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Abstract: An elementary family of local Hamiltonians H◦,�, � = 1, 2, 3, . . . , is
described for a 2-dimensional quantum mechanical system of spin = 1

2 particles. On the
torus, the ground state space G◦,� is (log) extensively degenerate but should collapse
under “perturbation” to an anyonic system with a complete mathematical description:
the quantum double of the SO(3)-Chern-Simons modular functor at q = e2πi/�+2 which
we callDE�. The HamiltonianH◦,� defines a quantum loop gas. We argue that for � = 1
and 2,G◦,� is unstable and the collapse toGε,� ∼= DE� can occur truly by perturbation.
For � ≥ 3, G◦,� is stable and in this case finding Gε,� ∼= DE� must require either
ε > ε� > 0, help from finite system size, surface roughening (see Sect. 3), or some other
trick, hence the initial use of quotes “ ”. A hypothetical phase diagram is included in
the introduction.

The effect of perturbation is studied algebraically: the ground state space G◦,� of
H◦,� is described as a surface algebra and our ansatz is that perturbation should respect
this structure yielding a perturbed ground state Gε,� described by a quotient algebra.
By classification, this implies Gε,� ∼= DE�. The fundamental point is that nonlinear
structures may be present on degenerate eigenspaces of an initial H◦ which constrain
the possible effective action of a perturbation.

There is no reason to expect that a physical implementation of Gε,� ∼= DE� as an
anyonic system would require the low temperatures and time asymmetry intrinsic to
Fractional Quantum Hall Effect (FQHE) systems or rotating Bosé-Einstein condensates
− the currently known physical systems modelled by topological modular functors. A
solid state realization ofDE3, perhaps even one at a room temperature, might be found
by building and studying systems, “quantum loop gases”, whose main term isH◦,3. This
is a challenge for solid state physicists of the present decade. For � ≥ 3, � �= 2 mod 4,
a physical implementation of DE� would yield an inherently fault-tolerant universal
quantum computer. But a warning must be posted, the theory at � = 2 is not com-
putationally universal and the first universal theory at � = 3 seems somewhat harder
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to locate because of the stability of the corresponding loop gas. Does nature abhor a
quantum computer?
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0. Introduction

In Sect. 1, we write down a positive semidefinite local Hamiltonian H◦,� for a system
of locally interacting Ising spins on a 2-dimensional triangular lattice or surface trian-
gulation, � = 1, 2, 3, . . . . In the presence of topology, e.g. on a torus, H◦,� has a highly
degenerate space G◦,� of zero modes. On any closed surface Y , different from the 2-
sphere, the degeneracy is polylog (2v) = poly(v), where v is the number of sites in the
triangulation and the 2v is the dimension of the Hilbert space h of spins. On the torus
T 2 the polynomial has degree = 1, when Y has genus g > 1 the polynomial has degree
= 3g − 3 (see Proposition 3.8).

We argue for an ansatz (3.4) which exploits the peculiarly rigid algebraic structure
of G◦,� − it is a monoidal tensor category with a unique nontrivial ideal. The ansatz
allows us to model any “perturbed” ground state spaceGε,� (which is itself stable to per-
turbation) uniquely as a known anyonic system or in mathematical parlance a modular
functor. The functor is the Drinfeld double of the even-label-sector of the SU(2)-Chern-
Simons unitary topological modular functor at level �,DE�. Even labels correspond in
physical terms to the integer spin representations so the even-label-sector derives from
the group SO(3).

The Hamiltonian H◦,� defines a quantum loop gas which can be compared (see
Sect. 3) with the classical analog. The statistical mechanics of classical loop gases
[Ni] identifies a known critical regime and from this we infer that for � = 1 and 2,G◦,�
is unstable and the collapse to Gε,� ∼= DE� is truly by perturbation, for � ≥ 3, G◦,� is
stable and in this case finding Gε,� ∼= DE� requires ε > ε� > 0, or some other device
(see Sect. 3), hence the initial use of quotes “ ”. Figure 0.1 is a hypothetical phase
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diagram. The stability ofG◦,� at � = 3 is probably very slight − see footnote 6 in Sect. 3
and the corresponding discussion.

The reader should not be alarmed that a “doubled” Chern-Simons theory arises.
The doubled structure makes it a gauge theory and, as we will explain, the double, be-
ing achiral, is more likely to have a robust physical realization. The modular functor

DE� has λ = (	 �+1
2 
)2

“labels” or, physically, λ super selection sectors for quasipar-
ticle excitations (including the empty particle). Physically this means that a local bit of
material, a two dimensional disk with a fixed boundary condition, which is in its unique
ground state Gε,� can have λ types of point-like anyonic excitations (presumably with
exponentially decaying tails) which can only be created in pairs. λ is the number of
ordered integer pairs (x, y) with 0 ≤ x, y ≤ �, and x, y = even. By mathematically
deleting small neighborhoods of such excitations a ground state vector is approximately
achieved in the highly degenerate ground state space Gε,� associated to a punctured
disk with boundary conditions. It is known [FLW2] and [FKLW] that for � ≥ 3, � �= 2
mod 4, there is a universal, inherently fault-tolerant, model for quantum computation
based on the ability to create, braid, fuse, and finally distinguish these excitations types.
Thus H◦,� could be of technological importance: a physical system, a “quantum loop
gas”, in this (perturbed) universality class could be the substrate of a universal fault
tolerant quantum computer.

Any unit vector � ∈ G◦,� is a superposition of classical ±-spin states |�〉 which
are distinguished by the eigenvalues ±1 of a commuting family of Pauli matrices σvz
equal to

∣∣ 1 0
0 −1

∣∣ at vertex v. Sampling � =  ai |�i〉 by observing {σvz }, we “observe” a
classical |�i〉 with probability |ai |2. The domain wall γi separating the +-spin regions
from −-spin regions of � may be thought of as a random, self dual, loop gas [Ni].
This random state is self dual because there is a symmetry between “up” and “down”.

It is a Gibbs state with parameters k = 0, self dual, and n =
(

2 cos π
�+2

)2
, where the

weight of a configuration γ is w(γ ) = e−k(total length γ )n# components γ . It is known that
for 0 < n ≤ 2 and k = 0 the loop gas is critical, sitting at a 2nd order phase transition as k
crosses from negative to positive. This information together with Sect. 3 and 4 support a
phase diagram like the one shown in Fig. 0.1 with parameters d := 2 cos π

�+2 = √
n. The

parameter ε scales a local perturbation term εV . We will argue that the simplest choice

for V , V =
(
 

site i
σ ix

)
, is a likely candidate. The diagram is labelled “hypothetical” since

there is no proof of its accuracy.
The challenge to solid state physics is to find or engineer a two dimensional quantum

medium in the universality class, DE3 below.
The presumptive approach − nearly universal in the literature − to building a quan-

tum computer is quite different from our topological/anyonic starting point. It is based
on manipulating and protecting strictly local − as opposed to global or topological −
degrees of freedom. It may be called the “qubit approach” since often a union of 2-level
systems (with state space

⊗
i

C2
i ) is proposed. Actually, the number of levels − or even

their finiteness − is not the essential feature, it is that each tensor factor of the state space
− call it a qunit − is physically localized in space (or momentum space). The environ-
ment will – despite the best efforts of the experimentalist − interact directly with these
“raw” qunits. It has long been recognized ([S, U]) that the raw qunits must encrypt fewer
“logical qubits.” The demon in this approach is that very low initial (or raw) error rate
– perhaps one error per 10−5 operations – and large ratios of raw to logical qunits ∼103

seem to be required [Pr] to have a stable computational scheme. This problem pervades
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Fig. 0.1. Shaded regions are the topological phases DE1,DE2,DE3,DE4, . . . . Doubly shaded
regions are the computationally universal phases DE3,DE5,DE7, . . . . We have no way of predict-
ing if the topological phases are actually in contact with each other as drawn. Solid lines are phase
boundaries between inequivalent systems

all approaches based on local or “qubit” systems: liquid NMR, solid state NMR, electron
spin, quantum dot, optical cavity, ion trap, etc. . . .

Kitaev’s seminal paper [K1] on anyonic computation, amplified in numerous private
conversations, provides the foundation for the approach described here. Anyons are a
(2+1)-dimensional phenomena: when sites containing identical particles in a 2-dimen-
sional system are exchanged (without collision) there are, up to deformation, two basic
exchanges; a clockwise and a counter-clockwise half turn - or “braid” if the motion
is considered as generating world lines in 2 + 1-dimensional space-time. The two are
inverse to each other but of infinite order rather than order = 2. So whereas only the
permutation needs to be recorded for exchanges in R3, in R2 “statistics” becomes a
representation ρ of a braid group B into the unitary group of a Hilbert space h encoding
the internal degrees of freedom of the particle system:

ρ : B −→ U(h).

Since a representation into unitary transformations, “gate set” in (quantum) computer
science language, is the heart of quantum computation it is not really a surprise that
any kind of particle system with a sufficiently general (it certainly must be nonabelian)
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Theory
dim

on T 2

number of
constant color

particles = labels
and their

braid reps.

number of
additional

color reversing
particles

and the total
braid reps.

specific
heat

nonsingular
unitary topological
modular functor?

(UTMF)

DE1 1 1,T 1,T 2
yes,

but trivially

DE2 4 4,T 1,N 5
no, rank

(S − matrix) = 1
DE3 4 4,U 4,U 8 yes
DE4 9 9,N 4,N 13 yes
DE5 9 9,U 9,U 18 yes
DE6 16 16,? 9,? 25 no

DE� � �+1
2 �2

� �+1
2 �2,

U for � ≥ 5,
� �= 2 mod 4

� �2 �2,

U for � ≥ 5,
� �= 2 mod 4 � (�+1)2

2 �

yes if
� ≡ 0, 1, 3 mod 4

no if
� ≡ 2 mod 4

Fig. 0.2. For sufficiently many particles we have recorded if the (generalized) braid group representa-
tions are: T (trivial), A(abelian), N(nonabelian), U(computationally universal); we have called the total
number of elementary particles, including those that reverse the (|+〉, |−〉) coloring, “specific heat” as
it counts local degrees of freedom above the ground state. The color constant elementary particles are
the irreducible representations of the corresponding linear category (see Sect. 2). Coloring-reversing
particles are explained at the end of Sect. 2

image ρ(B) can be used to build a universal model for quantum computation. This has
been shown in [FLW1, FLW2 and FKLW].

What are the advantages and disadvantages of anyonic versus qubit computation? The
most glaring disadvantage of anyons is that no one is absolutely sure that nonabelian
anyons exist in any physical system. Two dimensional electron liquids exhibiting the
fractional quantum Hall effect FQHE are the most widely studied candidates for anyonic
systems. The Laughlin state at filling fraction ν = 1/3 has observed excitations charges
of (1/3)e and these are convincingly linked by the mathematical model with a statistical
factor of ω = ±e2πi/3 for the exchange of such pairs. Quasiparticle excitations with
nonabelian statistics is one of the most exciting predictions of Chern-Simons theory as
a model for the FQHE. With a few low level (e.g. � = 1, 2 or 4, when G = SU(2))
exceptions nonabelian anyonic systems are capable, under braiding, of realizing univer-
sal quantum computation [FLW2]. The essential point is that the “Jones representation”
of the braid group (on sufficiently many strands) associated to the Lie group SU(2) has a
dense image at least in SU(h) ⊂ U(h), h an irreducible summand of the representation.
At ν = 5/2 according to [RR] the Hall fluid is modelled by aU(1) theory coupled to CS2
[the Chern-Simons theory of SU(2) at the 4th root of unity (level � = 2)]; the latter is a
theory with a nonabelian “Clifford group” representation. This model was selected from
conformal field theories to match expected ground state degeneracies and central charge,
and is further supported by numerical evidence on the overlap of trial wave functions.
Though very interesting, this representation is still discrete and is not universal in the
sense of [FLW1]. However at ν = 8/5, with perhaps weaker numerical support [RR],
it is thought that the Hall fluid model contains CS3 (level= 3, 5th root of unity). Here
braiding and fusing the excitation would yield universal quantum computation [FLW1].

So let us, for the sake of discussion, accept that FQHE systems have computationally
universal anyons, we are still a long way from building a quantum computer. FQHE
systems are very delicate:

1. The required crystals have been grown successfully only in a few laboratories.
2. The temperatures at which the finer plateaus are stable are order milK.
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3. The chiral asymmetry intrinsic (for CS2 and CS3 the central charge is 3
2 and 9

5
respectively) to the effect requires an enormous transverse magnetic field, order
10 – 15 Tesla to reduce magnetic length to where conduction plateaus are observed.

At feasible magnet lengths,1 the Coulomb interaction between electrons is at least three
orders of magnitude weaker than in solids. Corresponding to the weakness of these inter-
actions the spectral gap protecting topological phases is necessarily quite small. Perhaps
for this reason, even the most basic experiments to prove existence of “nonabelions” have
not been carried out, and the use of these systems for computations appears unrealistic.

For applications such as breaking the cryptographic scheme RSA, it can be estimated
that several thousand anyons must be formed, braided at will (perhaps implementing tens
of thousands of half twists), and finally fused. This appears to be a nearly impossible
task in a FQHE system.

The main point of this paper is that computationally universal anyons may be avail-
able in more convenient systems. H◦,� is a local model for a paramagnetic system of
Ising spins with short range antiferromagnetic properties. Written out in products of
Pauli matrices H◦,� is seventh order (on the standard triangular lattice) and thus looks
complicated compared to, say, the Heisenberg magnet. But geometrically it is quite sim-
ple and its ground states are known exactly. A 2-dimensional material in the universality
classDE� proposed as the ground state space forHε,�, � �= 1, or ≡ 2 mod 4, will have
excitations – “quasiparticles” – capable of universal fault tolerant quantum computation
within a model that allows creation, braiding, fusion and measurement of quasiparticle
type.

A topological feature is not too easy to detect; by definition, topological properties
cannot be altered or measured by purely local operators but instead require something
akin to an Aharonov-Bohm holonomy experiment. So perhaps the universality class of
Hε,� already exists in surface layer physics but is waiting to be discovered. Or perhaps
with H◦,� in mind something in its (perturbed) universality class can be engineered. If
this is possible there would be no reason to expect the system to be particularly delicate.
The characteristic energies for magnets are often several hundred Kelvin [NS]. Further-
more the modular functorDE� (this includes the information of the various braid group
representations, 6j -symbols, S and fusion matrices) which arises is amphichiral, the
central charge c = 0, so there is no reason that time symmetry must be broken and no
apparent need for a strong transverse magnetic field. These two features are in marked
contrast to the delicate FQHE systems.

Subsequent to the initial draft of this paper a different local Hamiltonian H ′
◦,� was

found which bears the same relation as H◦,� to the topological modular functors DE�,
but has potential advantages:

1. it is expressible as 4th rather than 7th order interactions and

2. its classical analog is the much studied self dual Potts model for q =
(

2 cos π
�+2

)4
.

We have added a Sect. 1.1 following Sect. 1 to explain this alternative microscopic
model.

We make no proposal here for a specific implementation of H◦,� or for how to trap
and braid its excitations but we hope that models in the spirit of [NS] for the high Tc cup-
rates may soon be proposed. In this regard, we note that relatively simple – but still non

1 In semiconductors with dialectic constant ε ≈ 10 and |B| ≈ 10 Tesla the characteristic length
� = √

ε�/eβ ≈ 150Å compared to about 4Å separation between the ions in a crystalline solid.
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classical-braiding statics have been proposed [SF] in conjunction with the phenomena of
spin-charge separation [A] for high Tc cuprate super conductors above their Tc. Certain
−1 phases are predicted to occur when braiding the electron fragments “visions” and
“chargeons” around each other and around ground state defects called “holons”. Also
contained in this paper is the suggestion that topological charges might in passing though
a phase transition become classical observables, e.g. magnetic vortices. Similarly other
phase transitions might link higher (� = 3) to lower (� = 1) topological phases and
might be useful in measuring quasiparticle types. Whether even the simplest topological
theory is realized in any known superconductor is open, but [SF] is cited as precedent for
anyonic models for solid state magnetic systems with high characteristic energies. So
while the FQHE motivates this paper, we hope we have steered toward its mathematical
beauty and away from it experimental difficulties.

What are the generic advantages of anyonic computation? First information is stored
in topological properties “large scale entanglement” of the system that cannot be altered
(or read) by local interaction. This affords a kind of physical stability against error rather
than the kind of combinatorial error correction scheme envisioned in the qubit models –
“hardware” rather than “software” error correction. Second, at least in the simplest anal-
ysis,2 one expects excitation of a stable system to be well localized with exponentially
decaying tails. Thus physical braiding should approximate mathematical braiding, ρ :
B −→ U(h) up to a “tunnelling” error of the form e−cL, where c is a positive constant,
and L is a microscopic length scale describing how well separated the excitations are
kept during the braiding process. This error scaling is highly desirable and seems to have
no analog in qubit models. While tunnelling treats virtual errors, errors which borrow
energy briefly from the vacuum, actual errors would be expected to scale like e−c1T/T◦

where T◦ is a character energy for the system and T the operating temperature. This is
essentially the error analysis Kitaev made for his anyonic system, the toric code [K1].

This paper draws on three sources of inspiration: 1) Kitaev’s paper [K1] on anyonic
computation, 2) the FQHE, and 3) rigidity in the classification of von Neumann algebras
subfactors. Rigidity implies that certain monoidal tensor categories have very few ide-
als. But when interpreted physically, “ideal” means “definable by local conditions”, so
we find that a certain locality assumption (Ansatz 3.4) strongly limits the physics. This
provides an algebraic approach to the perturbation theory of H◦,� – and perhaps yields
greater insight than would be possible by analytic methods. We find that for H◦,� the
polylog extensively degenerate space of 0-modes G◦,� possess, in addition to its linear
structure, an important “multiplicative” structure − the structure of a monoidal tensor
category – which we argue, should be preserved under a perturbation. The rigidity of
type II1 factor pairs, an aspect of which is stated as Thm 2.1, provides a unique candi-
date for the (still finitely degenerate) “perturbed” ground state space Gε,� of Hε,�. The
space Gε,� is a braid group representation space with the representation induced by an
adiabatic motion of quasiparticle excitations.

Throughout, the excitations on a surface Y are assumed to be localized near points
so excited states of Hε,�(Y ) become ground states of Hε,�(Y−) but now on a punctured
surface Y− with “boundary conditions” or more exactly “labels,” (see Sect. 2.) We treat
excited states indirectly as ground states on the more complicated surface Y−.

The existence of a stable phase Gε,� ∼= DE� will be argued by analogy with the
FQHE where topological phases are found to be stable, from algebraic uniqueness, and
via “consistency checks”. But these arguments constitute neither a mathematical proof

2 Kivelson and Sandih [KS] find that Landau level-mixing in FQHE can thicken the tails to poly-
numerical decay, but this is not a fundamental effect.
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nor a numerical verification. The latter may be exactly as far off as a working quantum
computer. It was precisely the problem of studying quantum mechanical Hamiltonians in
the thermodynamic limit, e.g. questions of spectral gap, that lead Feynman [Fe] to dream
of the quantum computer in the first place. It is curiously self-referential that we may need
a quantum computer to “prove” numerically that a given physical system works like one.

