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Abstract: The problem of a classification of integrable evolution equations on the
N -dimensional sphere is considered. We modify the main notions of the symmetry
approach such as the formal symmetry and the canonical series of conserved densities
to the case of such equations. Using these theoretical results, we solve several special
classification problems. The main result is a complete classification of integrable isotro-
pic evolution equations of third order on the sphere. An important class of anisotropic
equations is also considered.

1. Introduction

In the paper [1] the following equation

Ut =
(
Uxx + 3

2
< Ux, Ux > U

)
x

+ 3

2
< U, R(U) > Ux, < U, U >= 1 (1)

was considered. Here U = (U1, . . . , UN+1) is an unknown vector, R is a constant
symmetric matrix. Here and in the sequel < ·, · > stands for the standard scalar
product in Euclidean space V . Without loss of generality it can be assumed that R =
diag(r1, . . . , rN+1).

It was shown that this equation is integrable by the inverse scattering method for any
N and R. If N = 2, then (1) is a higher symmetry of the Landau-Lifshitz equation.
Besides, Eq. (1) defines an infinitesimal symmetry for the well-known Noemann system
[2]

Uxx = −
(
< Ux, Ux > + < U, R(U) >

)
U + R(U), < U, U >= 1, (2)

describing the dynamics of a particle on the sphere S
N under the influence of field with

the quadratic potential U = 1
2 < U, R(U) >. More precisely, if we eliminate the

derivatives Uxx and Uxxx from (1) using Eq. (2), then the reduced system
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Ut = 1

2

(
< Ux, Ux > + < U, R(U) >

)
Ux − < Ux, R(U) > U + R(Ux)

is a symmetry for (2).
In this paper we are dealing with a problem of classification of integrable vector

evolution equations similar to Eq. (1). Our main tool is the symmetry approach [20, 21,
23, 24] based on the observation that all integrable evolution equations with one spatial
variable possess local higher symmetries (or, the same, higher commuting flows). We
are developing a specific componentless version of this approach suitable for vector
equations.

In Sect. 3 the main concepts of the symmetry approach are generalized to the case of
equations of the form

Ut = fn Un + fn−1 Un−1 + · · · + f1 U1 + f0 U, Ui = ∂iU

∂xi
, (3)

where U(x, t) is an N -component vector, and fi are scalar functions of variables

u[i,j ] =< Ui, Uj >, i � j, (4)

0 � i, j � n.

It is clear that any Eq. (3) is invariant with respect to an arbitrary constant orthogonal
transformation of the vector U . Equations of the form (3) are called isotropic.

The vector modified Korteweg-de Vries equation

Ut = Uxxx+ < U, U > Ux, (5)

gives us an example of an integrable isotropic equation. It is well known that this equation
is integrable by the inverse scattering method for any N.

Different examples of integrable vector equations can be found in the papers [4, 5].
Some of them are closely related to such algebraic and geometrical objects as Jordan
triple systems and symmetric spaces [3, 8, 9, 11].

In this paper we shall consider Eq. (3) that are integrable for arbitrary dimension N

of the vector U . In addition, we assume that the coefficients fi do not depend on N . By
virtue of the arbitrariness ofN, variables (4) will be regarded as independent. The func-
tional independence of u[i,j ], i � j is a crucial requirement in all our considerations.
If N is fixed, we cannot suppose that. For instance, if N = 3, then the determinant of
matrix A with entries aij = u[i,j ], i, j = 1, 2, 3, 4 identically equals to zero.

The signature of the scalar product is inessential for us. Furthermore, the assumptions
that the spaceV is finite-dimensional and the field of constants is R are also unimportant.
For instance, U could be a function of t, x, and y and the scalar product be

< U, V >=
∫ ∞

−∞
U(t, x, y) V (t, x, y) dy.

Thus our formulas and statements are valid also for this particular sort of 1 + 2-dimen-
sional non-local equations.

A more restrictive class than Eq. (3) on R
N consists of equations

Ut = fn Un + fn−1 Un−1 + · · · + f1 U1 + f0 U, < U, U >= 1, (6)

U = (U1, . . . , UN+1), defined on the sphere S
N. If R = 0, then (1) belongs to this

class.



Integrable Evolution Equations on the N-Dimensional Sphere 3

It is easy to see that the stereographic projection takes any Eq. (6) on S
N to some

isotropic equation on R
N . The converse statement is not true because, in general, the

preimage of Eq. (3) on R
N under the stereographic projection is non-isotropic on S

N.

