hitchin hierarchy
defined by the set of Hamiltonians (2.16) and the symplectic form (2.23).

3.3. SHC and skew-conormal bundles. Here we consider the curves without marked
points. The general case can be derived in a similar way and we drop it for the sake of
simplicity.

For any smooth correspondence Z between equi-dimensional varieties X and Y we
define a skew-conormal bundle SN∗Z of Z as follows. Let

ν = (νX, νY ) ∈ T ∗z (X × Y ) = T ∗x X ⊕ T ∗y Y

be a co-vector attached to a point z = (x, y) ∈ Z ⊂ X×Y . It belongs to the fiber SN∗zZ
of the skew-conormal bundle SN∗Z at the point z iff for any vector v = (vX, vY ) tangent
to Z,

νX(vX) = νY (vY ).
Note that for the conormal bundle one has the opposite sign: νX(vX) = −νY (vY ).

The total space of the skew-conormal bundle is a Lagrangian subvariety of the total
space of the cotangent bundle T ∗(X×Y )with respect to the symplectic form ωX−ωY ,
where ω denotes the canonical symplectic form on the cotangent bundle. So, the skew-
conormal bundle of a correspondence is rather close to the graph of a symplectic map
between cotangent bundles.



106 A.M. Levin, M.A. Olshanetsky, A. Zotov

Proposition 3.1. The graph of the SHC Sw is isomorphic to the skew-conormal bundle
SN∗Hw of the usual Hecke correspondence Hw.

Proof. As explained in Subsect. 2.4, a GL(N,C)-bundle E is determined by the pair
(g, L) in a neighborhood of a point w ∈ �. An upper HC of E corresponds to (g̃, L),
where g̃ = �g and

∂̄� = 0 in Uw, ordw(det(�)) = 1. (3.6)

Therefore, the skew-conormal bundle SN∗Hw of the HC SN∗Hw can be described by
the data

(g, g̃; η, η̃; t, t̃ , L), g̃ = �g,
where � satisfies (3.6), and

〈t, DL〉Jac = 〈t̃ , DL〉Jac, (3.7)

resw(Tr(η̃Dg̃g̃−1)) = resw(Tr(ηDgg−1)) (3.8)

for any variations of g and g̃, that preserve properties of � = g−1g̃. The first condition
(3.7) means that t = t̃ .

The condition (3.8) can be rewritten as

resw
(

tr(η̃D��−1 + (�−1η̃�− η)g−1D g)
)
= 0.

Since variations of g and � are independent, both terms in the last expression must
vanish separately:

resw(tr(η̃D��
−1)) = 0, (3.9)

resw
(

tr(�−1η̃�− η)g−1D g)
)
= 0. (3.10)

Consider first the case when w is not a marked point. Then we will demonstrate that
(3.9) means that η′ = �−1η̃� is holomorphic inw. Consider the value of� at zero, this
matrix has rankN −1. Denote byK its kernel and by I its image. An essential variation
of� corresponds to the variations of its image, so it is a map I → C

N/I . This variation
corresponds to the right action: D� = �ε. The singular part �−1

sing of �−1 at w is an
operator of rank 1. Its kernel equals I and its image equals K , so the singular part η′sing
of η′ is a map from C

N/Ker(�−1
sing) = C

N/I to Im(�−1
sing) = I . The first condition can

be rewritten as:

0 = resw(tr(η̃D��
−1)) = resw(tr(η

′�−1D�)) = tr(η′singε)

for any ε ∈ Hom(I,Cr/I ). The space Hom(I,Cr/I ) is dual to Hom(Cr/I, I ), so η′sing
vanishes and η′ is holomorphic.

Note that η′ determines some Higgs field for g. Indeed, it is holomorphic in Uw and
g−1η′g = g̃−1η̃g̃ is the restriction of some one-form on the complement tow. As the ca-
nonical one-form tr(ηDgg−1) is non-degenerate on T ∗Md

n, from the second condition
(3.10) we conclude that η′ = η.

If w is a marked point then � is fixed and it maps the Higgs field η into the Higgs
field η̃ (Lemma 3.1). There is no variation of � and we immediately have that again
η′ = η. ��
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3.4. Bäcklund transformation. Consider the Higgs bundles with the quasi-parabolic
structures at the marked points. The gauge transformations �±α related to the SHC S±α
depend only on the marked point wα . They define the maps of the Hitchin systems

S+α ∼ ξα : T ∗M(d)(�n,G)→ T ∗M(d+1)(�n,G), (3.11)

S−α ∼ ξβ : T ∗M(d)(�n,G)→ T ∗M(d−1)(�n,G). (3.12)

Consider consecutive upper and lower modifications

ξα1
α2
= ξα1 · ξα2 . (3.13)

Since deg(E) does not change it is a symplectic transform T ∗Md
n(�,E). In this way

ξ
α1
α2 maps solutions of the Hitchin hierarchy into solutions.

Corollary 3.1. The map (3.13) is the Bäcklund transformation, parameterized by a pair
of marked points (wα1 , wα2).

We can generalize (3.13) as

ξ
αj1 ;...;αjs
αi1 ;...;αis = ξ

αj1 · ξαi1 · · · .
Because the Bäcklund transformation is a canonical one, we can consider a discrete
Hamiltonian system defined on the phase space T ∗Md

n(�,E). They pairwise commute
and in terms of the angle variables generate a lattice in the Liouville torus [10, 26]. In
our case the dimension of the Liouville torus is equal to dim Md

n (2.9), but the lattice
we have constructed has in general a smaller dimension.

Note that when�n is an elliptic curve, the Hitchin systems corresponding to d = kN
and d = 0 (d =deg(V )) are equivalent. Hence, in this case one can construct some
Bäcklund transformations by applying the upper SHC N times.

4. Elliptic CM System – Elliptic SL(N, C)-Rotator Correspondence

4.1. Elliptic CM system. The elliptic CM system was first introduced in the quantum
version [27]. It is defined on the phase space

RCM =

v = (v1, . . . , vN), u = (u1, . . . , uN),

∑
j

vj = 0,
∑
j

uj = 0


 , (4.1)

with the canonical symplectic form

ωCM = (Dv ∧Du). (4.2)

The second order with respect to the momenta v Hamiltonian is

HCM
2 = 1

2

N∑
j=1

v2
j + ν2

∑
j>k

℘ (uj − uk; τ).

It was established in [7, 28] that the elliptic CM system can be derived in the Hitchin
approach. The Lax operator LCM is the reduced Higgs field η over the elliptic curve

Eτ = C/L, L = Z+ τZ

with a marked point z = 0. In this way the phase space RCM is the space of pairs
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(quasi-parabolic SLN -bundle V over Eτ , the Higgs field LCM on this bundle (4.8)).

The bundle is determined by the transition functions (the multipliers)

IdN : z→ z+ 1, (4.3)

e(u) = diag(e(u1), . . . , e(uN)) : z→ z+ τ,
where e is defined in (A.1). The Lax operator LCM(z) is the quasi-periodic one-form

LCM(z+ 1) = LCM(z), LCM(z+ τ) = e(−u)LCM(z)e(u). (4.4)

It is the N th order matrix with the first order pole at z = 0 and the residue

p(0) = Resz=0(L
CM(z)) = LCM−1 = ν




0 1 · · · 1
1 0 · · · 1
...
...
. . .

...

1 1 · · · 0


 . (4.5)

This residue defines the minimal coadjoint orbit O (2.24) (dim(O) = 2N − 2). These
degrees of freedom are gauged away by the action of rest gauge symmetries generated
by the constant diagonal matrices. For this reason the second term in (2.23) does not
contribute in the symplectic form (4.2).

