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Abstract: We construct the incipient infinite cluster measure (IIC) for sufficiently
spread-out oriented percolation on Zd × Z+, for d + 1 > 4 + 1. We consider two
different constructions. For the first construction, we define Pn(E) by taking the prob-
ability of the intersection of an event E with the event that the origin is connected to
(x, n) ∈ Zd × Z+, summing this probability over x ∈ Zd , and normalising the sum to
get a probability measure. We let n → ∞ and prove existence of a limiting measure P∞,
the IIC. For the second construction, we condition the connected cluster of the origin in
critical oriented percolation to survive to time n, and let n → ∞. Under the assumption
that the critical survival probability is asymptotic to a multiple of n−1, we prove exis-
tence of a limiting measure Q∞, with Q∞ = P∞. In addition, we study the asymptotic
behaviour of the size of the level set of the cluster of the origin, and the dimension of
the cluster of the origin, under P∞. Our methods involve minor extensions of the lace
expansion methods used in a previous paper to relate critical oriented percolation to
super-Brownian motion, for d + 1 > 4 + 1.

1. Introduction and Results

1.1. The incipient infinite cluster. For oriented percolation on Zd ×Z+, it was shown in
[3, 10] that there is no infinite cluster at the critical point. For non-oriented percolation
on Zd , proofs that there is no percolation at the critical point are restricted to 2-dimen-
sional and high-dimensional models, and a general proof has remained an elusive goal.
The notion of the incipient infinite percolation cluster (IIC) is an attempt to describe
the infinite structure that is emerging but not quite present at the critical point. Various
aspects of the IIC are discussed in [1]. There is currently no existence theory for the IIC
that is applicable in general dimensions, neither in the oriented nor in the non-oriented
setting.
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For bond percolation on Z2, Kesten [17] constructed the IIC as a measure on bond
configurations in which the origin is almost surely connected to infinity. He gave two
different constructions, both leading to the same measure. One construction involved
conditioning on the event that the origin is connected to infinity, with bond density p
greater than the critical value pc, and taking the limit p ↓ pc. Another construction
involved conditioning on the event that the origin is connected to the boundary of a box
of radius n, with p = pc, and letting n → ∞. More recently, Járai [15, 16] has shown
that several other definitions of the IIC on Z2 yield the same measure as Kesten’s. These
include the inhomogeneous model of [8], and definitions in terms of invasion percolation
[7], the largest cluster in a large box [5], and spanning clusters [1]. The incipient infinite
cluster is thus a natural and robust object that can be constructed in many different ways.

No construction of the IIC, as a measure on bond configurations, has been given
for any finite-dimensional lattice in dimensions greater than 2. In the present paper, we
consider sufficiently spread-out oriented percolation on Zd × Z+, with d + 1 > 4 + 1,
and propose two definitions of the IIC.

Perhaps the most natural definition of the IIC for oriented percolation is the measure
Q∞ obtained by conditioning the cluster of the origin to survive to time n, with p = pc,
and then letting n → ∞. Of course, it is not obvious that the limit exists.

For another possible definition, we set p = pc and define Pn(E) by taking the prob-
ability of the intersection of an event E with the event that the origin is connected to
(x, n) ∈ Zd × Z+, summing this probability over x ∈ Zd , and normalising the sum to
get a probability measure. We will let n → ∞ and prove existence of a limiting measure
P∞. It is clear from the definition that P∞ will be supported on configurations in which
the origin is connected to infinity.

In view of the apparent robustness of the IIC, it is natural to expect that P∞ = Q∞.
In fact, we will prove that Q∞ exists and equals P∞, subject to the assumption that the
critical survival probability behaves asymptotically as a multiple of n−1. We believe that
the methods of [14] can be adapted to prove this assumption, and we plan to return to this
problem in a future publication [12]. Our constructions are restricted to d+1 > 4+1 due
to the appearance in proofs of Feynman diagrams that require d > 4 for convergence,
as in [14, 20, 21].

Finally, we will derive various properties of the IIC measure P∞. These include
statements that under P∞ the cluster of the origin is infinite, the number of particles in
the cluster of the origin at time m grows like m times a size-biased exponential random
variable, and the cluster has a 4-dimensional character.

An alternate approach to the IIC is via a scaling limit. For oriented percolation, the
goal is to understand the distribution of critical clusters that survive to time n, with the
lattice spacing shrinking as an appropriate power of n, in the limit n → ∞. Such a pro-
gram was carried out in [14], where it was shown that the scaling limit for sufficiently
spread-out oriented percolation above the upper critical dimension 4 + 1 is intimately
related to super-Brownian motion. (Related results for non-oriented percolation were
obtained in [11].) This suggests that large critical clusters are closely related to large
critical branching random walk clusters, for d + 1 > 4 + 1. The results and methods
in the present paper are based on minor extensions of the results and lace expansion
techniques used in [14]. The lace expansion was first applied to oriented percolation by
Nguyen and Yang [20, 21].