In Sect. 2 we present a complete list of integrable isotropic equations

Ut = Uxxx + f2 Uxx + f1 Ux + f0 U, (7)

on the sphere S
N. A sketch of a proof of the corresponding classification theorem is

contained in Sect. 4.
In order to prove that all equations from the list are really integrable, we find an

auto-Bäcklund transformation, involving a “spectral” parameter, for each of the equa-
tions (see Sect. 5).

Equation (1) with non-trivial R is not isotropic. Nevertheless, equations of such type
can be also treated in the framework of our componentless approach. To do this we
assume that the coefficients fi of Eq. (3), besides (4), depend on additional variables

v[i,j ] =< Ui, R(Uj ) >, i � j, (8)

where 0 � i, j � n, and R is a constant symmetric matrix. We call such equations
anisotropic. In the paper we consider anisotropic equations that are integrable for arbi-
trary symmetric matrix R. For this reason we regard the union of all scalar products (4)
and (8) as a set of independent variables.

Section 7 contains new nontrivial examples of integrable anisotropic evolution
equations of third order on the N -dimensional sphere.

2. Classification Results for the Isotropic Case

In this section we formulate some classification statements concerning integrable evolu-
tion equations of third order on theN -dimensional sphere. This classification problem is
much simpler than the similar problem on R

N. Indeed, the set of independent variables
(4) on S

N is reduced because of the constraint u[0,0] = 1. Differentiating this identity, we
can express all variables of the form u[0,k], k � 1 in terms of the remaining independent
scalar products

u[i,j ] =< Ui, Uj >, 1 � i � j. (9)

For example,u[0,1] = 0, u[0,2] = −u[1,1], and so on. Therefore the coefficients of Eq. (7)
on S

N a priori depend on only three independent variablesu[1,1], u[1,2], andu[2,2] where-
as in the case of R

N they are functions of six variables u[0,0], u[0,1], u[1,1], u[0,2], u[1,2],
and u[2,2].

Theorem 1. Suppose that equation

Ut = Uxxx + f2 Uxx + f1 Ux + f0 U, fi = fi(u[1,1], u[1,2], u[2,2]) (10)

on the sphere < U, U >= 1 possesses an infinite series of commuting flows of the form

Uτk = gk Uk + gk−1 Uk−1 + · · · + g1 Ux + g0 U, k → ∞,

whose coefficients gi depend on variables (9); then this equation belongs to the
following list:
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Ut = Uxxx − 3
u[1,2]

u[1,1]
Uxx + 3

2

(
u[2,2]

u[1,1]
+ u2

[1,2]

u2
[1,1] (1 + a u[1,1])

+ c

)
Ux, (11)

Ut = Uxxx + 3

2

(
a2 u2

[1,2]

1 + a u[1,1]
− a (u[2,2] − u2

[1,1]) + u[1,1] + c

)
Ux + 3 u[1,2] U,

(12)

Ut = Uxxx − 3
u[1,2]

u[1,1]
Uxx +

(
3

2

u[2,2]

u[1,1]
+ c

)
Ux, (13)

Ut = Uxxx − 3
(q + 1) u[1,2]

2 q u[1,1]
Uxx + 3

(q − 1) u[1,2]

2 q
U

+ 3

2

(
(q + 1) u[2,2]

u[1,1]
− (q + 1) a u[1,2]

2

q2u[1,1]
+ u[1,1] (1 − q) + c

)
Ux, (14)

where a and c are arbitrary constants, q = ε
√

1 + a u[1,1], ε2 = 1.

Theorem 2. If Eq. (10) on S
N possesses an infinite series of conservation laws (ρk)t =

(σk)x, k → ∞, where ρk and σk are functions of variables (9), then this equation
belongs to the same list (11)–(14).

Remark 1. The constant c can be removed by the Galilean transformation and below we
will omit this constant as trivial. The constant a can be reduced to a = 0 or to a = ±1
by an appropriate scaling of x and t . Thus the list contains rather many non-equivalent
equations over R. In particular, Eq. (1) with R = 0 coincides with (12), where a = 0.
Equation (14) with a = 0 and ε = −1 reads as

Ut = Uxxx + (3 u[1,1] + c)Ux + 3 u[1,2] U. (15)

If a = 0 and ε = 1 then Eq. (14) becomes

Ut = Uxxx − 3
u[1,2]

u[1,1]
Uxx +

(
3
u[2,2]

u[1,1]
+ c

)
Ux. (16)

Remark 2. In the process of the proof of Theorems 1 and 2 (see Sect. 4) it has been
checked that all Eqs. (11)–(14) have non-trivial local conservation laws of orders 1,2,3
and 4. Moreover, we have verified that each of these equations possesses a higher sym-
metry of fifth order. For example, the fifth order symmetry of Eq. (15) has the following
form:

Uτ = U5 + 5 u[1,1] U3 + 15 u[1,2] U2 + 5
(

3 u[1,1]
2 + 2 u[2,2] + 3 u[1,3]

)
U1

+ 5
(
6 u[1,2]u[1,1] + 2 u[2,3] + u[1,4]

)
U.