The column-vector e1 = (1, 1, · · · , 1) is an eigen-vector e1,

LCM−1 e1 = (N − 1)νe1. (4.6)

There is also an (N−1)-dimensional eigen-subspace TN−1 corresponding to the degen-
erate eigen-value −ν,

LCM−1 ea = −νea, ea = (a1, . . . , aN),

(∑
n

an = 0

)
. (4.7)

The quasi-periodicity (4.5) leads to the following form of LCM :

LCM = P +X, where P = diag(v1, . . . , vN), Xjk = νφ(uj − uk, z), (4.8)

and φ is defined as (B.5).
The MCM -operator corresponding to HCM

2 has the form

MCM = −D + Y, where D = diag(Z1, . . . , ZN), Yjk = y(uj − uk, z), (4.9)

Zj =
∑
k �=j

℘ (uj − uk), y(u, z) = ∂φ(u, z)

∂u
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4.2. The elliptic SL(N,C)-rotator. The elliptic SL(N,C)-rotator is an example of the
Euler-Arnold top [20]. It is defined on a coadjoint orbit of SL(N,C):

Rrot = {S ∈ sl(N,C), S = g−1S(0)g}, (4.10)

where g is defined up to the left multiplication on the stationary subgroup G0 of S(0).
The phase space Rrot is equipped with the Kirillov-Kostant symplectic form

ωrot = tr(S(0)Dgg−1Dgg−1). (4.11)

The Hamiltonian is defined as

Hrot = −1

2
tr(SJ (S)), (4.12)

where J is a linear operator on Lie(SL(N,C)). The inverse operator is called the inertia
tensor. The equation of motion takes the form

∂tS = [J (S),S]. (4.13)

We consider here a special form J , that provides the integrability of the system. Let

J (S) = J · S =
∑
mn

JmnSmn,

where J is a N th order matrix,

J = {Jmn} =
{
℘

[
m

n

]}
, (m, n = 1, . . . , N), (m, n ∈ Z mod N, m+ nτ �∈ L) ,

(4.14)

℘

[
m

n

]
= ℘

(
m+ nτ
N
; τ
)
.

We write down (4.13) in the basis of the sin-algebra S = SmnEmn (see (A.4)),

∂tSmn = N

π

∑
k,l

Sk,lSm−k,n−l℘
[
k

l

]
sin

π

N
(kn−ml). (4.15)

The elliptic rotator is a Hitchin system [7]. We give a proof of this statement.

Lemma 4.1. The elliptic SL(N,C)-rotator is a Hitchin system corresponding to the
Higgs quasi-parabolic GL(N,C)-bundle E (deg(E)=1) over the elliptic curve Eτ
with the marked point z = 0.

Proof. It can be proved that (4.15) is equivalent to the Lax equation. The Lax matrices
in the basis of the sin-algebra take the form

Lrot =
∑
m,n

Smnϕ

[
m

n

]
(z)Emn, ϕ

[
m

n

]
(z) = e

(
−nz
N

)
φ

(
−m+ nτ

N
; z
)
, (4.16)

Mrot =
∑
m,n

Smnf

[
m

n

]
(z)Emn, f

[
m

n

]
(z) = e

(
−nz
N

)
∂uφ(u; z)|u=−m+nτ

N
. (4.17)
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They lead to the Lax equation for the matrix elements

∂tSmnϕ

[
m

n

]
(z) = √−1

∑
k,l

Sm−k,n−lSklϕ
[
m− k
n− l

]
(z)f

[
k

l

]
(z) sin

π

N
(nk −ml).

Using the Calogero functional equation (B.27) we rewrite it in the form (4.15). Since

1

N
tr(Lrot )2 = −2Hrot + trS2℘(z),

Hrot is the Hitchin quadratic integral.
The Lax operator satisfies the Hitchin equation

∂̄Lrot = 0, ResLrot |z=0 = 2π
√−1S

and is quasi-periodic

Lrot (z+ 1) = Q(τ)Lrot (z)Q−1(τ ), (4.18)

Lrot (z+ τ) = �̃(z, τ )Lrot (z)(�̃(z, τ ))−1, (4.19)

where �̃(z, τ ) = −e(
−z− 1

2 τ

N
)� and the matrices Q and � are defined in (A.2),(A.3).

The transition functions

Q(τ) : z→ z+ 1, (4.20)

�̃(z, τ ) : z→ z+ τ (4.21)

define the GL(N,C)-bundle over Eτ with deg(V ) = 1. For these bundles we have
dim(M1

0) = 1 (2.8) and after the symplectic reduction we come to the coadjoint orbit
G0 \SL(N,C) (4.10). The Kirillov-Kostant form (4.11) arises as the last terms in (2.23)
attributed to the point z = 0. Thus, the phase space of the SLN -rotator is the space of
the Higgs fields Lrot on the bundle determined by multipliers Q, �̃ with the first order
singularities at zero. ��

4.3. A map RCM → Rrot . We construct a map from the phase space of the elliptic
CM system RCM into the phase space of the SLN -rotator Rrot . We assume here that
the SLN -rotator is living on the most degenerate orbit corresponding to LCM−1 (4.5).
The phase space of CM systems with spins is mapped into the general coadjoint orbits.
This generalization is straightforward. In this way, for N = 2 we describe the upper
horizontal arrow in Fig. 1.

The map is defined as the conjugation of LCM by some matrix �(z):

Lrot = �× LCM ×�−1. (4.22)

It follows from comparing (4.4) with (4.18) and (4.19) that � must intertwine the mul-
tipliers of bundles:

�(z+ 1, τ ) = Q×�(z, τ ), (4.23)

�(z+ τ, τ ) = �̃(z, τ )×�(z, τ )× diag(e(uj )). (4.24)

The matrix�(z) degenerates at z = 0, and the column-vector (1, · · · , 1), in accordance
with Lemma 3.1, should belong to the kernel of�(0). In this case,�×LCM ×�−1 has
a first order pole at z = 0.
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Consider the following (N ×N)- matrix �̃(z, u1, . . . , uN ; τ) :

�̃ij (z, u1, . . . , uN ; τ) = θ
[
i
N
− 1

2
N
2

]
(z−Nuj ,Nτ), (4.25)

where θ

[
a

b

]
(z, τ ) is the theta function with a characteristic (B.31). Sometimes we omit

nonessential arguments of � for brevity.

Lemma 4.2. The matrix �̃ is transformed under the translations z→ z+ 1, z→ z+ τ
and uj → uj + 1, uj → uj + τ as :

�̃(z+ 1, τ ) = −Q× �̃(z, τ ), (4.26)

�̃(z+ τ, τ ) = �̃(z, τ )× �̃(z, τ )× diag(e(uj )), (4.27)

�̃(z, τ ) = −e
(
− τ

2N
− z

N

)
�;

�̃(uj + 1, ; τ) = �̃(uj ; τ)× diag(1, · · · , (−1)N , · · · , 1), (4.28)

�̃(uj + τ ; τ) = �̃(uj ; τ)× diag(1, · · · , (−1)Ne
(
−Nτ

2
+ z−Nuj

)
· · · , 1).

(4.29)

Proof. The statement of the lemma follows from the properties of the theta functions
with characteristics (B.33)–(B.35). ��

Now we assume that
∑
uj = 0, so uN is no more an independent variable, but it is

equal to −∑N−1
j=1 uj .

The determinant formula of the Vandermonde type [17]

det

[
�̃ij (z, u1, . . . , uN ; τ)√−1η(τ)

]
= ϑ(z)√−1η(τ)

∏
1≤k<l≤N

ϑ(ul − uk)√−1η(τ)
(4.30)

is used to show that the matrix �̃ij (z) truly degenerates at z = 0. Here η(τ) is the
Dedekind function.

Lemma 4.3. The kernel of �̃ at z = 0 is generated by the following column-vector:
(−1)l

∏
j<k;j,k �=l

ϑ(uk − uj , τ )

 , l = 1, 2, · · · , N.

Proof. We must prove that for any i the following expression

N∑
l=1

(−1)lθ

[
i
N
− 1

2
N
2

]
(z−Nul,Nτ)

∏
j<k;j,k �=l

ϑ(uk − uj , τ ) (4.31)

vanishes. First, the symmetric group SN acts on u by permutation of u1, . . . , uN and
(4.31) is antisymmetric with respect to the SN action. Hence it vanishes on the hyper-
planes ui = uj . As a function on u1, (4.31) has 2N zeroes: N − 2 zeroes u1 = uk ,
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k �= 1, N , N − 2 zeroes uN = uk , k �= 1, N and four zeroes u1 = uN (the last equation
is 2u1 = −

∑N−1
j=2 uj ).

