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Abstract: By using a simple interpolation argument, in previous work we have proven
the existence of the thermodynamic limit, for mean field disordered models, including
the Sherrington-Kirkpatrick model, and the Derrida p-spin model. Here we extend this
argument in order to compare the limiting free energy with the expression given by
the Parisi Ansatz, and including full spontaneous replica symmetry breaking. Our main
result is that the quenched average of the free energy is bounded from below by the
value given in the Parisi Ansatz, uniformly in the size of the system. Moreover, the dif-
ference between the two expressions is given in the form of a sum rule, extending our
previous work on the comparison between the true free energy and its replica symmetric
Sherrington-Kirkpatrick approximation. We give also a variational bound for the infinite
volume limit of the ground state energy per site.

1. Introduction

The main objective of this paper is to compare the free energy of the mean field spin
glass model, introduced by Sherrington and Kirkpatrick in [16], with the expression
given in the frame of the Parisi Ansatz [14, 12], including the complete phenomenon
of spontaneous replica symmetry breaking. In previous work [6], we have limited our
comparison to the replica symmetric case, by producing sum rules, where the difference
between the true free energy, and its replica symmetric approximation, is expressed in
terms of overlap fluctuations, with a well definite sign. As a result, the replica symmetric
approximation turns out to be a rigorous lower bound for the quenched average of the
free energy per site, uniformly in the size of the system.

In the meantime, the old problem of proving the existence of the infinite volume lim-
it for the thermodynamic quantities has been solved [9], by using a simple comparison
argument.

Here, we extend this comparison argument, by introducing an appropriate general-
ized partition function, as a function of a parameter t , with 0 ≤ t ≤ 1, able to interpolate
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between the true theory, at t = 1, and the broken replica Ansatz, at t = 0. Consequently,
through a simple direct calculation, we can evaluate the difference between the true free
energy, and its broken replica expression, still in the form of a sum rule, with the cor-
rections, of a definite sign, expressed through overlap fluctuations, in properly chosen
auxiliary states. As a result, the broken replica Ansatz turns out to be a rigorous lower
bound for the quenched average of the free energy per site, uniformly in the size of the
system.

Moreover, the corrections, given in terms of overlap fluctuations, are in a form suit-
able for the exploration of the expected result of their vanishing, when the size of the
system goes to infinity, along the program developed in [8].

Of course, our method does not use the replica trick in the zero replica limit, as
explained for example in [12], nor the cavity method, as exploited for example in
[13, 15, 5, 17].

We give only a brief sketch of the extension of our method to the Derrida p-spin
model [2, 4, 3, 17]. A more detailed treatment will be presented elsewhere [10].

The organization of the paper is as follows. In Sect. 2, we will briefly recall the
main features, and definitions, of the mean field spin glass model. In Sect. 3, the general
structure of the Parisi spontaneously broken replica symmetry Ansatz will be described,
in a form suitable for the developments of the next section. Section 4 contains the main
results of the paper. Firstly, we introduce the interpolating generalized partition function.
Then, we evaluate its derivative, with respect to the interpolating parameter, arriving to
the sum rule. The general broken replica bound follows easily. In Sect. 5, we give a
variational estimate for the infinite volume limit of the ground state energy per site.
Next Sect. 6 gives the essential ingredients of the extension of this method to the p-spin
model. Finally, Sect. 7 is devoted to conclusions and outlook for further developments.

2. The Basic Definitions for the Mean Field Spin Glass Model

The generic configuration of the mean field spin glass model is defined through Ising
spin variables σi = ±1, attached to each site i = 1, 2, . . . , N .

The external quenched disorder is given by the N(N − 1)/2 independent and identi-
cally distributed random variables Jij , defined for each couple of sites. For the sake of
simplicity, we assume each Jij to be a centered unit Gaussian with averagesE

(
Jij
) = 0,

E
(
J 2
ij

)
= 1.