We are sure that all our equations have infinite series of symmetries and conserved den-
sities, but of course it should be rigorously proved. From our viewpoint the existence of
higher symmetries and/or conservation laws is a very efficient way to list all integrable
cases. But there is a little help from symmetries and conservation laws for integrating
of a given equation. That is why we find in Sect. 5 auto-Bäcklund transformations for
all equations of the list.
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Remark 3. The coincidence of the lists from Theorems 1 and 2 shows that the so-called
Burgers type equations of the form (10) do not exist on S

N . Recall that the Burgers
type equations (C-integrable equations in the terminology by F. Calogero [22]) possess
higher symmetries but have no higher conservation laws.

Remark 4. Equation (13) on R
N has been found the papers [4, 6, 11]. This equation is

related to vector triple Jordan systems. It is a vector generalization of the well-known
Swartz-KdV equation

vt = vxxx − 3

2

v2
xx

vx
.

Remark 5. In the case of one-dimensional sphere Eqs. (11), (12) with a = 0 can be
reduced to the potential mKdV equation

vt = vxxx + v3
x

by the stereographic projection and some point-wise transformations. Equations (11)
and (12) with a = −1 are reduced to

vt = vxxx − 1

8
Q′′ vx + 3

32

(Q − 4v2
x)

2
x

vx (Q − 4v2
x)
, (17)

where Q(v) = (v2 + 1)2. Equation (17) with Q(v) being an arbitrary polynomial of
fourth degree is known as the Calogero-Degasperis equation (see [13]). Our particular
case corresponds to a trigonometric degeneration of the elliptic curve implicitly involved
in (17).

Equation (14) is reduced to the following integrable equation:

vt = vxxx − 6 a vx v2
xx

1 + 4 avx2 + 8v3
x.

Remark 6. It would be interesting to find a geometrical interpretation of Eqs. (11)–(14)
along the lines of [10]. Here we only note that Eqs. (11) and (13) admit the following
constraint: < Ux, Ux >= 1. This means that the t-deformation of an initial curve U(x)

on the sphere by virtue of these equations preserves the length.

3. Canonical Densities

In the papers [12, 20] the concept of formal symmetry for one-component evolution
equations of the form

ut = F(u, u1, u2, . . . , un), ui = ∂iu

∂xi
(18)

has been introduced. By definition, the formal symmetry (or the formal recursion oper-
ator) is a series of the form

L = a1 Dx + a0 + a−1 D
−1
x + a−2 D

−2
x + · · · , ai = ai(u, u1, . . . , uni ), (19)

satisfying the following operator relation:

Lt = [F∗, L], F∗ =
n∑
0

∂iF

∂ui
Di
x. (20)

Here Dx is the total derivative operator with respect to x:
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Dx =
∞∑
0

ui+1
∂i

∂ui
,

F∗ is the Frechét derivative of the right-hand side of Eq. (18). It was shown in [12, 19]
that the formal symmetry exists for any Eq. (18) possessing an infinite series of local
higher symmetries or conservation laws.

The residues ρi = resLi are local conserved densities for Eq. (18). They are called
the canonical densities. In [19] it was proved that if Eq. (18) has an infinite series of
conservation laws, then the canonical densities ρi are trivial for all even i.

There is an alternative way [14, 15] to compute the canonical densities. It is based
on identities for the logarithmic derivative of a formal eigenfunction for the operator
∂

∂t
− F∗. This algorithm deals with commutative Laurent series in contrast with non-

commutative series similar to (19).
In this section we define an infinite sequence of necessary integrability conditions

for Eq. (3). These conditions

Dt ρi = Dx θi, i = 0, 1, 2, . . . (21)

have the form of conservation laws, where ρi, θi are some functions of variables (4),
which can be recursively found in terms of the coefficients fi of Eq. (3).

These conditions are very close to the canonical conservation laws from the papers
[12, 20, 21, 7, 14, 15, 23] but do not coincide with them. Our conditions are more con-
venient for classification problems related to Eq. (3) since they are much simpler than
the standard canonical densities for multi-component systems.

