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Abstract: We introduce notions of dimension and dynamical entropy for unital C∗
-algebras “metrized” by means of cLip-norms, which are complex-scalar versions of
the Lip-norms constitutive of Rieffel’s compact quantum metric spaces. Our examples
involve the UHF algebras Mp∞ and noncommutative tori. In particular we show that
the entropy of a noncommutative toral automorphism with respect to the canonical
cLip-norm coincides with the topological entropy of its commutative analogue.

1. Introduction

The idea of a noncommutative metric space was introduced by Connes [5–7] who showed
in a noncommutative-geometric context that a Dirac operator gives rise to a metric on
the state space of the associated C∗-algebra. The question of when the topology thus
obtained agrees with the weak∗ topology was pursued by Rieffel [25, 26], whose line
of investigation led to the notion of a quantum metric space defined by specifying a
Lip-norm on an order-unit space [27]. This definition includes Lipschitz seminorms on
functions over compact metric spaces and more generally applies to unital C∗-algebras,
the subspaces of self-adjoint elements of which form important examples of order-unit
spaces. We would like to investigate here the structures which arise by essentially spe-
cializing and complexifying Lip-norms to obtain what we call “cLip-norms” on unital
C∗-algebras. We thereby propose a notion of dimension for cLip-normed unitalC∗-alge-
bras, along with two dynamical entropies (the second a measure-theoretic version of the
first) which operate within the restricted domain of cLip-norms satisfying the Leibniz
rule (our version of noncommutative metrics).

Means for defining dimension appeared within Rieffel’s work on quantum Gromov-
Hausdorff distance in [27], where it is pointed out that Definition 13.4 therein gives
rise to possible “quantum” versions of Kolmogorov ε-entropy. We take here a different
approach which has its origin in Rieffel’s prior study of Lip-norms in [25, 26], where
the total boundedness of the set of elements of Lip-norm and order-unit norm no greater

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.
You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.

GENERAL ----------------------------------------
File Options:
     Compatibility: PDF 1.2
     Optimize For Fast Web View: Yes
     Embed Thumbnails: Yes
     Auto-Rotate Pages: No
     Distill From Page: 1
     Distill To Page: All Pages
     Binding: Left
     Resolution: [ 600 600 ] dpi
     Paper Size: [ 439.4 666.1 ] Point

COMPRESSION ----------------------------------------
Color Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 150 dpi
     Downsampling For Images Above: 225 dpi
     Compression: Yes
     Automatic Selection of Compression Type: Yes
     JPEG Quality: Medium
     Bits Per Pixel: As Original Bit
Grayscale Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 150 dpi
     Downsampling For Images Above: 225 dpi
     Compression: Yes
     Automatic Selection of Compression Type: Yes
     JPEG Quality: Medium
     Bits Per Pixel: As Original Bit
Monochrome Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 600 dpi
     Downsampling For Images Above: 900 dpi
     Compression: Yes
     Compression Type: CCITT
     CCITT Group: 4
     Anti-Alias To Gray: No

     Compress Text and Line Art: Yes

FONTS ----------------------------------------
     Embed All Fonts: Yes
     Subset Embedded Fonts: No
     When Embedding Fails: Warn and Continue
Embedding:
     Always Embed: [ ]
     Never Embed: [ ]

COLOR ----------------------------------------
Color Management Policies:
     Color Conversion Strategy: Convert All Colors to sRGB
     Intent: Default
Working Spaces:
     Grayscale ICC Profile: €ÏI
     RGB ICC Profile: sRGB IEC61966-2.1
     CMYK ICC Profile: U.S. Web Coated (SWOP) v2
Device-Dependent Data:
     Preserve Overprint Settings: Yes
     Preserve Under Color Removal and Black Generation: Yes
     Transfer Functions: Apply
     Preserve Halftone Information: Yes

ADVANCED ----------------------------------------
Options:
     Use Prologue.ps and Epilogue.ps: No
     Allow PostScript File To Override Job Options: Yes
     Preserve Level 2 copypage Semantics: Yes
     Save Portable Job Ticket Inside PDF File: No
     Illustrator Overprint Mode: Yes
     Convert Gradients To Smooth Shades: No
     ASCII Format: No
Document Structuring Conventions (DSC):
     Process DSC Comments: No

OTHERS ----------------------------------------
     Distiller Core Version: 5000
     Use ZIP Compression: Yes
     Deactivate Optimization: No
     Image Memory: 524288 Byte
     Anti-Alias Color Images: No
     Anti-Alias Grayscale Images: No
     Convert Images (< 257 Colors) To Indexed Color Space: Yes
     sRGB ICC Profile: sRGB IEC61966-2.1

END OF REPORT ----------------------------------------

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<
     /ColorSettingsFile ()
     /AntiAliasMonoImages false
     /CannotEmbedFontPolicy /Warning
     /ParseDSCComments false
     /DoThumbnails true
     /CompressPages true
     /CalRGBProfile (sRGB IEC61966-2.1)
     /MaxSubsetPct 100
     /EncodeColorImages true
     /GrayImageFilter /DCTEncode
     /Optimize true
     /ParseDSCCommentsForDocInfo false
     /EmitDSCWarnings false
     /CalGrayProfile (€ÏI)
     /NeverEmbed [ ]
     /GrayImageDownsampleThreshold 1.5
     /UsePrologue false
     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /AutoFilterColorImages true
     /sRGBProfile (sRGB IEC61966-2.1)
     /ColorImageDepth -1
     /PreserveOverprintSettings true
     /AutoRotatePages /None
     /UCRandBGInfo /Preserve
     /EmbedAllFonts true
     /CompatibilityLevel 1.2
     /StartPage 1
     /AntiAliasColorImages false
     /CreateJobTicket false
     /ConvertImagesToIndexed true
     /ColorImageDownsampleType /Bicubic
     /ColorImageDownsampleThreshold 1.5
     /MonoImageDownsampleType /Bicubic
     /DetectBlends false
     /GrayImageDownsampleType /Bicubic
     /PreserveEPSInfo false
     /GrayACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>
     /ColorACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>
     /PreserveCopyPage true
     /EncodeMonoImages true
     /ColorConversionStrategy /sRGB
     /PreserveOPIComments false
     /AntiAliasGrayImages false
     /GrayImageDepth -1
     /ColorImageResolution 150
     /EndPage -1
     /AutoPositionEPSFiles false
     /MonoImageDepth -1
     /TransferFunctionInfo /Apply
     /EncodeGrayImages true
     /DownsampleGrayImages true
     /DownsampleMonoImages true
     /DownsampleColorImages true
     /MonoImageDownsampleThreshold 1.5
     /MonoImageDict << /K -1 >>
     /Binding /Left
     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
     /MonoImageResolution 600
     /AutoFilterGrayImages true
     /AlwaysEmbed [ ]
     /ImageMemory 524288
     /SubsetFonts false
     /DefaultRenderingIntent /Default
     /OPM 1
     /MonoImageFilter /CCITTFaxEncode
     /GrayImageResolution 150
     /ColorImageFilter /DCTEncode
     /PreserveHalftoneInfo true
     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /ASCII85EncodePages false
     /LockDistillerParams false
>> setdistillerparams
<<
     /PageSize [ 576.0 792.0 ]
     /HWResolution [ 600 600 ]
>> setpagedevice



502 D. Kerr

than 1 was shown to be a fundamental property. This total boundedness leads us to a
definition of dimension using approximation by linear subspaces (Sect. 3). This also
makes sense for order-unit spaces, but we will concentrate on C∗-algebras, the particu-
lar geometry of which will play a fundamental role in our examples, which involve the
UHF algebrasMp∞ and noncommutative tori (Sect. 4). We will also show that for usual
Lipschitz seminorms we recover the Kolmogorov dimension (Proposition 3.9).

We also use approximation by linear subspaces to define our two dynamical “product”
entropies (Sect. 5). The definitions formally echo that of Voiculescu-Brown approxima-
tion entropy [33, 4], but here the algebraic structure enters in a very different way.
One drawback of the Voiculescu-Brown entropy as a noncommutative invariant is the
difficulty of obtaining nonzero lower bounds (however frequently the entropy is in fact
positive) in systems in which the dynamical growth is not ultimately registered in alge-
braically or statistically commutative structures. We have in mind our main examples,
the noncommutative toral automorphisms. For these we only have partial information
about the Voiculescu-Brown entropy in the nonrational case (see [33, Sect. 5] and the
discussion in the following paragraph), and even deciding when the entropy is positive
is a problem (in the rational case, i.e., when the rotation angles with respect to pairs
of canonical unitaries are all rational, we obtain the corresponding classical value, as
follows from the upper bound established in [33, Sect. 5] along with the fact that the
corresponding commutative toral automorphism sits as a subsystem, so that we can ap-
ply monotonicity). We show that for general noncommutative toral automorphisms the
product entropy relative to the canonical “metric” coincides with the topological entropy
of the corresponding toral homeomorphism (Sect. 7). In analogy with the relation be-
tween the discrete Abelian group entropy of a discrete Abelian group automorphism and
the topological entropy of its dual [23], product entropy (which is an analytic version of
discrete Abelian group entropy) may roughly be thought of as a “dual” counterpart of
Voiculescu-Brown entropy, as illustrated by the key role played by unitaries in obtaining
lower bounds for the former. When passing from the commutative to the noncommutative
in an example like the torus, the “dual” unitary description persists (ensuring a metric
rigidity that facilitates computations) while the underlying space and the transparency
of the complete order structure vanish. The shift on Mp∞ , on the other hand, is equally
amenable to analysis from the canonical unitary and complete order viewpoints due to
the tensor product structure, and its value can be precisely calculated for both product
entropy (Sect. 6) and Voiculescu-Brown entropy [33, Prop. 4.7] (see also [9, 33, 32, 13,
1] for computations with respect to other entropies which we will discuss below).

Since we are not dealing with discrete entities as in the discrete Abelian group entro-
py setting, product entropies will not be C∗-algebraic conjugacy invariants, but rather
bi-Lipschitz C∗-algebraic conjugacy invariants (see Definition 2.8). In particular, if we
consider cLip-norms arising via the ergodic action of a compact group G equipped
with a length function (see Example 2.13), the entropies will be “G-C∗-algebraic” in-
variants, that is, they will be invariant under C∗-algebraic conjugacies respecting the
given group actions. To put this in context, we first point out that there have been two
basic approaches to developing C∗-algebraic and von Neumann algebraic dynamical
invariants which extend classical entropies. While the definitions of Voiculescu [33] and
Brown [4] are based on local approximation, the measure-theoretic Connes-Narnho-
fer-Thirring (CNT) entropy [8] (a generalization of Connes-Størmer entropy [9]) and
Sauvageot-Thouvenot entropy [29] take a physical observable viewpoint and are defined
via the notions of anAbelian model and a stationary coupling with anAbelian system, re-
spectively (see [31] for a survey). Because of the role played by Abelian systems in their
respective definitions, the CNT and Sauvageot-Thouvenot entropies (which are known to
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coincide on nuclear C∗-algebras [29, Prop. 4.1]) function most usefully as invariants
in the asymptotically Abelian situation. For instance, their common value for noncom-
mutative 2-toral automorphisms with respect to the canonical tracial state is zero for a
set of rotation parameters of full Lebesgue measure [20], while for rational parameters
the corresponding classical value is obtained [16] and for the countable set of irrational
rotation parameters for which the system is asymptotically Abelian (at least when re-
stricted to a nontrivial invariantC∗-subalgebra generated by a pair of products of powers
of the canonical unitaries) the value is positive when the associated matrix is hyperbolic
(see [31, Chap. 9]) (in this case the Voiculescu-Brown entropy is thus also positive by
[33, Prop. 4.6]). Other entropies which are not C∗-algebraic or von Neumann algebraic
dynamical invariants have been introduced in [14, 32, 1]. The definitions of [14, 32] take
a noncommutative open cover approach and hence are difficult to compute for examples
like the noncommutative toral automorphisms (see the discussion in the last section of
[14]). In [2] the Alicki-Fannes entropy [1] for general noncommutative 2-toral auto-
morphisms was shown to coincide with the corresponding classical value if the dense
algebra generated by the canonical unitaries is taken as the special set required by the
definition. What is particular about the product entropies is that, from the perspective
of noncommutative geometry as exemplified in noncommutative tori [24], they provide
computable quantities which reflect the metric rigidity but require no additional structure
to function (i.e., they are “metric” dynamical invariants).