Second, (4.31) is quasiperiodic with respect to the shifts u1 → u1+ 1, u1 → u1+ τ
with multiplicators 1 and e (−(N − 1)τ − (N − 1)(u1 − uN)).Any quasiperiodic func-
tion with such multiplicators is either zero or has 2N − 2 zeroes. Since our expression
vanishes in 2N points it vanishes identically. ��

It follows from the previous lemmas that the matrix

�(z) = �̃(z)× diag


(−1)l

∏
j<k;j,k �=l

ϑ(uk − uj , τ )

 (4.32)

is the singular gauge transform from Lemma 2.1 that maps LCM to Lrot . This transfor-
mation leads to the symplectic map

RCM → Rrot , (v,u) �→ S. (4.33)

Consider in detail the case N = 2. Let

S = Saσa,
where σa denote the sigma matrices subject to the commutation relations

[σa, σb] = 2
√−1εabcσc.

Then the transformation has the form


S1 = −v θ10(0)
ϑ ′(0)

θ10(2u)
ϑ(2u) − ν

θ2
10(0)

θ00(0)θ01(0)
θ00(2u)θ01(2u)

ϑ2(2u)
,

S2 = −v θ00(0)√−1ϑ ′(0)
θ00(2u)
ϑ(2u) − ν

θ2
00(0)√−1θ10(0)θ01(0)

θ10(2u)θ01(2u)
ϑ2(2u)

,

S3 = −v θ01(0)
ϑ ′(0)

θ01(2u)
ϑ(2u) − ν

θ2
01(0)

θ00(0)θ10(0)
θ00(2u)θ10(2u)

ϑ2(2u)
.

(4.34)

Formulae of this kind were obtained in [16].

4.4. Bäcklund transformations in the CM systems. We now use the map (4.33) to
construct the Bäcklund transformation in the CM systems

ξ : (v,u)→ (ṽ, ũ).

Let the Lax matrix depend on the new coordinates and momenta L = L(ṽ, ũ). Consider
the upper modification�(z) (4.32). To construct the Bäcklund transformation ξ , we map
(v,u) and (ṽ, ũ) to the same point S ∈ Rrot :

Lrot (S)
↗ �(z,u) ↖ �(z, ũ)

LCM(v,u)
ξ−→ LCM(ṽ, ũ)

In this way we reproduce implicitly the general formula (3.13) for the Bäcklund trans-
formations. This transformation defines an integrable discrete time dynamics of a CM
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system. One example of this dicretization was proposed in [29]. It can be supposed to
correspond to ξ .

Another way to construct new solutions from (v,u) is to act by N consecutive upper
modifications

�(N) = DN�N · · ·�j · · ·�2 ·�. (4.35)

Here the matrices �j , j = 2, . . . , N, satisfy the quasi-periodicity conditions

�j(z+ τ) = �̃j�j (z)�̃1−j ,

and DN is an arbitrary diagonal matrix. We come back to the N -dimensional moduli
space M(N) (see (2.5)) and to the map

LCM(v,u)
�(N)−→ LCM(ṽ, ũ).

If we break the chain (4.35) on a step k < L, then we obtain the map

LCM → Lrot,k,

whereLrot,k is the Lax operator for the elliptic rotator related to the holomorphic bundle
of degree k. It satisfies the quasi-periodicity condition (4.18) and

Lrot,k(z+ τ) = �̃jLrot,k(z)�̃−j

instead of (4.19).

5. Hitchin Systems of Infinite Rank

Here we generalize the derivation of finite-dimensional integrable systems in the form
(2.25)–(2.28) on two-dimensional integrable field theories.

5.1. Holomorphic L̂(GL(N,C))-bundles. Let L(gl(N,C)) be the loop algebra of
C∞-maps L(gl(N,C)) : S1 → gl(N,C), and L̂(gl(N,C)) be its central extension
with the multiplication

(g, c)× (g′, c′) = (gg′, cc′ exp C(g, g′)
)
, (5.1)

where exp C(g, g′) is a 2-cocycle of L̂(GL(N,C)) providing the associativity of the
multiplication.

Consider a holomorphic vector bundle V of an infinite rank over a Riemann curve�n
withnmarked points.The bundle is defined by the transition functions from L̂(GL(N,C)).
Its fibers are isomorphic to the Lie algebra L̂(gl(N,C)). The holomorphic structure on
V is defined by the operator

d
′′

: �(0)C∞(�n,End V )→ �
(0,1)
C∞ (�n,End V ).

It has two components d
′′ = d ′′

Ā
+ d ′′λ . The first component is

d
′′
Ā

: �(0)C∞(�n, L(gl(N,C)))→ �
(0,1)
C∞ (�n, L(gl(N,C))).
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Locally

d
′′
Ā
= ∂̄ + Ā, ∂̄ = ∂z̄, Ā = Ā(x, z, z̄), x ∈ S1.

The operator d
′′
Ā

acts on a N -dimensional column vector �e(x; z, z̄). The second compo-

nent is defined by the connection d
′′
λ on a trivial linear bundle L on �n, given by

d
′′
λ = ∂̄ + λ.

The field λ is a map from �n to the central element of the Lie algebra L̂(gl(N,C)).
A local section σ of V is holomorphic if d

′′
σ = 0. The sections allow to define the

transition functions. We assume that Ā and λ are smooth at the marked points.
In addition we define n copies of the central extended loop groups located at the

marked points

L̂Gα = (gα(x), cα), Gα = GL(N,C), (α = 1, . . . , n), x ∈ S1,

with the multiplication (5.1).
Thus, we have the set R of fields playing the role of the “coordinate space”:

R = {Ā, λ, (g1, c1), . . . , (gn, cn)
}
. (5.2)

5.2. Gauge symmetries. Let G be the group of automorphisms of R (the gauge group),

G = C∞Map(�n→ L̂(GL(N,C))) = {f (z, z̄, x), s(z, z̄)},

where f (z, z̄, x) takes values in GL(N,C), and s(z, z̄) is the map to the central element
of L̂(GL(N,C))). The multiplication is pointwise with respect to �n,

(f1, s1)× (f2, s2) = (f1f2, s1s2 exp C(f1, f2)) ,

where exp C(f1, f2) is a map from �n to the 2-cocycle of L̂(GL(N,C)).
Let (fα = fα(x), sα) be the value of the gauge fields at the marked point wα . The

action of G on R takes the following form:

Ā→ f−1∂̄f + f−1Āf, (5.3)

λ→ λ+ s−1∂̄s +
∮

tr(Āf−1∂xf )dx, (5.4)

cα → cαsα, gα → gαfα. (5.5)

The quotient space N = R/G is the moduli space of infinite rank holomorphic bundles
over Riemann curves with marked points.
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5.3. Phase space. The cotangent space to R has the following structure. Consider the
analog of the Higgs field � ∈ �(1,0)C∞ (�n, (EndV )∗). It is a one-form� on�n taking val-

ues in the Lie coalgebraL∗(gl(N,C)). Let k be a scalar one-form on�n, k ∈ �(1,0)C∞ (�n).
It is dual to the field λ. At the marked points we have the Lie coalgebras Lie∗(Gα) ∼
L(gl(N,C)) along with the central elements rα , dual to cα . Thus the cotangent bundle
T ∗R contains the fields

T ∗R = {(Ā,�), (λ, k); (g1, c1;p1, r1), . . . , (gn, cn;pn, rn)
}
. (5.6)

There is a canonical symplectic structure on T ∗R. For F ∈ �(1,0)C∞ (�n, (End V )∗)
and G ∈ �(0,1)C∞ (�n, L̂(gl(N,C))) defines the pairing

< F |G >=
∫
�n

∮
tr(FG)dx.

Then

ω =< D� ∧DĀ > +
∫
�n

Dk ∧Dλ+
n∑
α=1

ωα, (5.7)

where ωα is a canonical form on T ∗L̂(Gα). It is constructed in the canonical way by
means of the Maurer-Cartan form on L̂(Gα) = {gα, cα}. The result is

ωα =
∮
S1
α

tr(D(pαg
−1
α )Dgα)+D(rαc−1

α )Dcα + rα
2

∮
S1
α

tr
(
g−1
α Dgα∂x(g

−1
α Dgα)

)
.