Theorem 3. (i) If Eq. (3) possesses an infinite series of commuting flows of the form

Uτ = gm Um + gm−1 Um−1 + · · · + g1 U1 + g0 U, (22)

then there exists a formal series

L = a1 Dx + a0 + a−1 D
−1
x + a−2 D

−2
x + · · · , (23)

satisfying the operator relation

Lt = [A, L], A =
n∑
0

fi D
i
x. (24)

Here gi, ai are some functions of variables (4), fi are the coefficients of Eq. (3).
(ii) The following functions

ρ−1 = 1

a1
, ρ0 = a0

a1
, ρi = resLi, i ∈ N (25)

are conserved densities for Eq. (3).
(iii) If Eq. (3) possesses an infinite series of conserved densities depending on variables

(4), then there exists a series L satisfying (24), and a series S of the form

S = s1 Dx + s0 + s−1 D
−1
x + s−2 D

−2
x + · · · (26)

such that
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St + AT S + S A = 0, ST = −S, (27)

where the superscript T stands for formal conjugation.
(iiii) Under the conditions of item (iii) all densities (25) corresponding to even i are

trivial i.e., ρ2k = Dx(σk) for some functions σk of variables (4).

Comments. In [21, 7] the notion of the formal symmetry was generalized to the case
of systems of evolution equations. In these papers the formal symmetry is a series with
matrix coefficients satisfying (20). In our paper both the operators A and L are scalar
objects and A does not coincide with the Frechét derivative F∗ of the right-hand side of
the system.

In [7–9] Sergey Svinolupov has described integrable cases for several classes of
N -component polynomial systems using the existence of the formal symmetry as a
necessary condition of integrability. In these papers he imposed very serious restric-
tions on the structure of the right-hand side and only a collection of unknown constants
was to be determined. Any attempts to solve more general classification problems for
N -component systems with the help of the standard component-wise approach lead to
computational difficulties which cannot be overcome.

The use of the scalar series L defined by formula (24) instead the formal symmetry
makes possible a complete classification of isotropic integrable systems of the form
Ut = U3 +f2 U2 +f1 U1 +f0 U on R

N without any assumptions about the structure of
the coefficients fi . We are planning to publish a separate paper devoted to this problem.

Reduced proof of Theorem 3. In many respects the proof is analogous to one used in
[20] for the scalar case.

(i) Let us rewrite Eq. (3) and its higher symmetry (22) in the form

Ut = A(U), Uτ = B(U), B =
m∑
0

gi D
i
x. (28)

The compatibility of Eqs. (28) implies the following operator identity:

Bt − [A, B] = Aτ .

For m large enough we can ignore the right-hand side of this relation. In other words,
the operator B approximately satisfies (24). But then the first order series Lm = B1/m

also approximately satisfies (24). A rigorous assembling of approximate solutions Lm

into one exact solution L can be done in the same way as in [20].
(ii) The statement follows from the known Adler’s formula (see [20]).
(iii) Let us represent the variational derivative

δρ

δU
=
∑
i�j

(−Dx)
i
( ∂ρ

∂u[i,j ]
Uj

)
+ (−Dx)

j
( ∂ρ

∂u[i,j ]
Ui

)
(29)

of arbitrary conserved density ρ of order m in the form

δρ

δU
= Sm(U),

where Sm is a scalar differential operator of order 2m, whose coefficients depend on
variables (4). As it is well known [28], this variational derivative satisfies the following
equation:



8 A.G. Meshkov, V.V. Sokolov

(
δρ

δU

)
t

= −
(
A(U)

)T
∗

δρ

δU
,

where the subscript ∗ means the Frechét derivative and the superscript T stands for
formal conjugation. It follows from this equation that the operator Sm approximately
satisfies (27). To conclude the proof of Theorem 3 it suffices to repeat the corresponding
reasoning from [20].

Remark 7. In the same way, this theorem can be proved for the isotropic equations on
the sphere and for the anisotropic equations.

4. Systems of Third Order. Isotropic Case

Finding from (24) coefficients a1, a0, a−1 of the series L, it is easy to verify that for Eq.
(10) the densities ρ0 and ρ1 are expressed in terms of the coefficients fi by the following
formulae:

ρ0 = −1

3
f2, (30)

ρ1 = 1

9
f 2

2 − 1

3
f1 + 1

3
Dx f2. (31)

The corresponding functions θi can be found from (21). The fact that the left-hand
sides of (21) are total x-derivatives imposes rigid restrictions (see below) to the coeffi-
cients fi of (7).