The organization of the paper is as follows. In Sect. 2 we recall Rieffel’s definition of
a compact quantum metric space, and with this motivation then introduce cLip-norms
and the relevant maps for cLip-normed unitalC∗-algebras, after which we examine some
examples. In Sect. 3 we introduce metric dimension and establish some properties, in-
cluding its coincidence with Kolmogorov dimension for usual Lipschitz seminorms.
Section 4 is subdivided into two subsections in which we compute the metric dimension
for examples arising from compact group actions on the UHF algebras Mp∞ and non-
commutative tori, respectively. The two subsections of Sect. 5 are devoted to introducing
the two respective product entropies and recording some properties, and in Sects. 6 and 7
we carry out computations for the shift onMp∞ and automorphisms of noncommutative
tori, respectively.

In this paper we will be working exclusively with unital (i.e., “compact”)C∗-algebras
as generally indicated. For a unital C∗-algebra A we denote by 1 its unit, by S(A) its
state space, and byAsa the real vector space of self-adjoint elements ofA. Other general
notation is introduced in Notation 2.2, 3.1, and 5.1.

2. cLip-Norms on Unital C∗-Algebras

The context for our definitions of dimension and dynamical entropy will essentially be
a specialization of Rieffel’s notion of a compact quantum metric space to the complex-
scalared domain of C∗-algebras. A compact quantum metric space is defined by speci-
fying a Lip-norm on an order-unit space (see below), and this has a natural self-adjoint
complex-scalared interpretation on a unital C∗-algebra in what will call a “cLip-norm”
(Definition 2.3). In fact cLip-norms will make sense in more general complex-scalared
situations (e.g., operator systems), as will our definition of dimension (Definition 3.3),
but we will stick to C∗-algebras as these will constitute our examples of interest and
multiplication will ultimately enter the picture when we come to dynamical entropy, for
which the Leibniz rule will play an important role.
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We begin by recalling from [27] the definition of a compact quantum metric space.
Recall that an order-unit space is a pair (A, e) consisting of a real partially ordered
vector space A with a distinguished element e, called the order unit, such that, for each
a ∈ A,

(1) there exists an r ∈ R with a ≤ re, and
(2) if a ≤ re for all r ∈ R>0 then a ≤ 0.

An order-unit space is a normed vector space under the norm

‖a‖ = inf{r ∈ R : −re ≤ a ≤ re},
from which we can recover the order via the fact that 0 ≤ a ≤ e if and only if ‖a‖ ≤ 1
and ‖e − a‖ ≤ 1. A state on an order-unit space (A, e) is a norm-bounded linear func-
tional on A whose dual norm and value on e are both 1 (which automatically implies
positivity). The state space of A is denoted by S(A). An important and motivating ex-
ample of an order-unit space is provided by the space of self-adjoint elements of a unital
C∗-algebra. In fact every order-unit space is isomorphic to some order-unit space of
self-adjoint operators on a Hilbert space (see [27, Appendix 2]). Via Kadison’s function
representation we also see that order-unit spaces are precisely, up to isomorphism, the
dense unital subspaces of spaces of affine functions over compact convex subsets of
topological vector spaces (see [26, Sect. 1]).

Definition 2.1 ([27, Defs. 2.1 and 2.2]). Let A be an order-unit space. A Lip-norm on
A is a seminorm L on A such that

(1) for all a ∈ A we have L(a) = 0 if and only if a ∈ Re, and
(2) the metric ρL defined on the state space S(A) by

ρL(µ, ν) = sup{|µ(a)− ν(a)| : a ∈ A and L(a) ≤ 1}
induces the weak∗ topology.

A compact quantum metric space is a pair (A,L) consisting of an order-unit space
A with a Lip-norm L.

As mentioned above, the subspaceAsa of self-adjoint elements in a unitalC∗-algebra
A forms an order-unit space, and so we can specialize Rieffel’s definition in a more
or less straightforward way to the C∗-algebraic context. We would like, however, our
“Lip-norm” to be meaningfully defined on the C∗-algebra A as a vector space over the
complex numbers. Such a “Lip-norm” should be invariant under taking adjoints, and
thus, after introducing some notation, we make the following definition, which seems
reasonable in view of Proposition 2.4.

Notation 2.2. Let L be a seminorm on the unital C∗-algebra A which is permitted to
take the value +∞. We denote the sets {a ∈ A : L(a) < ∞} and {a ∈ A : L(a) ≤ r} (for
a given r > 0) by L and Lr (or in some cases for clarity by LA and LAr ), respectively.
For r > 0 we denote by Ar the norm ball {a ∈ A : ‖a‖ ≤ r}. We write ρL to refer to the
semi-metric defined on the state space S(A) by

ρL(σ, ω) = sup
a∈L1

|σ(a)− ω(a)|

for all σ, ω ∈ S(A). We write diam(S(A)) to mean the diameter of S(A) with respect to
the metric ρL. We say that L separates S(A) if for every pair σ, ω of distinct states on
A there is an a ∈ L such that σ(a) �= ω(a), which is equivalent to ρL being a metric.
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Definition 2.3. By a cLip-norm on a unital C∗-algebra A we mean a seminorm L on
A, possibly taking the value +∞, such that

(i) L(a∗) = L(a) for all a ∈ A (adjoint invariance),
(ii) for all a ∈ A we have L(a) = 0 if and only if a ∈ C1 (ergodicity),

(iii) L separates S(A) and the metric ρL induces the weak∗ topology on S(A).

Proposition 2.4. Let L be a cLip-norm on a unital C∗-algebra A. Then the restriction
L′ ofL to the order-unit space L∩Asa is a Lip-norm, and the restriction map from S(A)
to S(L ∩ Asa) is a weak∗ homeomorphism which is isometric relative to the respective
metrics ρL and ρL′ . Also, if L is any adjoint-invariant seminorm on A, possibly taking
the value +∞, such that the restriction L′ to L ∩ Asa is a Lip-norm which separates
S(Asa) ∼= S(A), then L is a cLip-norm, and the restriction from S(A) to S(L∩Asa) is a
weak∗ homeomorphism which is isometric relative to the respective metrics ρL and ρL′ .

Proof. The proposition is a consequence of the fact that if L is an adjoint-invariant
seminorm then for any σ, ω ∈ S(A) the suprema of

|σ(a)− ω(a)|
over the respective sets L1 and L1 ∩Asa are the same, as shown in the discussion prior to
Definition 2.1 in [27]. The second statement of the proposition also requires the fact that
the ergodicity of L′ (condition (1) of Definition 2.1) implies the ergodicity of L, which
can be seen by noting that if a ∈ A and L(a) < ∞ then setting Re(a) = (a + a∗)/2
and Im(a) = (a − a∗)/2i (the real and imaginary parts of a) we have L′(Re(a)) = 0
and L′(Im(a)) = 0 by adjoint invariance, so that Re(a), Im(a) ∈ R1 by condition (1)
of Definition 2.1, and hence a = Re(a)+ iIm(a) ∈ C1. 
�

The following proposition follows immediately from Theorem 1.8 of [25] (note that
the remark following Condition 1.5 therein shows that this condition holds in our case).
Condition (4) in the proposition statement will provide the basis for our definitions of
dimension and dynamical entropy.

Proposition 2.5. A seminorm L on a unital C∗-algebra A, possibly taking the value
+∞, is a cLip-norm if and only if it separates S(A) and satisfies

(1) L(a∗) = L(a) for all a ∈ A,
(2) for all a ∈ A we have L(a) = 0 if and only if a ∈ C1,
(3) sup{|σ(a)− ω(a)| : σ, ω ∈ S(A) and a ∈ L1} < ∞, and
(4) the set L1 ∩ A1 is totally bounded in A for ‖ · ‖.

When we come to dynamical entropy, cLip-norms satisfying the Leibniz rule will
be of central importance, and so we also make the following definition, which we may
think of as describing one possible noncommutative analogue of a compact metric space
(cf. Example 2.12).

Definition 2.6. We say that a cLip-norm L on a unital C∗-algebra A is a Leibniz cLip-
norm if it satisfies the Leibniz rule

L(ab) ≤ L(a)‖b‖ + ‖a‖L(b)
for all a, b ∈ L.



506 D. Kerr

Although we do not make lower semicontinuity a general assumption for cLip-norms,
it will typically hold in our examples, and has the advantage that we can recover the
restriction of L to Asa in a straightforward manner from ρL, as shown by the following
proposition, which is a consequence of [26, Thm. 4.1] and Proposition 2.4.

Proposition 2.7. LetL be a lower semicontinuous cLip-norm on a unitalC∗-algebraA.
Then for all a ∈ Asa we have

L(a) = sup {|σ(a)− ω(a)|/ρL(σ, ω) : σ, ω ∈ S(A) and σ �= ω} .
As for metric spaces, the essential maps in our cLip-norm context are ones satisfying

a Lipschitz condition, which puts a uniform bound on the amount of “stretching” as
formalized in the following definition, for which we will adopt the conventional metric
space terminology (see [37, Def. 1.2.1]).

Definition 2.8. LetA andB be unitalC∗-algebras with cLip-normsLA andLB , respec-
tively. A positive unital (linear) map φ : A → B is said to be Lipschitz if there exists a
λ ≥ 0 such that

LB(φ(a)) ≤ λLA(a)

for all a ∈ LA. The least suchλ is called the Lipschitz number ofφ.Whenφ is invertible
and both φ and φ−1 are Lipschitz positive we say that φ is bi-Lipschitz. If

LB(φ(a)) = LA(a)

for all a ∈ A then we say that φ is isometric. The collection of bi-Lipschitz ∗-automor-
phisms of A will be denoted by AutL(A).

The category of interest for dimension will be that of cLip-normed unital C∗-al-
gebras and Lipschitz positive unital maps, with the bi-Lipschitz positive unital maps
forming the categorical isomorphisms. For entropy we will incorporate the algebraic
structure in the definitions so that we will want our positive unital maps to be in fact ∗-
homomorphisms. We remark that, as for usual metric spaces, the isometric maps are too
rigid to be usefully considered as the categorical isomorphisms, and that our dimension
and dynamical entropies will indeed be invariant under general bi-Lipschitz positive
unital maps and bi-Lipschitz ∗-isomorphisms, respectively. We also remark that positive
unital maps are C∗-norm contractive [28, Cor. 1], and hence any bi-Lipschitz positive
unital map is C∗-norm isometric.