(5.8)

5.4. Symplectic reduction. Now consider the lift of G to the global canonical transfor-
mations of T ∗R. In addition to (5.3),(5.4),(5.5) we have the following action of G:

�→ f−1k∂xf + f−1�f, k→ k, (5.9)

pα → f−1
α pαfα + rαf−1

α ∂xfα, rα → rα. (5.10)

This transformation leads to the moment map from the phase space to the Lie coalgebra
of the gauge group µ : T ∗R→ Lie∗(G). It takes the form

µ =
(
∂̄�− k∂xĀ+ [Ā,�]+

n∑
α=1

pαδ(zα), ∂̄k +
n∑
α=1

rαδ(zα)

)
. (5.11)

We assume that µ = (0, 0). Therefore, we have the two holomorphity conditions

∂̄�− k∂xĀ+ [Ā,�]+
n∑
α=1

pαδ(zα) = 0, (5.12)

∂̄k +
n∑
α=1

rαδ(zα) = 0. (5.13)

The constraint equation (5.13) means that the k-component of the Higgs field is a holo-
morphic one-form on � with first order poles at the marked points.
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Let us fix a gauge
L̄ = f−1∂̄f + f−1Āf. (5.14)

The same gauge action transform � as

L = kf−1∂xf + f−1�f. (5.15)

We preserve the same notations gα, pα for the gauge transformed variables. The moment
constraint equation (5.12) has the same form in terms of L̄ and L,

∂̄L− k∂xL̄+ [L̄, L]+
n∑
α=1

pαδ(zα) = 0. (5.16)

Solutions of this equation along with (5.13) define the reduced phase space

T ∗R//G ∼ T ∗N .

The symplectic form (5.7) on T ∗N becomes

ω =< δL|δL̄ > +
∫
�n

δkδλ+
n∑
α=1

ωα. (5.17)

5.5. Coadjoint orbits. Consider in detail the symplectic form ω (5.8) on T ∗L̂(G) ∼
{(p, r); (g, c)}. We omit the subscript α below. The following canonical transformation
of ω by (f, s) ∈ L̂(G), where s is a central element,

g→ fg, p→ p, r → r, c→ sc, f ∈ L(G), (5.18)

has not been used so far. The symplectic reduction with respect to this transformation
leads to the coadjoint orbits of L̂(GL(N,C)). In fact, the moment map

µ : T ∗L̂(G)→ Lie∗(L̂(GL(N,C)))

takes the form
µ = (−gpg−1 + r∂xgg−1, r).

Let us fix the momentµ = (p(0), r(0)). The result of the symplectic reduction of T ∗L̂(G)
is the coadjoint orbit

O(p(0), r(0)) = (p = −g−1p(0)g−r(0)g−1∂xg, r
(0)) = µ−1

(
T ∗L̂(SL(N,C))

)
/G0,

where G0 is the subgroup of L̂(GL(N,C)) that preserves µ,

G0 = {g ∈ L(GL(N,C), s is arbitrary) | p(0) = −g−1p(0)g + r(0)g−1∂xg}.
The symplectic form (5.8) being pushed forward on O takes the form

ω =
∮

tr(D(pg−1)Dg)+ r
(0)

2

∮
tr
(
g−1DgD(g−1∂xg)

)
. (5.19)

In what follows we will consider the collection of the orbits Oα(p
(0)
α , r

(0
α ) at the

marked points instead of the cotangent bundles T ∗L̂(Gα). In this way we come to the
notion of the Higgs bundle of infinite rank Ĥd

n (see (2.22) and (5.6))

Ĥd
n =

{
(Ā,�), (λ, k),O1(p

(0)
1 , r

(0
1 ), . . . ,On(p

(0)
n , r(0n )

}
. (5.20)
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5.6. Conservation laws I. The Higgs field � is transformed as a connection with re-
spect to the circles S1 (5.9). If the central charge k �= 0, the standard Hitchin integrals
(2.28) cease to be gauge invariant. Invariant integrals are generated by the traces of the
monodromies of the Higgs field�. The generating function of Hamiltonians is given by

H(z) = tr

(
P exp

1

k

∮
S1

�

)
, (5.21)

where z is a local coordinate of an arbitrary point. At a marked point,� has a first order
pole and

H(z) =
+∞∑
j=−1

Hjz
j . (5.22)

Since H(z) is gauge invariant one can replace � by L in (5.21),

H(z) = tr

(
P exp

1

k

∮
S1

L

)
. (5.23)

5.7. Equations of motion. Consider the equations of motion on the “upstairs” space
T ∗R (5.20). They are derived by means of the symplectic form ω (5.7), where ωα is
replaced by (5.19), and the Hamiltonians (5.21), (5.22). Let tj be a time variable corre-
sponding to the Hamiltonian Hj . Taking into account that Hj is a functional depending
on the Higgs field and the central charge k only, we arrive at the following free system;

∂j� = 0, (5.24)

∂j Ā = δHj

δ�
, (5.25)

∂j k = 0, ∂jλ = δHj

δk
, ∂jpα = 0. (5.26)

After the symplectic reduction we are led to the fields L̄ (5.14) and L (5.15). For
simplicity, we keep the same notation for the coadjoint orbits variables pα , so they are
transformed as in (5.10). Substituting (5.15) in (5.24) we obtain the Zakharov-Shabat
equation

∂jL− k∂xMj + [Mj,L] = 0, (∂j = ∂tj ), (5.27)

whereMj = ∂jff−1. The operatorMj can be restored partly from the second equation
(5.25),

∂̄Mj − ∂j L̄+ [Mj, L̄] = δHj

δL
. (5.28)

The last two equations along with the moment constraint equation (5.16) are the consis-
tency conditions for the linear system

(k∂x + L)� = 0, (5.29)

(∂̄ + L̄)� = 0, (5.30)

(∂j +Mj)� = 0. (5.31)
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5.8. Conservation laws II. The matrix equation (5.29) allows to write down the conser-
vation laws. Its generic solutions can be represented in the form

�(x) = (I + R) exp

(
−1

k

∫ x

0
Sdx′

)
, (5.32)

where I is the identity matrix,R is an off-diagonal periodic matrix and S = diag(S1, . . . ,

SN) is a diagonal matrix. Equation (5.29) means that L can be gauge transformed to the
diagonal form

(I + R)S = k∂x(I + R)+ L(I + R). (5.33)
Consider this equation in neighborhood of a point on �n with a local coordinate z.
Assume, for simplicity, that it is a pole of the Lax operator and k is a constant. In
particular, it follows from (5.13) that r0

α = 0 and the coadjoint orbits have the form
Oα = {pα = −gp0

αg
−1}. Then substitute into (5.33) the series expansions

L(z) = L−1z
−1 + L0 + L1z+ . . . , (L−1 = resL = p),

S(z) = S−1z
−1 + S0 + S1z+ . . . ,

(I + R)(z) = h+ R1z+ R2z
2 + . . . , (diag(Rm) ≡ 0).

It follows from (5.32) that the diagonal matrix elements Smj are the densities of the
conservation laws

logHj,l =
∮

S lj dx.

We present a recurrence procedure to define the diagonal matrices Sj . On the first
step we find that

S−1 = h−1L−1h = h−1ph, p = L−1 = Res Lz=0. (5.34)

In other words the diagonal matrix S−1 determines the orbit located at the point z = 0.
In the general case we get the following equation:

Sk + [h−1Rk+1,S−1] = h−1k∂xRk + h−1
k∑
l=1

Ll−1Rk−l+l − RlSk−lh−1Lkh.

Separating the diagonal and the off-diagonal parts allows us to express Sk and Rk in
terms of the lower coefficients

Sk =
(
h−1k∂xRk + h−1

k−1∑
l=0

LlRk−l + h−1
k∑
l=1

Ll−1Rk−l+l − RlSk−lh−1Lkh

)
diag

,

(5.35)

[h−1Rk,S−1] =
(
h−1k∂xRk−1 + h−1

k∑
l=1

Ll−1Rk−l+l − RlSk−lh−1Lkh

)
nondiag

.