Expressions for ρi, i > 1 involve the coefficients fk and the functions θj with
j � i − 2. Using a technique developed in the papers [14, 15], one can obtain the
following recursion formula:

ρn+2 = 1

3

[
θn − f0 δn,0 − 2 f2 ρn+1 − f2 Dxρn − f1 ρn

]

−1

3

[
f2

n∑
s=0

ρs ρn−s +
∑

0�s+k�n

ρs ρk ρn−s−k + 3
n+1∑
s=0

ρs ρn−s+1

]

−Dx

[
ρn+1 + 1

2

n∑
s=0

ρs ρn−s + 1

3
Dxρn

]
, n � 0, (32)

where δi,j is the Kronecker delta and ρ0, ρ1 are defined by (30), (31).
According to this formula,

ρ2 = −1

3
f0 + 1

3
θ0 − 2

81
f 3

2 + 1

9
f1 f2 − Dx

(
1

9
f 2

2 + 2

9
Dx f2 − 1

3
f1

)

and so on.
In order to show how to manipulate with conditions (21) we consider Eqs. (10) on

S
N and present a proof of Theorem 2. To perform the corresponding computations some

special Maple routines were written.
The equation of the sphere < U, U >= 1 gives rise to the relation < U, Ut >= 0.

It follows from this that any Eq. (10) on S
N has the following form:
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Ut = U3 + f2 U2 + f1 U1 + (f2 u[1,1] + 3 u[1,2]) U0.

Thus for Eqs. (10) on S
N, we have to replace f0 by f2 u[1,1] +3 u[1,2] in conditions (32).

Lemma 1. Suppose Eq. (10) on S
N possesses an infinite series of conserved densities

depending on variables (4); then the equation has the form

Ut = U3 + Au[1,2] U2 + (B u[2,2] + C u2
[1,2] + D u[1,2] + E)U1

+ (u[1,1] A + 3) u[1,2] U0, (33)

where A,B,C,D,E are some functions of variable u[1,1].

Proof. It follows from (30) and the item (iiii) of Theorem 3 that f2 = Dx(σ0) for some
function σ0. Since f2 does not depend on the third order derivative, we see that σ0 may
depend on the variable u[1,1] only. Thus f2 = 2σ ′

0 u[1,2] and the function A from (33)
coincides with 2σ ′

0.
To specify the form of the coefficient f1, let us consider the condition Dt(ρ1) =

Dx(θ1), where ρ1 is given by (31). Using the main property of the Euler operator, we
can eliminate the unknown function θ1. It is well known [28] that δ

δU
Dx(θ) = 0 for any

function θ . Therefore we have
δ

δU

(
(ρ1)t

)
= 0. (34)

It is easily verified that

δ

δU

(
(ρ1)t

)
= 2

(
Dx

∂f1

∂u[2,2]
− 2

3

∂f1

∂u[2,2]
Au[1,2]

)
U6 + · · · , (35)

where the dots denote the terms which do not containU6. Equating to zero the coefficient
of U6 in (35) we get

2
∂2f1

∂u2
[2,2]

u[2,3] + ∂2f1

∂u[2,2]∂u[1,2]
(u[1,3] + u[2,2])

+ 2
∂2f1

∂u[2,2]∂u[1,1]
u[1,2] − 2

3

∂f1

∂u[2,2]
Au[1,2] = 0. (36)

This obviously implies
∂2f1

∂u2
[2,2]

= ∂2f1

∂u[2,2]∂u[1,2]
= 0.

Taking these relations into account, let us equate the coefficients at u[3,3]u[1,4] U1 and
u[2,4]u[1,4] U1 in (35) to zero. It is not hard to check that as the result we obtain

∂3f1

∂u3
[1,2]

(
u[1,1]

∂f1

∂u[2,2]
− 15

)
= 0

and
∂3f1

∂u3
[1,2]

(
2u[1,1]

∂f1

∂u[2,2]
− 39

)
= 0.

It follows from these two identities that
∂3f1

∂u3
[1,2]

= 0. This concludes the proof of

Lemma 1.
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Remark 8. The statement of Lemma 1 is a generalization of the fact (see [23]) that for
integrable scalar equations of the form

ut = u3 + F(u, u1, u2)

the function F is a second degree polynomial in u2.

It follows from (36) that

3B ′ = AB. (37)

One more important relation can be derived from

δ

δU
(ρ2) = 0.