We turn now to the definition ofH◦,� andH ′
◦,�; returning later to amplify on the rela-

tions to quantum computing, C∗− algebras, Chern-Simons theory, and topology. (The
connection between Chern-Simons Theory and complexity classes is discussed in [F1].)

In addition to Alexei Kitaev, I would like to thank Christian Borgs, Jennifer
Chayes, Steven Kivelson, Chetan Nayak, Oded Schramm, Kevin Walker, and Zhenghan
Wang for stimulating conversations on the proposed model.

1. The Model

The model describes a system of spin = 1
2 particles located at the vertices v of a tri-

angulated surface Y . The Hilbert space is H =
n⊗
v=1

C2
v , where C2

v is the local degree of

freedom {| +〉, | −〉} at the vertex v. The basic Hamiltonian H◦,� is written out below
as a sum of local projections and thus is positive semidefinite. The ground state space
(energy = 0 vectors) G◦,� of H◦,� can be completely understood (this is unusual since
these projectors do not commute) and identified (as n −→ ∞) with what we call the
even Temperley-Lieb surface “algebra” ETLsd where d = 2 cos π

�+2 .
Ultimately our focus will be on the ground states on a multiply punctured disk −

the puncture corresponding to anyonic excitations (see Sect. 5). Two issues arise: (1)
non-trivial topology and (2) boundary conditions. The boundary conditions are quite
tricky so it is best to work first with closed surfaces of arbitrary genus (even though
these are not our chief interest) to understand the influence to topology alone “liberated”
from boundary conditions.
Y will denote a compact oriented surface throughout. In combinatorial contexts, Y

will be given a triangulation � with dual cellulation C. Initially, we consider the case
where Y is closed, boundary Y = ∂Y = ∅. We will speak in terms of the dual cellulation
by 2-cells or “plaques” c. For example, if Y is a torus it may be cellulated with regular
hexagons. This is a perfectly good example to keep in mind but higher genus surfaces are
also interesting, while the sphere is less so. Soon we will consider surfaces with boundary.

Distributing
⊗

over
⊕

, one writes H = span {classical spin configurations on
plaques} =: span {si}. Let c be a plaquet, s a classical spin configuration and sc that
configuration with reversed spin (+ −→ − and − −→ +) at c. For 1 < i, j ≤ 2n

define hij (c) = 1 if (1)sj = sci and (2)si assigns the same spin ± to c and all its
immediate neighbors, and hij (c) = 0 otherwise. Define gij (c) = 1 if (1)sj = sci and
(2) the domain wall γsi between + and − plaques, in the spin configuration si , meets c
in a single connected topological arc, and gij (c) = 0 otherwise. We define:

H◦,� =
∑

plaques c, pairs
of spin states si ,sj

gij (c)
((|si〉 − |sj 〉

) (〈si | − 〈sj |
))

+ κ
∑

plaques c, pairs
of spin states si ,sj

hij (c)

((
|si〉 − 1

d
|sj 〉

) (
〈si | − 1

d
〈sj |

))
. (1.1)
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The constant κ is positive and may, in this paper, be set as κ = 1. To help digest
the notation each of the two sums has n22n terms most of which are zero. It is easy
to see that gij = gji . If the domain wall γ meets c in a topological arc reversing
the spin of c isotopes the domain wall across c to the complementary arc = ∂c � γ .
Contrariwise if hij = 1 then hji = 0. The parameter d could be any positive real
number but we will be concerned mainly with d = 2 cos π

�+2 , � = 1, 2, 3, · · · . The

cases � = 2, d = √
2 and � = 3, d = 1+√

5
2 , the golden ratio, are of particular

interest. Finally, each term in the definition of H◦,� should be read, according to the
usual ket-bra notation, as orthogonal projection onto the indicated vector: |si〉 − |sj 〉
or |si〉 − 1/d |sj 〉. These vectors (whose projectors occur nontrivially in the sums) are
certainly not orthogonal to each other (using the inner product |+〉 hermitian orthonor-
mal to |−〉 in C2, extended to define the tensor product Hermitian structure on H) so
those individual projectors do not commute. It is therefore surprising at first that we can
completely describe the (space of) zero modes G◦,� of this positive semidefinite form,
H◦,�. However once the description is given the surprise will evaporate for it will be
clear how H◦,� was “engineered” precisely to yield this result. Identifying G◦,� is the
next goal.

Associate to the closed oriented surface Y an infinite dimensional vector space
ETLd(Y ), the even Temperley-Lieb space of Y . It is the C-span of “isotopy classes”
of closed bounding 1-manifolds γ modulo a relation called d-isotopy. The “bounding”
condition means that γ is a domain wall separating Y into two regions which could
be labelled “|+〉” and “|−〉”. Neither γ nor the regions are presumed to be connected.
We do not orient γ , so we do not distinguish here between states which differ by glob-
ally interchanging |+〉 and |−〉. The term “1-manifold” means γ does not branch or
terminate at any point. Isotopy, of course, means gradual deformation. The d-isoto-
py relation: γ − d(γ \γ◦), when imposed, says that if a component γ◦ of γ bonds a
disk in Y then γ = d(γ \γ◦), d times the value on the submanifold with γ◦ deleted.
We often work with the dual ETL∗

d(Y ), which are the functions f on bounding isot-
opy classes satisfying f (γ ) = d(f (γ \γ◦)). Let γ ! be a γ as above enhanced by one
of the two choices for “signing” the complementary regions. Define ELT !

d (Y ) to be
C-span {γ !}, so that ELT !∗

d (Y ) are the functions from {γ !} obeying the d-isotopy rela-
tion.

Both the definition ofH◦,� andETL∗
d can easily be extended to Y a compact surface

with boundary = ∂Y , given a fixed boundary condition, the points where γ meets ∂Y
(transversely). So if � is a triangulation of (Y, ∂Y ) with dual cellulation C and if the
spin configuration |+〉 or |−〉 is fixed at every vertex (= dual cell) on ∂Y then formula
(1.1) defines a Hamiltonian operator on the configurations with that boundary condition
provided, in both terms, we restrict the sum to plaques c which do not meet ∂Y . This
prevents “fluctuations” from altering the boundary conditions. Define H◦,�(Y, ∂Y ) in
this way. Similarly if a 2-coloring (or +, − “signing”) of Y is fixed along ∂Y we may
consider a relative γ ! as an extension of this signing to a division of Y into + and −
signed regions (which are presumed to lie in Y as subsurfaces). Now relative to the
boundary condition (the signing) ETL!∗

d (Y, ∂Y ) is defined as functions from {γ !} to C

which obey the d-isotopy relation; ETL∗
d(Y, ∂Y ) is the set of such a function invariant

under −, the global |+〉 ←→ |−〉 interchange.
If� is a triangulation on a surface Y , with or without boundary then we have the com-

binatorial versions of ETL!
d(Y ) and ETLd(Y ), ETL�!

d (Y ) and ETL�
d (Y ) (resp.) define

using only (|+〉, |−〉)2-colorings in which each dual 2-cell (plaquet) is + or −.
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There are natural maps of C-vector spaces:

ETL�!
d (Y )→ ETL!

d(Y ) and ETL�
d (Y )→ ETLd(Y ). (1.2)

These maps are of course never onto (only the simpler d-isotopy classes are realized).
Also for certain triangulations � the kernel can also be non-zero (due to “stuck” con-
figurations). However, it is easy to see that as � is subdivided. ETL�

d (Y ) approxi-

matesETLd(Y ) in the sense that the direct limit lim−→ETL
�
d (Y )

∼= ETLd(Y ), similarly

lim−→ETL
�!
d (Y )

∼= ETL!
d(Y ).

Let � be a fixed triangulation of Y (with fixed boundary condition, a− − projective
(|+〉, |−〉) 2-coloring, if ∂Y �= ∅), set G◦,�(Y,�) = zero modes (ground state space)
of the positive semidefinate H◦,� defined above (1.1). Clearly H◦,� is −−invariant and
so G◦,� is −−invariant. Note that − is not always fixed point free: on Y = T 2, the
configuration which is |+〉 on an essential annulus A ⊂ T 2 and |−〉 on T 2�A is a − −
fixed point. Let G+

◦,�(Y,�) denote the +1-eigenspace of −.

Proposition 1.1. For Y a closed surface or a surface with fixed boundary conditions,
there are natural isomorphisms G◦,�(Y,�) ∼= ETL�!

d (Y ) and G+
◦,�(Y,�) ∼= ETL�

d (Y ).

Proof. From line (1.1), � ∈ G◦(Y,�) iff � =  
i
(f |si〉)|si〉 for some linear functional

obeying the d-isotopy relation, thus G◦,�(Y,�) ∼= ETL�!
d (Y ). The involution − acts

compatibly on both sides so ETL�
d (Y ) may be identified as the +1 eigenspace of − on

the r.h.s. "#
When we come (Sect. 3) to imposing the mathematical structure of a modular

functor (or TQFT) on the ground state spaces G+
◦,�(Y ) for various surfaces Y we

will need to impose a base point ∗ on each boundary component C ⊂ ∂Y . This is
directly analogous to the framing of the Wilson loop in [Wi], in fact the base point
moving in time defines the first direction of a normal frame to the Wilson loop in
the 2 + 1 dimensional space-time picture. As in the previous application, the base
point is introduced for mathematical rather than physical reasons. It allows the state
vectors in each conformal block to be identified precisely and not merely up to a
(block-dependent) phase ambiguity. Concretely, in our model the base point prevents
domain walls from spinning around a puncture. Note that if (a superposition of)
domain walls γ represent an eigenspace for the Dehn twist around the puncture with
eigenvalue λ �= 1 and if twisting is not prevented then the relation |γ 〉 = λ|γ 〉 will
occur, killing the state |γ 〉 which is certainly not desired. I thank Nayak for pointing
out that although choosing base points breaks symmetry, none of the physics depends
on which base points are chosen. The Hamiltonian has a U(1)× · · · × U(1)︸ ︷︷ ︸

k

-gauge

symmetry where k = # boundary components of Y .

1.1. An alternative microscopic model. In this subsection we present an alternative
Hamiltonian, H ′

◦,�, on a cellulated surface (Y, C). We do not restrict to triangulation
since the square lattice actually yields the simplest form. It has the same relation, in the
infrared, to topological theories as does H◦,�. In this model the degrees of freedom are
on bonds and the loops lie in a “midlattice” separating the |+〉 clusters from the |−〉 dual
clusters (isolated vertices and isolated dual vertices count as clusters). There are perhaps
three advantages:
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1. On a square lattice, all terms in the Hamiltonian have order 4 (as compared to seven
in the previous model). It is simple enough that we expand it as a product of Pauli
matrices.

2. The corresponding classical statistical mechanical model is the Potts model in cluster
expansion (FK) form with q = (

2 cos π
�+2

)4.

3. The loops in this model are “fully packed” so no isotopy is possible, only d-isotopy.
In particular the total length of the loops separating |+〉 from |−〉 is configuration
independent. Here is H ′

◦,� ; the notation is explained below.

H ′
◦,� =

∑ (
|3〉 − 1

d
|4〉

) (
〈3| − 1

d
〈4|

)
+ κ

∑ (
|̂1〉 − 1

d
|̂0〉

) (
〈̂1| − 1

d
〈̂0|

)
(1.3)

κ is a positive constant which for symmetry we suppose to be κ = 1. Again d =
2 cos π

�+2 . On each bond there is a spin = 1
2 degree of freedom = C2 = span {|+〉, |−〉}.

The first summation is over all plaques (2−cells) with a market edge. (So, if the
surface is a 10 × 10 torus cellulated with 100 squares, the first summand contains
400 terms.) Each term in the first sum is an orthogonal projection onto the vector(|−〉 ⊗ |+〉 ⊗ |+〉 ⊗ · · · ⊗ |+〉 − 1

d
|+〉 ⊗ |+〉 ⊗ |+〉 ⊗ · · · ⊗ |+〉) where the tensor fac-

tors begin with the bond containing the dot and proceed counterclockwise around the
plaquet. (Of course this projector is understood to be tensored with the identity over all
remaining bonds.) Perhaps this is confusing, but we have used the notation |3〉 for the first
and |4〉 for the second basis vector in this combination because in the square lattice case,
those numbers count the + signs: a more elaborate notation would be |ni − 1〉 − 1

d
|ni〉.

The second term is the “double dual” of the first where one duality swaps cellulation with
dual cellulation (homology with cohomology) and the other duality swaps |+〉 and |−〉.
Thus the second summation is over vertices with a marked incoming bond; the vector
|̂1〉 denotes |+〉⊗ |−〉⊗ |−〉⊗ · · · ⊗ |−〉 and |̂0〉 denotes |−〉⊗ |−〉⊗ |−〉⊗ · · · ⊗ |−〉,
again reading counterclockwise from the dot. The ∧ reminds us that we are reading
around a site not a plaquet. In the case of the square lattice the two types of terms may be

expressed as a 4th degree polynomial in Pauli matrices: σz = |+〉
|−〉

|+〉 |−〉∣∣ 1 0
0 −1

∣∣ and σx = ∣∣ 0 1
1 0

∣∣.
H ′

◦,� has two types of terms:

=
[

1

16
(I − σ 0

z )−
1

8d
σ 0
x + 1

16d2 (I + σ 0
z )

]
⊗

[
(I + σ 1

z )⊗ (I + σ 2
z )⊗ (I + σ 3

z )
]
,

and

[
1

16
(I − σ 0

z )−
1

8d
σ 0
x + 1

16d2 (I + σ 0
z )

]
⊗

[
(I − σ 1

z )⊗ (I − σ 2
z )⊗ (I − σ 3

z )
]

= 1

16

[
d2 + 1

d2 I + 1 − d2

d2 σ 0
z − 2

d2 σ
0
x

]
⊗

[
(I + σ 1

z )⊗ (I + σ 2
z )⊗ (I + σ 3

z )
]
,

and
1

16

[
d2 + 1

d2 I + d2 − 1

d2 σ 0
z − 2

d2 σ
0
x

]
⊗

[
(I − σ 1

z )⊗ (I − σ 2
z )⊗ (I − σ 3

z )
]
.

The proper context for understanding H ′
◦,� is Baxter’s “mid lattice” [B]. If C, C∗ are

cellulation and dual cellulation, let c′ = c ∩ c∗ be the general intersection of a plaquet
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and a dual plaquet. Put a center ∗ in c′ and a center point ∗1, · · · ∗n in each of its boundary

1- cells. Subdivide c′ by the cone of
n⋃
i=1

∗i to ∗ and let c′′ denote the general plaquet of

this subdivision. The collection {c′′} are precisely the plaquets of the “mid lattice”. As
an example, for the square lattice of unit size the dual lattice is shifted by (1/2, 1/2) and
the resulting mid lattice is spanned by vectors {(0, 1/4), (1/4, 0)}.

A classical configuration s : {bonds of C} −→ {|+〉, |−〉} is encoded as the union of
bonds on which s is |+〉, the components of which are called clusters and the union of
the duals of bonds on which s is |−〉, whose components are called dual clusters. There
is a well defined 1- manifold (multi-loop) γs in the mid lattice which separates clusters
from dual clusters.

The HamiltonianH ′
�,◦ builds in dynamics which fluctuates broken (|3〉) and complete

(|4〉) boxes and broken |̂1〉 and complete (|̂0〉) dual boxes with a prescribed weight factor
= d. The vector |4〉 encodes a small face-centered loop, Of , in the mid lattice while
|̂0〉 encodes a small vertex-centered loop, Ov . The first term projectors, by annihilating
|3〉 + d|4〉, enforce a relation. If � = ∑

i ai�i ∈ G′
◦,�, the zero modes of H ′

◦,�, and i is

written out as (index on boundary plaquet, distant indices
⇀
κ ) then,

d a|3〉,⇀κ = a|4〉,⇀κ , for all
⇀
κ . (1.4)

Examining this relation on mid lattice multiloops γ (and suppressing
⇀
κ ) we see that γ|4〉

differs from γ|3〉 in that an Of has been added to the isotopy class of γ|3〉 by “pinching
off” a small bend in γ|3〉. Correspondingly γ|4〉 has its coefficient a|4〉 equal to d times
the coefficient a|3〉 of γ|3〉. Similarly for the double dual: up to isotopy γ|̂0〉 = γ|̂1〉 ∪Ov
and for a zero mode the coefficients must satisfy:

d a|̂1〉,̂κ = a|̂0〉,̂κ , (1.5)

analogous to line (1.2) and Proposition 1.1 we have:

Proposition 1.2. There are natural maps:ETLC!
d (Y )−→ETL!

d(Y )andETLC
d (Y )−→

ETLd(Y ). In the (direct) limit they become isomophisms. There are natural isomor-
phisms: G′

◦,�(Y, C) ∼= ETLC!
d (Y ) and G

′+
◦,d ∼= ETLC

d (Y ). "#

Proposition 1.2 replaces the triangulation � with the cellulation C, so ETLC!
d means

formal configurations,  ass, where s assigns |+〉 or |−〉 to the bonds of C and as obeys
(1.4) and (1.5). ETLC

d are formal configurations which are also invariant under the
global swap, (−), |+〉 ←→ |−〉. In the limit this relation expresses d-isotopy of the mid
lattice domain wall γ . Note, however, that the first two maps mentioned in Proposition
1.2 are not necessarily injective. The situation is summed up by the following example.
On a 2 × 2 square torus the two possible staircase diagonals, i.e. |+〉 on one positively
sloping diagonal and |−〉 on the complement, do not fluctuate (are not in the same erg-
odic component) whereas already in the 3 × 3 torus there is enough room that any two
staircases of slopes = 1 are connected by fluctuations.
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¹ , however

=== d = d = d

=
=

by symmetry

Fig. 1.3

Remark 1.3. Because of their importance in solid state physics, we observe that a cer-
tain ring exchange Hamiltonian H ′′◦ is the parent of all H ′

◦,� in that the zero-modes G′′◦
contain the zero modesG′

◦,�, for all �. EachG′
◦,� arises from a distinct linear constraint

on G′′◦ .

H ′′
◦ =

∑
�
(|3〉 − |3′〉)(〈3| − 〈3′|)+ κ

∑
+
(|̂1〉 − |̂1′〉)(〈̂1| − 〈̂1′|)

|3′〉 is like |3〉 except cycled one step:

|3′〉 = |+〉 ⊗ |−〉 ⊗ |+〉 ⊗ . . . ,⊗|+〉, similarly

|̂1′〉 = |−〉 ⊗ |+〉 ⊗ |−〉 ⊗ · · · ⊗ |−〉.
Note that (|3〉 − |3′〉) ∈ span

((|3〉 − 1
d
|4〉), |3′〉 − 1

d
|4〉), etc..., so G′

◦,� ⊂ G′′◦ . The
zero modes G′′◦ can be identified with the (combinatorial) isotopy classes of domain
walls between |+〉 and |−〉 regions.