The Hamiltonian of the model, in some external field of strength h, is given by the
mean field expression

HN(σ, h, J ) = − 1√
N

∑
(i,j)

Jij σiσj − h
∑
i

σi . (1)

Here, the first sum extends to all site couples, and the second to all sites.
For a given inverse temperature β, let us now introduce the disorder dependent parti-

tion functionZN(β, h, J ), the quenched average of the free energy per site fN(β, h), the
Boltzmann state ωJ , and the auxiliary function αN(β, h), according to the well known
definitions

ZN(β, h, J ) =
∑
σ1...σN

exp(−βHN(σ, h, J )) , (2)
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−βfN(β, h) = N−1E logZN(β, h, J ) = αN(β, h), (3)

ωJ (A) = ZN(β, h, J )−1
∑
σ1...σN

A exp(−βHN(σ, h, J )) , (4)

where A is a generic function of the σ ’s.
Replicas are introduced by considering a generic number s of independent copies of

the system, characterized by the Boltzmann variables σ (1)i , σ (2)i , . . ., distributed accord-

ing to the product state �J = ω
(1)
J ω

(2)
J . . . ω

(s)
J . Here, all ω(α)J act on each one σ (α)i ’s,

and are subject to the same sample J of the external noise.
The overlap between two replicasa, b is defined according toqab =N−1∑

i σ
(a)
i σ

(b)
i ,

with the obvious bounds −1 ≤ qab ≤ 1.
For a generic smooth function F of the overlaps, we define the 〈 〉 averages

〈F (q12, q13, . . .)〉 = E�J
(
F (q12, q13, . . .)

)
, (5)

where the Boltzmann averages�J act on the replicated σ variables, andE is the average
with respect to the external noise J .

3. The Broken Replica Symmetry Ansatz

While we refer to the original paper [14], and to the extensive review given in [12], for
the general motivations, and the derivation of the broken replica Ansatz, in the frame
of the ingenious replica trick, here we limit ourselves to a synthetic description of its
general structure, in a form suitable for the treatment of the next section, see also [5, 1].

First of all, let us introduce the convex space X of the functional order parameters
x, as nondecreasing functions of the auxiliary variable q, both x and q taking values on
the interval [0, 1], i.e.

X � x : [0, 1] � q → x(q) ∈ [0, 1]. (6)

Notice that we call x the nondecreasing function, and x(q) its values. We introduce a
metric on X through the L1([0, 1], dq) norm, where dq is the Lebesgue measure.

Usually, we will consider the case of piecewise constant functional order parameters,
characterized by an integer K , and two sequences q0, q1, . . . , qK , m1,m2, . . . , mK of
numbers satisfying

0 = q0 ≤ q1 ≤ . . . ≤ qK−1 ≤ qK = 1, 0 ≤ m1 ≤ m2 ≤ . . . ≤ mK ≤ 1, (7)

such that

x(q) = m1 for 0 = q0 ≤ q < q1, x(q) = m2 for q1 ≤ q < q2,

. . . , x(q) = mK for qK−1 ≤ q ≤ qK. (8)

In the following, we will find it convenient to define also m0 ≡ 0, and mK+1 ≡ 1. The
replica symmetric case corresponds to

K = 2, q1 = q̄, m1 = 0, m2 = 1. (9)

The case K = 3 is the first level of replica symmetry breaking, and so on.



4 F. Guerra

Let us now introduce the function f , with values f (q, y; x, β), of the variables
q ∈ [0, 1], y ∈ R, depending also on the functional order parameter x, and on the
inverse temperature β, defined as the solution of the nonlinear antiparabolic equation

(
∂qf

)
(q, y)+ 1

2

(
f ′′(q, y)+ x(q)f ′2(q, y)

) = 0, (10)

with final condition
f (1, y) = log cosh(βy). (11)

Here, we have stressed only the dependence of f on q and y, and have put f ′ = ∂yf

and f ′′ = ∂2
yf .

It is very simple to integrate Eq. (10) when x is piecewise constant. In fact, consider
x(q) = ma , for qa−1 ≤ q ≤ qa , firstly with ma > 0. Then, it is immediately seen that
the correct solution of Eq. (10) in this interval, with the right final boundary condition
at q = qa , is given by

f (q, y) = 1

ma
log

∫
exp

(
maf

(
qa, y + z√qa − q)) dµ(z), (12)

where dµ(z) is the centered unit Gaussian measure on the real line. On the other hand,
if ma = 0, then (10) loses the nonlinear part and the solution is given by

f (q, y) =
∫
f
(
qa, y + z√qa − q) dµ(z), (13)

which can be seen also as deriving from (12) in the limitma → 0. Starting from the last
intervalK , and using (12) iteratively on each interval, we easily get the solution of (10),
(11), in the case of a piecewise constant order parameter x, as in (8).