(5.36)
In particular,

S0 = (h−1k∂xh+ h−1L0h)diag, (5.37)

S1 =
(
h−1k∂xR1 + h−1L1h− h−1R1S0 + h−1L0R1

)
diag

, (5.38)

where R1 is defined by the equation

[h−1R1,S−1] = (h−1k∂xh+ h−1L0h)nondiag. (5.39)
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5.9. Hamiltonians in SL(2,C) case. Let us perform the gauge transformation

f−1Lf + kf−1∂xf = L′, (5.40)

with f defined as follows:

f =
( √

L12 0

− L11√
L12
− k ∂x

√
L12

L12

1√
L12

)
. (5.41)

Then the Lax matrix L is transformed into

L′ =
(

0 1
T 0

)
, (5.42)

where

T = L21L12 + L2
11 + k

L11∂xL12

L12
− k∂xL11 − 1

2
k2 ∂

2
xL12

L12
+ 3

4
k2 (∂xL12)

2

L2
12

. (5.43)

The linear problem {
(xk∂x + L′)ψ = 0,
(∂j +M ′j )ψ = 0, (5.44)

where ψ is the Bloch wave function ψ = exp{−i ∮ χ}, leads to the Riccati equation:

ik∂xχ − χ2 + T = 0. (5.45)

The decomposition of χ(z) provides densities of the conservation laws (see [30]):

χ =
∞∑

k=−1

zkχk, (5.46)

Hk ∼
∮
dxχk−1. (5.47)

The values of χk can be found from (5.45) using the expression (5.43) for T (z) =
∞∑

k=−2
zkTk in a neighborhood of zero. For k = −2, −1 and 0 we have:



χ−1 =

√
T−2 =

√
h,

2
√
hχ0 = T−1 + ik∂xχ−1 = T−1,

2
√
hχ1 = T0 + ik∂xχ − χ2

0 .

(5.48)

In Subsects. 7.2, 7.3 below, explicit formulae for Tk are used for the computation of the
Hamiltonians for the elliptic 2d Calogero-Moser and the elliptic Gaudin models.
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6. L̂(SL(N, C))-Bundles over elliptic Curves with Marked Points

6.1. General case. We apply the general construction to the L̂(SL(N,C))-bundle over
that elliptic curve Eτ with marked points wα, α = 1, . . . , n. It is a two-dimensional
generalization of the elliptic Gaudin model [8]. In particular, for one marked point z = 0
we come to the N -body elliptic CM field theory.

Let us construct solutions of the moment equations (5.11), taking for simplicity at
the marked points the orbits with vanishing central charges

Oα =
{
pαij , rα = 0

}
.

For elliptic curves one can fix the central charge as k = 1. For the stable bundles the
gauge transformation (5.3) allows to diagonalize Ā:

Āij = δij 2π
√−1

τ − τ̄ ui . (6.1)

Then the Lax operator LG should satisfy (5.16). It takes the form:

LGij = −
δij

2π
√−1

(
vi

2
+
∑
α

pαii

(
2π
√−1

z− z̄
τ − τ̄ + E1(z− wα)

))

− 1− δij
2π
√−1

∑
α

pαij e
(
z− wα − (z̄− w̄α)

τ − τ̄ uij

)
φ(uij , z− wα), (uij = ui − uj ).

(6.2)

By the quasiperiodic gauge transform

f = diag{e( z− z̄
τ − τ̄ ui)}, (6.3)

one comes to the holomorphic quasiperiodic Lax operator

lGij (z) = −
δij

2π
√−1

(
vi

2
+
∑
α

pαiiE1(z− wα)
)
− 1− δij

2π
√−1

∑
α

pαijφ(uij , z− wα).
(6.4)

Reducing the moment map equation to the diagonal gives the additional constraint

1

2π
√−1

∑
α

pαii = ∂xui . (6.5)

6.2. L̂(SL(2,C))-bundles over elliptic curves with marked points. In this subsection
we study 2-body elliptic Calogero field theory in detail.
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The operator L. According to (6.4) the holomorphic Lax operator is


lG11 = − v

4π
√−1
−∑

α

pα11
2π
√−1

E1(z− wα),
lG12 = −

∑
α

pα12
2π
√−1

φ(2u, z− wα),
lG21 = −

∑
α

pα21
2π
√−1

φ(−2u, z− wα),
(6.6)

with the additional constraint (6.5)

1

2π
√−1

∑
α

pα11 = ux. (6.7)

We still have the freedom to fix the gauge with respect to the action of the diagonal
subgroup. The corresponding moment map is (6.7).

For the one marked point w1 = 0 the corresponding orbit is

p = 2π
√−1

(
ux − ν
−ν − ux

)
, (6.8)

where ν =const. is the result of the gauge fixing. In this case the Lax operator is a 2d
generalization of the Lax operator for the two-body CM model:

LCM2D =
(− 1

4π
√−1

v − uxE1(z) νφ(2u, z)

νφ(−2u, z) 1
4π
√−1

v + uxE1(z)

)
. (6.9)

This operator is still periodic under the shift z→ z+ 1 and

LCM2D (z+ τ) = e(u)LCM2D (z)e(−u)+ e(u)∂xe(−u),
where e(u) = diag(exp u, exp−u).

Hamiltonians for the 2d elliptic sl(2,C) CM model. In this case the coefficients Tk are
(see (5.43)–(5.48)):



T CM−2 = u2
x + ν2 = h

T CM−1 = 2 v

4π
√−1

ux − νx
ν
ux + uxx

T CM0 = − v2

16π2 + (2u2
x − ν2)℘ (2u)− v

4π
√−1

νx
ν
+ 1

4 (
νx
ν
)2

, (6.10)

where h is the Casimir function, fixing the coadjoint orbit at the marked point. It can be
chosen as a constant. Thus, we have

ν2 = h− u2
x.

The next order Hamiltonian is quadratic

HCM
−1 =

∮
v

2π
√−1

ux − νx
ν
ux. (6.11)

It can be written in the following way:

HCM
−1 =

∮
v

2π
√−1

ux + uxxh
ν2 . (6.12)
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Since {∮ dx uxx
ν2 , v(y)} = 0, the equations of motion are:



ut = 1

2π
√−1

ux,

vt = 1
2π
√−1

vx.
(6.13)

Note that the L-M pair is simple in this case: M = 1
2π
√−1

L.

The first nontrivial Hamiltonian H0 is quadratic in the momenta field v. It is a two-
dimensional generalization of the quadratic CM Hamiltonian

HCM
0 =

∮
dx2
√
hχ1 =

∮
dx

(
T0 − 1

4h
T 2
−1

)
. (6.14)

A direct evaluation yields:

T CM0 − 1

4h
(T CM−1 )2 = − v2

16π2

(
1− u

2
x

h

)
+ (3u2

x − h)℘ (2u)−
u2
xx

4ν2 . (6.15)

The equations of motion produced by HCM
0 are:

ut = − v

8π2

(
1− u

2
x

h

)
, (6.16)

vt = 1

8π2h
∂x(v

2ux)− 2(3u2
x − h)℘′(2u)+ 6∂x(ux℘ (2u))+ 1

2
∂x(

uxxxν − νxuxx
ν3 ).

It is reduced to the two-body elliptic CM system for the x-independent fields.

The L-M pair for the 2d elliptic sl(2,C) CM model. The equations of motion (6.16)
produced by the quadratic Hamiltonian HCM

0 can be represented in a form of the
Zakharov-Shabat equation with the L matrix defined by (6.9) and the M matrix given
as follows:


M11 = −utE1(z)− 1
4π
√−1

(
1

8π2h
v2ux + 6ux℘ (2u)+ uxxxν−νxuxx

2ν3

)
+ ux

2π
√−1

(E2(2u)− E2(z)),

M12 = − ν

2π
√−1

φ′(2u, z)+
(

ν

2π
√−1

E1(z)+ vuxν

8π2h
− 1

4π
√−1

uxx
ν

)
φ(2u, z),

M21 = − ν

2π
√−1

φ′(−2u, z)+
(

ν

2π
√−1

E1(z)+ vuxν

8π2h
+ 1

4π
√−1

uxx
ν

)
φ(−2u, z).