Measuring spins (by a family of σz’s) converts a ground state vector � ∈ G◦,� or
G′

◦,� into a classical probabilistic state = meas.(�) which turns out to be a Gibbs state.
The statistical physics of meas.(�) plays an important role in Sect. 3. First, however,
we use Sect. 2 to lay down the algebraic framework.

2. Things Temperley-Lieb

The generic Temperley-Lieb algebra is a tensor algebra over the complex numbers
adjoined an indeterminate d . Often d is written in terms of another indeterminate A
as d = −A2 − A−2. In degree n the algebra TLn has generators 1, e1, . . . , en−1 and
the relations e2

i = ei, eiej = ej ei if |i − j | ≥ 2 and eiei±1ei = 1
d2 ei . Pictorially, after

V. Jones and L. Kauffman, we may think of the generators as pictures of arcs disjointly
imbedded in rectangles (multiplied by the coefficient 1/d) and multiplication as vertical
stacking. For example for n = 4, we have:

1

d

1

d

1

d

U

I

U

I

e
1

e
2

e
31

U

I

Fig. 2.1
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There is a convention that any closed circle (and these may arise when the pictures
are stacked) should be regarded as a factor of d. All closed circles in a picture should be
deleted and the resulting picture should then be formally multiplied by d(#circles). The
reader can now easily verify the relations by stacking pictures. Kauffman proved the
algebra of such pictures has no other relations [K]. A tensor structure between grades
TLn

⊗
TLm −→ TLn+m is created by horizontal stacking. An inclusion TLn −→

TLn+k is obtained by adding k vertical strands on the right. The union of grades is

the (generic) Temperley-Lieb algebra, TL =
∞
U
n=1

TLn. The structure of this algebra is

completely worked out in [J]: Each grade TLn has dim(TLn) = 1
n+1

(2n
n

)
, the nth Cata-

lan number, and is a direct sum of matrix algebras that fit together via a rather simple
Brattelli diagram. Also of interest are specializations where the indeterminate d is set
to a fixed nonzero real number. Here the structure differs from the generic case when d
assumes a “special value” d = 2 cos π

�+2 , � a positive integer, and has been worked out
by Goodman and Wenzl [GW].

There is an involution − on TL which acts by reflecting the rectangle in a horizontal
line and conjugating coefficients (d = d)making TL a ∗ - algebra. Using this, the “Mar-
kov trace pairing < a, b >:= trace (ab) may be defined. “Trace,” on pictures, means
closing a rectangular diagram by a family of arcs sweeping from top to bottom and then
evaluating each circle as a factor of d times 1 ∈ C. Extend this definition to a Hermitian
pairing on TL.

U

> = ( ) =a,b a btr tr

I

U

I

a b

U

I( ) = d=

>

Fig. 2.2

Theorem 2.1. ([J]) The trace pairing 〈 , 〉 : TL
⊗

TL −→ C[d], when d is special-
ized, to a positive real number, becomes a positive definite Hermitian pairing 〈 , 〉d :
TLd

⊗
TLd −→ C exactly for d ≥ 2. For d = “special” = 2 cos π

�+2 , � a positive
integer 〈 , 〉d is positive semidefinate. For other values of d ∈ R � 0, 〈 , 〉d has mixed
signs. "#

For d = 2 cos π
�+2 define the radical Rd ⊂ TLd by < Rd,TLd >d≡ 0. The radical

Rd has first non-trivial intersection with the (� + 1)th grade where it is 1-dimensional:
Rd ∩ TLd,� = 0 and Rd ∩ TLd,�+1 = spanC(p�+1). The elements p�+1 belonging
to TL−,�+1 (the � + 1 grade of the generic algebra) are called the Jones-Wenzl [W]
projectors and a simple recursive formula for these is known.

In this paper we will be particularly concerned with p3 and p4 (for d = √
2 and

1+√
5

2 respectively) which can be computed (from the formula on p. 18 [KL]).
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It is known that when d is special, the ideal J (p�+1) generated by p�+1 in TLd (the
specialized TL algebra) isRd . The notion of ideal closure in different algebraic contexts
is essential to all that follows so we will be explicit here; J (p�+1) is the smallest subset
of TLd containing p�+1 so that if c1, c2 ∈ C; a, b belong to the subset and x, y ∈ TLd
then: c1a + c2b, ax, xa, a ⊗ y, and y ⊗ a all belong to the subset. J (p�+1) is a linear
subspace of TLd and is a two sided ideal under � and ⊗. So J is, by definition, closed
under formal linear combination and all types of picture stacking: top, bottom, right,
and left.

For d special the algebra TLd contains many other ideals besides Rd (e.g. the ideal
generated by diagrams with at least two “horizontal” arcs) but we find that when we
move to the category, Rd becomes unique (see Appendix). This motivates the definition
of the Temperley-Lieb category TLcd .

The generic Temperley-Lieb category TLc is a strict monoidal tensor category over
C(A) with objects N◦ = {0, 1, 2, . . . } thought of as that the number of marked points
in the interior of a horizontal interval. The indeterminate A determines d, above, by the
formula d = −A2 − A−2. The morphism Hom(m, n) is a C(A) vector space spanned
by all pairing of the n+m points that can be realized by disjointly imbedded arcs in a
rectangle for which them points are on the top and the n points are on the bottom edge.
The only difference from the algebra is that we do not demand that a nontrivial morphism
havem = n. Again composition (�) is vertical stacking and ⊗ is horizontal stacking. The
involution, the specialization of d and the notions of “ideal” are defined using exactly the
same words as before. Now the Markov trace < a, b >= tr(ab) becomes a Hermitian
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pairing Hom(m, n)× Hom(m, n) −→ C. Theorem 2.1 continues to hold with TLc and
TLcd replacing TL and TLd respectively and for d special the radical Rd is still the ideal
closure of p�+1. But in the categorical setting there is a new result conjecture by the
author and proved by Goodman and Wenzl (see Thm. A3.3 in the appendix to this paper),
which when combined with Theorem 2.1 yields.

Theorem 2.2 (Goodman, Wenzl). For d = special value= 2 cos π
�+2 ,TLcd has a unique

non-zero, proper ideal = Rd = J (p�+1) and on the quotient TLcd/Rd the pairing 〈, 〉d
becomes positive definite. If d �= special value but is of the form d = α + α, α a root of
unity, α �= ±1 or ± i, then TLcd has a unique non-zero proper ideal, the pairing 〈, 〉d
descends to the quotient but has mixed sign. For other values of d ∈ R�0, TLcd has no
non-zero proper ideal. "#

We can continue to make the algebraic structure more flexible, more suited to both
topology and physics, while retaining the key notion of “ideal” and the uniqueness prop-
erty set out in the preceding theorem. One step in this direction is Jones theory of “planar
algebras” [J2]. These are generalized categories with an operad structure replacing the
notion of morphism. The TL-planar algebra, TLp or TLpd , if d is specialized, begins
with a Hilbert space h2k associated to an even number 2k of points marked on a circle:
h2k ∼= span(imbeddable arc pairings in a disk D with 2k marked points on ∂D). To
a disk with j -internal punctures D− and a relatively imbedded 1-manifold γ ⊂ D−,
where γ has 2ki endpoints on the kth interval boundary component and 2k endpoints
on the outer boundary component, Jones associated (in an obvious way3!) a homomor-

phism
j⊗
i=1
h2ki −→ h2k . In the planar algebra context the distinction between times (�)

and tensor (
⊗
) has been lost because there is no up, down, right, left. Instead we have

“subpictures” of “pictures”, i.e. restrictions of imbedded 1-manifold on a surface to a
subsurface.

Definition 2.3. A picture γ in Y is an imbedded 1-submanifold (multi-curve), proper if
∂Y �= ∅. A formal picture is a linear combination of pictures with identical boundary if
∂γ �= ∅.

In Jones’ theory there is no action by Dehn twist because surfaces are considered up
to homeomorphism.

We take a further step, and allow surfaces with genus >0, here Dehn twist becomes
crucially important. Consider an oriented compact surface Y , and the possible imbedded
1-manifolds (“multi-curves”) γ in Y . Picking a special value d for closed circles which
bound a disk (“trivial circles”) defines d-isotopy. In Sect. 1, we have defined ETLd(Y ) to
be the C-vector space of d-isotopy classes of closed null-bounding 1-manifolds modulo
d-isotopy, on a surface Y .

Definition 2.4. Suppose a =  aiγi is a formal picture in a disk δ ⊂ interior (Y ) with
fixed endpoints ∂γi ⊂ ∂δ. The ideal J (a) or 〈a〉 ⊂ ETLd(Y ) generated by a are the
d-isotopy of formal pictures of the form ax, x =  xjχj , χi a picture in Y \ δ with
∂χj = ∂γi , for all i and j , ax =  

i,j
aixj (γi ∪ χj ). Dually, 〈a〉∗ ⊂ ETL∗

d(Y ) are the

functions annihilating 〈a〉. Concretely, y ∈ 〈a〉∗ iff y(ax) = 0 for all x as above. The

3 Let closed loops in D be assigned the multiplicative factor d.
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definition of ideal is the same in T Ld(Y ) and similar in the combinatorial settings:
ETL

�
d (Y ) and ETLC

d (Y ).

One finds that the quotient ETLd/J (p�+1) =: QE� has (or better “recovers”) the
structure of a TQFT, or more precisely, a 2+1-dimensional unitary topological modular
functor (UTMF). For this, we must extend the definition ofQE� to the case of a surface

with labelled boundary (Y,
⇀
t ). The essential feature is that QE� may be calculated by

“gluing rules” applied to these smaller pieces. When we wish to emphasize the modular
(UTMF) structure on QE� we use the notation DE� = QE� to recall the doubled
SO(3) or “even” theory discussed in the introduction. Up to the global |+〉 ↔ |−〉
involution − on configurations, DE� will be our model for the perturbed ground state
space Gε,�, DE� ∼= G+

ε,�.
A UTMF is a very natural way to model the topological properties of a two dimen-

sional particle system without low lying modes in the bulk. Knowing that the ground
state has the structure of a particular modular functor (DE�), tells us all the topological
information about excitation types, braiding rules (nonabelian Barry phase), 6j -symbol,
S-matrix, and fusion rules. It is this structure that we have been seeking.

The statement DE� = QE� is a purely topological one and it is possible to piece
it together from the topological literature using [BHMV, Prz and KL]. An exposition
[FNWW] of the easiest modular functors is in progress and will explicate this isomor-
phism and contain a proof of Theorem 2.5 below.

But let us take a step back and explain this structure (UTMF) in a context where the
gluing rules are obvious. Then we will summarize the axioms and finally explain the
labels, pairing, and cutting/gluing operations in DE� in terms of functions on pictures.

LetM(Y) be the vector space spanned 1-submanifolds (= pictures) γ on Y with no
equivalence relation. Suppose Y is cut into two pieces by a circle α ⊂ Y , Y = Y1 ∪α Y2.
The uncountable set X of all finite subsets of α will be the “labels” or “superselection
sectors” of this theory. Neglecting the measure zero event that γ and α are not transverse,
we can formally write:

M(Y) =
⊕
xε X

M(Y1, x)
⊗

M(Y2, x), (2.1)

where M(Yi, x) is the vector space of 1-manifold in Yi meeting α = ∂Yi , in the finite
point set x. Equation (2.6) is the essential feature of a TMF as used by Witten [Wi]
and formalized by Segal [S], Atiyah [A], Walker [W], and Turaev [T]. Many enormous
“classical spaces” have this kind of formal structure but it requires beautiful algebraic
“accidents” to find finite dimensional “quantizations” of these.

Bounding or “even” pictures span another (huge) vector space EM(Y). Let us
set d = 2 cos π

�+2 and constrain the functions, in M∗(Y ) and EM∗(Y ), first by the
d-isotopy relation and then annihilation by the ideal generated by Jones-Wenzl relation
p�+1. This yields the following quotients and inclusions in lines (2.2) and (2.3):

DK
(
A = ieπi/2�+4

)
←− T Ld(Y )←− M(Y),

DK∗
(
A = ieπi/2�+4

)
= 〈p�+1〉∗ ↪→ T L∗

d(Y ) ↪→ M∗(Y ),
(2.2)

DE�←− ETLd(Y )←− EM(Y)
DE�∗ = 〈p�+1〉∗ ↪→ ETL∗

d(Y ) ↪→ EM∗(Y ).
(2.3)
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Theorem 2.5. The annihilating subspace 〈p�+1〉∗ ofM∗(Y ), we wrote itDK∗, is in fact,
the Drinfeld double [Dr] of the unitary topological modular functor (UTMF) derived
from the Kauffman bracket at A = ieπi/2�+4. This is true even at odd levels, � = odd,
where the undoubled Kauffman bracket MF is flawed by having a singular S-matrix.
DE� is a UTMF for � �= 2 mod 4 and in these cases is a trivial double: V ∗ ⊗ V .

Remark 2.6. For the even space,DE� the same MF arises forA, iA,−A, and−iA;A =
ieπi/2�+4 so the notation agrees with the introduction.

Remark 2.7. The Kauffman bracket TMF (or TQFT), constructed in [BHMV], is not
identical to the TMF derived from SU(2). In physics there is the loop group L(SU(2))
approach and in representation theory there is the quantum group (Usl2,q) approach
and these lead to the same representation categories. Globalization of these representa-
tion categories (this viewpoint is explained in [Ku]) yields the same MF. The pictures
underlying the Kauffman bracket are unoriented arcs. The Rumer-Teller-Weyl theorem
shows these almost correspond to Rep q(SU(2)). However an important minus sign, the
Frobenius-Schur indicator, corresponding to the quaternionic (not real) structure of the
fundamental representation, is missing. This minus sign propagates into the S matrix
making the K and the SU(2), (TMFs) distinct. A different microscopic model which
allowed arbitrary 1-manifolds (not just bounding 1-manifolds) could, depending on the
local details, lead to DK� orDSU(2)� so solid state physicists looking for anyons will
need to be aware of this distinction in detail [FNWW]. The present models H◦,� and
H ′

◦,� address only bounding 1-manifolds which correspond to (endomorphism of) the
even symmetric powers of the fundamental representation which are all real. Thus K�
restricted to even labels EK� ∼= SO(3)�, the SU(2) theory at even labels. The same
holds, of course, for the doubles of these TMFs.

Addendum 2.8. In [FLW2] it is shown that the braid representation of the “Fibanocci
category”4 (F) is universal for quantum computation. DE3(A = eπi/10) has 4 labels
0, 0; 0, 2; 2, 0; and 2, 2 and is isomorphic toF⊗F ∗ implying thatDE3 is also universal.

Addendum 2.9. If Y has a fixed triangulation � then combinatorial versions of the six
vector spaces connected by maps (2.2) and (2.3) in Theorem 2.5 are defined. Provided �
is sufficiently fine, no information is lost; the left most combinatorial spaces are actually
isomorphic toDK� andDE� respectively. The proof is the same as in the main topolog-
ical theorem of [F1]. Furthermore an estimate on the required fineness of � (it is linear
in �) can be extracted from that proof. Also if Y has boundary and labels −→

t (see the
discussion of labels which follows immediately) are specified, then the left-most com-
binatorial spaces are again defined and these map to the TMFs with the given boundary
labels −→t .

To appreciate the last statement we set out Walker’s axioms [Wa] for a UTMF. For-
tunately these can be abbreviated due to two simplifications: (1) the theories are unitary
and (2) both are quantum doubles (i.e. the endomorphisms of another more primitive
UTMF), so the central charge c = 0 (c(V ⊗V ∗) = c(V )+ c(V ∗) = c(V )− c(V ) = 0.
Thus no “extended structures” or projective representations need be mentioned. For a
concrete appreciation of these examples, see Figs. 2.4 and 2.5 where the particle types
(= labels), fusion algebra, and braiding, and S-matrices in the cases DE3 are given.

4 Greg Kuperberg’s term for the even label sub-theory of (SU(2), 3) also called the SO(3)−theory at
level 3.
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A labelled surface Y is a compact oriented surface Y possibly with boundary, each
boundary component has a base point marked and a label tεL from a finite label set L
with involution̂containing a distinguished trivial element 0, fixed by .̂ For Kauffman
SU(2), and SO(3) theories the labels are self dual a = â but we include the hats in the
formulas anyway. A UTMF will be a functor V from the category of label surfaces, and
isotopy classes of diffeomorphisms (preserving labels and base points) to the category
of finite dimensional Hilbert spaces over C and unitary maps.

Axiom 1 (Disjoint union). V (Y1 + Y2, t1 + t2) = V (Y1, t1, )
⊗
(Y2, t2), the equality is

compatible with the mapping class groupoids:

V (f1 + f2) = V (f1)
⊗

V (f2).

Axiom 2 (Gluing). If Yg is obtained by gluing Y along dually labeled (x, x̂) boundary
components then:

V (Yg, t) =
⊕

(x,̂x) ε labels on the
paired circles

V (Y, t, x, x̂).

The identification is also compatible with mapping class groupoids – and is associative
(independent of order of gluings).

Axiom 3 (Duality). V (Y, t) = V (−Y, t)∗, where − is orientation reverse on Y and ̂on
labels, and ∗ denotes the space of complex linear functionals. The Hermitian structures
on V give vertical maps and the diagram below must commute:

V (Y )←→V (−Y )∗

, ,
V (Y )∗←→ V (−Y )

All these identifications are compatible with the mapping class groupoids. The Hilbert
space pairings are compatible with maps:

〈x, y〉 = 〈V (f )x, V (f )y〉, where x, y εV (Y, t),

and disjoint union: 〈α1
⊗
α2, β1

⊗
β2〉 = 〈α1, β1〉〈α2, β2〉. Writing α, βεV (Yg, t) as

α = ⊕
x

αx and β = ⊕
x

βx according to Axiom 2, then 〈α, β〉 =  
x
Sx〈αx, βx〉, where

Sx = ∏
xiε

⇀
x=(x1,... ,xn)

S0,xi . The symbols S0,xi are the values of a fixed function L −→

C�{0} which is a part of the definition of V . Experts will recognize S0,xi as the (0, i)
– entry of the S-matrix of V : this is the map that describes exchange of meridian and
longitude of a torus in the natural “label” bases.

Axiom 4 (Empty surface). V (∅) ∼= C.

Axiom 5 (Disk). Let D be a disk, V (D, a) ∼=
{

C, a = 0
0, a �= 0

.
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Axiom 6 (Annulus). Let A denote an annulus. Then

V (A, a, b) ∼=
{

C, a = b̂
0, a �= b̂.