1.2. Existence of the IIC measure. The spread-out oriented percolation models are
defined as follows. Consider the graph with vertices Zd × Z+ and directed bonds
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((x, n), (y, n+ 1)), for n ≥ 0 and x, y ∈ Zd . Let D : Zd → [0, 1] be a fixed function.
Let p ∈ [0, ‖D‖−1∞ ], where ‖ · ‖∞ denotes the supremum norm, so that pD(x) ≤ 1
for all x. We associate to each directed bond ((x, n), (y, n + 1)) an independent ran-
dom variable taking the value 1 with probability pD(y − x) and 0 with probability
1 − pD(y − x). We say a bond is occupied when the corresponding random variable is
1, and vacant when the random variable is 0. Given a configuration of occupied bonds,
we say that (x, n) is connected to (y,m), and write (x, n) −→ (y,m), if there is an
oriented path from (x, n) to (y,m) consisting of occupied bonds, or if (x, n) = (y,m).
The joint probability distribution of the bond variables will be denoted P, with corre-
sponding expectation denoted E. Note that p is not a probability. We will always work
at the critical percolation threshold, i.e., at p = pc, and omit subscripts pc from the
notation.

A simple example is

D(x) =
{
(2L+ 1)−d ‖x‖∞ ≤ L

0 otherwise,
(1.1)

for which bonds are of the form ((x, n), (y, n+ 1)) with ‖x − y‖∞ ≤ L, and a bond is
occupied with probabilityp(2L+1)−d . In this parametrisation,pc tends to 1 asL → ∞.

Our results hold for any functionD that obeys the assumptions listed in [14, Sect. 1.2].
These assumptions involve a positive parameterLwhich serves to spread out the connec-
tions, and which we will take to be large. In particular, they require that

∑
x∈Zd D(x) = 1,

that D(x) ≤ CL−d for all x, and, with σ defined by

σ 2 =
∑
x∈Zd

|x|2D(x), (1.2)

where | · | denotes the Euclidean norm on Rd , that C1L ≤ σ ≤ C2L. Full details re-
garding the assumptions can be found in [14]. The function defined by (1.1) does obey
the assumptions.

Let F denote the σ -algebra of events. A cylinder event is an event that is determined
by the occupation status of a finite set of bonds. We denote the algebra of cylinder events
by F0. Then F is the σ -algebra generated by F0. For our first definition of the IIC, we
begin by defining Pn by

Pn(E) = 1

τn

∑
x∈Zd

P(E ∩ {(0, 0) −→ (x, n)}) (E ∈ F0), (1.3)

where τn = ∑
x∈Zd τn(x) with τn(x) = P((0, 0) −→ (x, n)). We then define P∞ by

setting

P∞(E) = lim
n→∞ Pn(E) (E ∈ F0), (1.4)

assuming the limit exists. The following theorem shows that this definition produces a
probability measure on F under which the origin is almost surely connected to infinity.

Theorem 1.1. Let d + 1 > 4 + 1 and p = pc. There is an L0 = L0(d) such that for
L ≥ L0, the limit in (1.4) exists for every cylinder event E ∈ F0. Moreover, P∞ extends
to a probability measure on the σ -algebra F , and the origin is almost surely connected
to infinity under P∞.
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Let

Sn = {(0, 0) −→ n} = {(0, 0) −→ (x, n) for some x ∈ Zd} (1.5)

denote the event that the cluster of the origin survives to time n. For our second definition
of the IIC, we begin by defining Qn by

Qn(E) = P(E|Sn) (E ∈ F0). (1.6)

We then define Q∞ by setting

Q∞(E) = lim
n→∞ Qn(E) (E ∈ F0), (1.7)

assuming the limit exists.
Not surprisingly, the existence of Q∞ turns out to be related to the asymptotic beha-

viour of the critical survival probability

θn = P(Sn). (1.8)

We will assume that for critical spread-out oriented percolation with d + 1 > 4 + 1 and
L sufficiently large, there is a finite positive constant B such that

lim
n→∞ nθn = 1/B. (1.9)

Although there is currently no proof of (1.9), we intend to return to this question in a
future publication [12]. Assuming (1.9), the following theorem gives existence of the
IIC measure Q∞, with Q∞ = P∞.