Vanishing of the coefficient of the highest derivative U4 in this condition implies

A2 + 2B A′u[1,1] + 2AB − 3A′ = 0. (38)

At last, the conditions obtained from the coefficients at u[1,6]u[1,2] U1 and u[1,5] U3 in
(34) implies that

B ′′ B2 − 2B ′3 u[1,1] − 4B ′2 B = 0. (39)

It is easy to find from (37)–(39) that

Case 1) B = µ,

or Case 2) B = λ

u[1,1]
, λ �= 0,

or Case 3) B2 u[1,1] − 3B = ν, ν �= 0,

where µ, λ, ν are constants.
Consider, for example, case 2. Relation (37) leads to A = − 3

u[1,1]
. Equating to zero

the coefficient at u[1,5] U3 in (34), we obtain

(2λ − 3)(C u2
[1,1] + λ − 3) = 0. (40)

The coefficient at u1,6]u[1,2] U1 gives us

3C′ u[1,1] − 2u2
[1,1]C

2 + 2(6 − λ)C = 0. (41)

Moreover, one can derive from (34) that D = 0 and E is a constant. Thus if λ �= 3
2 , we

have the following equation:

Ut = U3 − 3
u[1,2]

u[1,1]
U2 +

(
λ
u[2,2]

u[1,1]
+ (3 − λ)

u2
[1,2]

u2
[1,1]

+ c

)
U1. (42)

For any constant λ, this equation satisfies conditions (21) with i = 0, 1, 2, 3, 4. It can
be easily checked that the conditions with i = 1 and i = 3 yield non-trivial conserved
densities

ρ1 = u[1,1] u[2,2] − u2
[1,2]

u2
[1,1]
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and

ρ3 = u[3,3]

u[1,1]
− (u[1,3] − u[2,2])

2

u2
[1,1]

− u2
[2,2]

u2
[1,1]

+ (9 − λ)

2

(u[1,1] u[2,2] − u2
[1,2])

2

u4
[1,1]

of second and third orders. It follows from (21) with i = 5 that λ = 3 and we obtain
Eq. (16). Note that Eq. (42) with arbitrary λ provides us an example of a non-integrable
equation having a local higher conservation law of third order.

In the case λ = 3
2 , the general solution

C = 3

2u2
[1,1] (1 + a u[1,1])

of the Bernoulli equation (41) immediately gives rise to Eq. (11). The particular solution
C = 0 corresponds to Eq. (13).

Case 1 can be subdivided into two subcases: µ = 0 and µ �= 0. For both subcases
explicit expressions for the coefficients of (33) can be easily obtained. But to specify
the values of some constants in these formulae it is needed to use conditions (21) up to
i = 6. As the result, we obtain Eqs. (15) and (12).

In Case 3 we have

B = 3

2

q + 1

u[1,1]
, A = −3

2

q + 1

q u[1,1]
, q = ε

√
1 + a u[1,1], ε2 = 1,

where a = 4ν/9. The remaining coefficients are easily derived from condition (21) with
i = 3.As the result, we obtain Eq. (14).

5. Bäcklund Transformations for Equations of the List

We have to prove somehow the integrability of all equations from the list (11)–(14)
obtained with the help of the necessary integrability conditions (21). The usual way for
that is to find Lax representations or Miura transformations between “new” equations
from the list and equations known to be integrable. But we choose another possibility.

In this section we present first order auto-Bäcklund transformations for all equations
from the list. Such a transformation involving an arbitrary parameter allows us to build
up both multi-solitonic and finite-gap solutions even if the Lax representation is not
known (see [18]). That’s why the existence of an auto-Bäcklund transformation with
additional “spectral” parameter λ is a convincing evidence of integrability.

For the scalar evolution equations, the auto-Bäcklund transformation of first order is
a relation between two solutions u and v of the same equation and their derivatives ux
and vx . Writing this constraint as ux = φ(u, v, vx), we can express all derivatives of u
in terms of u, v, vx, . . . , vi, . . . . The last variables are regarded as independent.

In the vector case, the independent variables are vectors

U, V, V1, V2, . . . Vi . . . , (43)

and all their scalar products

v[i,j ]
def= < Vi, Vj >, wi

def= < U, Vi >, i, j � 0. (44)
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In this paper we consider special vector auto-Bäcklund transformations of the form

U1 = hV1 + f U + g V, (45)

where f, g and h are functions of variables (44) depending on first derivatives at most.
Since V lies on the sphere < V, V >= 1, we assume without loss of generality that the
arguments of f, g and h are w0 =< U, V >, w1 =< U, V1 >, v[1,1] =< V1, V1 >.

Since < U, U >= 1, and < U, U1 >= 0, it follows from (45) that

h = −f + w0 g

w1
. (46)

To find an auto-Bäcklund transformation for Eq. (10), we differentiate (45) with
respect to t by virtue of (10) and express all vector and scalar variables in terms of
independent variables (43) and (44). By definition of Bäcklund transformation, the ex-
pression thus obtained must be identically zero. Splitting this expression with respect
to the independent variables different from w0, w1, v[1,1], we derive an overdetermined
system of non-linear PDEs for the functions f and g. If the system has a solution depend-
ing on an essential parameter λ, this solution gives us the auto-Bäcklund transformation
we are looking for.