To complete these axioms to a theory incorporating 3-manifolds Walker adds Axioms
7−10. We will not need these here except to note that a 3-manifoldX determines a vector
Z(X)belonging toV (∂X). IfX = Y×I ,V (X) = id∈Hom(V (Y ×+1), V (Y ×−1)) =
V (Y )

⊗
V (Y )∗ =: D (V (Y )).

In the SU(2) theories it has been known since [Wi] that if X contains a labeled link
“Wilson loop” (or suitable labeled “trivalent graph”) then this pair also defines an ele-
ment of DV (Y ). The simple idea is to regard the 1-manifold γ ⊂ Y = Y × 0 as a link
labeled by “1”, the 2-dimensional representation of sl(2, q) inside X = Y × [−1,+1].
This defines a map M(Y) −→ D�(Y ). If γ is null bounding (in Z2-homology) on Y
then there is a subsurface Y0 ⊂ Y with ∂(Y◦) = γ . Let G be a generic spine (trivalent
graph) for Y◦. Derived from Witten’s theory and its bracket variation are combinatorial
recoupling rules (6j symbols) which are exposited in detail by Kauffman and Lins in
[KL]. We have adopted their notations (which caused us to rename Walker’s trivial label
“1” by “0”) except in the choice of A, A4 = q = e2πi/�+2. To make d positive we
choose A = ieπi/2�+4, that is i times the primitive 4(�+ 2)th root chosen in [KL]. For
� = even our A is still a primitive 4(�+ 2)th root of unity, for � = odd, it is a primitive
2(�+ 2)th root of unity but still defines a nonsingular TUMF on the even labels.

Applying recoupling, γ yields a formal labelling of G in which only even labels –
odd dimensional representations − appear. This means that the set of possible morphism
Z(X,G) is isomorphic to the endomorphism algebra of the sum of even labelled blocks.
Restricted to even levels, the 4 choices for A differing by powers of i give the same
Kauffman bracket UTMF and this agrees with the SO(3) UTMF, which we call DE�.

The recoupling relations on labelled trivalent graphsG ⊂ Y ×0, i.e. the 6j symbols,
are consequences of the projector of the relation p�+1 applied to formal 1-manifolds
(and conversely p�+1 follows from 6j ). What is less direct [Prz] is that on a surface
Y, p�+1 alone generates the same relation as including Y × 0 ⊂ Y × [−1,+1] and then
employing both p�+1 and the Kauffman bracket relation = A)(+A−1 ∪

∩ .
Abstractly we know the label sets for DK� and DE�, but we need to interpret these

labels in DK� := T Ld/〈p�+1〉 and DE� := ETLd/〈p�+1〉 resp. and in this context
recover the gluing formula. From a physical point of view it would be surprising if we
could not localize because we expect the HamiltonianHε,� to define a stable topological
phase for which the superselection sectors of excitations define the label set. But such
reasoning is in the end circular; it is better to have a mathematical proof that the candi-
date ground state space Gε,� has the structure of a UTMF and view this as evidence for
a “consistency check” on the physical stability of Gε,�.

We now explain the “labels” for the theories DK� and DE� in terms of “pictures”.
A conceptual point is that the label has a kind of symplectic character: “half” the label’s
information is a non negative integer ≤� which counts “essential” strands of γ pass-
ing inward from a component C ⊂ ∂Y . Think of this as “position” information. (Any
“excess” strands correspond to a descendent field or gapless boundary excitation.) The
other half of the information (“momentum”) is expressed as a symmetry condition on γ
in the bulk Y . The formal picture γ must lie in the image of certain minimal idempotents
− certain eigenspaces or projector images as constructed below.
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Abstractly, the label set L for DE� = QE� := ETLd/〈p�+1〉 may be written as:

L =
{
(0, 0); (0, 2); (2, 0); . . . ;

(
2

⌈
�+ 1

2

⌉
, 2

⌈
�+ 1

2

⌉)}
.

The “position” part of the doubled label t = (a, b) for γ ∈ QE� on a boundary com-
ponent C ⊂ ∂Y is |a − b|. This quantity is the smallest number # of domain wall
(γ ) intersections with C′, # = |a − b|, as C′ varies over all imbedded loops parallel
to C (i.e. cobounding an annulus with C) and the domain wall γ also varies over all
〈p�+1〉-equivalent pictures. The “momentum” part of the label is an eigenvalue.

Let us do this more carefully. We follow [BHMV] to define what Walker calls an “an-
nulus category” ∧A� . A = S1 × I , obj(∧A� ) = {set of even number of points on S1} then
an element of morph (∧A� ) are all formal combinations of pictures inA, which beginning
on the object in S1 × −1 and end on the object in S1 × +1, and which obey the rela-
tions: d-isotopy and p�+1. (Recall 〈p�+1〉 = negligible morphisms of T Ld . Also see the
appendix.) Suppose that Y is a surface with connected boundary ∂Y = C, then there is a
gluing action of ∧A� on DE�(Y ) : f ∈ morph

(∧A� )
, g ∈ DE�(Y ), f ◦ g ∈ DE�(Y );

f ◦ g(xi ⊗ zj ) = χiωj , where the coefficient of f on the picture xi is χi , f (xi) = χi
and g(zj ) = ωj . For this action to be defined we must pick an identification Y ∼= Y ∪

C
A.

Also C has a fixed parameterization and an orientation; these tell us which end of A,
S1 ×−1 or S1 ×+1 to glue to C. Technically, this means one of ∧A opp

� or ∧A� is acting
according to orientation. Since we will not make calculations, we will not be careful
in choosing orientations and in distinguishing categories and their opposites. If Y has
k boundary components the k-fold product X

k
∧A� acts on DE�(Y ). The reader should

note that in the cases where there is a mismatch between boundary conditions on ∂Y
and

∐
k

A there is by definition no action defined. This would not make sense if we were

dealing with algebras and is precise by the extra flexibility that make linear categories,
sometimes called algebroids, a useful generalization of algebras.

So X
k
∧A� =: C has an action or − to use the usual terminology when actions are linear

− a representation on DE�(Y ) =: V .
To clarify, for each ∂-condition on

∐
k

A there are two corresponding finite dimensional

vector spacesDE�(Yinto A ∂-condition) =: Vin andDE�(Yout A ∂-condition) =: Vout. A mor-
phism inγout ∈ morph(C) induces (by gluing) a linear map : Vin −→ Vout. The construc-
tion is so natural that all the required diagrams commute, and gluing, indeed, defines a
representation. (There are some technical points but these are well understood and will
cause us no trouble. As annular collars are added to Y various “association” must be
chosen so the action is “weak” not “strict”. Also it is sometimes convenient to forget
the parameterization of C and only remember the base point ∗ = 1 ∈ S1, and further to
replace the uncountable object set − finite subsets of S1− with the countable object set
consisting of one exemplar object for each finite cardinal 0, 1, 2, . . . . This processes is
called skeletonizing the category.).

The positivity properties of the pairing 〈 , 〉, Fig. 2.2 and Thm 2.1, and its extension
implies that its finite dimensional representations decompose uniquely into a direct sum
of irreducibles. The arguments for this are nearly word for word what is said to prove
that a finite dimensional C∗-algebra is isomorphic to a direct sum of matrix algebras.
The algebroid context changes little.
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So let us decompose V as a representation of C into a direct sum of its irreducibles.
We record multiplicities by tensor product with a vector space Wi on which no action
of C exists

V ∼=
⊕

irreps. C
Wi

⊗
Vi. (2.4)

The index i is a multi index i = (i1, . . . , ik) and counts the “admissible labellings”
of ∂Y = C1U . . . UCk . In the theory DE�, the possible components of i are the

{irreps of ∧A� } =: L, (2.5)

the label set of DE�. The involution ∧ is induced by orientation reversal on A and
conjugates representations: it happens to be trivial in these theories.

A final categorical comment: the form of the r.h.s. of 2.4 suggest it represents a
2-vector: a linear combination (in this case of irreps.) with vector space, rather than
scalar coefficients. This is, in fact, the correct categorical setting for MF(Y) when Y
has boundary.

So far this discussion of the label set has been rather abstract but it is possible to
make explicit calculations by considering the annular categories as operators on T Lcd ,
the Temperley-Lieb, or “rectangle” categories. A label a ∈ irrep

(∧A� )
is generated

for some idempotent a = kak = morph (k, k) ⊂ ∧A� , which is a linear combination of
annular pictures. Quoting a result which will appear in [FNWW] with full details, we de-
scribe (Fig. 2.4) the idempotent a for the four labels of DE3, a = (0, 0), (0, 2), (2, 0)
and (2, 2). In the language of rational conformal field theory these labels are the 4
primary fields. They are given below as formal pictures in annuli.

Previously, we only considered ideals to be generated by formal pictures in a disk.
But now we can let a, by stacking formal pictures in annuli, generate an “annular ideal”,
J . Elements b ∈ J may have more than k boundary points on S1 ×±1; such b are the
descendent fields.

The idempotent (0, 2) has among its many terms five principal terms, pictures con-
taining only arcs going between inner and outer boundaries of A and no arcs which are
boundary parallel. The other terms enforce orthogonality of (0, 2), to the descendents
of (0, 0) and (2, 2). The principal terms are written out below.

(0, 2) :: I + e3πi/5F + e6πi/5F 2 + e9πi/5F 3 + e12πi/5F 4 + lower terms , (2.6)

fractional Dehn Twist:F = , I = . (0, 2) is a e2πi/5 eigenvector ofF . The powers
of F are obtained by radial stacking of annuli.

In the case |ai − bi | = 2ki , ki �= 0, consider the commuting actions of F = eπi/ki

twists of Ci onQE�. The resulting eigenvalues turn out to be distinct within the “posi-
tion” = |a−b| summand of V (Y ). These eigenvalues add the “momentum” information
which determines the labels: the minimal projections to eigenspaces.

For ki = 0, the Dehn twist acts by the identity, so here the prescription must be
different. Suppose s is a configuration on Y which has constant spin “monochromatic”
either |+〉 or |−〉, near Ci and let [s] be its image in QE�. Define an action on [s] by
adding an annular ring of the opposite spin in the interior (Y ) immediately parallel to

Ci and define βn =
	 �+2

2 

 
x=0

S2n,2xR
x , where Rx consists of x parallel annular rings of the
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opposite spin stacked up parallel to Ci but in the interior (Y ), and where Sy,x is the
S-matrix = 2√

�+2
sin πxy

�+2 of the undoubled theory. For n = 0, . . . , 	 �+2
2 
, the maps βn

are commuting projectors (up to a scalar), which also commute with twists around other
boundary components. For ki = 0 “position” is refined to a label by applying the idem-
potentβp. The trivial label isβ0. The image ofβp turns out to be the−(A2p+2+A−2p−2)

eigenspace of the actions of R on the |a − b| = 0 “position” summand of V (Y ). Thus
when ∂Y �= ∅,DE�(Y,−→t ) is an orthogonal summand ofQE�(Y ) determined by spec-
ifying a minimal even number ni , of arcs reaching each boundary component Ci (but
not parallel to it), niε{0, . . . , �}, and an eigenvalue λi at Ci ⊂ ∂Y . Note that gluing
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different eigenspaces images automatically implies a trivial result as required by the
gluing axioms. This is immediate from the commutivity of the minimal idempotents.

For surfaces with boundary, we may write DE�(Y ) := ⊕
admissible labelings

⇀
t

(Y,
⇀
t ), then

DE�(Y ) = QE�(Y ) in this case as well.
For the first computationally universal case, level � = 3, the S-matrix, F -matrix

(= 6j -symbol), the action of the Dehn twist, and Verlinda (fusion) relations are listed
above. The only interesting F−matrix in the undoubled theory occurs when all four
external labels = 2, so F reduces to a 2-tensor.

We have come to a point where we can study the difference between span {2-
colorings (|+〉, |−〉)} = G◦,� and the − -invariant combinations G+

◦,�. We may begin

with the enhancement of ETL�(Y ) to ETL!
�(Y ), manifold 2-coloring modulo d-isot-

opy (for d = 2 cosπ/� + 2). The enhancement leads to the “color reversal particles”
of Fig. 0.2 which do not fit exactly into the UTMF−TQFT formalism, (but perhaps a
Z2-graded version?) as they do not raise the ground state degeneracy on the torus. They
should, however, arise physically and contribute to specific heat. We will return to these
shortly.

First, we show that there is only one lifting to the enhancement of the projector rela-
tion p�+1 : for � odd let pblack

�+1 and pwhite
�+1 denote the extension to 2-colorings of p�+1 by

the relation applied to a 2-coloring in a neighborhood of a transverse arc which crosses
�+ 1 strands of γ from black to black and white to white respectively. The reader may
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take black = |+〉 and white = |−〉. If � is even, noting that all the projectors pi have
left-right symmetry there is only one way to lift p�+1 to ETL!

�.

Proposition 2.10. J
(
pblack
�+1

) = J (
pwhite
�+1

)
.

Proof. We may use under crossings to indicate formal combinations of TL-diagrams
which are consistent with the Kauffman relation:

= +
-

A A) ( 1
U

I

Fig. 2.6

Now consider (for � = 3) the following sequence.

=

1

d

=

1

d

1

d

1

d

=

=

=

a 13 pictures

13 pictures13 pictures

Fig. 2.7

These 6 steps effect pblack
�+1 across the arc α with an application of pwhite

�+1 . "#

For a closed surface Y let QE!
�(Y ) be the enhancement ETL!

�(Y )/
〈
pblack
�+1

〉
= ETL!

�(Y )/
〈
pwhite
�+1

〉
and QE!

�(Y ) −→ QE�(Y ) the forgetful map. We do not know
if this map is always an isomorphism. However for the case of most interest � = 3,
Proposition 2.11, below shows that QE!

3(T
2) ∼= QE3(T

2), T 2 the 2-torus. Since
dim

(
V (T 2)

) = |L| the cardinality of the label set, this implies that the largest quo-
tient ofQE!

3 having the structure of a UTMF is isomorphic toQE3.

Proposition 2.11. QE!
3(T

2) ∼= Q3(T
2).

Proof. Let B be the black andW the white coloring of T 2 whileM andM2 are the one
and two meridianal ring colorings respectively:
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Fig. 2.8

Applying p4 across the arc γ (and a short calculation using Fig. 2.3) yields: M2 =
3M−W . SinceM andM2 are black-white symmetric the third term must be symmetric
as well, henceW = B.

It follows quickly that QE!
3(T

2) = C − span (W,M,L,D), where L is a longitu-
dinal and D a diagonal ring. Forgetting the 2−coloring and retaining only the domain
wall we get a basis forQE3(T

2) ∼= DE3(T 2). "#

It is possible to brake the color symmetry − by adjusting the Hamiltonian to fix the
color = |−〉 at some plaquet on each component of Y . This adjustment creates a new
ground state G canonically isomorphic to the former G+, so we drop the + from the
notation. However this does not obviate the need to study the enhancement. The point
is that localized color- reversing excitations remain and are expected physically. These,
when realized on an annulus algebra, have opposite coloring on S1 ×−1 and S1 ×+1,
and so cannot be glued into a ground state on T 2.

Let us see how this works in the simplest example, the level = 1 theory � = 1, d = 1,
A = ie2πi/12. When we make no “evenness” restriction this theory, D1, is also called
Z2-gauge theory [SF] and [K1]. It has four labels: 0 = 1

2 (∅ − R), m = 1
2 (∅ − R),

e = 1
2 (I + T ), and em = 1

2 (I − T ), where the pictures in these combinations are:

X
X

X
X

X X X Xf= R= I = T =, , ,

Notice that the labels are orthogonal under stacking annuli. One may check that braid-
ingm around e or em introduces a phase factor= −1, as does braiding e aroundm or em.
The even theory DE1(A = ie2πi/12), has only one particle (0, 0) – which is the trivial
particle, and has dimension = 1 on T 2, and so is quite trivial. In quantum systems with
other microscopics (e.g. [K1]) can easily realize D(1) but in our set up the pictures do
not arise directly but indirectly as a domain wall so I and T make no sense. However R
does make sense as a domain wall between |+〉 and |−〉 boundary conditions at opposite
ends of A. In fact, we may define an elementary excitation of DE(1) at a plaquet c by
using the local projector at C2

c (|+〉c + |−〉c)⊗ (〈+|c + 〈−|c〉), instead of the ground
state projector (|+〉c − |−〉c) ⊗ (〈+|c − 〈−|c). Thus the “m” particle can arise as an
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excitation of DE1 even though it does not contribute to ground state degeneracy. This
is the prototypical color-reversing particle.

Regarding the other information in Fig. 0.2, the coloring preserving or “label” exci-
tations (the irreps. of ∧A� ) are counted by the (even, even) lattice points in [0, �+ 1] ×
[0, � + 1]. The color reversing labels are (odd, odd) ⊂ [0, � + 1] × [0, � + 1]. The
S-matrix of the (undoubled) SU(2) or Kauffman theory when restricted to even labels
is singular (precisely) for � ≡ 2 mod 4, for example at � = 2,

S =

∣∣∣∣∣∣∣∣
1
2

√
2

2
1
2√

2
2 0 −√

2
2

1
2

−√
2

2
1
2

∣∣∣∣∣∣∣∣ .

Seven ::

∣∣∣∣∣ 1
2

1
2

1
2

1
2

∣∣∣∣∣ .
When S is nonsingular, � �= 1, 2, 4 and the number of braid stands ≥ 5 it is known
[FLW2] that the braid representations are dense in the corresponding special unitary
groups.

3. Perturbation and Deformation of H◦,�

As remarked near the end of Sect. 0, excited states, i.e. anyons, will be studied as ground
states on a punctured surface with labelled boundary. In the large separation limit, the
braiding of anyons can be formulated as an adiabatic evolution of the ground state space
on a labelled surface Y with boundary. So in the present section we confine the discus-
sion to ground states. Although boundary is assumed to be present and labelled we will
nevertheless consider only perturbations acting in the bulk so the role of the boundary
is peripheral in this section.

The passage fromG◦,�, the ground state space ofH◦,�, to the deformed ground state
space Gε,� of Hε,� does not result from the breaking of a symmetry, in fact G◦,� has
no obvious symmetry. Rather it is the creation of new “symmetry”: topological order. If
a perturbation V is breaking an existing symmetry then only the original ground state
and the effective action of V at the lowest nontrivial order is relevant. But in the present
case, to understand the effect of a perturbation εV , one should first describe all low
lying (gapless) excitations above G◦,� and then see how V can act effectively on G◦,�
through virtual excitations. For example in the toric codes [K1] the ground state space
may be rotated in an interesting way if a virtual pair of e (electric) particles appear, tunnel
around an essential loop (of combinatorial length = L), and then annihilate. In the case
of toric codes there is an energy gap to creation of (e, e) pairs so the above process has
exponentially small amplitude in the refinement scale L ∼ e−L/L◦ . In contrast, for level
� ≤ 2 we expect the ground state spaceG◦,� to be gapless5 (in the thermodynamic limit)
and processes which act through virtual excitations will be important in the perturbation
theory because excitations are cheap. However it seems hopeless to analytically describe
these gapless excitations so we skip this step and resort to an ansatz (3.4) stated below. It

5 For � = 3 the gap may be extremely small as explained latter in this section.
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asserts thatGε,� is modelled as the common null space of local projectors acting onG◦,�.
We argue for this via an analogy to FQHE, uniqueness considerations and “consistency
checks”.