We refer to [7] for a detailed discussion about the properties of the solution f (q, y; x,
β) of the antiparabolic equation (10), with final condition (11), as a functional of a generic
given x, as in (8). Here we only state the following

Theorem 1. The function f is monotone in x, in the sense that x(q) ≤ x̄(q), for all
0 ≤ q ≤ 1, implies f (q, y; x, β) ≤ f (q, y; x̄, β), for any 0 ≤ q ≤ 1, y ∈ R. Moreover
f is pointwise continuous in the L1([0, 1], dq) norm. In fact, for generic x, x̄, we have

|f (q, y; x, β)− f (q, y; x̄, β)| ≤ β2

2

∫ 1

q

|x(q ′)− x̄(q ′)| dq ′.

This result is very important. In fact, any functional order parameter can be approxi-
mated in theL1 norm through a piecewise constant one. The pointwise continuity allows
us to deal mostly with piecewise constant order parameters.

Now we are ready for the following important definitions.

Definition 1. The trial auxiliary function, associated to a given mean field spin glass
system, as described in Sect. 2, depending on the functional order parameter x, is defined
as

ᾱ(β, h; x) ≡ log 2 + f (0, h; x, β)− β2

2

∫ 1

0
q x(q) dq. (14)

Notice that in this expression the function f appears evaluated at q = 0, and y = h,
where h is the value of the external magnetic field.
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Definition 2. The Parisi spontaneously broken replica symmetry solution is defined by

ᾱ(β, h) ≡ inf
x
ᾱ(β, h; x), (15)

where the infimum is taken with respect to all functional order parameters x.

Of course, by taking the infimum only with respect to replica symmetric order pa-
rameters, as in (9), we would get the replica symmetric solution of Sherrington and
Kirkpatrick, as exploited for example in the sum rules in [6], and [8].

The main motivation for the introduction of the quantities given by the definitions is
the following expected tentative theorem

Theorem 2 (expected). In the thermodynamic limit, for the partition function defined
in (2), we have

lim
N→∞

N−1E logZN(β, h, J ) = ᾱ(β, h).

Of course, the present technology is far from being able to give a complete rigorous
proof. However, in the next section we will prove that ᾱ(β, h) is at least a rigorous upper
bound for N−1E logZN(β, h, J ), uniformly in N .

4. The Main Results

The main results of this paper are summarized in the following

Theorem 3. For all values of the inverse temperature β, and the external magnetic field
h, and for any functional order parameter x, the following bound holds:

N−1E logZN(β, h, J ) ≤ ᾱ(β, h; x),
uniformly in N , where ᾱ(β, h; x) is defined in (14). Consequently, we have also

N−1E logZN(β, h, J ) ≤ ᾱ(β, h),
uniformly inN , where ᾱ(β, h) is defined in (15). Moreover, for the thermodynamic limit,
we have

lim
N→∞

N−1E logZN(β, h, J ) ≡ α(β, h) ≤ ᾱ(β, h),
and

lim
N→∞

N−1 logZN(β, h, J ) ≡ α(β, h) ≤ ᾱ(β, h),
J -almost surely.

The proof is long, and will be split in a series of intermediate results. Consider a ge-
neric piecewise constant functional order parameter x, as in (8), and define the auxiliary
partition function Z̃, as follows

Z̃N (β, h; t; x; J ) ≡
∑
σ1...σN

exp

(
β

√
t

N

∑
(i,j)

Jij σiσj

+βh
∑
i

σi + β
√

1 − t
K∑
a=1

√
qa − qa−1

∑
i

J ai σi

)
. (16)
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Here, we have introduced additional independent centered unit Gaussian J ai , a =
1, . . . , K , i = 1, . . . , N . The interpolating parameter t runs in the interval [0, 1].

For a = 1, . . . , K , let us callEa the average with respect to all random variables J ai ,
i = 1, . . . , N . Analogously, we call E0 the average with respect to all Jij , and denote
by E averages with respect to all J random variables.

Now we define recursively the random variables Z0, Z1, . . . , ZK ,

ZK = Z̃N (β, h; t; x; J ), ZmKK−1 = EKZmKK , . . . , Z
m1
0 = E1Z

m1
1 , (17)

and the auxiliary function α̃N (t)

α̃N (t) = 1

N
E0 logZ0. (18)

Notice that, due to the partial integrations, any Za depends only on the Jij , and on the
J bi with b ≤ a, while in α̃ all J noises have been completely averaged out.