We present below the result of our computations.
In the case of Eq. (12) (where we put c = 0) the auto-Bäcklund transformation reads

as follows:

U1 = −V1 +
(
w1

1 − λ a w0

1 + w0
− w0 G

)
U +

(
w1 (1 + λ a)

1 + w0
+ G

)
V, (47)

where

G =
√
λ (2 + λ a − λ a w0)(1 + a v[1,1])

(1 + w0)
.

In particular, if a = 0, then we have

U1 = −V1 + w1

1 + w0

(
U + V

)+ λ√
1 + w0

(
V − w0 U

)
. (48)

The vector Schwartz-KdV Eq. (13) admits the auto-Bäcklund transformation of the
form

U1 = G
(
w1(U + V ) − (1 + w0) V1

)
, (49)

where

G = 1

λ

(
1 +

√
λ + 1 + w0

1 + w0

)2

. (50)

The auto-Bäcklund transformation for Eq. (11) is defined by (49), where

G = 1

1 + w0
+ 2

λ
+ 2

λ

√
(λ + 1 + w0)(1 + av[1,1])

av[1,1](1 + w0)
. (51)
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Note that Eq. (13) is a limit of (11) as a → ∞. The corresponding limit value of (51)
gives us (50).

Formula (51) is not valid if a = 0. To derive from (51) an auto-Bäcklund transfor-
mation for Eq. (11) with a = 0, one must put λ = λ′/a at first. After that the limit of
(51) as a → 0 gives rise to

G =
√
v[1,1] + λ

√
1 + w0

(1 + w0)
√
v[1,1]

.

Finally, the auto-Bäcklund transformation for Eq. (14) is defined by the following
expression:

U1 = F (V1 − w1 U) + G(V − w0 U), (52)

where

F =λa w1

p − 1
+ R, R =

√
1 + λ2a(1 − w2

0), p = ε
√

1 + a v[1,1],

G =w0 w1 F

1 − w2
0

+ w1

(
2λ2a + 1

1 − w2
0

)
+ λ(p − 1)R + λa w2

1 R

(p − 1)(1 − w2
0)
,

ε and a are the constants from (14) and λ is the Bäcklund parameter.
Auto-Bäcklund transformations for Eq. (15) and (16) can be obtained from these

formulas by setting a = 0 and ε = −1 or ε = 1 correspondingly. For Eq. (15) the
Bäcklund transformation takes the following form:

U1 = V1 + w1

1 − w0

(
V − U

)− 2λ
(
V − w0 U

)
,

and for Eq. (16) the Bäcklund transformation is given by

U1 = w1 (v[1,1] + 2λw1)

v[1,1] (1 − w0)
(V − U) +

(
1 + 2λ

w1

v[1,1]

)
V1.

6. Soliton Solutions

Using the auto-Bäcklund transformations from the previous section, one can find partic-
ular solutions of Eqs. (11)–(14). Here we construct soliton type solutions for (12) with
c = 0.

Let us take for V a constant solution C1 of (12), where < C1, C1 >= 1. Taking into
account that v[i,j ] = 0, wj = 0 for j > 0, we obtain from (47) that

Ux = g(C1 − w0 U), (53)

where

g =
√
λ

2 + λ a − λ a w0

1 + w0
.

It follows from (53) that

w0,x = g(1 − w2
0). (54)
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Using (53), (54), it can easily be checked that Eq. (12) reduces to Ut = λg(C1 −w0 U).
It means that the solution U depends on x + λt .

It is clear that w2
0 � 1. Equation (53) has a trivial solution w2

0 = 1, U = w0C
1. The

expression
U − C1w0√

1 − w2
0

is a first integral of (53). Hence, non-trivial solutions of (53) locally can be represented
as

U = C1w0 + C2
√

1 − w2
0,

where the constant vector C2 satisfies the conditions

< C2, C2 >= 1, < C1, C2>= 0.

The simplest way to solve Eq. (54) is to note that this equation is equivalent to the
following equation for the function g:

gx = λ − g2.

Analytical properties of the solution U(x + λt) essentially depend on the sign of λ.
If λ = −k2 < 0, then the solution is periodic:

U = C1
(

2(ak2 − 1)

ak2 + tan2 ψ
− 1

)
+ 2C2

√
ak2 − 1

cosψ (ak2 + tan2 ψ)
, (55)

where a > k−2, g = −k tanψ, ψ = k(x − k2t).