The following pair of propositions capture facts pertaining to Lipschitz maps. The
first one is clear.

Proposition 2.9. Let A,B, and C be unital C∗-algebras with respective cLip-norms
LA,LB , and LC . If φ : A → B and ψ : B → C are Lipschitz positive unital maps with
Lipschitz numbers λ and ζ , respectively, then ψ ◦ φ is Lipschitz with Lipschitz number
bounded by the product λζ .

Lemma 2.10. If L is a cLip-norm on a unital C∗-algebra A and a ∈ L ∩ Asa then
denoting by s(a) the infimum of the spectrum of a we have

‖a − s(a)1‖ ≤ L(a)diam(S(A)),

and hence for any σ, ω ∈ S(A) we have

ρL(σ, ω) = sup{|σ(a)− ω(a)| : a ∈ Asa, L(a) ≤ 1, and ‖a‖ ≤ diam(S(A))}
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Proof. Let a be an element of L∩Asa and s(a) the infimum of its spectrum. Then there
are σ, ω ∈ S(A) such that σ(a− s(a)1) = ‖a− s(a)1‖ and ω(a) = s(a). We then have

‖a − s(a)1‖ = |σ(a − s(a)1)− ω(a − s(a)1)|
= |σ(a)− ω(a)|
≤ L(a)diam(S(A)).

The second statement of the lemma follows by noting that, for any σ, ω ∈ S(A),
ρL(σ, ω) = sup {|σ(a)− ω(a)| : a ∈ Asa and L(a) ≤ 1}

(see the first sentence in the proof of Proposition 2.5), while if L(a) ≤ 1 then ‖a −
s(a)1‖ ≤ diam(S(A)) from above,

L(a − s(a)1) = L(a) ≤ 1

by the ergodicity of L, and

|σ(a − s(a)1)− ω(a − s(a)1)| = |σ(a)− ω(a)|.

�
Proposition 2.11. If L is a lower semicontinuous Leibniz cLip-norm on a unital C∗-
algebra A and u ∈ L is a unitary then Adu is bi-Lipschitz, and the Lipschitz numbers
of Adu and its inverse are bounded by 2(1 + 2L(u)diam(S(A))).

Proof. By the Leibniz rule and the adjoint-invariance of L, for any a ∈ L we have

L
(
uau∗) ≤ L(u)‖a‖ + L(a)+ ‖a‖L (u∗) = L(a)+ 2‖a‖L(u).

For any σ, ω ∈ S(A) we therefore have, using Lemma 2.10 for the first equality,

ρL(σ ◦ Adu, ω ◦ Adu)

= sup{|σ (uau∗)− ω
(
uau∗) | : a ∈ Asa, L(a) ≤ 1 and ‖a‖ ≤ diam(S(A))}

≤ sup{|σ(a)− ω(a)| : a ∈ Asa and L(a) ≤ 1 + 2L(u)diam(S(A))}
≤ (1 + 2L(u)diam(S(A))) sup{|σ(a)− ω(a)| : a ∈ Asa and L(a) ≤ 1}
= (1 + 2L(u)diam(S(A)))ρL(σ, ω).

Since L is lower semicontinuous we can thus appeal to Proposition 2.7 to obtain, for
any a ∈ L ∩ Asa,

L
(
uau∗) = sup

σ,ω∈S(A)
|(σ ◦ Adu)(a)− (ω ◦ Adu)(a)|

ρL(σ, ω)

≤ sup
σ,ω∈S(A)

|(σ ◦ Adu)(a)− (ω ◦ Adu)(a)|
ρL(σ ◦ Adu, ω ◦ Adu)

× sup
σ,ω∈S(A)

ρL(σ ◦ Adu, ω ◦ Adu)

ρL(σ, ω)

= L(a)(1 + 2L(u)diam(S(A))).



508 D. Kerr

Thus, for any a ∈ L, setting Re(a) = (a + a∗)/2 and Im(a) = (a − a∗)/2i we have

L(uau∗) ≤ L(uRe(a)u∗)+ L(uIm(a)u∗)
≤ (L(Re(a))+ L(Im(a)))(1 + 2L(u)diam(S(A)))

≤ 2L(a)(1 + 2L(u)diam(S(A)))

using adjoint invariance. The same argument applies to (Adu)−1 = Adu∗, and so we
obtain the result. 
�

We conclude this section with some examples of cLip-norms.

Example 2.12 (commutativeC∗-algebras). For a compact metric space (X, d)we define
the Lipschitz seminorm Ld on C(X) by

Ld(f ) = sup{|f (x)− f (y)|/d(x, y) : x, y ∈ X and x �= y},
from which we can recover d via the formula

d(x, y) = sup {|f (x)− f (y)| : f ∈ C(X) and Ld(f ) ≤ 1} .
The seminorm Ld is an example of a Leibniz cLip-norm. For a reference on Lipschitz
seminorms and the associated Lipschitz algebras see [37].

Example 2.13 (ergodic compact group actions). For us the most important examples of
compact noncommutative metric spaces will be those which arise from ergodic actions
of compact groups, as studied by Rieffel in [25]. Suppose γ is an ergodic action of a
compact group G on a unital C∗-algebra A. Let e denote the identity element of G.
We assume that G is equipped with a length function �, that is, a continuous function
� : G → R≥0 such that, for all g, h ∈ G,

(1) �(gh) ≤ �(g)+ �(h),
(2) �

(
g−1

) = �(g), and
(3) �(g) = 0 if and only if g = e.

The length function � and the group action γ combine to produce the seminorm L on A
defined by

L(a) = sup
g∈G\{e}

∥∥γg(a)− a
∥∥

�(g)
,

which is evidently adjoint-invariant. It is easily verified that L(a) = 0 if and only if
a ∈ C1. Also, by [25, Thm. 2.3] the metric ρL induces the weak∗ topology on S(A),
and the Leibniz rule is easily checked, so that L is Leibniz cLip-norm.

Example 2.14 (quotients). Let A and B be unital C∗-algebras and let φ : A → B be a
surjective unital positive linear map. For instance, φ may be a surjective unital ∗-homo-
morphism or a conditional expectation, as will be the case in our applications. Let L be
a cLip-norm on A. Then L induces a cLip-norm LB on B via the prescription

LB(b) = inf{L(a) : a ∈ A and φ(a) = b}
for all b ∈ B. This is the analogue of restricting a metric to a subspace. To see that
LB is indeed a cLip-norm we observe that the restriction of φ to LA ∩ Asa yields a
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surjective morphism LA ∩ Asa → LB ∩ Bsa of order-unit spaces (for surjectivity note
that if φ(a) ∈ Bsa then φ

( 1
2 (a + a∗)

) = φ(a)) so that we may appeal to [27, Prop.
3.1] to conclude that the restriction of LB to L ∩ Bsa is a Lip-norm, so that LB is a
cLip-norm by Proposition 2.4 (note that the restriction of LB to L∩Bsa separates S(B),
since φ

(LA) = LB and the restriction of LA to L ∩Asa separates S(A) by the first part
of Proposition 2.4).

3. Dimension for cLip-Normed Unital C∗-Algebras

Let A be a unital C∗-algebra with cLip-norm L. Recall from Notation 2.2 our conven-
tion that L and Lr refer to the sets {a ∈ A : L(a) < ∞} and {a ∈ A : L(a) ≤ r},
respectively. The following notation will be extensively used for the remainder of the
article.

Notation 3.1. For a normed linear space (X, ‖ · ‖) (which in our case will either be a
C∗-algebra or a Hilbert space) we will denote by F(X) the collection of its finite-dimen-
sional subspaces, and if Y and Z are subsets of X and δ > 0 we will write Y ⊂δ Z,
and say that Z approximately contains Y to within δ, if for every y ∈ Y there is an
x ∈ Z such that ‖y − x‖ < δ. Using dimX to denote the vector space dimension of a
subspace X, for any subset Z ⊂ A and δ > 0 we set

D(Z, δ) = inf {dimX : X ∈ F(A) and Z ⊂δ X}
(or D(Z, δ) = ∞ if the set on the right is empty) and if σ is a state on A then we set

Dσ (Z, δ) = inf {dimX : X ∈ F(Hσ ) and πσ (Z)ξσ ⊂δ X}
(or Dσ (Z, δ) = ∞ if the set on the right is empty), with πσ : A → B(Hσ ) referring to
GNS representation associated to σ , with canonical cyclic vector ξσ .

Proposition 3.2. D(L1, δ) is finite for every δ > 0.

Proof. Let a ∈ L, and set Re(a) = (a + a∗)/2 and Im(a) = (a − a∗)/2i (the real and
imaginary parts of a). Let s(Re(a)) and s(Im(a)) be the infima of the spectra of Re(a)
and Im(a), respectively. Using Lemma 2.10 and the adjoint invariance of L we have

‖a − (s(Re(a))+ is(Im(a)))1‖ ≤ ‖Re(a)− s(Re(a))1‖ + ‖Im(a)− s(Im(a))1‖
≤ L(Re(a))diam(S(A))+ L(Im(a))diam(S(A))

≤ 2L(a)diam(S(A)).

Set r = 2 diam(S(A)). Since L1∩A1 is totally bounded by Proposition 2.5, so is Lr∩Ar
by a scaling argument. Let δ > 0. Then there is an X ⊂ F(A) which approximately
contains Lr ∩ Ar to within δ, and if a ∈ L1 then from above we have

a − (s(Re(a))+ is(Im(a)))1 ∈ Lr ∩ Ar,
so that there exists an x ∈ X with

‖a − (s(Re(a))+ is(Im(a)))1 − x‖ < δ.

But (s(Re(a))+ is(Im(a)))1 − x ∈ span(X ∪ {1}), and so we conclude that

L1 ⊂δ span(X ∪ {1}).
Hence D(L1, δ) is finite. 
�

In view of Proposition 3.2 we make the following definition.
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Definition 3.3. We define the metric dimension of A with respect to L by

MdimL(A) = lim sup
δ→0+

logD (L1, δ)

log δ−1 .

We may think of D(L1, δ) as the δ-entropy of A with respect to L in analogy with
Kolmogorov ε-entropy [17], and indeed when L is a Lipschitz seminorm on a compact
metric space (X, d) we will recover from MdimL(C(X)) the Kolmogorov dimension
(Proposition 3.9).

We emphasize that in using D(·, ·) in Definition 3.3 (and also in the definition of
entropy in Sect. 5) we are not making any extra geometric assumptions in our finite-
dimensional approximations by linear subspaces. For example, we are not requiring that
these subspaces be images of positive or completely positive maps which are close to
the identity on the set in question. In computing lower bounds we are thus left to rely on
the Hilbert space geometry implicit in the C∗-algebraic structure, making repeated use
of Lemma 3.8 below.

Proposition 3.4. Let A and B be unital C∗-algebras with cLip-norms LA and LB ,
respectively. Suppose φ : A → B is a bi-Lipschitz positive unital map. Then

MdimLA(A) = MdimLB (B).