The basic motivation for the introduction of α̃ is given by

Lemma 1. At the extreme values of the interpolating parameter t we have

α̃N (1) = 1

N
E logZN(β, h, J ), (19)

α̃N (0) = log 2 + f (0, h; x, β), (20)

where f is as described in Sect. 3.

The proof is simple. In fact, at t = 1, the J ai disappear, and Z̃ reduces to Z in (2).
On the other hand, at t = 0, the two site couplings Jij disappear, while all effects of the
J ai factorize with respect to the sites i. Therefore, we are essentially reduced to a one
site problem, and it is immediate to see that the averages in (17) reduce to the Gaussian
averages necessary for the computation of the solution of the antiparabolic problem (10),
(11), as given by the repeated application of (12), with the f function evaluated at q = 0,
and y = h.

It is clear that now we have to proceed to the calculation of the t derivative of
α̃N (t). But we need some few additional definitions. Introduce the random variables fa ,
a = 1, . . . , K ,

fa = Z
ma
a

Ea
(
Z
ma
a

) , (21)

and notice that they depend only on the J bi with b ≤ a, and are normalized, E (fa) = 1.
Moreover, we consider the t-dependent state ω associated to the Boltzmannfaktor in
(16), and its replicated �. A very important role is played by the following states ω̃a ,
and their replicated ones �̃a , a = 0, . . . , K , defined as

ω̃K(.) = ω(.), ω̃a(.) = Ea+1 . . . EK (fa+1 . . . fKω(.)) . (22)

Finally, we define the 〈.〉a averages, through a generalization of (5),

〈.〉a = E
(
f1 . . . fa�̃a(.)

)
. (23)

As it will be clear in the following, the 〈.〉a averages are able, in a sense, to concentrate
the overlap fluctuations around the value qa .



Broken Replica Symmetry Bounds in the Mean Field Spin Glass Model 7

Now, we have all definitions in order to be able to state the following important
results.

Theorem 4. The t derivative of α̃N (t) in (18) is given by

d

dt
α̃N (t) = −β

2

4

(
1 −

K∑
a=0

(ma+1 −ma)q2
a

)

− β2

4

K∑
a=0

(ma+1 −ma) 〈(q12 − qa)2〉a. (24)

Theorem 5. For any functional order parameter, of the type given in (8), the following
sum rule holds:

ᾱ(β, h; x) = 1

N
E logZN(β, h; J )+ β2

4

K∑
a=0

(ma+1 −ma)
∫ 1

0
〈(q12 − qa)2〉a(t) dt.

(25)

Clearly, Theorem 5 follows from the previous Theorem 4, by integrating with respect
to t , taking into account the boundary values in Lemma 1, and the definition of ᾱ(β, h; x)
given in Sect. 3. Moreover, one should use also the obvious identity

1

2

(
1 −

K∑
a=0

(ma+1 −ma) q2
a

)
=
∫ 1

0
q x(q) dq. (26)

By taking into account that all terms in the sum rule are nonnegative, since ma+1 ≥
ma , we can immediately establish the validity of Theorem 3.

Now we must attack Theorem 4. The proof is straightforward, and involves integra-
tion by parts with respect to the external noises. We only sketch the main points. Let us
begin with

Lemma 2. The t derivative of α̃N (t) in (18) is given by

d

dt
α̃N (t) = 1

N
E
(
f1f2 . . . fKZ

−1
K ∂tZK

)
, (27)

where

Z−1
K ∂tZK = Z̃−1

N ∂t Z̃N

= β

2
√
tN

∑
(ij)

Jijω
(
σiσj

)− β

2
√

1 − t
K∑
a=1

√
qa − qa−1

∑
i

J ai ω (σi) .

The proof is very simple. In fact, from the definitions in (17), we have, for a =
0, 1, . . . , K − 1,

Z−1
a ∂tZa = Ea+1

(
fa+1Z

−1
a+1∂tZa+1

)
. (28)

The rest follows from iteration of this formula, and simple calculations.
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Clearly, now we have to evaluate

E
(
Jij f1f2 . . . fKω

(
σiσj

)) =
K∑
a=1

E
(
. . . ∂Jij fa . . . ω

(
σiσj

))
+ E (f1 . . . fK∂Jij ω(σiσj )

)
,

E
(
J ai f1f2 . . . fKω(σi)

) =
K∑
b=1

E
(
. . . ∂J ai

fb . . . ω(σi)
)

+ E
(
f1 . . . fK∂Jai

ω(σi)
)
,

where we have exploited standard integration by parts on the Gaussian J variables.
The following lemma gives all additional information necessary for the proof of

Theorem 4.