(6.17)
See Appendix C for details of the proof. This construction completes the description of
right vertical arrow in Fig.1.

2d CM - LL correspondence. The upper modification that produces the map of the
elliptic CM system into the elliptic rotator (4.10), (4.12) works in the two-dimensional
case as well.

The two-dimensional extension of the SL(2,C)-elliptic rotator is the Landau-Lifshitz
(LL) equation

∂tS = 1

2
[S, J (S)]+ 1

2
[S, ∂xxS]. (6.18)
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This equation can be fitted in the Zakharov-Shabat form [32]. The Lax operatorLLL has
the same form as for the SL(2,C) elliptic rotator Lrot (4.16). For sl(2,C) the basis of
the sigma matrices coincides with the basis of the sin-algebra and LLL takes the form

L =
∑
a

ua(z)Saσa,

u1 = ϕ
[

0
1

]
(z), u2 = ϕ

[
1
1

]
(z), u3 = ϕ

[
1
0

]
(z).

The MLL operator has a very simple extension

MLL = Mrot − LrotE1(z)+
∑
a

ua(z)tr(σa[S, ∂xS])σa.

It is easy to check that the Zakharov-Shabat equation leads to (6.18) if∑
a

S2
a = 1.

Thereby we have defined the right vertical arrow in Fig.1.
Consider the upper modification �2D that has the same quasi-periodicity as � but

corresponds to the residuep (6.8) ofLCM2D (6.9). Then the Lax operator for the LL system
is the result of the upper modification

LLL = �2D∂x�
−1
2D +�2DL

CM
2D �

−1
2D. (6.19)

It means that we can pass from the CM fields v(x, t), u(x, t) and the constant ν to the
LL fields S = (S1, S2, S3) with the orbit fixing condition

∑
a

S2
a = −

1

2π2 (u
2
x + ν2) = 1.

It completes the description of the diagram on Fig.1.

Relations with the Sinh-G equation and the nonlinear Schrödinger equation. It is known
that the LL model is universal; it contains as a special limit the Sinh-Gordon and the
Nonlinear Schrödinger models [3]. In this way they can be derived within the 2d CM
system.

The scaling limit in the CM model is a combination of the trigonometric limit Imτ →
∞ with shifts of coordinates: u = U + 1

2Imτ and renormalization of the coupling con-

stant ν = ν̄e 1
2 Imτ [31]. This procedure applied to the 2d elliptic CM Hamiltonian yields

the sinh-Gordon system:

HSG = − v2

16π2 − ν̄2(e2U + e−2U)+ U
2
x

4
. (6.20)

The equations of motion are:

Ut = − v

8π2 ,

vt = 2ν̄2(e2U − e−2U)+ 1
2Uxx.

(6.21)
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The L-M pair is:

LSG =

− v

4π
√−1
− 1

2Ux ν̄(1− e2UZ)

ν̄( 1
Z
− e−2U) v

4π
√−1
+ 1

2Ux


 , (6.22)

MSG =


−

Ut
2 − 1

8π
√−1

Ux
ν̄

4π
√−1

(1+ e2UZ)

ν̄

4π
√−1

(e−2U + 1
Z
) Ut

2 + 1
8π
√−1

Ux


 . (6.23)

Let us consider 2d CM theory for N = 2 in the rational limit when the both periods
of the basic spectral curve go to infinity. The upper modification (6.19) transforms this
system in the Heisenberg magnet. Then using the non-singular gauge transform from
Ref. [3] we come to the nonlinear Schrödinger equation.

6.3. Hamiltonians for the 2d elliptic Gaudin model. Using (B.28) we obtain the
Hamiltonian:

HG
−1,a = 2

v

4π
√−1

pa11

2π
√−1

+ 2
∑
b

pa11

2π
√−1

pb11

2π
√−1

E1(za − zb)

−
∑
a �=b

pa12p
b
21

(2π
√−1)2

φ(2u, zb − za)+
∑
a �=b

pb12p
a
21

(2π
√−1)2

φ(2u, za − zb)

− pa11

2π
√−1

∂xp
a
12

p12
. (6.24)

The last term makes the above Hamiltonian different from the one-dimensional version.
Let us consider the sl(2,C) case with two marked points on the elliptic curve.
We will use the following notations:


p1

11 = 2π
√−1γ1, p2

11 = 2π
√−1γ2,

p1
12 = −2π

√−1ν+, p1
21 = −2π

√−1ν−,
p2

12 = −2π
√−1µ+, p2

21 = −2π
√−1µ−.

(6.25)

The L matrix is:

lG11 = − v

4π
√−1
− γ1E1(z− z1)− γ2E1(z− z2),

lG12 = νφ(2u, z− z1)+ µ+φ(2u, z− z2),

lG21 = νφ(−2u, z− z1)+ µ−φ(−2u, z− z2).

(6.26)

The solution exists if
γ1 + γ2 = ux. (6.27)

The gauge fixing condition is chosen to be

ν+ = ν− = ν. (6.28)
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We fix the Casimir elementsh1 = γ 2
1+ν2 andh2 = γ 2

2+µ+µ− to be constants:h1, h2 ∈
C.

On the reduced phase space there are two independent fields besides u and v. Let
them be for example ν and µ+, then


γ1 =

√
h1 − ν2,

γ2 = ux −
√
h1 − ν2,

µ− = 1
µ+ (h2 − (ux −

√
h1 − ν2)2).

(6.29)

However we are going to use all kinds of variables in order to make the formulae more
transparent. The non-trivial brackets on the reduced phase space are:

{v(x), u(y)} = δ(x − y), {v(x), γ1(y)} = −δ′(x − y), {v(x), ν(y)} = γ1
ν
δ′(x − y),

{µ+(x), γ1(y)} = − 1
2π
√−1

µ+δ(x − y), {µ+(x), µ−(y)} = −2 1
2π
√−1

γ2δ(x − y),
{µ+(x), γ2(y)} = 1

2π
√−1

µ+δ(x − y), {µ+(x), ν(y)} = 1
2π
√−1

γ1
ν
µ+δ(x − y),

{ν(x), µ−(y)} = 1
2π
√−1

γ1
ν
µ−δ(x − y).

(6.30)
The Hamiltonian is:

HG
−1 =

∮
dx

(
2γ1

v

4π
√−1

− γ1
νx

ν
+ ∂xγ1 + νµ+φ(2u, z1 − z2)

− νµ−φ(2u, z2 − z1)+−2γ1γ2E1(z1 − z2)

)
. (6.31)

The equations of motion are:




∂tu(x) = 1

2π
√−1

γ1(x),

∂tv(x) = 1

2π
√−1

vx − ∂x(γ1µ+
ν

φ(2u, z1 − z2))+ ∂x(γ1µ−
ν

φ(2u, z2 − z1))

− 2νµ+φ′(2u, z1 − z2)+ 2νµ−φ′(2u, z2 − z1)− ∂x
(
γ1∂xγ1
ν2

)
,

∂t ν = − 1
2π
√−1

∂x

(
γ 2

1
ν

)
+ γ1

2π
√−1ν

(µ+φ(2u, z1 − z2)− µ−φ(2u, z2 − z1)),

∂tµ+ = 1

2π
√−1

(
2

v

4π
√−1

µ+2µ+(γ2 − γ1)E1(z1 − z2)

)

− 2νγ2

2π
√−1

φ(2u, z2 − z1)

− γ1µ+
2π
√−1ν

(µ+φ(2u, z1 − z2)− µ−φ(2u, z2 − z1)).