Proof. Let λ > 0 be the Lipschitz number of φ. Then φ(LA1 ) ⊂ LBλ , so that ifX ∈ F(B)
and LBλ ⊂δ X then

LA1 ⊂δ φ
−1(X),

since φ is isometric for the C∗-norm (see the remark after Definition 2.8). As a conse-
quence

D
(
LA1 , δ

)
≤ D

(
LBλ , δ

)

and so

MdimLA(A) = lim sup
δ→0+

logD(LA1 , δ)
log δ−1

≤ lim sup
δ→0+

logD(LBλ , δ)
log δ−1

= lim sup
δ→0+

logD(LB1 , λ−1δ)

log λ−1δ−1 · lim
δ→0+

log λ−1δ−1

log δ−1

= lim sup
δ→0+

logD(LB1 , λ−1δ)

log λ−1δ−1

= MdimLB (B).

The reverse inequality follows by a symmetric argument. 
�
The following is immediate from Definition 3.3.
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Proposition 3.5. Let L and L′ be cLip-norms on a unital C∗-algebra such that L ≤ L′,
that is, L(a) ≤ L′(a) for all a ∈ A. Then

MdimL(A) ≥ MdimL′(A).

Proposition 3.6. LetA andB be unitalC∗-algebras,LA a cLip-norm onA, φ : A → B

a surjective positive unital map, and LB the cLip-norm on B induced from LA by φ.
Then

MdimLB (B) ≤ MdimLA(A).

Proof. Since LB is induced from LA (Example 2.14) for any b ∈ LB1 there is an a ∈ A
with φ(a) = b and L(a) ≤ 2. Thus if X is a linear subspace of A with LA2 ⊂δ X it
follows that LB1 ⊂δ φ(X). Hence

MdimLB (B) = lim sup
δ→0+

logD(LB1 , δ)
log δ−1

≤ lim sup
δ→0+

logD(LA2 , δ)
log δ−1

= lim sup
δ→0+

logD(LA1 , 2−1δ)

log 2δ−1 · lim
δ→0+

log 2δ−1

log δ−1

= MdimLA(A).


�
Proposition 3.7. Let A and B be unital C∗-algebras with cLip-norms LA and LB , re-
spectively. Let L be a cLip-norm on A⊕ B which induces LA and LB via the quotients
onto A and B, respectively (see Example 2.14). Then

MdimL(A⊕ B) = max (MdimL(A),MdimL(B)) .

Proof. The inequality MdimL(A ⊕ B) ≥ max(MdimL(A),MdimL(B)) follows from
Proposition 3.6. To establish the reverse inequality, let δ > 0, and let X ∈ F(A) and
Y ∈ F(B) be such that LA1 ⊂δ X and LB1 ⊂δ Y . If (a, b) ∈ LA⊕B

1 then L(a) and L(b)
are no greater than 1, and hence there exist x ∈ X and y ∈ Y such that ‖x− a‖ < δ and
‖y − b‖ < δ, so that

‖(x, y)− (a, b)‖ < δ.

Thus

LA⊕B
1 ⊂δ span ({(x, 0) : x ∈ X} ∪ {(0, y) : y ∈ Y }),

and so we infer that

D
(
LA⊕B

1 , δ
)

≤ D
(
LA1 , δ

)
+D

(
LB1 , δ

)
.

For each δ > 0 the sum on the right in the above display is bounded by twice the
maximum of its two summands, and so
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MdimL(A⊕ B) = lim sup
δ→0+

logD
(
LA⊕B

1 , δ
)

log δ−1

≤ max

(

lim sup
δ→0+

log 2D
(LA1 , δ

)

log δ−1 , lim sup
δ→0+

log 2D
(LB1 , δ

)

log δ−1

)

= max(MdimL(A),MdimL(B)).


�
As we show in Proposition 3.9 below, if L is a Lipschitz seminorm on a compact

metric space (X, d) then MdimL(C(X)) coincides with the Kolmogorov dimension [17,
18], whose definition we recall. Let (X, d) be a compact metric space. A set E ⊂ X

is said to be δ-separated if for any distinct x, y ∈ E we have d(x, y) > δ, while a set
F ∈ X is said to be δ-spanning if for any x ∈ X there is a y ∈ F such that d(x, y) ≤ δ.
We denote by sep(δ, d) the largest cardinality of an δ-separated set and by spn(δ, d) the
smallest cardinality of a δ-spanning set. We furthermore denote byN(δ, d) the minimal
cardinality of a cover of X by δ-balls. The Kolmogorov dimension of (X, d), which we
will denote by Kdimd(X), is the common value of the three expressions

lim sup
δ→0+

log sep(δ, d)

log δ−1 , lim sup
δ→0+

log spn(δ, d)

log δ−1 , lim sup
δ→0+

logN(δ, d)

log δ−1 .

This also goes by other names in the literature, such as box dimension and limit capacity
(see [22, Chap. 2]).

We will need the following lemma from [33], which will also be of use later on.

Lemma 3.8 ([33, Lemma 7.8]). If B is an orthonormal set of vectors in a Hilbert space
H and δ > 0 then

inf {dimX : X ∈ F(H) and X ⊂δ B} ≥ (1 − δ2)card(B).

Proposition 3.9. Let (X, d) be a compact metric space, and let L be the associated
Lipschitz seminorm on C(X), that is,

L(f ) = sup {|f (x)− f (y)|/d(x, y) : x, y ∈ X and x �= y}
for all f ∈ C(X). Then

MdimL(C(X)) = Kdimd(X).

Proof. Let δ > 0 and let U = {B(x1, δ), . . . ,B(xr , δ)} be a cover of X by δ-balls. Let
� = {f1, . . . , fr} be a partition of unity subordinate to U . If f ∈ L1 and x and y are
points of X contained in the same member of U , then

|f (x)− f (y)| < 2δ.

Thus for any x ∈ X we have
∣∣∣
∣∣∣
f (x)−

∑

1≤i≤r
f (xi)fi(x)

∣
∣∣∣
∣∣
≤

∑

1≤i≤r
|f (x)− f (xi)| fi(x)

≤
∑

{i:x∈B(xi ,δ)}
|f (x)− f (xi)| fi(x)

< 2δ.
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Thus L1 ⊂2δ span(�), and since dim(span(�)) = card(U) we conclude that

MdimL(C(X)) = lim sup
δ→0+

logD (L1, 2δ)

log δ−1 ≤ Kdimd(X).

To establish the reverse inequality, let δ > 0 and let E = {x1, . . . , xr} be a δ-
separated set of maximal cardinality. The idea will be to consider the probability mea-
sure µ uniformly supported on E and to construct unitaries in C(X) with sufficiently
small Lipschitz seminorm which, when viewed as elements of L2(X,µ), form an or-
thonormal basis, so that we can appeal to Lemma 3.8. For each j = 1, . . . , r define the
function fj by

fj (x) = max
(

0, 1 − δ−1d(x, xj )
)

for all x ∈ X, and observe that L(fj ) = δ−1. For each k = 1, . . . , r define the function
gk by

gk =
n∑

j=1

[
jkr−1

]
fj ,

where [ · ] means take the fractional part. We then haveL(gk) ≤ δ−1, as can be seen by al-
ternatively expressing gk as the join of the functions

[
jkr−1

]
fj (note that the supports of

the fj ’s are pairwise disjoint) and applying the inequalityL(f ∨g) ≤ max(L(f ), L(g))
relating L to the lattice structure of real-valued functions on X. For each k = 1, . . . , r
set

uk = e2πigk .

Repeated application of the Leibniz rule yields, for each n ≥ 1,

L




n∑

j=0

(2πigk)j

j !



 ≤
n∑

j=0

(2π)j

j !
L(g

j
k ) ≤

n∑

j=0

(2π)j

j !
jL(gk)

= 2π




n−1∑

j=0

(2π)j

j !



L(gk)

≤ 2πe2πL(gk),

and thus, since the sequence
{∑n

j=0
(2πigk)j

j !

}

n∈N
converges uniformly to uk , we can

appeal to the lower semicontinuity of L to obtain the estimate

L (uk) ≤ 2πe2πL(gk) ≤ 2πe2πδ−1.

Setting U(δ) = {uk : k = 1, . . . , r} and C = 2πe2π , we thus have that the set
{C−1u : u ∈ U(δ)}, which we will simply denote by C−1U(δ), lies in L1 if δ ≤ C.

Next, letµbe the probability measure uniformly supported onE and letπµ : C(X) →
B(L2(X,µ)) be the associated GNS representation, with canonical cyclic vector ξµ.
Then, for each k = 1, . . . , r , πµ(uk)ξµ is the unit vector

(
1, e2πikr−1

,
(
e2πikr−1

)2
, . . . ,

(
e2πikr−1

)r−1
)
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under the obvious identification of L2(X,µ) with C
r which respects the order of the

indexing of the points x1, . . . , xr . Hence we see that the set {πµ(u)ξµ : u ∈ U(δ)}
forms an orthonormal basis for L2(X,µ), and so by Lemma 3.8 we have

Dµ(U(δ), 2−1) ≥ (1 − 2−2) card(U(δ)) = 3
4 card(E) = 3

4 sep(δ, d),

(for the meaning of Dµ(·, ·) see Notation 3.1).
Carrying out the above construction for each δ > 0, we then have

MdimL(C(X)) = lim sup
δ→0+

logD(L1, 2−1C−1δ)

log 2Cδ−1

= lim sup
δ→0+

logD(L1, 2−1C−1δ)

log δ−1

≥ lim sup
δ→0+

logD(C−1δU(δ), 2−1C−1δ)

log δ−1

= lim sup
δ→0+

logD(U(δ), 2−1)

log δ−1

≥ lim sup
δ→0+

logDµ(U(δ), 2−1)

log δ−1

≥ lim sup
δ→0+

log 3
4 sep(δ, d)

log δ−1

= Kdimd(X).


�

4. Group Actions and Dimension

Here we compute the dimension for some examples in which the cLip-norm is defined
by means of an ergodic compact group action.

4.1. The UHF algebraMp∞ . We consider here the infinite tensor productM⊗Z
p (usually

denoted Mp∞ ) of p × p matrix algebras Mp over C with the infinite product of Weyl
actions. As shown in [21] there is a unique ergodic action of G = Zp × Zp on a simple
C∗-algebra up to conjugacy, namely the Weyl action on Mp, defined as follows. Let ρ
be the pth root of unity e2πi/p, and consider the unitary u = diag(1, ρ, ρ2, . . . , ρp−1)

along with the unitary v which has 1’s on the superdiagonal and in the bottom left-hand
entry and 0’s elsewhere. Then we have

vu = ρuv,

and u and v generateMp C
∗-algebraically. The Weyl action γ : G → Aut(Mp) is given

by the following specification on the generators u and v:

γ(r,s)(u) = ρru,

γ(r,s)(v) = ρsv.

We may then consider the infinite product action γ⊗Z of the product groupGZ onM⊗Z
p .
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Consider the metric on G obtained by viewing G as a subgroup of R
2/Z2 with the

metric induced from the Euclidean metric on R
2, and let � be the length function on G

defined by taking the distance to 0. Given 0 < λ < 1 we define the length function �λ
on GZ by

�λ
(
(gj , hj )j∈Z

) =
∑

j∈Z

λ|j |�
(
(gj , hj )

)
.