From Sect. 2, the reader knows that we wish to identify Gε,� with G◦,�/〈p�+1〉 (for
suitable values of ε), and this is what the ansatz implies. The fact that G◦,�/〈p�+1〉 ∼=
DE� (see S 2 and [FNWW]) has the structure of an anyonic system (mathematically a
UTMF) is the first consistency check. There will be one more presented in Sect. 4. Let
us prepare to state ansatz 3.4 carefully.

Definition 3.1. An operator O on a tensor space H = ⊗
v∈V

C2
v is k-local if it is a sum

of operators Oi each acting on a bounded (≤ k) number of tensor factors and id on
remaining factors. We say O is strongly local if the index set {V } are vertices of a
triangulation � and O =  

i
Oi , where each Oi is k-local with the k active vertices

spanning a connected subgraphGi of �. AllGi are assumed isomorphic and with fixed
isomorphisms Gi −→ Gj inducing isomorphisms Oi ∼= Oj . In the later case, we call
(�,O) a quantum medium.

Note 3.2. In the special case that a family of strongly local operators {Oi} are projection
onto 1-dimensional subspaces, the system {Oi} is equivalent to what topologists call a
combinatorial skein relation ([L, KL]), though in the topological context equivalence
of isotopic pictures is implicitly assumed. An example of a (14 term) skein relation is
p�+1 = 0 (see Fig. 2.3), applied to γ , the dual-1-cell domain wall between |+〉 and
|−〉. A skein relation is a local linear relation between degrees of freedom, domain walls
in our case. The intersection of all the null spaces

⋂
i

null(Oi ) = null(O) is the sub-

space perpendicular to the equivalence classes in H defined by the combinatorial skein
relation.

Definition 3.3. The joint ground space (jgs) of {Oi} is
⋂
i

E◦,i , where E◦,i is the eigen-

space corresponding to the lowest eigenvalue λ◦ of Oi .
The jgs {Oi} is not necessarily the lowest eigenspace of O =  

i
Oi because jgs {Oi}

can easily be {0}. In this case the Hamiltonian is “frustrated”. It may happen that O has
long wave length excitations at the bottom of its spectrum which do not show up in the
spectrum of Oi . However if O defines a stable physical phase it is an optimistic but not
unrealistic assumption that jgs {Oi} = ground state space (O). For example, this occurs
in the “ice model” or “perfect matching problem” on the honeycomb lattice [CCK] and
in the fractional quantum Hall effect (FQHE).

The FQHE begins with a “raw” state space H, the lowest eigenspace for an individual
electron confined to a 2-dimensional diskD and subjected to a transverse magnetic field
B. This H is called the lowest Landau level. Each level can hold a number of spin +
and − electrons ≈ area D/(magnetic length)2 and the fraction of that number actually
residing at the level is called the filling fraction ν. In a spherical model, the Coulomb
interaction H between pairs of electrons (ei, ej ) can be written [RR] as a sum of pro-
jectors onto various “joint angular momentum subspaces” pij ((2k + 1)Nφ). The null
space, null(Hq), for

Hq =
q−3

2∑
k=0

∑
i<j

pij
(
(2k + 1)Nφ

)
(3.1)
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is nontrivial and, of course, is the joint ground space jgs of the individual projectors in
the sum. In fact, null (Hq) is Laughlin’s “odd denominator” state space at ν = 1

q
.

Ansatz 3.4 For well chosen ε, the perturbed ground state space Gε will be stable and
can be written as Gε = jgs (|si〉〈si |) ∩G◦ for some strongly local family of projectors
{|si〉〈si |} acting on H. Equivalently if s◦i is the orthogonal projection of si into G◦ and
|s◦i 〉〈s◦i | : G◦ −→ G◦ is the corresponding projector then Gε ∼= jgs (|s◦i 〉〈s◦i |).

In topological terms the ansatz asserts that the reduction G◦ −→ Gε occurs by
imposing a skein relation. The ansatz is essentially a strong locality assumption.

As discussed above, the Laughlin ν = 1
q

states, q odd, follow this pattern with the
Coulomb interaction between electrons playing the role of the perturbation on the dis-
joint union of single electron systems. Since the Landau level has no low lying excitation
the analogy is closest with G◦,�, � ≥ 3. Theorem 2.5 gives us the following:

Implication of Ansatz 3.4. Suppose H◦ is subjected to a sufficiently small perturbation
� ≤ 2 or an appropriate deformation, � ≥ 3, which partially lifts the log extensive
degeneracy of the ground stateG◦,� to yield a strictly less degenerate ground stateGε,�. If
we assume the stability ofGε,� we expectGε,� to be modelled asGε,� ∼= G◦,�/〈p�+1〉 =
the modular functor DE�.

For the projector p�+1 to arise as an effective action of εV on G◦,� = C < d-
isotopy classes of domain walls >, for ε > 0, various sets of � + 1 walls must have a
polynomially large probability of simultaneously visiting the support Ui of some local
combinatorial Oi = pi�+1 enforcing p�+1. The walls must visit a site Ui or pi�+1 cannot
enforce orthogonality to the relation vector p�+1 (as depicted in Fig. 2.3 for � ≤ 3.)

The notion of a combinatorial instance of p�+1 was developed in [F2]. It amounts to
a discretization of the smooth domain wall diagrams (Fig. 2.3) by choosing specific su-
perpositions of local plaquet spin configurations (with the spin state of the plaques at the
boundary of the configuration constant) to represent the smooth relation p�+1. Evidently
there are many distinct combinatorial patterns which are instances of a fixed p�+1. The
simplest of these amount to geometric rules for simplifying the �+ 1 domain wall when
these run parallel for (roughly) �+ 1 plaques. As discussed in [F2], imposition of such
a combinatorial relation in the presence of mild assumptions on the triangulation �,
produces a result isomorphic to the smooth quotient. It is sufficient that the triangulation
must have injectivity radius >> � + 1 and bounded valence. So � should subdivided
(to approach a thermodynamic limit) as shown in Fig. 3.1.

Heuristic. There is a curious pattern observed in Fig. 2.3 (and further computer calcula-
tion of Walker (private communication), for � + 1 = even and d = 2 cos π

�+2 , the sum
of the coefficients in p�+1, in the geometric basis {g} is zero, and for �+ 1 = odd, the
sum is small. The geometric pictures {g} may be filtered by an integer weight n which
counts the fewest sign changes on plaquets − in topological terms, the fewest domain
wall reconnections or “surgeries” − required to transform the straight (identity) picture
to g. So, referring to Fig. 2.3, the first term for p2 has weight = 0, the second term has
weight = 1. The terms for p3 have weights 0, 2, 2, 1, 1 respectively. Notice that sign
(coefficient (g)) = (−1)weight (g).

This suggests that V =  
c, plaquet

σcx is a reasonable choice for V to obtain Fig. 0.1.

The Pauli matrix σz has +1-eigenvector |+〉 + |−〉 and −1-eigenvector |+〉 − |−〉, and
thus assigns a lower energy to combinations of geometric pictures g which have a (−1)
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phase shift associated to domain wall surgery. The perturbationV =  
c
(|+〉+|−〉)(〈+|+

〈−|) = 1
2 c
(id + σcx ) contains terms which annihilate antisymmetric combinations of

approaching domain walls of γ :
(|)(〉 − |L

M
〉).

Nonzero entries coupling all the terms of p�+1 occur first at order �, i.e. in V �, so
one may expect that this is the order at which an effective action arises on G◦,�.

It is now time to treat the statistical physics of a general ground state vector� ∈ G◦,�.
A perturbed Hamiltonian Hε,� will not have a ground state modelled by G◦,�/〈p�+1〉 if
the domain walls of � have an effective tension. The simplest place to see this is on a
closed surface Y with the triangulation � determining a metric. When the domain walls
γ ⊂ Y are pulled tight under tension they will stand a bounded distance apart and have
exponentially small amplitude for simultaneously entering a small locality Ui so pi�+1
will be unable to act.

Measuring any � ∈ G◦,� via the community family {σcz } projects � into the geo-
metric basis. This results in a probabilistic spin configuration which is Gibbs with prob-
abilities proportional to n# loops, where n = d2 = (2 cosπ/�+ 2)2.

Let us write � ∈ H, |�| = 1, in the classical basis of spin configurations, � =
 ak|�k〉. We say, consistent with measurement of any observable which is diagonal
in the |�k〉 basis, that |�k〉 has probability |ak|2. Thus �k becomes a random classical
component of the random configuration, meas.(�). Just as one asks about the typical
Brownian path, we ask what a typical�k looks like. There will be a competition between
energy and entropy. Since d > 1, the Hamiltonian H◦,� “likes” trivial circles and will
place a high weight on configurations with most of the surface area of Y devoted to
a “foam” of small circles. However entropy favors configurations with longer, fractal
loops which exhibit more variations. From the critical behavior of loop gases we know
that for d ≤ √

2 entropy dominates and � ∈ G◦,� is a critical Gibbs state with typical
loops fractal. For d >

√
2 energy dominates and the Gibbs state is stable: To free up

dual lattice bonds to build this foam the topologically essential part γ+ of γ will be
pulled tight by an effective “string tension”.

Recall from the introduction that the Gibbs weight on a loop gas state γ is proportional
w(γ ) = e−k(total length γ )n# components γ , ours is the self dual, k = 0 case.

Let us be explicit. In any ground state vector � ∈ G◦,�, � =  ai�i , we have
seen that the coefficients a1 and a2 of d isotopic configurations �1 and �2 satisfy
a1/a2 = d#1/d#2 , where #i is the number of trivial domain wall components, “trivial

loops”, of�i . The Pauli matrices σvz =
∣∣∣ 1 0

0 −1

∣∣∣ applied at vertex = v form a commuting

family of observables so we may “observe” in the geometric basis {�i} of classical spin
configurations to obtain meas.(�) and we see that the ratio of probabilities of observing
�1 versus �2 is:

p(�1)

p(�2)
= (d#1−#2)2 = (d2)#1−#2 (3.2)

Thus observing � in the classical basis yields a Gibbs states
meas.(�) :: e−βE(�i)|�i〉 for E(�i) = −#i and β = 2 log d.

Such probabilistic states are called “loop gases” and have been extensively studied
[Ni], e.g. in the context of the O(n)-model. It is believed that, in the self dual case
k = 0, d ≤ √

2, � ≤ 2, there is no string tension and that the Gibbs state is critical:
typical loops are 1/polynomial in size and correlations decay polynomially. Furthermore
the familiar “space = imaginary time ansatz” (see lines 3.7–13) suggest that this regime,
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� ≤ 2, should have G◦,� gapless. For � ≥ 2, the loop gas is beyond the critical range.
For these values correlations of the loop gas decay exponentially and it is believed the
loops are in “bubble phase” where any long loop forced by topology would be pulled
tight by an effective string tension. The corresponding H◦,� � > 2 should be gapped,
above its (polylog) extensively degenerate ground state space G◦,� (compare with line
3.8). It is in this case, specifically for � = 3, that we still may hope the ansatz describes
Gε,� for some family of deformationsHε,�, ε1 > ε > ε◦ > 0 as suggested by the phase
diagram, Fig. (0.1). This would imply Gε,� = G◦,�/ < p�+1 >∼= G◦,�/R� = DE�.

The gap above G◦,3 and therefore ε◦ might be quite small. A loop gas with k = 0
(defined on a mid-lattice see Ch. 12 [B]) is closely related to theFK representation of the

self-dual Potts model at q = n2 = d4. For � = 3, d = 1+√
5

2 and q ∼= 5.6. Although the
self-dual lattice Potts model in 2-dimensions have second order transitions (critical) for
q ≤ 4 and first order transitions (finite correlation length) for q > 4, exact calculations
show that for q = 5.6 the correlation length ζ though finite is several hundred lattice
spacing [BJ]6.

Our “alternative” Hamiltonian H ′
◦,� resulted from an effort to sharpen the relation

between meas.(�) and the (FK) Potts model. I would like to thank Oded Schramm for
helpful conversations on this relation. Recall thatH ′

◦,� is a Hamiltonian on Hilbert space
of spin = 1/2 particles on the bonds of a surface triangulation, cellulation, or lattice.
We will work locally and so ignore contributions of the global Euler characteristic χ(Y )
to the formulas below. Also, we write “=” to mean that the equation holds up to a fixed
extensive constant, like the total number of bonds. Recall from the introduction that we
consider the union of |+〉 bonds and disjoint from this the union of |−〉− dual bonds.
Our “loop gas” is on the mid lattice separating the |+〉− from the |−〉− clusters. Let E
be the number of |+〉− edges and E∗ the number of |−〉− edges, C(C∗) the number of
clusters (dual clusters) with the convention that isolated vertices (dual vertices) count as
clusters (dual clusters). Let L be the number of loops in the loop gas. The Potts model
parameter q (number of colors), it turn out, should be set as q = d4 = (2 cosπ/�+ 2)4.
Finally, 0 ≤ p ≤ 1, denotes a probability.

We have two basic equations. Every loop (in the plane) is the outermost boundary of
either a cluster or dual cluster so:

L = C + C∗. (3.3)

Also there is an Euler relation:

C∗ “ = ”C + E. (3.4)

Now we can re-express the loop gas Gibbs weight ω in terms of clusters in the FK Potts
model:

ω(spin conf.) “ = ”(d2)L = (d2)C+C
∗ = (d4)C(d2)E1E

∗
“ = ”

(d4)C
(

d2

d2 + 1

)E (
1

d2 + 1

)E∗

= qCpE(1 − p)E∗
.

(3.5)

Because of the − - symmetry between |+〉 and |−〉 we expect p to be the self dual
point for this value of q, and we check this below:

ω “ = ”qCpE(1 − p)−E = qC∗
p−E(1 − p)E “ = ”ω∗,

6 I thank Steve Kivelson for pointing out the existence and relevance of these calculations.
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using (3.4) we get p2E(1 − p)−2E = qE , so we have proved

p =
√
q

1 +√
q
. (3.6)

Theorem 3.5. Observing that the family {σbz for all bonds b} maps any ground state
vector � ∈ G′

◦,� into a Gibbs state meas.(�) of the self dual Potts model for q =(
2 cos π

�+2

)4
. "#

This justifies thinking of H ′
◦,� as a “quantum Potts” model and contemplating a

diagram of relations:

conf. field theory,
sl2, level �

infra-red limit−−−−−−−−→ (SU, �)UTMF
double−−−−→ DE�

correlation functions

# $ zero modes

Potts q = (2 cos
π

�+ 2
)2

Potts q = (
2 cos

π

�+ 2

)4 observe←−−−−−
quantum Potts

d = (2 cos
π

�+ 2
)

Fig. 3.1

Let us return to the heuristic connecting the spectral gap aboveG◦,� and the statistical
properties of a ground state vector � ∈ G◦,�. Let A and B be two strongly local opera-
tors on a quantum medium (�, H). For example measuring Amight be σcz at plaquet c.
Assume, first, that there is a unique up to a phase ground state vector O and a spectral
gap = δ above 〈O|H |O〉 = 0. Then if we evolve in imaginary time:

“ imaginary time correlation” = 〈OetHAe−tHBO〉 = 〈OAe−tHBO〉. (3.7)

Writing |BO〉 = 〈OBO〉O + �B and 〈OA|∗ = 〈OAO〉O + �A note that non-O sum-
mands�B and�A decay under imaginary time evolution at a rate≥ e−δt . Thus applying
e−tH to either the bra or the ket in (7) gives:

“ imaginary time correlation” −→ 〈〈OAO〉O〈OBO〉O〉 = 〈OAO〉〈OBO〉, (3.8)

where the convergence (−→) is exponential. Denote the spatial translations of A (by
A�), the analogous operator to A acting near a site at distance � from the support, the
original of A. The simplest expectation is that spatial correlations should behave in the
same way as imaginary time correlations,

“space correlation” = 〈OA�BO〉 exponentially−−−−−−−−→ 〈OAO〉〈OBO〉. (3.9)

This statement is precise in a Lorentz invariant context but is expected also to hold
in greater generality provided that there is some linkage between temporal and spatial
scales.

A code space G ⊂ H is an important generalization of a 1-dimensional subspace
(see [G] for examples and discussion in other notations).
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Definition 3.6. We say G ⊂ H is k-code, with k measuring the strength of the encryp-
tion, if for any strongly k-local operator Ok the composition:

G
inc−−→ H Ok−→ H PG−−→ G (3.10)

must be multiplication by some scalar (perhaps zero). PG is the orthogonal projection
onto G.

The importance of a code space is that it resists local perturbations. In [G] Gottesman
states, in different language, his Thm 3:

Theorem 3.7. Suppose L ⊂ H is a subspace of a Hilbert space and E is a linear space,
called “errors”, of the operators HOM (H,H) so that the composition below, for any

E ∈ E is always multiplication by a scalar c(E): L inc−−→ H E−→ H PL−−→ L. Then L
constitutes a “code space” protected from errors in E . This means that there is a physi-
cal operator (composition of measurements, their adjoints, and unitary transformations)
which corrects errors coming from E ∈ E . (PL is orthogonal projection onto L.) "#

We have already encountered a code space. The space DE� ∼= G◦,�/〈p�+1〉 ∼=⊂ H
has the code property (and similarly for G′

◦,�/〈p�+1〉). From the theorem and the disk
axiom (Sect. 2) we see immediately that the dual space G◦,� ∩ 〈p�+1〉∗ ⊂ H is a code
space for operators (errors) supported in any fixed diskD ⊂ Y . This is true long before
the refinement limit, we need only a modest level of refinement before the combinatorial
quotient exactly assumes the structures of a unitary topological modular functor (UTMF)
[F2]. Then Axiom 4 (Sect. 2) says that V (D, 0) ∼= C and V (D, a) ∼= 0 whenever a label
a �= 0. Thus any operator supported on D must act as a scalar.

Observe that even when a ground state space G is degenerate, if it is nevertheless a
code space and also has a spectral gap of δ > 0 between it and the first excited state, the
argument for the decay of spatial correlations

〈O◦A�BO◦〉 (3.11)

remains valid for any O◦εG:

|O◦B〉 = 〈O◦BO◦〉O◦ + 0O1 + 0O2 + · · · +�B,�B ⊥ G, (3.12)

〈O◦A|∗ = 〈O◦AO◦〉O◦ + 0O1 + 0O2 + · · · +�A,�A ⊥ G, (3.13)

{O◦, O1, O2 . . . } an orthonormal basis for G. Applying e−tH to say ket (3.12) and then
pairing with (3.13) observe that 〈O◦AOi〉 = 0, i > 0, so:

“imaginary time correlation”
exponentially−−−−−−−−→ 〈O◦AO◦〉〈O◦BO◦〉. (3.14)

Thus the usual heuristic: gap ←→ finite correlation length, gapless ←→ polynomial
decay, is not less valid for code spaces than simple, non-degenerate ground states. Hence,
the expectation is that code spaces G are protected by a spectral gap and meas.(�),
� ∈ G has finite (or even zero) correlation length.