Theorem 1.2. Let d+1 > 4+1 and p = pc, and assume (1.9). There is anL0 = L0(d)

such that forL ≥ L0, the limit in (1.7) exists for every cylinder eventE ∈ F0. Moreover,
Q∞ extends to a probability measure on the σ -algebra F , and Q∞ = P∞.

We conjecture that the measure P
(x)
n defined by

P(x)n (E) = 1

τn(x)
P(E ∩ {(0, 0) −→ (x, n)}) (1.10)

converges to the IIC measure P∞ of Theorem 1.1, for each fixed x ∈ Zd . We are not able
to prove this without some strengthening of the local central limit theorem of [13, 14].
Some intuition that supports both this conjecture and the conjecture that P∞ = Q∞, in
general dimensions, is given near the beginning of Sect. 3.1.

Of the possible definitions of the incipient infinite cluster for oriented percolation,
we find P∞ the easiest to work with and the most closely related to the work of [14]
connecting critical oriented percolation and super-Brownian motion. For example, if
we let E be the event that (0, 0) −→ (yi,mi) (i = 1, . . . , s), then the right side of
(1.3) involves the probability that the origin is connected to (x, n), as well as to (yi,mi)

(i = 1, . . . , s). The scaling of such (s + 2)-point functions was shown in [14] to be
described by related quantities for the canonical measure of super-Brownian motion, for
d > 4, p = pc, and L sufficiently large. We will use this scaling in establishing the
properties of the IIC measure stated in the following section.

The asymptotic formula (1.9) is believed to fail in low dimensions, and our methods
do not apply at all for d ≤ 4. Nevertheless, we expect that P∞ and Q∞ exist and are
equal in all dimensions.
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1.3. Properties of the IIC measure. The Hausdorff dimension of the connected cluster
of the origin under the IIC is believed to equal 4 almost surely, for d + 1 > 4 + 1. The
following theorem provides a weaker statement, indicating a 4-dimensional aspect to
the IIC. In order to be able to state the result, we let

C(0, 0) = {(y,m) ∈ Zd × Z+ : (0, 0) −→ (y,m)} (1.11)

denote the connected cluster of the origin, and let

DR = E∞
[
#{(y,m) ∈ C(0, 0) : |y| ≤ R}] (1.12)

denote the expected number of sites in the cluster of the origin that are at most a distance
R away from the origin, under P∞.

Theorem 1.3. Let d + 1 > 4 + 1 and p = pc. There are L0 = L0(d) and Ci =
Ci(L, d) > 0 such that for L ≥ L0,

C1R
4 ≤ DR ≤ C2R

4. (1.13)

In Sect. 5.1, where Theorem 1.3 is proved, we will also define the r-point functions
of P∞ and obtain results concerning their asymptotic behaviour.

For our next property of P∞, we let

Nm = #{y ∈ Zd : (0, 0) −→ (y,m)} (1.14)

denote the number of sites at time m to which the origin is connected. We recall that the
size-biased exponential random variable with parameter λ has density

f (x) = λ2xe−λx (x ≥ 0). (1.15)

The following theorems describe the distribution ofNm under P∞ and Qm. The constants
A and V appearing in their statements are finite positive constants arising in the scaling
of the 2- and 3-point functions [14] (see Theorem 4.1 below), while B is the constant in
(1.9). The three constants A,V,B depend on d and L.

Theorem 1.4. Let d + 1 > 4 + 1 and p = pc. There is an L0 = L0(d) such that for
L ≥ L0,

lim
m→∞ E∞

[(
Nm

m

)l]
=
(
A2V

2

)l
(l + 1)! (l = 1, 2, . . . ). (1.16)

Consequently, under P∞,m−1Nm converges weakly to a size-biased exponential random
variable with parameter λ = 2/(A2V ).

Theorem 1.5. Let d + 1 > 4 + 1 and p = pc. Assume that (1.9) holds. Then

B = AV

2
. (1.17)

In addition, there is an L0 = L0(d) such that for L ≥ L0,

lim
m→∞ EQm

[(
Nm

m

)l]
=
(
A2V

2

)l
l! (l = 1, 2, . . . ). (1.18)

Consequently, under Qm, m−1Nm converges weakly to an exponential random variable
with parameter λ = 2/(A2V ).
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The identity (1.17), which holds under the assumption (1.9), expresses a relation
between the three constants B, A and V . It is shown in [14] that A and V both equal
1 + O(L−d), and hence (1.17) implies that B = 1

2 + O(L−d).
Under the assumption that (1.9) holds, it follows from Theorems 1.4–1.5 thatm−1Nm

converges to a size-biased exponential random variable under Q∞ = P∞, and to an ex-
ponential random variable under Qm. A similar contrast can be proved for the behaviour
ofm−1Nm for critical branching random walk (in general dimensions, with an offspring
distribution with finite variance), where again the size-biased exponential distribution
occurs when the branching random walk is conditioned to survive to infinite time, and
the exponential distribution occurs when the branching random walk is conditioned to
survive until time m. This is consistent with the general philosophy that oriented perco-
lation behaves like the branching random walk above the upper critical dimension 4+1,
as already noted at the end of Sect. 1.1.