We could also define length functions onGZ by using suitable choices of weightings of
� on the factors other than the above geometric ones (and in many cases compute the
metric dimension as in Proposition 4.1 below), but for simplicity we will restrict our
attention to length functions of the form �λ. Let L be the cLip-norm on M⊗Z

p arising

from the action γ⊗Z and the length function �λ.

Proposition 4.1. We have

MdimL

(
M⊗Z
p

)
= 4 logp

log λ−1 .

Proof. For each n consider the conditional expectation En ofM⊗Z
p onto the subalgebra

M
⊗[−n,n]
p given by

En(a) =
∫

GZ\[−n,n]
γ⊗Z
g (a) dg,

where dg is normalized Haar measure on GZ and GZ\[−n,n] is the subgroup of GZ of
elements which are the identity at the coordinates in the interval [−n, n]. Then for each
a ∈ L we have

‖En(a)− a‖ =
∥∥∥∥

∫

GZ\[−n,n]

(
γ⊗Z
g (a)− a

)
dg

∥∥∥∥

≤
∫

GZ\[−n,n]

∥∥∥γ⊗Z
g (a)− a

∥∥∥ dg

≤
∫

GZ\[−n,n]
L(a)�λ(g) dg

≤ L(a)
2λn+1

1 − λ
.

Let δ > 0. If δ is sufficiently small there is an n ∈ N such that

2λn+1(1 − λ)−1 ≤ δ ≤ 2λn(1 − λ)−1.

Then, in view of the above estimate on ‖En(a) − a‖ when a ∈ L1, we have that L1 is
approximately contained inM⊗[−n,n]

p to within δ. SinceM⊗[−n,n]
p has linear dimension

p2(2n+1) it follows that

logD(L1, δ)

log δ−1 ≤ logD(L1, 2λn+1(1 − λ)−1)

log(2(1 − λ)λ−n)

≤ (4n+ 2) logp

log(2(1 − λ)λ−n)
and so
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MdimL

(
M⊗Z
p

)
= lim sup

n→∞
logD(L1, δ)

log δ−1

≤ lim
n→∞

(4n+ 2) logp

log(2(1 − λ)λ−n)

= 4 logp

log λ−1 .

To prove the reverse inequality, consider for each n ∈ N the subset

Un =
{
ui−nvj−n ⊗ ui−n+1vj−n+1 ⊗ · · · ⊗ uinvjn :

0 ≤ ik, jk ≤ p − 1 for k = −n, . . . , n
}

of M⊗[−n,n]
p (i.e., all elementary tensors in M⊗[−n,n]

p whose components are Weyl uni-
taries in the respective copies of Mp). It is easily checked that the cLip-norm of any
element in Un is bounded by 2

(
1 + 2

∑n
k=1 λ

k
) ≤ (4n+ 2)λn. Now the product of any

two distinct products of powers of Weyl generators inMp is zero under evaluation at the
unique tracial state τ on M⊗Z

p , as can be seen from the commutation relation between

u and v. Thus, since τ is a tensor product of traces in its restriction to M⊗[−n,n]
p , the

product of any two distinct elements of �n is zero under evaluation by τ . This implies
that πτ (Un)ξτ is an orthonormal set in the GNS representation Hilbert space associated
to τ with canonical cyclic vector ξτ , and so by Lemma 3.8 we have

Dτ

(
Un, 2−1

)
≥
(

1 − 2−1
)

card (πτ (Un)ξτ ) = 3
4p

2(2n+1).

Thus setting

Wn =
{
(4n+ 2)−1λnw : w ∈ Un

}

(which is contained in L1) we have

D(Wn, (4n+ 2)−1λ−n2−1) ≥ Dτ (Wn, (4n+ 2)−1λ−n2−1)

≥ Dτ (Un, 2−1)

≥ 3
4p

2(2n+1)

and so

MdimL

(
M⊗Z
p

)
≥ lim sup

n→∞
log(D(Wn, (4n+ 2)−1λ−n2−1)

log((4n+ 2)−1λ−n2−1)

≥ lim sup
n→∞

log 3
4 + (4n+ 2) logp

log((4n+ 2)−12−1)+ n log λ−1

= 4 logp

log λ−1 ,

completing the proof. 
�
Because we have used the canonical unitary description ofM⊗Z

p in an essential way,
we cannot expect to be able to carry out a computation for much more general types of
tensor products by extending the arguments of this subsection, although such a compu-
tation would be possible, for example, for tensor products of noncommutative tori, in
which case we could incorporate the methods of the next subsection.
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4.2. Noncommutative tori. Let ρ : Z
p × Z

p → T be an antisymmetric bicharacter and
for 1 ≤ i, j ≤ k set

ρij = ρ
(
ei, ej

)
,

where {e1, . . . , ep} is the standard basis for Z
p. The universal C∗-algebraAρ generated

by unitaries u1, . . . , up satisfying

ujui = ρijuiuj

is referred to as a noncommutative p-torus. Slawny showed in [30] that Aρ is simple if
and only if ρ is nondegenerate (meaning that ρ(g, h) = 1 for all h ∈ Z

p implies that
g = 0), and these two conditions are furthermore equivalent to the existence of a unique
tracial state on Aρ (see [11]).

LetAρ be a noncommutativep-torus with generators u1, . . . , up. There is an ergodic
action γ : T

p ∼= (R/Z)p → Aut(Aρ) determined by

γ(t1,... ,tp)(uj ) = e2πitj uj

(see [21]). We will consider the cLip-norm L arising from the action γ as in Exam-
ple 2.13, with the length function given by taking the distance to 0 with respect to the
metric induced from the Euclidean metric on R

p scaled by 2π (scaling will not affect
the value of MdimL(Aρ) but our choice of length function ensures for convenience that
L(uj ) = 1 for each j = 1, . . . , p). We denote by τ the tracial state defined by

τ(a) =
∫

Tp
γ(t1,... ,tp)(a) d

(
t1, . . . , tp

)

for all a ∈ Aρ , where d(t1, . . . , tp) is normalized Haar measure on T
p ∼= (R/Z)p.

For (n1, . . . , np) ∈ N
p let R(n1, . . . , np) denote the set of points (k1, . . . , kp)

in Z
p such that |ki | ≤ ni for i = 1, . . . , p. For each a ∈ Aρ , we define for each

(n1, . . . , np) ∈ N
p the partial Fourier sum

s(n1,... ,np)(a) =
∑

(k1,... ,kp)∈R(n1,... ,np)

τ
(
au

−kp
p · · · u−k1

1

)
u
k1
1 · · · ukpp

and for each n ∈ N the Cesàro mean

σn(a) =



∑

(n1,... ,np)∈R(n,n,... ,n)
s(n1,... ,np)(a)




/

(n+ 1)p.

Weaver showed in [35, Thm. 22] for the case p = 2 that σn(a) → a in norm for all
a ∈ L. To compute MdimL(Aρ) we will need a handle on the rate of this convergence,
and so we have in Lemma 4.3 below an extension to the noncommutative case of a
standard result in classical Fourier analysis (see for example [15]). To make the required
estimate we will use the expression for σn(a)− a given by the following lemma, which
can be proved in the same way as its specialization to the case p = 2, which appears in
a more general form in [36] as Lemma 3.1 and is established in the course of the proof
of [35, Thm. 22].

Recall the classical Fejér kernel Kn defined by

Kn(t) =
n∑

k=−n

(
1 − |k|

n+ 1

)
e2πikt = 1

n+ 1

(
sin((n+ 1)t/2)

sin(t/2)

)2

.
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Lemma 4.2. If a ∈ Aρ then for all n ∈ N we have

σn(a) =
∫

Tp
γ(t1,... ,tp)(a)Kn(t1) · · ·Kn(tp) d

(
t1, . . . , tp

)

and

a − σn(a) =
p∑

k=1

∫

Tk−1
γ(t1,... ,tk−1,0,... ,0)

(∫

T

(a − γrk(tk)(a))Kn(tk)dtk

)

×Kn(t1) · · ·Kn(tk−1) d(t1, . . . , tk−1),

with the integrals taken in the Riemann sense and rk(t) denoting the p-tuple which is t
at the kth coordinate and 0 elsewhere.

Notice that the right-hand expression in the second display of the statement of Lem-
ma 4.2 is a telescoping sum, so that the second display is an immediate consequence of
the first display in view of the fact that the integral of the Fejér kernel over T is 1. Note
also that the first display shows that ‖σn(a)‖ ≤ ‖a‖ for all n ∈ N and a ∈ Aρ , a fact
which will be of use in the proof of Proposition 7.4.

Lemma 4.3. If a ∈ LAρ then there is a C > 0 such that

‖a − σn(a)‖ < L(a)C
log n

n

for all n ∈ N.

Proof. It suffices to show that each of the summands on the right-hand side of the second
display of Lemma 4.2 is bounded by Mn−1 log n for some M > 0 and all n ∈ N. We
thus observe that if 1 ≤ k ≤ p then, with rk(t) denoting the p-tuple which is t at the kth

coordinate and 0 elsewhere,

∥∥∥∥

∫

Tk−1
γ(t1,... ,tk−1,0,... ,0)

(∫

T

(a − γrk(tk)(a))Kn(tk)dtk

)

×Kn(t1) · · ·Kn(tk−1) d(t1, . . . , tk−1)

∥∥∥∥

≤
∫

Tk−1

∥∥∥∥

∫

T

(a − γrk(tk)(a))Kn(tk)dtk

∥∥∥∥Kn(t1) · · ·Kn(tk−1) d(t1, . . . , tk−1)

≤
∫

T

‖a − γrk(tk)(a)‖Kn(tk) dtk

≤ L(a)

∫

T

|t |Kn(t)dt.

Estimating the integral
∫
T

|t |Kn(t) dt is a standard exercise from classical Fourier anal-
ysis (see [15, Exercise 3.1]): using the fact that | sin(πt)| > 2|t | and hence

Kn(t) ≤ min

(
n+ 1,

1

4(n+ 1)t2

)

for 0 < |t | < 1
2 , we readily obtain, for the integral of |t |Kn(t) over each of the intervals

[− 1
2 ,− 1

2(n+1) ], [− 1
2(n+1) ,

1
2(n+1) ], and [ 1

2(n+1) ,
1
2 ], an upper bound of n−1 log n times

some constant independent of n, yielding the result. 
�
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Proposition 4.4. We have

MdimL(Aρ) = p.

Proof. Let δ > 0, and assume δ is sufficiently small so that there is an n ∈ N such that

C(n+ 1)−1 log(n+ 1) ≤ δ ≤ Cn−1 log n.

Lemma 4.3 then yields

logD(L1, δ)

log δ−1 ≤ logD(L1, Cn
−1 log n)

log(C(n+ 1)−1 log(n+ 1))−1

≤ p log(2n+ 1)

log(Cn−1 log n)−1

so that

MdimL(Aρ) ≤ lim sup
n→∞

p log(2n+ 1)

log(Cn−1 log n)−1 = p.