Curiously, it is the square of the Beraha numbers,n2=d4=q=
(

2 cos π
�+2

)4
, � ≥ 1,

which enter as the weight of a circle in the loop gas Gibbs state. This means that for
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� ≥ 3 these systems are outside the critical range in the thermodynamic limit. But recall
[BJ] that, for � = 3 the resulting theoretical stability is extremely weak.

We would like to propose the possibility that the transition nc from critical to bubble
phase on a surface Y might be sensitive to roughening, i.e. an increase of Hausdorff
dimension. Roughening appears to increase the entropy of long domain walls giving
them more dimensions to fluctuate in, so one might expect the energy/entropy balance
point to increase to nc > 2. There are two arguments for nc = 2. One is an explicit
study of the spectral gap of the corresponding transfer matrix in the 6-vertex model. This
needs a geometric product structure and so will not apply to a typical rough surface. The
second (Ch. 12 [B]) is topological and seemingly does apply. It used the Euler relation
to create a translation between the Potts model, a loop model, and an ice-type model.
Formally, when the Potts parameter q crosses 4, θ = log(z) (z is the parameter in the ice
type model) passes from imaginary to real q1/2 = ez + e−z. This shows a singularity in
the coordinates but not necessarily the model itself at q = 4, n = √

q = 2, so it seems
that a role for surface roughening has not been excluded.

If nc can be promoted to 3+√
5

2 ≈ 2.62 by surface roughening, then a Gε,3 ∼=
G◦,3/〈p4〉 ∼= DE3 might be available as the ground state space of an honest perturba-
tion of H◦,3. Alternatively, the stability may at n = 2.62 be so slight as to be physically
irrelevant. In either case, roughened or not, the quantum medium must certainly have
topological dimension = 2 to admit anyons but the Hausdorff dimension of Y might
approach 3.

To be susceptible to the imposition of a topological symmetry (to force the system
to be perpendicular to the ideal 〈p�+1〉) we need G◦,� to be unstable (or in the � = 3
cases, nearly so). What will be the properties of a Gε,� ∼= G◦,� ∩ 〈p�+1〉∗ if in fact
such a ground state space is achieved? In Sect. 2 the global properties of DE3 as a
UTMF were discussed. These have implications for the local properties of a unit vector
� ∈ Gε,� ∼= G◦,� ∩ 〈p�+1〉∗ and these contrast with a vector R ∈ G◦,�.

First, because Gε,� has the structure of a UTMF no information about the state �
can be determined from observables acting on a disk D imbedded in Y , D ⊂ Y . Usual
correlations such as σvz ⊗ σv′z must be zero (or at least exponentially decaying) or else
measurements in a large disk D ⊂ Y and “extrapolation” would reveal information
about the state� on Y . One might think with rapid decay of correlations, that observing
� in the classical basis we would see a “bubble phase” with a few tight global walls
γ◦ ⊂ γ forced by topology. But this is impossible that such global lines could be locally
detected on a disk D ⊂ Y and would reveal information on � which is forbidden.
In other words, a local operator could split the ground state whereas no local operator
should effect more than an exponentially small splitting of Gε,�.

How is the paradox resolved? The domain walls “loops” in a typical (according to
L2-norm) component �i of � will be very long, probably space filling, but at the same
time not locally correlated. This behavior is seen already in the typical classical (i.e.
observed) states of any toric code word [K1], so the phenomena is not a surprise.

Next we show that on (Y,�) the ground state space G◦,� of H◦,� is polylog exten-
sively degenerate. Understanding this scaling is an important ingredient in perturbation
theory. Fix a closed surface Y of genus (Y ) = g and use the number of vertices v(�) as
a measure of the combinatorial complexity of the triangulation �. Assume, for studying
the v(�i ) := vi −→ ∞ asymptotics of G◦, that the triangles of the triangulations �i
have bounded similarity type. This means that triangle shapes should not be arbitrarily
distorted. In this regard “barycentric subdivision” is “bad” but more regular subdivisions
are “good”.
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"bad" "good"

Fig. 3.2

Proposition 3.8. If genus (Y ) = g > 1 then dim(G◦,�(Y,�)) and dim(G′
◦,�(Y,�)) are

O (
v(�)3g−3

)
. If genus (Y ) = 1, the dimensions are O(v(�)).

Proof. A pant is a 3-punctured 2-sphere. Fix a hyperbolic metric on Y . In a hyperbolic
metric, d-isotopy classes have unique geodesic representatives. Using the Fenchel-Niel-
sen coordinates [Th] on a geodesic pants decomposition of (Y,�), we find, for each
pant, 3 multiplicity parameters and 3 twist parameters each assuming O(v1/2) values,
a definite fraction of which are mutually consistent. Since the Euler characteristic χ
(pant)= −1, there are 2g − 2 = |χ(Y )| pants in the decomposition. The consistent
parameter settings define geodesic patterns, O (

v3g−3
)

geodesic 1-manifolds compati-
ble with �. These 1-manifolds are unique up to isotopy and have no trivial circles and so
are also unique up to d-isotopy. ButG◦,� is defined as the perpendicular to the d-isotopy
relation on H. "#
Theorem 3.9. Assume � of Y is sufficiently fine. If {Oi} is a family of strongly local
Hermitian operators on H with jgsX ⊂ H then there are three possibilities forX∩G◦,�:

(1) X ∩G◦,� = {0},
(2) X ∩G◦,� = G◦,�, and
(3) X ∩G◦,� ∼= G◦,� ∩ 〈p�+1〉∗ = DE�(Y ).

The choice Oi = pi�+1 realizes possibility (3).

Note 3.10. By the Verlinda formulas dimDE�(Y ), Y a closed surface, is asymptotically
2√
�+2

(
sin π

�+2

)χ(Y )
(the fraction of error converges to zero). This maybe compared to

the much larger dim of G◦,� (Proposition 3.8).

Proof. For each Oi there are (orthonormal) vectors fi,j spanning the k tensor factors
on which Oi acts nontrivially so that E◦,i the lowest eigenspace of Oi , has the form
span(fi,1, fi,2, . . . fi,δi )⊗ (the remaining n− k factors) where δi = dim(E◦,i ). The fi,j
are assumed to be chosen coherently with respect to the natural isomorphism Oi ∼= O′

i .

For each i
δi⊕
k=1

|fi,k〉〈fi,k| constitute a skein relations si as explained above. ThusX∩G◦,�
consists of vectors orthogonal to the equivalence relation spanned by both d-isotopy and
the skein relations {si}.

The easiest example is for the level= 1 theory whereA = ieπi/6, d = −A2−A−2 =
1. In this case the Jones Wenzl projector p2 reads: p2 = )(− L

M
or in the combinatorial

model:
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Any combinatorial version of the smooth relation will give the same quotient and
sameG◦,�∩X provided the triangulation � is sufficiently fine. When d = 1 generalized
isotopy simply means isotopy and deletion of circles bounding disks; adding si = pi2
yields unoriented Z2-homology − as shown in Fig. 3.3 − as the quotient equivalence
relation. So, for example on a closed surface Y , the spaceX∩G◦,� has dimension 2b1(Y ),
b1 being the first Betti number, and is identified with functions H1(Y ;Z2) −→ C.

For any skein relation s the subset < si > ∩G◦,� ⊂ H, each si specializing s at
locationsUi , is an ideal of the surface algebraG◦,� as defined in Sect. 2. The uniqueness
Thm 2.5 implies < si >= G◦,�, {0}, or 〈p�+1〉 (the latter occurs when si represents
p�+1 on Ui , i.e, si = pi�+1). These correspond respectively to the three alternatives in
the theorem. "#

Observation 3.11. Although εV = ε  σvx , is a promising perturbation to find DE�, its

ground state vector θ◦ = 1
2V/2

2V

 
k=1
(−1)#|−〉�k has an exponentially large H◦,�-expecta-

tion, � > 1,

〈θ◦|H◦,�|θ◦〉 ≥ eLα (3.15)

some α > 0, and L the refinement scale.

Proof. If a spin configuration is chosen uniformly at random from the 2v possibilities it
follows from an easy independence argument that the mean number of circles # of that
configuration is O(v) and the standard deviation is s.d. (#) ≥ O(v1/2), v the number
of vertices of �(Y ). For d > 1, line 3.15 is deduced using the “circle” term of H◦,�
together with the above inequality on standard deviation. "#

To consider the possibility of frustration, which is outside our algebraic ansatz (but
quite possible in a fundamental description of an anyonic system, see Sect. 4, (2) Unique-
ness) we should think about how a general local operator could act onG◦,�. Such (non-
scalar) actions are possible precisely becauseG◦,� is not a topological modular functor7

(there is no disk axiom here) so local operators such as O may detect statistical infor-
mation on the topology of a state R ∈ G◦,�. For example the presence of a bond in
the domain wall γ may have polynomial influence on a global topological event. This
phenomena is familiar from percolation: The state of a single bond in the middle of an
�×� piece of lattice has influence, at pc, on the existence of a percolating cluster joining
two opposite boundary segments which decays as �−5/4 (for the triangular lattice) [LSW
and SW]. O may determine an effective reduction Eλ◦ ⊂ G◦,� based on some local sta-
tistical difference between the random components of differentRk ∈ H which the local

7 For � ≤ 2, G◦,� presumably has gapless modes which are un-topological. For � > 2, string tension
allows local measurements to yield a global inference.
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operators |si〉〈si | detect. The sites of these operators should be located and oriented ran-
domly w.r.t. the domain wall γk ofRk so it is reasonable to believe that the deviation of
O from scalar × identity will be attributable to the topologically essential part γ+

k of γk
since other features may be lost in averaging over the sites. For example, γ+

k may appear
“straighter” than the “foam” γk�γ

+
k . That is, O may favor or disfavor a topologically

complex essential-domain-wall γ+
1 over, say, a simpler essential-domain-wall γ+

2 .
If complexity is favored the ansatz is still capable of describing the final reduced

ground state space, though for an indirect reason: A reduction Eλ◦ ⊂ G◦,�, or a series
of reductions, which preserves the complex topological representatives will retain many
representatives for each class in the quotient G◦,�/〈p�+1〉 modular functor so topolog-
ical information will not be lost, Eλ◦ ∩ 〈p�+1〉∗ = G◦,� ∩ 〈p�+1〉∗. (But note that the
intermediate subspace Eλ◦ fails to respect the multiplicative/tensor structure on G◦,�.).

If topological complexity is disfavored in Eλ◦ , then the action of O could destroy
the topological information of the modular functor by killing all classes except for the
simplest, γ+ = ∅, corresponding to no essential domain wall and foam covering all of Y .
In this case the ansatz is not applicable. But fortunately the sign of ε in the perturbation
εV may be possible to control, placing the system (H,�, Hε) into the favorable regime,
where a further reduction, perhaps at, higher order, could still find the modular functor.

Because of the topological character of skein relation, the final quotientG◦,�/〈p�+1〉
is the same regardless of which sites and with what coefficient norm the various pi�+1
relation is enforced. Applying p�+1 requires no homogeniety of input and in fact
“smooths” local disturbances.

4. The Evidence for a Chern-Simons Phase

There is no proof or “derivation” of a stable (gapped) phase Gε,� ∼= G◦,�/ < p�+1 >∼=
DE� but there is evidence in the form of analogy and internal consistencies under the
headings: “UTMF”, “uniqueness”, and “positivity”. The first two have been discussed
and are only now summarized, the third is presented in more detail.

1) UTMF . The quotient algebraG◦,�/ < p�+1 >∼= DE� is an anyonic system, in math-
ematical terms a UTMF. This in itself is a consistency check: The presence of an anyonic
quotient system. The spatial correlation scale for topological information is zero so we
expect a gap protecting the topological degrees of freedom. The system is the quantum
double of a Chern-Simons theory and experience with the FQHE as a Chern-Simons
theory has prepared us to believe that these beautiful structures can self-organize in na-
ture from the simplest underlying Hamiltonians – e.g. Coulomb repulsion in a Landau
level.

Mathematically the double has the form of the algebra of operators on some (ficti-
tious) FQHE – like system “X”: domain walls realize the Wilson loop operators on X.
The double is freed from chiral asymmetry and the extreme physical conditions required
to break time reversal symmetry. The double is a better place to look for a realization
protected by a large spectral gap.

2) Uniqueness . There is a unique candidate model G◦,�/ < p�+1 > respecting the
local or “multiplicative” structure ofG◦,� (Thm 3.9). Uniqueness suggests that there is a
sharp boundary: there are no slightly larger quotients which could include low frequency
excitations. Thus the simplest expectation, that the reductionGε,�, � ≥ 2, be one dimen-
sional (non-degenerate), cannot be achieved as a joint ground state jgs of local projectors
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but instead requires frustration. A subtle point is involved here. The most interesting
candidates in solid state physics for topological states are highly frustrated systems when
written out in their fundamental degrees of freedom. This does not mean that they cannot
have effective descriptions as a jgs (= unfrustrated). In fact a very general topological
argument suggest that a phase with the structure of a TQFT always will. In local models

on a surface Y (e.g. [TV]), product structures Y × I yield projectors H(Y ) p−→ H(Y )
whose image is the underlying UTMF, V (Y ). However by building Y × I from over-
lapping local product structures, p can be factored into a commuting family of local
projectors {pi} so V (Y ) = image p = jgs{pi}.

Finally, uniqueness creates an aesthetic bias: Could nature really turn down such a
possibility?

We now turn to the final consistency check.

3) Positivity of the Markov trace pairing on G◦,�/〈p�+1〉 . On a surface Y with or with-
out boundary, the Hilbert space G◦,�/〈p�+1〉 ∼= G◦,� ∩ 〈p�+1〉∗ inherits a Hermitian
inner product 〈 , 〉geom. by inclusion in H, the space of all spin configurations. (Begin-
ning with {|+〉, |−〉} as an orthogonal basis for C2, the Hilbert space H acquires the
tensor product pairing which may be restricted to G+

◦,� ∩ 〈p�+1〉∗.) On the other hand,

G+
◦,�/〈p�+1〉 ∼= DE�(Y ) has a topologically defined “Markov trace” Hermitian inner

product 〈 , 〉top. corresponding to its structure as a UTMF (see Definition 4.2.).

Proposition 4.1. Suppose that the perturbed HamiltonianHε,� has a spectral gap above
its ground state G◦,� ∩ 〈p�+1〉∗, then up to a correction which is exponentially small
in the refinement scale of the triangulation �, 〈 , 〉geom. and 〈 , 〉top. are proportional:
〈 , 〉geom. ∼= c〈 , 〉top. for some real number c �= 0.

The definition of 〈 , 〉top. is recalled below.

Definition 4.2. Extending the definition given in Sect. 2: If γ1 and γ2 are domain walls
in Y with identical boundary data then γ = γ1 ∪ γ2 defines a link in Ŷ × S1 where Ŷ
is Y with its boundary capped by disks. (Place γ1 and γ2 on disjoint θ -levels θ1 and θ2,
then bend paired endpoints to meet at the intermediate level (θ1 + θ2)/2 w.r.t. the S1

orientation.) Regarding γ as labelled by the 2-dimensional representation, 〈γ1, γ2〉 :=
Witten invariant (Ŷ ×S1, γ ) at level �, see [Wi, RT and BHMV]. We refer to this pairing,
also, as the Markov trace pairing.

The combinatorial properties of the code space C := G◦,� ∩ 〈p�+1〉∗ are such that
local operators (in fact any operator supported on some topological diskD ⊂ Y ) cannot
extract or modify information in C. (It is true that a local operator can rotate C to C′,
C′ ⊥ C, but nondestructive (of details withinC) measurements allow the error to be cor-

rected by a physical operator F acting on H so that the composition C
E−→ C′ F |−→ C

is the identity idC .) The code property is a kind of combinatorial/topological rigidity and
it is quite natural that, if achieved in a ground state space, that space should be protected
by a spectral gap.

As we argue for Proposition 4.1, a final consistency check emerges:

gap + code ⇒ positivity of Markov trace pairing. (4.1)

This explains how the Markov pairing is picked out and why its (indefinite) Galois
conjugates are unrealizable as stable phases. The Markov trace pairing is known to be
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positive [J], [FNWW] precisely for our choice ofA,A = ieπi/2r , d = −A2 −A−2, and
it being topologically defined is automatically invariant under the mapping-class-group
of (Y, ∂Y ). For other roots of unity A the resulting Hermitian pairings are of mixed
sign so cannot, by positivity of 〈 , 〉geom. on H and Proposition 4.1, correspond to stable

physical phases. For example, at level � = 3, the Galois conjugate choice d ′ = 1−√
5

2 is

not physical. No ground state space modellingGd
′

◦ / < pd
′

4 > could have a gap. The cor-
responding “UTMFs” are only “unitary” with respect to the mixed (p, q) Lorentz form
[BHMV], constructed for each labelled surface of the theory. These structures cannot
be induced by restricting the standard Hermitian pairing 〈 , 〉geom. on H.

By choosing d = 2 cos π
�+2 we have ensured tr (a, a) is positive. If Gε,� has a gap

and is naturally identified with G◦,�/〈p�+1〉 then 4.1 implies positively of the Markov
trace. Positivity is demonstrated by showing that, up to an error exponentially small in
the refinement scale L, that the Markov trace is in the similarity class of the Hermitian
form induced from the standard inner product on H. This is the argument; it is not math-
ematically rigorous as the “imaginary − time = space ansatz” is employed, but we hope
that is convincing physically.

Argument, Proposition 4.1. A surface (Y,�) can be gradually changed by bringing
bonds in and out of the triangulation (and perhaps adding or deleting vertices). With
patience, a Dehn twist can be effected. This takes O(n2)moves on an n× n square grid
torus T 2. Similarly a braid generator for quasiparticle excitations on a disk takes O(n2)

such moves where n is the number of bonds in a loop surrounding the two quasiparticles.
These changes can eventually return � to a homeomorphic, though now twisted, image
of itself, see Fig. 4.1.

before after

Fig. 4.1

If Hε has a gap, bounded as we change � (on which Hε depends), the adiabatic
theorem will define, in the slow deformation limit: deformation speed << gap, a time
evolution of vectors in Gε,t ⊂ H, tε[0, 1]. At time t = 0,Gε,◦ = Gε and finally at
time t = 1, Gε,1 = Gε again. This evolution is (incidentally) identical with the one
induced by the canonical connection on the universal topological bundle of {k - plane,
vector in k - plane } −→ {k - planes}. From the assumption of a gap= δ, one can
argue that this monodromy for a Dehn or braid twist is accomplished by a composition
of O(δ−1n2) local operators, or more precisely operators At which have only an ex-
ponentially small nonlocal part. This means that for Pauli matrices at sites i and j , the
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commutator satisfies: ‖ [σ ixAt , σ
j
y ] ‖< c◦ e−c1‖i−j‖ for all indices x, y, i, j, t , and some

positive constants c◦ and c1. We call such operators quasi-local. The essential point is
that the local disturbance caused by modifyingHt near a bond toHt+1 dies away expo-
nentially in imaginary time and hence in space. Let us ignore the exponential tail (which
will lead to a manageable error term), and think of the monodromy as a composition
of O(δ−1n2) local operators: monodromy = ∏

t

A1◦c
t . For each t in a discretized unit

interval with O(δ−1n2) points, A1◦c
t is a local unitary operator ∈ Hom (H,H) which

carries the code subspace Gε,t of H at time = t to the code subspace Gε,t+1 at time
= t + 1.