If λ = k2 > 0, there exists a particular case g2 = k2, where λa = −1 , w0 =
tanh ϕ, ϕ = k(x + k2t) and

U = C1 tanh ϕ + C2 cosh−1 ϕ. (56)

In the generic case we have two kinds of solutions:
(1) if g2 < k2, then a < −k−2, g = k tanh ϕ, ϕ = k(x + k2t) and

U = C1
(

2(ak2 + 1)

ak2 + tanh2 ϕ
− 1

)
+ 2C2

√
|a|k2 − 1

cosh ϕ (ak2 + tanh2 ϕ)
. (57)

(2) if g2 > k2, then a > −k−2, g = k coth ϕ, ϕ = k(x + k2t) and

U = C1
(

2(ak2 + 1)

ak2 + coth2 ϕ
− 1

)
+ 2C2

√
ak2 + 1

sinh ϕ (ak2 + coth2 ϕ)
. (58)

We see that the form of solitons and periodic waves described by Eq. (12) essen-
tially depend on their propagation velocities. Really, if a < 0 then the rapid solitons
have the form (57) and the slow solitons are of the form (58). If a > 0, then both
solitons (58) and periodic waves (55) exist but the latter cannot propagate with small
velocities.

All solutions (55)–(58) have only two independent components U1 =< U,C1> and
U2 =< U,C2 >. We present below plots of the initial profiles of U1 and U2 for some
solutions:
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Fig. 1. Soliton solution (57) for a = −1, k2 = 100/99
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Fig. 2. Soliton solution (58) for a = −1, k = 2/3

7. Equations on the Sphere. Anisotropic Case

In this section we present a list of anisotropic integrable equations similar to Eq. (1).
Equation (1) and its symmetries contain both the scalar products uij =< Ui, Uj > and
vij =< Ui, R(Uj ) >. SinceR is an arbitrary symmetric operator, we regard< U, V >

and < U, R(V ) > as two independent scalar products on the same vector space. The
theory of canonical densities developed in Sect. 3 can be easily generalized to the case
of Eqs. (3), whose coefficients fi depend on variables (4) and (8).

The following statement is an extension of Theorems 1 and 2 to the anisotropic case.

Theorem 4. Suppose Eq. (10) with

fi = fi(u[1,1], u[1,2], u[2,2], v[0,0], v[0,1], v[1,1])
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Fig. 3. Periodic solution (55) for a = 1, k = 1. 05
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Fig. 4. Periodic solution (55) for a = 1, k = 2

on the sphere S
N has an infinite series of commuting flows or conserved densities; then

this equation is one of (11)–(14) or belongs to the following list:

Ut = U3 +
(3

2
u[1,1] + c v[0,0]

)
U1 + 3 u[1,2] U0, (59)

Ut = U3 − 3
u[1,2]

u[1,1]
U2 + 3

2

(
u[2,2]

u[1,1]
+ u2

[1,2]

u2
[1,1]

+ c v[1,1]

u[1,1]

)
U1, (60)

Ut = U3 − 3
u[1,2]

u[1,1]
U2 + 3

2

(
u[2,2]

u[1,1]
+ u2

[1,2]

u2
[1,1]

− (v[0,1] + u[1,2])
2

(u[1,1] + v[0,0] + a) u[1,1]
+ v[1,1]

u[1,1]

)
U1.

(61)
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Equation (59) coincides with (1). Each of the two remaining equations satisfies con-
ditions (21) with i � 9 and possesses local conserved densities of orders 1, 2, 3 and 4. We
also verified that these equations have fifth order symmetries. Though Eqs. (60) and (61)
are definitely integrable, in order to prove this it is necessary to find Lax representations
or auto-Bäcklund transformations for them. It will be done in a separate paper.

In the case N = 1, after the trigonometric parameterization of the circle

u1 = tan2(s) − 1

tan2(s) + 1
, u2 = 2 tan(s)

tan2(s) + 1
,

both Eqs. (59) and (60) become

st = sxxx + 2 s3
x + 3

4

(
c1 + c2 cos(4s)

)
sx.

The latter equation is well known in the theory of integrable PDEs [13, 25].
The rational parameterization

u1 = v2 − 1

v2 + 1
, u2 = 2 v

v2 + 1

of the circle brings Eq. (61) with N = 1 to the form (17), where Q = α v4 + β v2 + α

with arbitrary parameters α and β. Thus (61) is an integrable vector generalization of
the generic Calogero-Degasperis equation (see Remark 5).
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