To prove the reverse inequality, for each n ∈ N consider the set

Un =
{
u
k1
1 u

k2
2 · · · ukpp : |ki | ≤ n for i = 1, . . . , p

}

of unitaries in Aρ . By repeated application of the Leibniz inequality and using the fact
that L(ui) = 1 for each i = 1, . . . , p we have the following estimate for the cLip-norm
of an arbitrary element of Un:

L
(
u
k1
1 u

k2
2 · · · ukpp

)
≤ k1L(u1)+ k2L(u2)+ · · · + kpL(up) ≤ pn.

Thus the set Wn = {(pn)−1u : u ∈ Un} is contained in L1. Now products of distinct
elements of the (self-adjoint) set Un evaluate to zero under the tracial state τ , so that,
in the GNS representation Hilbert space associated to τ with canonical cyclic vector
ξτ , πτ (Un)ξτ forms an orthonormal set of vectors. Thus, given δ > 0 we can apply
Proposition 3.8 to obtain, for each n ≥ 1,

D
(
Wn, (pn)

−1δ
)

≥ D(Un, δ) ≥ Dτ (Un, δ) ≥ (1 − δ2)(2n+ 1)p

so that, assuming δ < 1,

MdimL(Aρ) ≥ lim sup
n→∞

logD(Wn, (pn)
−1δ)

log(pnδ−1)

≥ lim sup
n→∞

log(1 − δ2)+ p log(2n+ 1)

log(pnδ−1)

= p,

as desired. 
�
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5. Product Entropies

We now study dynamics within the framework of unital C∗-algebras with Leibniz
cLip-norms, concentrating on iterative growth as captured in the “product” entropy of
Subsect. 5.1 and its measure-theoretic version in Subsect. 5.2. That the Leibniz rule is
important here can be seen by examining the proofs of Propositions 5.4 and 5.6 (although
the latter only requires that L be closed under multiplication).

5.1. Product entropy. We begin by introducing some notation.

Notation 5.1. For any set X we will denote by Pf (X) the collection of finite subsets
of X. If X1, X2, . . . , Xn are subsets of the C∗-algebra A we will use the notation
X1 ·X2 · · · · ·Xn or

∏n
j=1Xj to refer to the set

{a1a2 · · · an : ai ∈ Xi for each i = 1, . . . , n} .
Recall from Notation 2.2 that, for a C∗-algebra A and r > 0, Ar refers to the set

{a ∈ A : ‖a‖ ≤ r}. For the meaning of D(· , ·) see Notation 3.1.

Definition 5.2. Let A be a unital C∗-algebra with Leibniz cLip-norm L, and let α ∈
AutL(A). For � ∈ Pf (L ∩ A1) and δ > 0 we define

EntpL(α,�, δ) = lim sup
n→∞

1

n
logD

(
� · α(�) · α2(�) · · · · · αn−1(�), δ

)
,

EntpL(α,�) = sup
δ>0

EntpL(α,�, δ),

EntpL(α) = sup
�∈Pf (L∩A1)

EntpL(α,�).

We will call EntpL(α) the product entropy of α.

We record in the following proposition the evident fact that EntpL(A) is invariant
under bi-Lipschitz ∗-isomorphisms.

Proposition 5.3. Let A and B be unital C∗-algebras with Leibniz cLip-norms LA and
LB , repectively. Let α ∈ AutLA(A) and β ∈ AutLB (B). Suppose � : A → B is a
bi-Lipschitz ∗-isomorphism which intertwines α with β (i.e., � ◦ α = β ◦ �). Then

EntpL(α) = EntpL(β).

The entropy Entp(α) is related to the metric dimension ofA by the following inequal-
ity, which formally parallels a familiar fact about topological entropy (see [10, Prop.
14.20]). We remark that we don’t know whether the Lipschitz number of a bi-Lipschitz
automorphism α can be strictly less than 1, although it is evident that in general at least
one of α and α−1 must have Lipschitz number at least 1.

Proposition 5.4. If α ∈ AutL(A) and MdimL(A) is finite then

EntpL(α) ≤ MdimL(A) · log max(λ, 1),

where λ is the Lipschitz number of α.
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Proof. Let � ∈ Pf (L ∩ A1, δ) and δ > 0. Set M = maxa∈� L(a). Then by repeated
application of the Leibniz inequality we see that elements of the set

�n = � · α(�) · α2(�) · · · · · αn−1(�)

have cLip-norm at mostM(1+λ+λ2 +· · ·+λn−1), which is bounded above byMnλn.
Hence L1 contains the set {(Mnλn)−1a : a ∈ �n}, which we will denote simply by
(Mnλn)−1�n. It follows that

EntpL(α,�, δ) = lim sup
n→∞

1

n
logD(�n, δ)

= lim sup
n→∞

1

n
logD((Mnλn)−1�n, (Mnλ

n)−1δ)

≤ lim sup
n→∞

1

n
logD(L1, (Mnλ

n)−1δ).

If λ < 1 then this last limit supremum is clearly zero. If on the other hand λ ≥ 1 then

lim sup
n→∞

1

n
logD(L1, (Mnλ

n)−1δ)

≤ lim sup
n→∞

1

n

logD(L1, (Mnλ
n)−1δ)

log(Mnλnδ−1)
log(Mnλnδ−1)

= lim sup
n→∞

logD(L1, (Mnλ
n)−1δ)

log(Mnλnδ−1)
· lim
n→∞

1

n
log(Mnλnδ−1)

= MdimL(A) · log λ.

We thus obtain the result by taking the supremum over all � and δ. 
�

Corollary 5.5. If MdimL(A) is finite and α ∈ AutL(A) is Lipschitz isometric then
EntpL(α) = 0. In particular EntpL(idA) = 0.

Corollary 5.5 shows that the appropriate domain for our notion of entropy as a mea-
sure of dynamical growth is the class of cLip-normed unital C∗-algebras A for which
MdimL(A) is finite, in analogy to the situation of topological approximation entropies
[4, 33] which function under conditions of “finiteness” like nuclearity or exactness.

Proposition 5.6. If α ∈ AutL(A) and k ∈ Z then EntpL(α
k) = |k| EntpL(α).

Proof. Suppose first that k ≥ 0. Let � ∈ Pf (L ∩ A1) and δ > 0, and suppose 1 ∈ �.
Then

n−1∏

j=0

αjk(�) ⊂
(n−1)k∏

j=0

αj (�)

so that
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EntpL(α
k,�, δ) = lim sup

n→∞
1

n
logD




n−1∏

j=0

αjk(�), δ





≤ k lim sup
n→∞

1

kn
logD




(n−1)k∏

j=0

αj (�), δ





= k EntpL(α,�, δ).

On the other hand setting �k = ∏k−1
j=0 α

j (�) (which is contained in Pf (L ∩ A1) in
view of the Leibniz rule) we have

� n
k
�∏

j=0

αj (�k) ⊂
n−1∏

j=0

αj (�)

so that

EntpL(α
k,�k, δ) = lim sup

n→∞
k

n
logD




� n
k
�∏

j=0

αj (�k), δ





≤ k lim sup
n→∞

1

n
logD




n−1∏

j=0

αj (�), δ





= k EntpL(α,�, δ),

and hence

EntpL
(
αk,�k, δ

)
≤ k EntpL (α,�, δ) .

Taking the supremum over all � ∈ Pf (L ∩ A1) and δ > 0 yields EntpL(α
k) =

k EntpL(α).
To prove the assertion for k < 0 it suffices, in view of the first part, to show that

EntpL(α
−1) = EntpL(α). Since

α−n+1




n−1∏

j=0

αj (�)



 =
n−1∏

j=0

α−j (�)

we have

D




n−1∏

j=0

αj (�), δ



 = D




n−1∏

j=0

α−j (�), δ





and hence

EntpL(α,�, δ) = EntpL
(
α−1, �, δ

)
,

from which we reach the conclusion by taking the supremum over all� ∈ Pf (L ∩A1)

and δ > 0. 
�
The following proposition is clear from Definition 5.2.
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Proposition 5.7. Let A be a unital C∗-algebra with cLip-norm LA and B ⊂ A a unital
C∗-subalgebra with cLip-norm LB such that LB is the restriction of LA to B. Suppose
that there is a C∗-norm contractive idempotent linear map ofA onto B. If α ∈ AutL(A)
leaves B invariant then

EntpLB (α|B) ≤ EntpLA(α).

Proposition 5.8. Let A and B be unital C∗-algebras, LA a Leibniz cLip-norm on A,
φ : A → B a surjective unital ∗-homomorphism, and LB the Leibniz cLip-norm in-
duced on B via φ. Suppose there exists a positive C∗-norm contractive (not necessarily
unital) Lipschitz map ψ : B → A such that φ ◦ ψ = idB . Let α ∈ AutLA(A) and
β ∈ AutLB (B) and suppose φ ◦ α = β ◦ φ. Then

EntpLB (β) ≤ EntpLA(α).

Proof. Let� ∈ Pf (LB ∩B1) and δ > 0. Since ψ is norm-decreasing we have ψ(�) ∈
Pf (LA ∩ A1). Now if X ∈ F(A) is such that

ψ(�) · α(ψ(�)) · · · · · αn−1(ψ(�)) ⊂δ X,

then

� · β(�) · · · · · βn−1(�) = (φ ◦ ψ)(�) · β((φ ◦ ψ)(�)) · · · · · βn−1((φ ◦ ψ)(�))
= φ(ψ(�)) · φ(α(ψ(�))) · · · · · φ(αn−1(ψ(�)))

= φ(ψ(�) · α(ψ(�)) · · · · · αn−1(ψ(�)))

⊂δ φ(X)

and so

D(� · β(�) · · · · · βn−1(�), δ) ≤ D(ψ(�) · α(ψ(�)) · · · · · αn−1(ψ(�)), δ),

from which the proposition follows. 
�

5.2. Product entropy with respect to an invariant state. We define now a version of
MdimL(A) relative to a dynamically invariant state σ . As in Subsect. 5.1 we are assum-
ing that L is a Leibniz cLip-norm. For the meaning of Dσ (· , ·) see Notation 3.1.

Definition 5.9. Let α ∈ AutL(A) and let σ be a state of A which is α-invariant, i.e.,
σ ◦ α = σ . For � ∈ Pf (L ∩ A1) and δ > 0 we define

EntpL,σ (α,�, δ) = lim sup
n→∞

1

n
logDσ

(
� · α(�) · α2(�) · · · · · αn−1(�), δ

)
,

EntpL,σ (α,�) = sup
δ>0

EntpL,σ (α,�, δ),

EntpL,σ (α) = sup
�∈Pf (L∩A1)

EntpL,σ (α,�).

We will call EntpL,σ (α) the product entropy of α with respect to σ .

The following two propositions follow immediately from the definition.
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Proposition 5.10. Let A and B be unital C∗-algebras with respective Leibniz cLip-
norms LA and LB . Let α ∈ AutLA(A) and β ∈ AutLB (B), and let σ and ω be
α- and β-invariant states onA andB, respectively. Suppose� : A → B is a bi-Lipschitz
∗-isomorphism such that � ◦ α = β ◦ � and ω ◦ � = σ . Then

EntpL,σ (α) = EntpL,ω(β).