Adiabatic evolution has provided us with one (local) representation, ρgeom.: π1 (mo-
duli space)−→ PUgeom.(Gε,t ), from the fundamental group of moduli space (Y ) (in our
discrete context moduli space is the space of triangulations of Y ) to the projective unitary
transformations of the perturbed ground state space. The subscript geom. signifies that
PU is defined with respect to 〈 , 〉geom.. On the other hand, assuming a spectral gap above
Gε,t , there is a physical argument that a second, topologically defined, representation is
also local. This representation: ρtop. : π1 (moduli space) −→ PUtop.(Gε,t ) is defined
into the projective unitaries w.r.t. 〈 , 〉top. by deforming the triangulation �t while leav-
ing the formal picture (:= superposition of domain walls) topologically invariant. This
representation can be defined by choosing a local rotation which interpolates between
the conditions (that define G◦,t ∩ 〈p�+1〉∗) in force at time = t but not t + 1 and those
in force at time = t + 1 but not t . What is not immediate is whether the effect of this
local rotation on the jgs can be achieved by an operator At on H which is quasi-local.
But the existence of a quasi-local At can be argued based on the “imaginary − time =
space” ansatz (Sect. 3 lines (8)–(14)). Similarly, if we view the ground state Gε,t as a
local excitation of Hε,t+1, but one without topological content, we expect that they can
be annihilated by a quasi-local At .

But if a local operator carries one code space into another, that operator restricted to
the first code space is unique, up to a scalar, among all restrictions of such local opera-
tors. This is particularly clear in the present case when the operators are unitary and all
the code spaces have the same dimension. Suppose both A and B are unitary operators
carrying C1 into C2, then B† ◦ A|C1 : C1 −→ C1 is also local and so multiplication by
some unit norm scalar λ. Thus B|C1 = λA|C1 .

So assuming a gap, the proceeding observation shows first that ρgeom. and ρtop. are
both actually well defined as maps from the fundamental group (see Fig. 4.2) and second
that ρgeom. will be projectively the same ρtop. up to an error exponentially small in the
refinement scaleL (when measured in the operator norm). The latter, ρtop is simply paral-
lel transport in Witten’s [Wi] projectively flat connection on the modular functor bundle
V (Yt ) over the moduli space of surfaces {Yt } (t now an arbitrary parameter). Projective
flatness as well as uniqueness of this connection follow formally from locality properties:
As the surface is gradually changed (discretely this is done by moves on the triangulation
�) the two surfaces Yt and Yt+1 can be canonically identified in the complement of a disk
D supporting the changing bonds, and the identification can be extended arbitrarily over
D. From the disk axiom and the gluing axiom of Sect. 2, we have a unique canonical pro-
jective isomorphism of modular functors V (Yt ) −→ V (Yt+1). This determines, via dif-
ferentiation, a unique connection. Projective flatness follows by applying this uniqueness
to a loop of identifications, see Fig. 4.2, representing a small cycle of changes to� collec-
tively supported in a diskD ⊂ Y . Similar loops span the relations in π1 (moduli spaces).

Let V = DE� � �= 1, 2, or 4. It is known [FLW2] that for a sphere with 4 or more
punctures (or a higher genus surface) the braid (or mapping class group) acts densely in
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the projective unitary transformations of each label sectorPUtop.(V (Y,
−→
t )). But identi-

fyingV (Y,−→t )with a ground state spaceGε,� (followed by the idempotent−→t defined in
Sect. 3), we have on the one hand the adiabatic evolution which must be unitary w.r.t. the
Hermitian pairing induced from the standard Hermitian pairing on H, and on the other
hand, exponentially close to this, transport in Witten’s connection. Both define (nearly)
the same dense homomorphism from π1 := the fundamental group of moduli space:

ρgeom. ρtop. : π1 −→ End
(
V (Y,

−→
t )

)
. (4.2)

In the case Y is planar and all boundary labels equal, π1 is a familiar braid group.

Fig. 4.2

It follows from the rapid approximation algorithm [KSV, So, K2] of elements of
PUgeom., PUtop. ⊂ End

(
V (Y,

−→
t )

)
by words in π1, that the induced Hermitian metric

on V must be exponentially close (in L) to the intrinsic UTMF metric on V up to the
overall scalar c. The mathematical fact that we are using here is that Hermitian pairings
can be recovered from their symmetries:

Lemma 4.3. Suppose a vector space V has Hermitian (but not necessarily positive
definite) inner products 〈 , 〉1 and 〈 , 〉2 with symmetry groups U1, U2 ⊂ End(V )
respectively, if U1 = U2 then 〈 , 〉1 = c〈 , 〉2 for some real constant c �= 0. Fur-
thermore if U1 �= U2 but instead if for all A1 ∈ U1 there exists an A2 ∈ U2 with
||A1 −A2|| < ε > 0, and for allA2 ∈ U2 there exists anA1 ∈ U1 with ||A2 −A1|| < ε,
then for all v ∈ V, 〈v, v〉2

1/〈v, v〉2
2 = const. +O(ε)

Proof. Up to linear conjugacy the type of the form is determined by dimension, signature
and nullity. If U1 = U2 (even approximately) these invariants agree. Let M ε End(V )
transform 〈 , 〉1 and 〈 , 〉2

(〈M†v,Mw〉1 = 〈v,w〉2
)
. Then U1M = MU2 so if U1 =

U2 =: U then M normalizes U . Let s + t = dim(V ). In PGL(s, t;C), PU(s, t) is its
own normalizer establishing the lemma whenU is nonsingular. If the forms have radicals,
these must agree and the preceding argument applies modulo the radical. Finally, in the
caseU1 andU2 are not identical but have Hausdorff distance= ε, a counterexample to the
lemma would yield a Lie algebra elementα ∈ pg�(s, t)�pu(s, t)with adα(pu(s, t)) ⊂
pu(s, t), but pu(s, t) ⊂ pg�(s, t) is a maximal proper sub Lie algebra. "#
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Consequently, Gε,� is not just linearly V but metrically V , provided Hε,� has a gap.
The spectral gap assumption implies that the combinatorically defined Markov trace

pairing is induced from the standard inner product of H. The Markov trace pairing is
a rather intricate structure in its relation to gluing (see Axiom 2). That it arises from a
simple assumption can be viewed as a valuable “consistency check” on that assumption
– the existence of a spectral gap above Gε,�.

5. The Hε,�,t Medium as a Quantum Computer

In the literature one finds at least three polynomially equivalent models of quantum com-
putation defined: q-Turing machine [D], q-circuit model [Y], q-cellular automata [Ll].
Nearly all proposed architectures ([NC] is an excellent survey) presume localization of
the fundamental degrees of freedom. This may be called the “qubit approach” although
qunit might be more precise since there is nothing special about two state systems, the
number n of states per site may even be infinite, as in optical cavity models − what is
important in these architectures is the tensorial structure of the computational degrees
of freedom.

However, there is another approach [FKLW] in which the global tensor structure
becomes redundant. The physical degrees of freedom still have a local tensor structure
− as is universal in quantum mechanics − but these are never touched directly. Instead
a system is engineered so that these local degrees interact through a Hamiltonian H
whose eigenstates Eλ are highly degenerate code spaces capable of storing, protecting
and processing quantum information. For us Eλ will be the internal symmetries of an
anyonic system in which position coordinates have been frozen out. The processing will
consist of braiding anyons in (2 + 1)-dimensional space time.

To make sense of this, consider a definition of “universal quantum computer” which
does not presuppose any tensor decomposition. We need:

1. h: A Hilbert h space on which to act. (Its dimension should scale exponentially in a
physical parameter.)

2. �◦ ∈ h: We need to be able to initialize the system.
3. ρ: Operations −→ U(h), a representation of some group (or at least semigroup) of

operation on the unitary transformations of h which can be physically implemented
– preferably with error scaling like e−constant L for some physical parameter L. (Lack
of such scaling is the Achilles heel of qubit models.) The representation ρ should
have dense image in SU(h): This, together with the rapid convergence property of
dense subgroups of U(h), ensures universality.

4. Compiler: This is a classical computer which takes a q-algorithm and an instance,
e.g. Shor’s poly time factoring algorithm [S2] and a thousand bit integer, and maps
the pair into a string s of operations as in (3).

5. �f : The result of the quantum portion of the calculation is a final state�f = ρ(s)�◦.
6. Observation: There must be a Hermitian operator which serves as the observation:

projecting �f into an eigenstate �λ with probability |aλ|2, �f =  aλ�λ. The
eigenvalue λ is what is actually observed.

7. Answer: Another poly-time classical computation is now made to convert the
observed eigenvalue, perhaps for many executions of 1) −→ 6), into a probabi-
listic output. The class of problems that can be answered in polynomial time by
1) −→ 7) with bounded error probability (say error < 1

4 ) is called BQP . For ex-
ample, factoring [S2] is in BQP . Computer scientists believe, and cryptographers
hope, that factoring is not in the corresponding classical computational class BPP .
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The reader can easily take any qubit architecture (see [NC] for details of these) and fit
it into the preceding format. Let us now do this for our anyonic system with Hamiltonian
Hε,�. As explained in the introduction, the system was chosen to have two spatial dimen-
sions topologically, i.e. to live on a triangulated surface (Y,�), so that exotic statistics
become a possibility. By mathematical excising neighborhoods of the excitations we
reduce to the case of studying the ground state spaceGt of a time dependentHε,�,t , on a
highly punctured surface Y− with labelled boundary. The subscript t reminds us of the
time dependence of the surface (Y−,�) as the position of the punctures evolves. The
ground state space Gt describes the internal symmetries of a collection of quasiparticle
(anyon) excitations whose spatial locations are t dependent. The space Gt◦ is a repre-
sentation space for the braid group (or generalized braid group) which describes the
motion of these quasiparticles on Y . Because of the presumed spectral gap, the quasi-
particles are expected to have exponentially decaying tails. Chopping off and ignoring
these tails amounts to puncturing Y at the quasiparticles. This identifies the excited state
� ′◦,t ∈ Eλ,t containing anyons on Y with a ground state �◦,t ∈ Gt on a multiply
punctured Y− with labeled boundary. So by puncturing and labeling the surface Y , a
ground state in Gt can be used to represent the anyonic state ∈ Eλ,t , so the discussion
of Sect. 3 applies to Eλ,t .

Let us walk through steps 1 through 7 for our anyonic model, though it is not efficient
to do this in strict order.

1. & 2. h = Eλ,t ∼= Gt : In [FLW1] and [FKLW] abstract anyonic models for (but with
no known HamiltonianH ) were analyzed algebraically. In [F2] an explicit but artifi-
cial Hamiltonian was given as an existence theorem. The UTMFs of [FLW1, F2 and
FKLW]. required a two (with care 1.5) quasiparticle pairs per qubit simulated.DE�
is a closely related UTMF and for � = 3 a similar encryption yields one qubit per
1.5 pairs of (0, 2) type excitations. Physically one imagines a disk of quantum media
governed by Ht and trivial outer boundary condition, lying in its (nondegenerate)
ground state = “the vacuum”. The steps required to build h are a subset of those
discussed in [BK] in connection with their CS2 model. The disk is struck in some
way (with a hammer?) at a point to create a pair of excitations. Already in building
Eλ,t we need measurement to tell if the newly created pair is type

(
(0, 2); (0, 2)). If

the pair is of this type, we keep it, if not it is returned to the vacuum. Repeat (perhaps
thousands of times) until a sufficiently large Hilbert space Eλ,t (Y ) ∼= Gt(Y−) ∼= h,
and initial vector, �◦ ∈ Gt is realized. The initial state �◦ is determined by the
condition that all circles surrounding (not separating) the created pairs acquire label
(0, 0). How many pairs are required depends on the problem instance. For example,
for the factoring problem, it is a small multiple of the number of bits of the number
to be factored.

6. Measurement. The creation process is probabilistic. So even at the start, there
must be a local observation which tells us which anyon pairs have been created
((0, 0), (0, 0)); ((0, 2), (0, 2)); (2, 0), (2, 0); or ((2, 2), (2, 2)). One hopes that will
not require a “topological microscope”. Because quasi particles are arrangements of
elementary degrees of freedom spins, charges, etc. . . , of the system, one expects each
quasiparticle when examined electromagnetically to have its own unique signature:
e.g. quadruple moment etc. . . . In this view, localized quasiparticles would always
be “measured” by their environment and never lie in superpositions. However, it
is essential for quantum computation that a well separated pair of quasiparticles −
before being fused − could be in a superposition of collective states. Another idea
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[SF], discussed in the introduction, is that a phase transition be employed for mea-
surement.

3. Braiding. The group of operations is the braid group of quasiparticles moving on the
disk. In order to implement this mathematically known representation on h we need
to be able to grab hold of the quasiparticle and, within some allowable dispersion
corridor, nudge it along to execute the braid s dictated by the output of the classical
compiler, Step 4. This, like observation, should in principle be possible, using the
characteristic electric and magnetic attributes of the nontrivial quasiparticles (what-
ever they are eventually measured to be). It may be possible to design wells that trap,
and when desired, move specific quasiparticles.

5. �f is the internal state after braiding �f = ρ(s)�◦.
6. Observation. We already discussed the necessity to observe halves of newly created

pairs. To read out quantum information after braiding, take two quasiparticles in the
system�f and fuse them. Although they will retain their individual identities during
braiding and still be both of type (0, 2), after fusing, two outcomes are possible: (0, 0)
or (0, 2). The probabilities attached to these outcomes is the classical distillation of
quantum information equivalent to measuring a qubit in the usual architecture (see
[FKLW] for details of the read out and its relation to quantum topology and the Jones
polynomial.) The braiding has rearranged, in an exponentially intricate fashion, the
structure of the composite pairs of (0, 2)− quasiparticles. This recoupling is the heart
of the computation.

7. & 4. The final conversion of eigenvalues observed to a probabilistic output is the
same as for the qubit architecture. The structure of the compiler is also similar but
must include a rapid approximation algorithm [K2, So] subroutine.

We have presented Hε,3,t as a theoretical candidate for an anyonic medium
capable of universal quantum computation. Its experimental realization would a land-
mark.

6. Appendix. Ideals in Temperley-Lieb Catergory
(by Frederick M. Goodman and Hans Wenzl)

This appendix contains a proof of the following result, which is used in the paper of
Michael Freedman, A magnetic model with a possible Chern-Simons phase.

Theorem A0.1. When the parameter d is equal to 2 cos(jπ/n) with n ≥ 3 and j co-
prime to n, then the Temperley-Lieb category has exactly one non-zero, proper ideal,
namely the ideal of negligible morphisms. For all other values of d, the Temperley-Lieb
category has no non-zero, proper tensor ideal.

We are grateful to Michael Freedman for bringing the question of tensor ideals in the
Temperley-Lieb category to our attention and for allowing us to present the proof as an
appendix to his paper.

Our notation in the appendix differs slightly from that in the main text. We write
t instead of −A2, Tn for the Temperley-Lieb algebra with n strands, and T L for the
Temperley-Lieb category. We trust that this notational variance will not cause the reader
any difficulty.

This appendix can be read independently of the main text.



Magnetic Model with a Possible Chern-Simons Phase 173

A1. The Temperley-Lieb Category

A1.1. The Generic Temperley-Lieb Category. Let t be an indeterminant over C, and let
d = (t + t−1). The generic Temperley Lieb category TL is a strict tensor categor whose
objects are elements of N0 = {0, 1, 2, . . . }. The set of morphisms Hom(m, n) from m

to n is a C(t) vector space described as follows:
If n−m is odd, then Hom(m, n) is the zero vector space.
For n−m even, we first define (m, n)-TL diagrams, consisting of:

1. A closed rectangle R in the plane with two opposite edges designated as top and
bottom,

2. mmarked points (vertices) on the top edge and nmarked points on the bottom edges,
3. (n+m)/2 smooth curves (or “strands") inR such that for each curve γ , ∂γ = γ ∩∂R

consists of two of the n + m marked points, and such that the curves are pairwise
non-intersecting.

Two such diagrams are equivalent if they induce the same pairing of the n+mmarked
points. Hom(m, n) is defined to be the C(t) vector space with basis the set of equivalence
classes of (m, n)-TL diagrams; we will refer to equivalence classes of diagrams simply
as diagrams.

The composition of morphisms is defined first on the level of diagrams. The compo-
sition ba of an (m, n)-diagram b and an (�,m)-diagram a is defined by the following
steps:

1. Juxtapose the rectangles of a and b, identifying the bottom edge of a (with its m
marked points) with the top edge of b (with its m marked points).

2. Remove from the resulting rectangle any closed loops in its interior. The result is a
(n, �)-diagram c.

3. The product ba is drc, where r is the number of closed loops removed.

The composition product evidently respects equivalence of diagrams, and extends
uniquely to a bilinear product

Hom(m, n)× Hom(�,m) −→ Hom(�, n),

hence to a linear map

Hom(m, n)⊗ Hom(�,m) −→ Hom(�, n).

Fig. A1.1. A (5,7)–Temperley Lieb Diagram
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The tensor product of objects in TL is given by n⊗ n′ = n+ n′. The tensor product
of morphisms is defined by horizontal juxtaposition. More exactly, the tensor a ⊗ b of
an (n,m)-TL diagram a and an (n′,m′)-diagram b is defined by horizontal juxtposition
of the diagrams, the result being an (n+ n′,m+m′)-TL diagram.

The tensor product extends uniquely to a bilinear product

Hom(m, n)× Hom(m′, n′) −→ Hom(m+m′, n+ n′),
hence to a linear map

Hom(m, n)⊗ Hom(m′, n′) −→ Hom(m+m′, n+ n′).
For each n ∈ N0, Tn := End(n) is a C(t)-algebra, with the composition product.