(6.32)
The quadratic Hamiltonian is the direct generalization of (6.15)

HG
0 =

∮
dx2

√
h1χ1 =

∮
dx

(
T0 − 1

4h1
T 2
−1

)
, (6.33)
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where

2
√
h1χ1 = − v2

16π2 (1−
γ 2

1

h1
)+ (2uxγ1 − ν2)℘ (2u)− (∂xγ1)

2

4ν2 + µ+µ−(E2(z1 − z2)

− E2(2u))+ 4η1γ1γ2 + νµ−φ(2u, z2 − z1)(E1(z1 − z2)− E1(2u)

+ E1(2u+ z2 − z1))− νµ+φ(2u, z1 − z2)(E1(z1 − z2)γ
2
2E

2
1(z1 − z2)

+ E1(2u)− E1(2u+ z1 − z2))+ 2γ2
v

4π
√−1

E1(z1 − z2)

− γ2
νx

ν
E1(z1 − z2)+ γ1

µ+
ν2 φ(2u, z1 − z2)− γ1φ(2u, z1 − z2)

×
[
∂xµ+
ν
+ 2ux

µ+
ν
(E1(z1 − z2 + 2u)− E1(2u))

]

− 1

4h1
(νµ+φ(2u, z1 − z2)− νµ+φ(2u, z2 − z1)+ 2γ1γ2E1(z1 − z2))

2

− 1

2h1
(νµ+φ(2u, z1 − z2)− νµ+φ(2u, z2 − z1)

+ 2γ1γ2E1(z1 − z2)) (2γ1
v

4π
√−1

− γ1
νx

ν
+ ∂xγ1). (6.34)

7. Conclusion

Here we briefly summarize the results of our analysis and discuss some unsolved related
problems. The following two subjects were investigated in the paper.

(i) We have constructed symplectic maps between Hitchin systems related to holo-
morphic bundles of different degrees. It allowed us to construct the Bäcklund transfor-
mations in the Hitchin systems defined over Riemann curves with marked points. We
applied the general scheme to the elliptic CM systems and constructed the symplectic
map to an integrable SL(N,C) Euler-Arnold top (the elliptic SL(N,C)-rotator). The
open problem is to write down the explicit expressions for the spin variables in terms of
the CM phase space for an arbitrary N as was done for the case N = 2 (4.34). It should
help to construct the Bäcklund transformations for the CM systems explicitly, and more
generally, to construct the generating function for them. The later can be considered as
the integrable discrete time mapping [10].

(ii) We have proposed a generalization of the Hitchin approach to 2d integrable theo-
ries related to holomorphic bundles of infinite rank. The main example is the integrable
two-dimensional version of the two-body elliptic CM system. The upper modification
allows to define the symplectic map to the Landau-Lifshitz equation and to find, in
principle, the Bäcklund transformations in the field theories.

It will be extremely interesting to find the 2d generalization of the SL(N,C)-rotator
for N > 2 (the matrix LL equation).

There is another point of view on the 2d generalizations of the Hitchin systems. One
can try to define them starting from holomorphic bundles over complex surfaces, that are
fibrations over Riemann curves. In this case the spectral parameter lives on the base of
the fibration, while the space variable lives on the fibers. It will be interesting to analyze,
for example, the known solutions of the LL equation from this point of view.
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8. Appendix

8.1. Appendix A. Sin-Algebra.

e(z) = exp(2π
√−1z), (A.1)

Q = diag(e(1/N), . . . , e(m/N), . . . , 1), (A.2)

� =




0 1 0 · · · 0
0 0 1 · · · 0
...
...
. . .

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0


 , (A.3)

Emn = e(
mn

2N
)Qm�n, (m = 0, . . . , N − 1, n = 0, . . . , N − 1, (modN) m2+ n2 �= 0)

(A.4)
is the basis in sl(N,C). The commutation relations in this basis take the form

[Esk, Enj ] = 2
√−1 sin

π

N
(kn− sj)Es+n,k+j , (A.5)

tr(EskEnj ) = δs,−nδk,−jN. (A.6)

8.2. Appendix B. Elliptic functions. We summarize the main formulae for elliptic func-
tions, borrowed mainly from [33 and 34]. We assume that q = exp 2πiτ , where τ is the
modular parameter of the elliptic curve Eτ .

The basic element is the theta function:

ϑ(z|τ) = q 1
8
∑
n∈Z

(−1)neπi(n(n+1)τ+2nz)

= q 1
8 e−

iπ
4 (eiπz − e−iπz)

∞∏
n=1

(1− qn)(1− qne2iπz)(1− qne−2iπz). (B.1)

The Eisenstein functions.

E1(z|τ) = ∂z logϑ(z|τ), E1(z|τ) ∼ 1

z
− 2η1z, (B.2)

where

η1(τ ) = ζ
(

1

2

)
= 3

π2

∞∑
m=−∞

∞′∑
n=−∞

1

(mτ + n)2 =
24

2πi

η′(τ )
η(τ )

, (B.3)

where
η(τ) = q 1

24
∏
n>0

(1− qn)
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is the Dedekind function,

E2(z|τ) = −∂zE1(z|τ) = ∂2
z logϑ(z|τ), E2(z|τ) ∼ 1

z2 + 2η1. (B.4)

The next important function is

φ(u, z) = ϑ(u+ z)ϑ ′(0)
ϑ(u)ϑ(z)

. (B.5)

It has a pole at z = 0 and

φ(u, z) = 1

z
+ E1(u)+ z

2
(E2

1(u)− ℘(u))+ . . . , (B.6)

and
φ(u, z)−1∂uφ(u, z) = E1(u+ z)− E1(u). (B.7)

The following formula plays an important role in checking the zero curvature equation:

φ′′(u, z) = φ(u, z)(E2(z)−E2
1(z)+ 2E1(z)(E1(u+ z)−E1(u))+ 2E2(u)− 6η1).

(B.8)
It follows from:

(E1(z)+ E1(u)− E1(z+ u))2 = E2(u)+ E2(z)+ E2(u+ z)− 6η1. (B.9)

Relations to the Weierstrass functions.

ζ(z|τ) = E1(z|τ)+ 2η1(τ )z, (B.10)

℘(z|τ) = E2(z|τ)− 2η1(τ ), (B.11)

φ(u, z) = exp(−2η1uz)
σ (u+ z)
σ (u)σ (z)

, (B.12)

φ(u, z)φ(−u, z) = ℘(z)− ℘(u) = E2(z)− E2(u). (B.13)

Particular values.

E1

(
1

2

)
= 0, E1

(τ
2

)
= E1

(
1+ τ

2

)
= −π√−1. (B.14)

Series representations.

E1(z|τ) = −2πi


1

2
+
∑
n�=0

e2πiz

1− qn




= −2πi


∑
n<0

1

1− qne2πiz +
∑
n≥0

qne2πiz

1− qne2πiz +
1

2


 , (B.15)

E2(z|τ) = −4π2
∑
n∈Z

qne2πiz

(1− qne2πiz)2
, (B.16)

φ(u, z) = 2πi
∑
n∈Z

e−2πinz

1− qne−2πiu . (B.17)
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Parity.

ϑ(−z) = −ϑ(z), (B.18)

E1(−z) = −E1(z), (B.19)

E2(−z) = E2(z), (B.20)

φ(u, z) = φ(z, u) = −φ(−u,−z). (B.21)

Quasi-periodicity.

ϑ(z+ 1) = −ϑ(z), ϑ(z+ τ) = −q− 1
2 e−2πizϑ(z), (B.22)

E1(z+ 1) = E1(z), E1(z+ τ) = E1(z)− 2πi, (B.23)

E2(z+ 1) = E2(z), E2(z+ τ) = E2(z), (B.24)

φ(u+ 1, z) = φ(u, z), φ(u+ τ, z) = e−2πizφ(u, z). (B.25)

Addition formula.

φ(u, z)∂vφ(v, z)− φ(v, z)∂uφ(u, z) = (E2(v)− E2(u))φ(u+ v, z), (B.26)

or

φ(u, z)∂vφ(v, z)− φ(v, z)∂uφ(u, z) = (℘ (v)− ℘(u))φ(u+ v, z). (B.27)

The proof of (B.26) is based on (B.6),(B.21), and (B.25). In fact, φ(u, z) satisfies more
a general relation which follows from the Fay three-section formula

φ(u1, z1)φ(u2, z2)−φ(u1+u2, z1)φ(u2, z2−z1)−φ(u1+u2, z2)φ(u1, z1−z2) = 0.
(B.28)

A particular case of this formula is

φ(u1, z)φ(u2, z)−φ(u1+u2, z)(E1(u1)+E1(u2))+∂zφ(u1+u2, z) = 0. (B.29)

Integrals. ∫
Eτ

E1(z|τ)dzdz̄ = 0. (B.30)
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Theta functions with characteristics. For a, b ∈ Q put :

θ

[
a

b

]
(z, τ ) =

∑
j∈Z

e
(
(j + a)2 τ

2
+ (j + a)(z+ b)

)
. (B.31)

In particular, the function ϑ (B.1) is the theta function with a characteristic

ϑ(x, τ ) = θ
[

1/2
1/2

]
(x, τ ). (B.32)

One has

θ

[
a

b

]
(z+ 1, τ ) = e(a)θ

[
a

b

]
(z, τ ), (B.33)

θ

[
a

b

]
(z+ a′τ, τ ) = e

(
−a′2 τ

2
− a′(z+ b)

)
θ

[
a + a′
b

]
(z, τ ), (B.34)

θ

[
a + j
b

]
(z, τ ) = θ

[
a

b

]
(z, τ ), j ∈ Z. (B.35)

For simplicity we denote θ

[
a/2
b/2

]
= θab.