Proposition 5.11. LetA be a unital C∗-algebra with Leibniz cLip-norm LA and B ⊂ A

a unital C∗-subalgebra with Leibniz cLip-norm LB such that LB is the restriction of
LA to B. Let σ be a state on A with σ ◦ α = σ , and suppose that there is a idempotent
linear map of A onto B which is contractive for the Hilbert space norm under the GNS
construction associated to σ . If α ∈ AutL(A) leaves B invariant then

EntpLB,σ (α|B) ≤ EntpLA,σ (α).

The next proposition can be established in the same way as its counterpart Proposi-
tion 5.6 in Subsect. 5.1.

Proposition 5.12. If α ∈ AutL(A), σ is an α-invariant state on A, and k ∈ Z, then
EntpL,σ (α

k) = |k| EntpL,σ (α).

Proposition 5.13. If α ∈ AutL(A) and σ is an α-invariant state on A then

EntpL,σ (α) ≤ EntpL(α).

Proof. It suffices to show that, for a given � ∈ Pf (L ∩ A1) and δ > 0,

Dσ (�, δ) ≤ D(�, δ),

and for this inequality we need only observe that if X is a finite-dimensional subspace
of A such that � ⊂δ X, then whenever a ∈ � and x ∈ X satisfy ‖a − x‖ < δ we have

‖π(a)ξσ − π(x)ξσ‖σ = ‖π(a − x)ξσ‖σ ≤ ‖π(a − x)‖ ≤ ‖a − x‖ < δ,

so that π(X)ξσ is a subspace of Hσ with π(�)ξσ ⊂δ π(X)ξσ and dim π(�)ξσ ≤
dimX. 
�
Corollary 5.14. If MdimL(A) is finite and α ∈ AutL(A) is Lipschitz isometric then
EntpL,σ (α) = 0. In particular EntpL,σ (idA) = 0.

Proof. This follows by combining Proposition 5.13 with Corollary 5.5. 
�

6. Tensor Product Shifts

The fundamental prototypical system for topological entropy is the shift on the infi-
nite product {1, . . . , p}Z, with entropy logp. Here we consider the noncommutative
analogue of this map, the (right) shift on the infinite tensor product M⊗Z

p of p × p

matrix algebrasMp over C, here with the Leibniz cLip-norm L furnished by the infinite

product γ⊗Z : GZ → Aut
(
M⊗Z
p

)
of Weyl actions and length function �λ (for a given

0 < λ < 1) as described in Subsect. 4.1.
Before computing the entropy of the shift we will show that it is a bi-Lipschitz

∗-automorphism.
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Proposition 6.1. The shift α on M⊗Z
p is a bi-Lipschitz ∗-automorphism, and α and its

inverse have Lipschitz numbers bounded by λ.

Proof. Let T : GZ → GZ be the right shift homeomorphism. Then it is readily seen that
if a is an elementary tensor in M [m,n]

p ⊂ M⊗Z
p for some m, n ∈ Z then γ⊗Z

g (α(a)) =
α
(
γ⊗Z

T g (a)
)

for all g ∈ GZ, and since such a generateM⊗Z
p we have γ⊗Z

g ◦α = α◦γ⊗Z

T g

for all g ∈ GZ. Thus, for any a ∈ M⊗Z
p ,

L(α(a)) = sup
g∈GZ\{e}

∥
∥γ⊗Z
g (α(a))− α(a)

∥
∥

�λ(g)

= sup
g∈GZ\{e}

∥
∥α
(
γ⊗Z

T g (a)
)

− α(a)
∥
∥

�λ(g)

≤ sup
g∈GZ\{e}

∥
∥γ⊗Z

T g (a)− a
∥
∥

�λ(T g)
· sup
g∈GZ\{e}

�λ(T g)

�λ(g)

≤ L(a) · L(T ),
whereL(T ) is the Lipschitz number of the homeomorphism T with respect to the metric
defining �λ (see Subsect. 4.1), and it is straightforward to verify that L(T ) = λ. We can
argue similarly for α−1 to reach the desired conclusion. 
�

Proposition 6.2. Let α be the shift on M⊗Z
p and τ = tr⊗Z

p the unique (and hence α-

invariant) tracial state on M⊗Z
p . Then

EntpL,τ (α) ≥ 2 logp.

Proof. Let u, v ∈ M⊗Z
p be the Weyl generators for the zeroth copy of Mp (identified

as a subalgebra of M⊗Z
p ) and let � be the finite subset {uivj : 0 ≤ i, j ≤ k − 1} of

L∩
(
M⊗Z
p

)

1
. Then the set�n = � ·α(�) ·α2(�) · · · · ·αn−1(�) is precisely the subset

{
ui0vj0 ⊗ ui1vj1 ⊗ · · · ⊗ uin−1vjn−1 : 0 ≤ ik, jk ≤ p − 1 for k = 0, . . . , n− 1

}

of M⊗[0,n]
p as considered sitting in M⊗Z

p . Thus πτ (�n)ξτ is an orthonormal set in the
GNS representation Hilbert space associated to τ with canonical cyclic vector ξτ (see
the second half of the proof of Proposition 4.1), and so by Lemma 3.8 for any δ > 0 we
have

Dτ (�n, δ) ≥ (1 − δ2)card(πτ (�n)ξτ ) = (1 − δ2)p2n.

Thus if δ < 1 we obtain

EntpL,σ (α,�, δ) = lim sup
n→∞

1

n
logDσ (�n, δ) ≥ 2 logp,

which yields the proposition. 
�
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Note that by Propositions 5.4, 4.1, and 6.1 the shift α satisfies

EntpL(α) ≤ 4 logp.

The following proposition yields the sharp upper bound of 2 logp.

Proposition 6.3. With α the shift we have

EntpL(α) ≤ 2 logp.

Proof. Let � ∈ Pf
(
L ∩

(
M⊗Z
p

)

1

)
and δ > 0. Set C = maxa∈� Lλ(a). For each n

consider the conditional expectation En : M⊗Z
p → M

⊗[−n,n]
p given by

En(a) =
∫

GZ\[−n,n]
γ⊗Z
g (a) dg,

where dg is normalized Haar measure on GZ. We then have

‖En(a)− a‖ =
∥∥∥∥

∫

GZ\[−n,n]

(
γ⊗Z
g (a)− a

)
dg

∥∥∥∥

≤
∫

GZ\[−n,n]

∥∥γ⊗Z
g (a)− a

∥∥ dg

≤
∫

GZ\[−n,n]
C�λ(g) dg

≤ 2Cλn+1

1 − λ
.

If a1, . . . , an ∈ � then, estimating the norm of differences of products in the usual way
and using the fact that the conditional expectations are norm-decreasing, we have

∥∥E�√n�(a1)α(E�√n�(a2)) · · ·αn−1(E�√n�(an))− a1α(a2) · · ·αn−1(an)
∥∥

≤
n∑

k=1

∥∥αk−1(E�√n�(ak))− αk−1(ak)
∥∥

=
n∑

k=1

∥∥E�√n�(ak)− ak
∥∥

≤ 2Cnλ�√n�+1

1 − λ
,

which is smaller than δ for all n greater than some n0 ∈ N (here �·� denotes the ceiling
function).

Next we observe that the product

E�√n�(a1)α
(
E�√n�(a2)

)
· · ·αn−1

(
E�√n�(an)

)
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is contained in the subalgebra M⊗[−�√n�,�√n�+n]
p of M⊗Z

p , and this subalgebra has lin-

ear dimension p2(2�√n�+n). In view of the first paragraph, for all n ≥ n0, the set �n is

approximately contained in M⊗[−�√n�,�√n�+n]
p to within δ, and so we have

EntpL(α,�, 2δ) ≤ lim sup
n→∞

1

n
logp2(2�√n�+n) = 2 logp.

The proposition now follows by taking the supremum over all � and δ. 
�
As a consequence of Propositions 6.2, 6.3, and 5.13 we obtain the following.

Proposition 6.4. With α the shift and τ the unique tracial state on M⊗Z
p we have

EntpL(α) = EntpL,τ (α) = 2 logp.

7. Noncommutative Toral Automorphisms

Let Aρ be a noncommutative p-torus with generators u1, . . . , up, canonical ergodic
action γ : T

p → Aut(Aρ), and associated Leibniz cLip-norm L and γ -invariant tracial
state τ , as defined in Subsect. 4.2. We let πτ : Aρ → B(Hτ ) be the GNS representation
associated to τ , with canonical cyclic vector ξτ . Let T = (sij ) be a p × p integral
matrix with det T = ±1, and suppose that T defines an automorphism αT of Aρ via the
specifications

αT (uj ) = u
s1j
1 · · · uspjp

on the generators (this will always be the case if det T = 1 owing to the universal
property of noncommutative tori). These noncommutative versions of toral automor-
phisms were introduced in the case p = 2 in [34] and [3]. Since τ is zero on products
of powers of generators which are not equal to the unit, we see that it is invariant under
the automorphism αT and the action γ . Fix a t = (t1, . . . , tp) ∈ T

p ∼= (R/Z)p and
consider the automorphism γt coming from the action γ . We will compute the entropies
EntpL(αT ◦ γt ) and EntpL,τ (αT ◦ γt ) and furthermore show that their common value
bounds above the entropies EntpL(Adu ◦ αT ◦ γt ) and EntpL,τ (Adu ◦ αT ◦ γt ) for any
unitary u ∈ L. We remark that in the case p = 2, when Aρ is a rotation C∗-algebra
Aθ , Elliott showed in [12] that if the angle θ satisfies a generic Diophantine property
then all automorphisms preserving the dense ∗-subalgebra of smooth elements (i.e., all
“diffeomorphisms”) are of the form Adu ◦ αT ◦ γt , where u is a smooth unitary (and
hence of finite cLip-norm).

Proposition 7.1. The ∗-automorphism α = Adu ◦ αT ◦ γt is bi-Lipschitz, and α and its
inverse have Lipschitz numbers bounded by

2‖T ‖(1 + 2L(u)diam(S(A)))

and

2
∥∥∥T −1

∥∥∥ (1 + 2L(u)diam(S(A))),

respectively, where ‖T ‖ and ‖T −1‖ are the respective norms of T and T −1 as operators
on the real inner product space R

p.
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Proof. If we consider T as acting on T
p then γg ◦ α = α ◦ γTg for all g ∈ T

p, as
can be seen by checking this equation on the generators u1, . . . , up. As in the proof of
Proposition 6.1 we thus have, for any a ∈ L, the bound

L(α(a)) ≤ L(a) · L(T ),
where L(T ) is the Lipschitz number of the homeomorphism T . If we consider T as an
operator on R

p, then its Lipschitz number is ‖T ‖ by definition of the operator norm,
and so by linearity the Lipschitz number L(T ) of T on the quotient T

p ∼= R
p/Zp must

again be ‖T ‖. Next note that γt is isometric, for if a ∈ L then

L(γt (a)) = sup
s∈Tp\{0}

‖γs+t (a)− γt (a)‖
�(s)

= sup
s∈Tp\{0}

‖γs(a)− a‖
�(s)

= L(a).

Also, since L is readily checked to be lower semicontinuous, by Proposition 2.11 the
Lipschitz number of Adu is bounded by 2(1 + 2L(u)diam(S(A))). Thus by Proposi-
tion 2.9 we get the desired bound on the Lipschitz number of Adu ◦ αT ◦ γt . A similar
argument can be applied to (Adu ◦ αT ◦ γt )−1 = γ−t ◦ αT −1 ◦ Adu∗. 
�
Proposition 7.2. We have

EntpL,τ (αT ◦ γt ) ≥
∑

|λi |≥1

log |λi |,

where λ1, . . . , λp are the eigenvalues of T counted with spectral multiplicity.