The identity 1n of T (n) is the diagram with n vertical (non-crossing) strands. We have
canonical embeddings of Tn into Tn+m given by x 1→ x ⊗ 1m. If m > n with m − n
even, there also exist obvious embeddings of Hom(n,m) and Hom(m, n) into Tm as
follows: If ∩ and ∪ denote the morphisms in Hom(0, 2) and Hom(2, 0), then we have
linear embeddings

a ∈ Hom(n,m) 1→ a ⊗ ∪⊗(m−n)/2 ∈ Tm
and

b ∈ Hom(m, n) 1→ b ⊗ ∩⊗(m−n)/2 ∈ Tm.
Note that these maps have left inverses which are given by premultiplication by an

element of Hom(n,m) in the first case, and postmultiplication by an element of
Hom(m, n) in the second. Namely,

a = d−(m−n)/2(a ⊗ ∪⊗(m−n)/2) ◦ (1n ⊗ ∩⊗(m−n)/2)

and
b = d−(m−n)/2(1n ⊗ ∪⊗(m−n)/2) ◦ (b ⊗ ∩⊗(m−n)/2).

By an ideal J in TL we shall mean a vector subspace of
⊕
n,m Hom(n,m) which is

closed under composition and tensor product with arbitrary morphisms. That is, if a, b
are composible morphisms, and one of them is in J , then the composition ab is in J ;
and if a, b are any morphisms, and one of them is in J , then the tensor product a ⊗ b is
in J .

Note that any ideal is closed under the embeddings described just above, and under
their left inverses.

A1.2. Specializations and evaluable morphisms.. For any τ ∈ C, we define the spe-
cialization TL(τ ) of the Temperley Lieb category at τ , which is obtained by replacing
the indeterminant t by τ . More exactly, the objects of TL(τ ) are again elements of
N0, the set of morphisms Hom(m, n)(τ ) is the C-vector space with basis the set of
(m, n)-TL diagrams, and the composition rule is as before, except that d is replaced by
d(τ) = (τ +τ−1). Tensor products are defined as before. Tn(τ) := End(n) is a complex
algebra, and x 1→ x ⊗ 1m defines a canonical embedding of Tn(τ) into Tn+m(τ). One
also has embeddings Hom(m, n)→ Tn and Hom(n,m)→ Tn, whenm < n, as before.
An ideal in TL(τ ) again means a subspace of

⊕
n,m Hom(n,m) which is closed under

composition and tensor product with arbitrary morphisms.
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Let C(t)τ be the ring of rational functions without pole at τ . The set of evaluable
morphisms in Hom(m, n) is the C(t)τ -span of the basis of (n,m)-TL diagrams. Note
that the composition and tensor product of evaluable morphisms are evaluable. We have
an evaluation map from the set of evaluable morphisms to morphisms of TL(τ ) defined
by

a =
∑

sj (t)aj 1→ a(τ) =
∑

sj (τ )aj ,

where the sj are in C(t)τ , and the aj are TL-diagrams. We write x 1→ x(τ) for the
evaluation map. The evaluation map is a homomorphism for the composition and tensor
products. In particular, one has a C-algebra homomorphism from the algebra T τn of
evaluable endomorphisms of n to the algebra Tn(τ) of endomorphisms of n in TL(τ ).

The principle of constancy of dimension is an important tool for analyzing the spe-
cialized categories TL(τ ). We state it in the form which we need here:

Proposition A1.1. Let e ∈ Tn and f ∈ Tm be evaluable idempotents in the generic Tem-
perley Lieb category. LetA be the C(t)-span in Hom(m, n) of a certain set of (m, n)-TL
diagrams, and let A(τ) be the C-span in Hom(m, n)(τ ) of the same set of diagrams.
Then

dimC(t) eAf = dimC e(τ )A(τ)f (τ).

Proof. Let X denote the set of TL diagrams spanning A. Clearly

dimC(t) A = dimCA(τ) = |X|.
Choose a basis of e(τ )A(τ)f (τ) of the form {e(τ )xf (τ) : x ∈ X0} where X0 is some
subset of X. If the set {exf : x ∈ X0} were linearly dependent over C(t), then it would
be linearly dependent over C[t], and evaluating at τ would give a linear dependence of
{e(τ )xf (τ) : x ∈ X0} over C. It follows that

dimC(t) eAf ≥ dimC e(τ )A(τ)f (τ).

But one has similar inequalities with e replaced by 1− e and/or f replaced by 1− f . If
any of the inequalities were strict, then adding them would give dimC(t) A > dimCA(τ),
a contradiction.

A1.3. The Markov trace. The Markov trace Tr = Trn is defined on Tn (or on Tn(τ)) by
the following picture, which represents an element in End(0) ∼= C(t) (resp. End(0) ∼=
C).

On an (n, n)-TL diagram a ∈ Tn, the trace is evaluated geometrically by closing
up the diagram as in the figure, and counting the number c(a) of components (closed
loops); then Tr(a) = dc(a).

It will be useful to give the following inductive description of closing up a diagram.
We define a map εn : Tn+1 → Tn (known as a conditional expectation in operator
algebras) by only closing up the last strand; algebraically it can be defined by

a ∈ Tn+1 1→ (1n ⊗ ∪) ◦ (a ⊗ 1) ◦ (1n ⊗ ∩).
If k > n, the map εn,k is defined by εn,k = εn ◦ εn+1 . . . ◦ εk−1. It follows from the

definitions that Tr(a) = ε0,n for a ∈ Tn.
It is well-known that Tr is indeed a functional satisfying Tr(ab) = Tr(ba); one easily

checks that this equality is even true if a ∈ Hom(n,m) and b ∈ Hom(m, n). We need
the following well-known fact:



176 M.H. Freedman

a = Tr(a) ∈ End(0)

Fig. A1.2. The categorical trace of an element a ∈ Tn

Lemma A1.2. Let f ∈ Tn+m and let p ∈ Tn such that (p⊗ 1m)f (p⊗ 1m) = f , where
p is a minimal idempotent in Tn. Then εn,n+m(f ) = γp, where γ = T rn+m(f )/T rn(p)
Proof. It follows from the definitions that

pεn,n+m(f )p = εn,n+m((p ⊗ 1m)f (p ⊗ 1m)) = εn,n+m(f ).
As p is a minimal idempotent in Tn, εn,n+m(f ) = γp, for some scalar γ . Moreover,
by our definition of trace, we have T rn+m(f ) = T rn(εn,n+m(f )) = γ T rn(p). This
determines the value of γ .

The negligible morphisms Neg(n,m) are defined to be all elements a ∈ Hom(n,m)
for which T r(ab) = 0 for all b ∈ Hom(m, n). It is well-known that the set of all
negligible morphisms form an ideal in TL.

A2. The structure of the Temperley–Lieb algebras

A2.1. The generic Temperley–Lieb algebras. Recall that a Young diagram λ =
[λ1, λ2, . . . λk] is a left justified array of boxes with λi boxes in the ith row and λi ≥ λi+1
for all i. For example,

[5, 3] = .

All Young diagrams in this paper will have at most two rows. For λ a Young diagram
with n boxes, a Young tableau of shape λ is a filling of λ with the numbers 1 through n
so that the numbers increase in each row and column. The number of Young tableax of
shape λ is denoted by fλ.

The generic Temperley Lieb algebras Tn are known ([J1]) to decompose as direct
sums of full matrix algebras over the field C(t), Tn =

⊕
λ Tλ, where the sum is over all

Young diagrams λwith n boxes (and with no more than two rows), and Tλ is isomorphic
to an fλ-by-fλ matrix algebra.

When λ and µ are Young diagrams of size n and n+ 1, one has a (non-unital) homo-
morphism of Tλ into Tµ given by x 1→ (x⊗1)zµ, where zµ denotes the minimal central
idempotent in Tn+1 such that Tµ = Tn+1zµ. Let gλ,µ denote the rank of (e⊗1)zµ, where
e is any minimal idempotent in Tλ. It is known that gλ,µ = 1 in case µ is obtained from
λ by adding one box, and gλ,µ = 0 otherwise.



Magnetic Model with a Possible Chern-Simons Phase 177

One can describe the embedding of Tn into Tn+1 by a Bratteli diagram (or induction-
restriction diagram), which is a bipartite graph with vertices labelled by two-row Young
diagrams of size n and n+ 1 (corresponding to the simple components of Tn and Tn+1)
and with gλ,µ edges joining the vertices labelled by λ and µ. That is λ and µ are joined
by an edge precisely when µ is obtained from λ by adding one box. The sequence of
embeddings T0 → T1 → T2 → · · · is described by a multilevel Bratteli diagram, as
shown in Fig. A2.5.

A tableau of shape λ may be identified with an increasing sequence of Young dia-
grams beginning with the empty diagram and ending at λ; namely the j th diagram in the
sequence is the subdiagram of λ containing the numbers 1, 2, . . . , j . Such a sequence
may also be interpreted as a path on the Bratteli diagram of Fig. A2.5, beginning at the
empty diagram and ending at λ.

A2.2. Path idempotents. One can define a familiy of minimal idempotents pt in Tsn,
labelled by paths t of length n on the Bratteli diagram (or equivalently, byYoung tableaux
of size n), with the following properties:

1. ptps = 0 if t, s are different paths both of length n.
2. zλ =

∑{pt : t ends at λ}.
3. pt ⊗ 1 = ∑{ps : s has length n+ 1 and extends t}

Let t be a path of length n and shape λ and let µ be a Young diagram of size n+m.
It follows that (pt ⊗ 1m)zµ �= 0 precisely when there is a path on the Bratteli diagram
from λ to µ. It has been shown in [J1] that (in our notations) Tr(pt ) = [λ1 − λ2 + 1],
where [m] = (tm − t−m)/(t − t−1) for any integer m, and where λ is the endpoint of
the path t . Observe that we get the same value for diagrams λ and µ (of different sizes)
that are in the same column in the Bratteli diagram.
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Fig. A2.5. Bratteli diagram for the sequence (Tn)
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The idempotents pt were defined by recursive formulas in [W2], generalizing the
formulas for the Jones-Wenzl idempotents in [W1].

A2.3. Specializations at non-roots of unity. When τ is not a proper root of unity, the
Temperley Lieb algebras Tn(τ) are semi-simple complex algebras with the “same" struc-
ture as generic Temperley Lieb algebras. That is, Tn(τ) =

⊕
λ Tλ(τ ), where Tλ(τ) is

isomorphic to an fλ-by-fλ matrix algebra over C. The embeddings Tn(τ) → Tn+1(τ )

are described by the Bratteli diagram as before. The idempotents pt , and the minimal
central idempotents zλ, in the generic algebras Tn, are evaluable at τ , and the evaluations
pt (τ ), resp. zλ(τ ), satisfy analogous properties.

A2.4. Specializations at roots of unity and evaluable idempotents. We require some
terminology for discussing the case where τ is a root of unity. Let q = τ 2, and sup-
pose that q is a primitive �th root of unity. We say that a Young diagram λ is critical if
w(λ) := λ1 − λ2 + 1 is divisible by �. The mth critical line on the Bratteli diagram for
the generic Temperly Lieb algebra is the line containing the diagrams λwithw(λ) = ml.
See Fig. A2.6.

Say that two non-critical diagrams λ andµwith the same number of boxes are reflec-
tions of one another in themth critical line ifλ �= µ and |w(λ)−m�| = |w(µ)−m�| < �.
(For example, with � = 3, [2, 2] and [4] are reflections in the first critical linew(λ) = 3.)
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Fig. A2.6. Critical lines
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For τ a proper root of unity, the formulas for path idempotents in [W1] and [W2]
generally contain poles at τ , i.e. the idempotents are not evaluable. However, suitable
sums of path idempotents are evaluable. We will review some facts from [GW] about
such evaluable sums.

Suppose w(λ) ≤ � and t is a path of shape λ which stays strictly to the left of the
first critical line (in case w(λ) < �), or hits the first critical line for the first time at λ
(in case w(λ) = �); then pt is evaluable at τ , and furthermore Tr(pt ) = [w(λ)]τ =
(τw(λ) − τ−w(λ))/(τ − τ−1).

For each critical diagram λ of size n, the minimal central idempotent zλ in Tn is
evaluable at τ . Furthermore, for each non-critical diagram λ of size n, an evaluable
idempotent zLλ = ∑

pt ∈ Tn was defined in [GW] as follows: The summation goes over
all paths t ending in λ for which the last critical line hit by t is the one nearest to λ to the
left and over the paths obtained from such t by reflecting its part after the last critical
line in the critical line (see Figure A2.7).

These idempotents have the following properties (which were shown in [GW]):

1. {zλ(τ ) : λ critical } ∪ {zLµ(τ) : µ non-critical } is a partition of unity in Tn(τ); that is,
the idempotents are mutually orthogonal and sum to the identity.

2. zλ(τ ) is a minimal central idempotent in Tn(τ) if λ is critical, and zLλ (τ ) is minimal
central modulo the nilradical of Tn if λ is not critical (see [GW], Theorem 2.2 and
Theorem 2.3).
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Fig. A2.7. A path and its reflected path
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3. For λ and µ non-critical, zLλ (τ )Tn(τ )z
L
µ(τ) �= 0 only if λ = µ, or if there is exactly

one critical line between λ and µ which reflects λ to µ. If in this case ν denotes the
leftmost of the two diagrams λ and µ, then zLλ Tnz

L
µ ⊆ Tν (in the generic Temperley

Lieb algebra).
4. Let zregn = ∑

pt , where the summation goes over all paths t which stay strictly to
the left of the first critical line, and let zniln = 1 − z

reg
n . Then both zregn and zniln

are evaluable; this is a direct consequence of the fact that zregn = ∑
λ z
L
λ , where the

summation goes over diagrams λ with n boxes with width w(λ) < �.

Proposition A2.1. The ideal of negligible morphisms in TL(τ ) is generated by the
idempotent p[�−1](τ ) ∈ T�−1(τ ).

Proof. Let us first show that zniln (τ ) is in the ideal generated by p[�−1](τ ) for all n. This
is clear for n < �, as znil�−1 = p[�−1] and zniln = 0 for n < �− 1.

Moreover, zniln is a central idempotent in the maximum semisimple quotient of Tn,
whose minimal central idempotents are the zLλ with w(λ) ≥ �. One checks pictorially
that p[�−1]z

L
λ �= 0 for any such λ (i.e. the path to [�− 1] can be extended to a path t for

which pt is a summand of zLλ ). This proves our assertion in the maximum semisimple
quotient of Tn; it is well-known that in this case also the idempotent itself must be in the
ideal generated by p[�−1]. In particular, Hom(n,m)znilm (τ )+ zniln (τ )Hom(n,m) is also
contained in this ideal.

By [GW], Theorem 2.2 (c), for λ a Young diagram of size n, with w(λ) < �,
zLλ Tnz

L
λ (τ ) is a full matrix algebra, which moreover contains a minimal idempotent

pt of trace Tr(pt ) = [w(λ)]τ �= 0. Therefore

zLλ Tnz
L
λ (τ ) ∩ Neg(n, n) = (0).

Furthermore, zregn Tnz
reg
n (τ ) = ∑

zLλ Tnz
L
λ (τ ), by Fact 4 above, so

z
reg
n Tnz

reg
n (τ ) ∩ Neg(n, n) = (0)

as well. Now for x ∈ Neg(n, n), one has zregn (τ )xz
reg
n (τ ) = 0, so

x ∈ Tn(τ)zniln (τ )+ zniln (τ )Tn(τ ).
We have shown that Neg(n, n) is contained in the ideal of TL(τ ) generated by p[l−1],

for all n. That the same is true for Neg(m, n) with n �= m follows from using the
embeddings, and their left inverses, described at the end of Sect. A1.1. "#

A3. Ideals

Proposition A3.1. Any proper ideal in TL (or in TL(τ )) is contained in the ideal of
negligible morphisms.

Proof. Let a ∈ Hom(m, n). For all b ∈ Hom(n,m), �(ba) is in the intersection of
the ideal generated by a with the scalars End(0). If a is not negligible, then the ideal
generated by a contains an non-zero scalar, and therefore contains all morphisms. "#
Corollary A3.2. The categories TL and TL(τ ) for τ not a proper root of unity have no
non-zero proper ideals.
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Proof. There are no non-zero negligible morphisms in TL and in TL(τ ) for τ not a
proper root of unity. "#
Theorem A3.3. Suppose that τ is a proper root of unity. Then the negligible morphisms
form the unique non-zero proper ideal in TL(τ ).

Proof. Let J be a non-zero proper ideal in TL(τ ). By the embeddings discussed at the
end of Sect. 1.1, we can assume J ∩ Tn �= 0 for some n.

Now let a be a non-zero element of J ∩ Tn(τ). Since {zλ(τ )} ∪ {zLµ(τ)} is a partition
of unity in Tn(τ), one of the following conditions hold:

(a) b = azµ(τ) �= 0 for some critical diagram µ.
(b) b = zLµ(τ)azLµ(τ) �= 0 for some non-critical diagram µ.
(c) b = zLλ (τ )azLλ′(τ ) �= 0 for some pair λ, λ′ of non-critical diagrams which are reflec-

tions of one another in a critical line. In this case, let µ denote the leftmost of the
two diagrams λ, λ′.

In each of the three cases, one has b ∈ e(τ )Tn(τ )f (τ ), where e, f are evaluable
idempotents in Tn such that eTnf ⊆ Tµ. Let α be a Young diagram on the first critical
line of size n+m, such that there exists a path on the generic Bratteli diagram connecting
µ and α. Then one has

dimC zα(τ )(e(τ )⊗ 1m)(Tn(τ )⊗ C 1m)(f (τ)⊗ 1m)

= dimC(t) zα(e ⊗ idm)(Tn ⊗ C(t)1m)(f ⊗ 1m)

= dimC(t) eTnf = dimC e(τ )Tn(τ )f (τ ),

where the first and last equalities result from the principle of constancy of dimension,
and the second equality is because x 1→ zα(x⊗1m) is injective from Tµ to Tα . But then it
follows that x 1→ zα(τ )(x⊗1m) is injective on e(τ )Tn(τ )f (τ ). In particular (b⊗1m)zα
is a non-zero element of J ∩ Tα . Hence there exists c ∈ Tα such that g = c(b ⊗ 1m)zα
is an idempotent. After conjugating (and multiplying with p[�−1] ⊗ 1m, if necessary),
we can assume g to be a subidempotent of p[�−1] ⊗ 1m. But then ε�−1+m,�−1(g) is a
multiple of p[�−1], by Lemma A1.2, with the multiple equal to the rank of g in Tα . This,
together with Proposition A2.1, finishes the proof. "#

It is easily seen that TL has a subcategory TLev whose objects consist of even num-
bers of points, and with the same morphisms between sets of even points as for TL. The
evaluation TLev(τ ) is defined in complete analogy to TL(τ ).

Corollary 3.4. If τ 2 is a proper root of unity of degree � with � odd, the negligible
morphisms form the unique non-zero proper ideal in TLev .

Proof. If � is odd, p[�−1] is a morphism in TLev . The proof of the last theorem goes
through word for word (one only needs to make sure that one stays within TLev, which
is easy to check). "#
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