Lemma 3. For the J -derivatives we have

∂Jij ω
(
σiσj

) = β

√
t

N

(
1 − ω2(σiσj )

)
, (29)

∂Jai
ω(σi) = β

√
1 − t√qa − qa−1

(
1 − ω2(σi)

)
, (30)

∂Jij fa = β

√
t

N
mafa

(
ω̃a(σiσj )− ω̃a−1(σiσj )

)
, (31)

∂Jai
fb = 0, if b < a, (32)

∂Jai
fa = β

√
1 − t√qa − qa−1mafaω̃a(σi), (33)

∂Jai
fb = β

√
1 − t√qa − qa−1mbfb (ω̃b(σi)− ω̃b−1(σi)) , if b > a. (34)

The proof of (29) and (30) is a standard calculation. On the other hand, Eq. (31)
follows from the definition (21) and the easily established

∂Jij Z
ma
a = maZ

ma
a Z

−1
a ∂Jij Za,

Z−1
a ∂Jij Za = Ea+1

(
fa+1Z

−1
a+1∂Jij Za+1

)
, a = 1, . . . , K − 1,

Z−1
K ∂Jij ZK = Z̃−1

N ∂Jij Z̃N = β
√
t

N
ω
(
σiσj

)
,

Z−1
a ∂Jij Za = β

√
t

N
Ea+1

(
fa+1 . . . fKω(σiσj )

) = β
√
t

N
ω̃a
(
σiσj

)
.

In the same way, we can establish (32), (33), (34). But here we have to take into
account that Zb does not depend on J ai if b < a.

A careful combination of all information given by Lemma 2 and Lemma 3, finally
leads to the proof of Theorem 4. On the other hand, the main Theorem 3 follows easily
from Theorem 5, and the results of [9].

5. Broken Replica Symmetry Bound for the Ground State Energy

Let us consider the ground state energy density −eN(J, h) defined as

−eN(J, h) ≡ 1

N
inf
σ
HN(σ, h, J ) = − lim

β→∞
lnZN(β, h, J )

βN
. (35)
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By taking the expectation values we also have

eN(h) ≡ E (eN(J, h)) = lim
β→∞

αN(β, h)

β
. (36)

From the results of the previous section, we have, for any functional order parameter
x,

E (lnZN(β, h, J ))

βN
≤ β−1ᾱ(β, h; x), (37)

uniformly in N .
Let us now introduce an arbitrary sequence

0 ≤ m̄1 ≤ m̄2 ≤ . . . ≤ m̄K, (38)

and the corresponding order parameter x̄, defined as in (8), but with all ma replaced
by m̄a . Notice that there is no upper bound equal to 1 for m̄K , and consequently for x̄.
However, for sufficiently large β, we definitely have m̄K ≤ β. Therefore, we can take
in (37) the order parameter x defined by x(q) = x̄(q)/β, with 0 ≤ x(q) ≤ 1. Then we
can easily establish the following lemma:

Lemma 4. In the limit β → ∞ we have

lim
β→∞

β−1ᾱ(β, h; x) = α̃(h; x̄) ≡ f̄ (0, h; x̄)− 1

2

∫ 1

0
qx̄(q) dq, (39)

where the function f̄ , with values f̄ (q, y; x̄) satisfies the antiparabolic equation

(
∂q f̄

)
(q, y)+ 1

2

(
f̄ ′′(q, y)+ x̄(q)f̄ ′2(q, y)

) = 0, (40)

with final condition
f̄ (1, y) = |y|. (41)

The proof is easy. In fact, the recursive solution for f , coming from (12), allows to prove
immediately

lim
β→∞

β−1f (q, y; x̄/β) = f̄ (q, y; x̄), (42)

by taking into account the elementary limβ→∞ β−1 log cosh(βy) = |y|.
Therefore we have established