Proof. Let K be a finite subset of Z
p and set

UK =
{
u
k1
1 u

k2
2 · · · ukpp : (k1, . . . , kp) ∈ K

}
.

The elements of UK , being products of powers of generators, all have finite cLip-norm.

Observe that αT ◦ γt takes a product of the form ηu
k1
1 u

k2
2 · · · ukpp , with η a complex

number of modulus one, to a product of the same form, with the exponents on the ui’s
respecting the action of the group automorphism ζT of Z

p defined via the action of T .
Thus if K is a finite subset of Z

p then the set

UK · (αT ◦ γt )(UK) · · · · · (αT ◦ γt )n−1(UK)

contains a subset UK,n of the form
{
η(k1,... ,kp)u

k1
1 u

k2
2 · · · ukpp : (k1, . . . , kp) ∈ K + ζT K + · · · + ζ n−1

T K
}
,

where each η(k1,... ,kp) is a complex number of modulus one. Note that πτ (UK,n)ξτ is an
orthonormal set of vectors in the GNS representation Hilbert space associated to τ with
canonical cyclic vector ξτ , since the product of any two distinct vectors in this set is a

scalar multiple of a product of the form u
k1
1 u

k2
2 · · · ukpp with the ki’s not all zero, in which

case evaluation under τ yields zero. It thus follows from Lemma 3.8 that if δ > 0 then

Dτ (UK,n, δ) ≥ (1 − δ2)card(π(UK,n)ξτ )

= (1 − δ2)card(K + ζT K + · · · + ζ n−1
T K),

so that whenever δ < 1 we get
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EntpL,σ (αt ◦ γt , UK, δ) = lim sup
n→∞

1

n
logDτ (UK · α(UK) · · · · · αn−1(UK), δ),

≥ lim sup
n→∞

1

n
logDτ (UK,n, δ)

≥ lim sup
n→∞

1

n
log card(K + ζT K + · · · + ζ n−1

T K).

We thus reach the desired conclusion by recalling from the computation of the discrete
Abelian group entropy of ζT [23] that

lim
K

lim sup
n→∞

1

n
log card(K + ζT K + · · · + ζ n−1

T K) =
∑

|λi |≥1

log |λi |,

where the limit is taken with respect to the net of finite subsets K of Z
p. 
�

To compute upper bounds we need a couple of lemmas.

Lemma 7.3. Let ζT be the group automorphism of Z
p defined via the action of an p×p

integral matrix T with det(T ) = ±1. Let λ1, . . . , λp be the eigenvalues of T counted
with spectral multiplicity. For each m ∈ N let Km be the cube

{
(k1, . . . , kp) ∈ Z

p : |ki | ≤ m for each i = 1, . . . , p
}

and define recursively for n ≥ 0 the sets Lm,n ∈ Z
p by Lm,0 = Km and

Lm,n+1 = ζT (Lm,n)+Km.

Then for every δ > 0 there is a Q > 0 such that, for all m, n ∈ N,

card
(
Lm,0 + Lm,1 + · · · + Lm,n−1

) ≤ Q(mn2)p(1 + δ)n
∏

|λi |≥1

|λi |n.

Proof. For any subset K of Z
p we will denote its convex hull as a subset of R

p by
K̃ . With ζT also referring to the linear map on R

p defined by T , we consider the con-
vex set L̃m,0 + L̃m,1 + · · · + L̃m,n−1. By amplifying this set by a linear factor of 2p

we can ensure that it contains every cube of unit side length centred at some point in
Lm,0 + Lm,1 + · · · + Lm,n−1, so that

card
(
Lm,0 + Lm,1 + · · · + Lm,n−1

) ≤ 2pvol
(
L̃m,0 + L̃m,1 + · · · + L̃m,n−1

)
.

To estimate this volume on the right we assemble a basis B of R
p by picking a basis

for the spectral subspace associated to each real eigenvalue and each pair of conjugate
complex eigenvalues. Working from this point on with respect to the basis B, we note
that the sets K̃m are now parallelipipeds, and they can be contained in cubes Bm centred
at 0 of side length rm for some r > 0 independent of m by the linearity of our basis
change. If we define the sets Mm,n recursively by Mm,0 = Bm and

Mm,n+1 = ζT (Mm,n)+ Bm,



530 D. Kerr

then the setMm,0 +Mm,1 + · · · +Mm,n−1 is a p-dimensional rectangular box which is
centred at the origin with each face perpendicular to some coordinate axis, and this box
contains L̃m,0 + L̃m,1 + · · · + L̃m,n−1, so that it suffices to show that

vol
(
Mm,0 +Mm,1 + · · · +Mm,n−1

)

is bounded by the last expression in the lemma statement for some C > 0.
Let v be a vector in B associated to a real eigenvalue λ or a complex conjugate pair

{λ, λ̄}. We can then find a Q > 0 such that for all n ∈ N the length of the vector T n(v)
is bounded by

Q(1 + δ)n|λ|n,
where the factor (1+ δ)n is required to handle additional polynomial growth in the pres-
ence of a possible non-trivial generalized eigenspace. In view of the recursion defining
Mm,n we then see that any scalar multiple of v which lies in Mm,n must be bounded in
length by

Qrm(1 + δ)n−1|λ|n−1 +Qrm(1 + δ)n−2|λ|n−2 + · · · +Qrm,

which in turn is bounded by

Qrmn(1 + δ)n max(|λ|n, 1).

It follows that any scalar multiple of v contained in Mm,0 +Mm,1 + · · · +Mm,n−1 is
bounded in length by

Qrm

n−1∑

j=0

j (1 + δ)j max(|λ|j , 1),

and this expression is less than

Qrmn2(1 + δ)n max(|λ|n, 1).

Since the set Mm,0 + Mm,1 + · · · + Mm,n−1 is a rectangular box squarely positioned
with respect to the basis B and centred at the origin (as described above), we combine
these length estimates to conclude that

vol(Mm,0 +Mm,1 + · · · +Mm,n−1) ≤ (Qrmn2)p(1 + δ)n
∏

|λi |≥1

|λi |n,

which yields the result. 
�
Proposition 7.4. Suppose u ∈ Aρ is a unitary with L(u) < ∞. Then

EntpL (Adu ◦ αT ◦ γt ) ≤
∑

|λi |≥1

log |λi |,

where λ1, . . . , λp are the eigenvalues of T counted with spectral multiplicity.
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Proof. Set α = Adu◦αT ◦γt for notational brevity. Let� ∈ Pf (L∪ (Aρ)1) and δ > 0.
By Lemma 4.3 we can find an C > 0 such that

‖a − σn(a)‖ ≤ C
log n

n

for all n ∈ N and a ∈ � ∪ {u}, where σn(a) is the nth Cesàro mean, as defined in the
paragraph preceding the statement of Lemma 4.2. Since σn(u∗) = σn(u)

∗, we also then
have

∥
∥u∗ − σn(u

∗)
∥
∥ ≤ C

log n

n

for all n ∈ N. Furthermore
∥
∥
∥αj (a)− αj (σn(a))

∥
∥
∥ ≤ C

log n

n

for all j, n ∈ N. By applying the triangle inequality n times in the usual way to esti-
mate differences of products and using the fact that the operation of taking a Cesàro is
norm-decreasing (as can be seen from the first display in the statement of Lemma 4.2),
we then have, for any a1, . . . , an ∈ �,

∥∥∥a1α(a2) · · ·αn−1(an)− σn2(a1)α(σn2(a2)) · · ·αn−1(σn2(an))

∥∥∥ ≤ C
log n2

n
,

and this last quantity is less than δ for all n greater than or equal to some n0 ∈ N.
With the notation of the statement of Lemma 7.3 we next note that for any a ∈ A and

n ∈ N we have by definition

σn2(a) ∈ span
{
u
k1
1 u

k2
2 · · · ukpp : (k1, . . . , kp) ∈ Kn2

}
,

while if

a ∈ span
{
u
k1
1 u

k2
2 · · · ukpp : (k1, . . . , kp) ∈ K

}

for some finite K ⊂ Z
p then

(Adu)(σn2(a)) ∈ span
{
u
k1
1 u

k2
2 · · · ukpp : (k1, . . . , kp) ∈ K +K2n2

}

for all n ∈ N (the factor of 2 in the subscript ofK2n2 is required to handle multiplication
of a by both u and u∗). Thus, since γt commutes with the operation of taking a Cesàro
sum of a given order, the set of all products σn2(a1)α(σn2(a2)) · · ·αn−1(σn2(an)) with
ai ∈ � for i = 1, . . . , n is contained in the subspace

Xn = span
{
u
k1
1 u

k2
2 · · · ukpp : (k1, . . . , kp) ∈ L2n2,0 + L2n2,1 + · · · + L2n2,n−1

}
,

again using the notation in the statement of Lemma 7.3 (taking m = 2n2 here). In view
of the first paragraph Xn approximately contains � · α(�) · · · · · αn−1(�) to within 2δ
for all n ≥ n0, and by Lemma 7.3 there exists a Q > 0 such that

dim(Xn) ≤ (2Qn3)p(1 + δ)n
∏

|λi |≥1

|λi |n

for all n ∈ N. Therefore
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EntpL(α,�, 2δ) ≤ lim sup
n→∞

1

n
log



(2Qn3)p(1 + δ)n
∏

|λi |≥1

|λi |n




= log(1 + δ)+
∑

|λi |≥1

log |λi |.

Taking the supremum over all δ > 0 then yields

EntpL(α,�) ≤
∑

|λi |≥1

log |λi |,

from which the proposition follows. 
�

Theorem 7.5. We have

EntpL(αT ◦ γt ) = EntpL,τ (αT ◦ γt ) =
∑

|λi |≥1

log |λi |,

where λ1, . . . , λp are the eigenvalues of T counted with spectral multiplicity. In partic-
ular,

EntpL(αT ) = EntpL,τ (αT ) =
∑

|λi |≥1

log |λi |.

Proof. This follows by combining Propositions 7.2, 7.4, and 5.13. 
�

We also have the following, which is a consequence of Propositions 5.13 and 7.4.

Proposition 7.6. If u ∈ A is a unitary with L(u) < ∞, then

EntpL(Adu) = EntpL,τ (Adu) = 0.

It is readily seen that if u is a unitary of the form ηu
k1
1 u

k2
2 · · · ukpp for some integers

k1, . . . , kp and complex number η of unit modulus, then the automorphism Adu◦αT ◦γt
can be alternatively expressed as αT ◦ γt ′ for some t ′ ∈ T

p, in which case Theorem 7.5
applies. We leave open the problem of computing the product entropies of Adu◦αT ◦γt
when u ∈ L is a unitary not of this form and the eigenvalues of T do not all lie on the
unit circle. We expect however that the entropies are positive when αT is asymptotically
Abelian (see [19] for a description of when this occurs in the case p = 2) and the partial
Fourier sums or Cesàro means of u converge sufficiently fast to u, for we could then aim
to apply the argument of the proof of Proposition 7.2 up to a degree of approximation.
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