The following identities are useful for the upper modification procedure in sl(2,C)
case:

θ01(x, τ )θ00(y, τ )+ θ01(y, τ )θ00(x, τ ) = 2θ01(x + y, 2τ)θ01(x − y, 2τ),
θ01(x, τ )θ00(y, τ )− θ01(y, τ )θ00(x, τ ) = 2ϑ(x + y, 2τ)ϑ(x − y, 2τ),
θ00(x, τ )θ00(y, τ )+ θ01(y, τ )θ01(x, τ ) = 2θ00(x + y, 2τ)θ00(x − y, 2τ),
θ00(x, τ )θ00(y, τ )− θ01(y, τ )θ01(x, τ ) = 2θ10(x + y, 2τ)θ10(x − y, 2τ);

(B.36)

2ϑ(x, 2τ)θ01(y, 2τ) = ϑ ( x+y2 , τ
)
θ10
( x−y

2 , τ
)+ θ10

( x+y
2 , τ

)
ϑ
( x−y

2 , τ
)
,

2θ00(x, 2τ)θ10(y, 2τ) = ϑ ( x+y2 , τ
)
ϑ
( x−y

2 , τ
)+ θ10

( x+y
2 , τ

)
θ10
( x−y

2 , τ
)
,

2θ00(x, 2τ)θ00(y, 2τ) = θ00
( x+y

2 , τ
)
θ00
( x−y

2 , τ
)+ θ01

( x+y
2 , τ

)
θ01
( x−y

2 , τ
)
,

2θ10(x, 2τ)θ10(y, 2τ) = θ00
( x+y

2 , τ
)
θ00
( x−y

2 , τ
)− θ01

( x+y
2 , τ

)
θ01
( x−y

2 , τ
)
.

(B.37)

8.3. Appendix C: 2d sl(2,C) Calogero L-M pair. The Zakharov-Shabat equations in
sl(2,C) case are: 


11 : ∂tL11 − ∂xM11 = M21L12 −M12L21,

12 : ∂tL12 − ∂xM12 = 2L11M12 − 2L12M11,

21 : ∂tL21 − ∂xM21 = 2M11L21 − 2L11M21.
(C.1)

Let the non-diagonal terms in the M matrix be of the form:{
M12 = c(x)�′(2u, z)+ (f 1

12(x)E1(z)+ f 0
12(x))�(2u, z),

M21 = c(x)�′(−2u, z)+ (f 1
21(x)E1(z)+ f 0

21(x))�(−2u, z).
(C.2)

Then from the diagonal part of (C.1) we conclude:

M11 = −utE1(z)+ α(x)+�M11, (C.3)
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where

α(x) = − 1

4π
√−1

(
1

8π2h
v2ux + 6ux℘ (2u)+ uxxxν − νxuxx

2ν3

)
, (C.4)

and�M11 will be defined in the following. It is supposed to be dependent on E2(2u) in
order to cancel terms proportional to E2(2u) and E′2(2u) in (C.1).

Using formula (B.8) in the non-diagonal part of (C.1), we arrive at some
conditions equivalent to cancellations of the terms proportional to functions ξ(2u, z) =
E1(2u+ z)− E(2u), E1(z), E2

1(z), E1(z)ξ(−2u, z):

(12)




E1(z)ξ(2u, z) : f 1
12 = −c,

E2
1(z) : f 1

12 = −c,
ξ(2u, z) : 2νut − cx − 2uxf 0

12 = −2c v

4π
√−1

,

E1(z) : −∂xf 1
12 = −2 v

4π
√−1

f 1
12 − 2uxf 0

12 + 2utν,

(C.5)

(21)



E1(z)ξ(−2u, z) : f 1

12 = −c,
E2

1(z) : f 1
12 = −c,

ξ(−2u, z) : −2νut − cx + 2uxf 0
21 = 2c v

4π
√−1

,

E1(z) : −∂xf 1
21 = 2 v

4π
√−1

f 1
12 + 2uxf 0

21 − 2utν.

(C.6)

Thus 

f 1

12 = f 1
21 = −c,

2uxf 0
12 = 2νut − cx + 2c v

4π
√−1

,

2uxf 0
21 = 2νut + cx + 2c v

4π
√−1

,

(C.7)

{
f+ = f 0

21 + f 0
12 = 2

ux
(νut + c v

4π
√−1

),

f− = f 0
21 − f 0

12 = cx
ux
.

(C.8)

The remaining parts of the non-diagonal equations are:

νt + 12cuxη1 − ∂xf 0

12 − 2cuxE2(z)− 4cuxE2(2u)
= −2 v

4π
√−1

f 0
12 − 2να − 2ν�M11,

−νt + 12cuxη1 + ∂xf 0
21 − 2cuxE2(z)− 4cuxE2(2u)

= −2 v

4π
√−1

f 0
21 − 2να − 2ν�M11.

(C.9)

Subtracting the above equations we have:

2
ux

ν
∂xut + ∂xf+ = −2

v

4π
√−1

f−. (C.10)

Substituting f+ and f− from (C.8) into (C.10) we arrive at the equation for c:

ux

ν
∂xut + ∂x

(
1

ux

(
νut + c v

4π
√−1

))
= − v

4π
√−1

cx

ux
. (C.11)

Now some concrete equations of motion should be used. For HCM
−1 this equation yields

c ∼
√
ux
v

. However the coefficient of the proportionality appears to be equal to zero.

For HCM
0 (6.15) we have c = − ν

2π
√−1

.



132 A.M. Levin, M.A. Olshanetsky, A. Zotov

References

1. Sokolov, V.V., Shabat, A.B.: Classification of integrable evolution equations. Soviet Sci. Rev. C4,
221–280 (1984).
Mikhailov, A.V., Shabat, A.B., Yamilov, R.I.: The symmetry approach to classification of nonlinear
equations. Complete list of integrable systems. Uspekhi Mat. Nauk 42, 3–53 (1987)
Fokas, A.S.: Symmetries and integrability. Stud.Appl.Math. 77, 253–299 (1987)

2. Ruijsenaars, S.N.M.: Action-Angle maps and Scattering Theory for Some Finite-Dimensional In-
tegrable systems. Commun. Math. Phys. 115, 127–165 (1988)
Fock, V.: In: Geometry and Integrable Models. P. Pyatov, S. Solodukhin (eds.), Singapore: World
Scientific, 1995, p. 20
Gorsky, A.: Integrable many-body problems from the field theories. Theor. Math. Phys. 103, 681–
700 (1995), hep-th/9410228
Nekrasov, N.: On a Duality in Calogero-Moser-Sutherland Systems. hep-th/9707111
Fock, V., Gorsky, A., Nekrasov, N., Rubtsov, V.: Duality in integrable systems and gauge theories.
hep-th/9906235
Mironov, A.: Seiberg-Witten theory and duality in integrable systems. hep-th/0011093

3. Takhtajan, L., Zakharov, V.: The equivalence the nonlinear Schrodinger equation and the Heizenberg
ferromagnet. Theor. Math. Phys. 38, 26–35 (1979)

4. Hitchin, N.: Stable bundles and integrable systems. Duke Math. J. 54, 91–114 (1987)
5. Simpson, S.T.: Harmonic bundles on non-compact curves. J. of AMS 3, 713–770 (1990)
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