Theorem 6. The following inequalities hold

eN(h) ≤ α̃(h; x̄), (43)

eN(h) ≤ α̃(h) ≡ inf
x̄
α̃(h; x̄), (44)

lim
N→∞

eN(h) ≡ e0(h) ≤ α̃(h; x̄), (45)

e0(h) ≤ α̃(h). (46)

A detailed study of the numerical information coming from the variational bound of
Theorem 6 will be presented in a forthcoming paper [11].
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6. Broken Replica Symmetry Bounds in the p-Spin Model

The methods developed in the previous sections can be easily extended to the Derrida
p-spin model [2, 4, 3, 17]. We give here only a brief sketch. A more detailed treatment
will be presented elsewhere [10].

Now the Hamiltonian contains a term coupling each group made of p spins

HN(σ, h, J ) = −
(

p!

2Np−1

) 1
2 ∑
(i1,...ip)

Ji1...ipσi1 · · · σip − h
∑
i

σi . (47)

For the sake of simplicity, in the following we consider only the case of even p.
Piecewise constant order parameters are introduced as in (7), (8), where now we assume
qK = p/2. We still introduce the function f , defined by (10), with 0 ≤ q ≤ p/2, and
final condition

f (p/2, y) = log cosh(βy). (48)

We also introduce the change of variables q → q̄, defined by 2q = pq̄p−1, so that, in
particular, q̄K = 1. The definitions (14) and (15) must be modified as follows.

Definition 3. The trial auxiliary function, associated to a given p-spin mean field spin
glass system, as described before, depending on the functional order parameter x, is
defined as

ᾱ(β, h; x) ≡ log 2 + f (0, h; x, β)− β2

2

∫ p
2

0
q̄(q) x(q) dq. (49)

Definition 4. The spontaneously broken replica symmetry solution for the p-spin model
is defined by

ᾱ(β, h) ≡ inf
x
ᾱ(β, h; x), (50)

where the infimum is taken with respect to all functional order parameters x.

With the same procedure as described in Sect. 4, we arrive at the sum rule given by

Theorem 7. In the p-spin model, for any functional order parameter, the following sum
rule holds

ᾱ(β, h; x) = 1

N
E logZN(β, h; J )

+β
2

4

K∑
a=0

(ma+1 −ma)
∫ 1

0
〈qp12 − pq12q̄

p−1
a + (p − 1)q̄pa 〉a(t) dt

+O
(

1

N

)
, (51)

where ᾱ(β, h; x) is defined in (49).

Notice that the terms under the sum are still positive. TheO
( 1
N

)
correction is typical

of the p-spin models.
From the sum rule we have also
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Theorem 8. In the p-spin model, for any functional order parameter x, the following
bound holds:

N−1E logZN(β, h, J ) ≤ ᾱ(β, h; x)+O
(

1

N

)
,

where ᾱ(β, h; x) is defined in (49). Consequently, we have also

N−1E logZN(β, h, J ) ≤ ᾱ(β, h)+O
(

1

N

)
,

where ᾱ(β, h) is defined in (50). Moreover, for the thermodynamic limit, we have

lim
N→∞

N−1E logZN(β, h, J ) ≡ α(β, h) ≤ ᾱ(β, h),

and

lim
N→∞

N−1 logZN(β, h, J ) ≡ α(β, h) ≤ ᾱ(β, h),

J -almost surely.

We refer to [10] for a more detailed treatment.

7. Conclusions and Outlook for Future Developments

Without exploiting any reference to the zero replica trick, or to the cavity method, we
have found a way to prove that the true free energy for the mean field spin glass model
is bounded below by its spontaneously broken symmetry expression, given in the frame
of the Parisi Ansatz. The method extends easily to the Derrida p-spin model. The key
role is played by the auxiliary function α̃N (t), defined in (18). Our method, in its very
essence, is a generalization of the mechanical analogy introduced in [6], for the com-
parison with the replica symmetric approximation. As a direct application of the broken
replica symmetry bound, Toninelli has shown that replica symmetry fails beyond the
Almeida-Thouless line [18].

The main open problems are given by the extension of these methods to other dis-
ordered systems, as for example the mean field neural network models. Moreover, the
sum rules developed here could be taken as the starting point to prove that the additional
positive terms do really vanish in the infinite volume limit. This would prove rigorously
the validity of the broken replica Ansatz.

We plan to report on these problems in future papers.
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