Finally, we remark that we will give a formula for P∞(E) in terms of the lace ex-
pansion in (2.29) below, when E ∈ F0 is a cylinder event.

1.4. Organisation. The remainder of this paper is organised as follows. In Sect. 2 we
prove Theorem 1.1, and in Sect. 3 we prove Theorem 1.2. In Sect. 4, we recall the main
result of [14] linking critical oriented percolation and super-Brownian motion, and de-
rive some elementary properties of the moment measures of the canonical measure of
super-Brownian motion. Using the results of Sect. 4, we then prove Theorems 1.3–1.5
in Sect. 5.

2. Proof of Theorem 1.1

The proof of Theorem 1.1 uses a modification of the Nguyen–Yang lace expansion for
oriented percolation [20, 21] (see also [14, Sect. 3]), to derive an expansion for Pn(E)

of (1.3). We derive the modified expansion in Sect. 2.1, and use it to prove Theorem 1.1
in Sect. 2.2.

2.1. The lace expansion for Pn. Throughout this section, we fix p ∈ [0, ‖D‖−1∞ ] and
m ≥ 1.

A cylinder event E is an event that depends on the occupation status of a finite set of
bonds B(E). Let Em denote the set of cylinder events E for which the maximum time
appearing in B(E) ism, and fixE ∈ Em. Given a bond configuration, we say that a bond
b is pivotal for an increasing event F if F occurs when b is made to be occupied and F
does not occur when b is made to be vacant. For E ∈ Em, n ≥ m and 0 ≤ t ≤ n, we
define

τn,t (x;E) = P(E ∩ {(0, 0) −→ (x, n) with exactly t occupied pivotal bonds}), (2.1)

τn(x;E) = P(E ∩ {(0, 0) −→ (x, n)}) =
n∑
t=0

τn,t (x;E), (2.2)

where the pivotal bonds are pivotal for the event F = {(0, 0) −→ (x, n)}. Then (1.3)
reads

Pn(E) = 1

τn

∑
x∈Zd

τn(x;E). (2.3)
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We write (x, n) �⇒ (y,m) to denote the event that (x, n) is doubly-connected to
(y,m), i.e., the event that there exist at least two bond-disjoint occupied paths from (x, n)

to (y,m), or (x, n) = (y,m). Given a bond b = ((x, n), (y, n+ 1)), let b̄ = (y, n+ 1)
be the “top” of b, and b = (x, n) be the “bottom” of b. We will write b̄ < b̄′ to mean
that the temporal component of b̄ is less than that of b̄′, and, in an abuse of notation, we
write b̄ ≤ n when the temporal component of b̄ is less than or equal to n. For t ≥ 1, let

Bt(n) = {�b = (b1, . . . , bt ) : 0 < b̄1 < · · · < b̄t ≤ n} (2.4)

denote the ordered vectors of t bonds, between times 0 and n. Given x ∈ Zd and
�b ∈ Bt(n), we define b̄0 = 0, b t+1 = (x, n), and

Tt (�b, (x, n)) =
{
{(0, 0) �⇒ (x, n)} (t = 0)⋂t

i=1{bi occupied}⋂t
j=0{b̄j �⇒ bj+1} (1 ≤ t ≤ n).

(2.5)

Note that if Tt (�b, (x, n)) occurs, then the only possible candidates for occupied pivotal
bonds for the event (0, 0) → (x, n) are the elements of �b.

For 0 ≤ s < t , we define the random variables

K[s, t] =
∏

s≤i<j≤t
(1 + Uij ), Uij = −I [b̄i �⇒ bj+1], (2.6)

and we set K[s, s] = K[s + 1, s] = 1. The product in (2.6) is 0 or 1. If K[0, t] = 1 and
Tt (�b, (x, n)) occurs, then the occupied pivotal bonds for the event (0, 0) → (x, n) are
precisely the elements of �b. Therefore (2.1) becomes

τn,t (x;E) =
{

P(E ∩ {(0, 0) �⇒ (x, n)}) (t = 0)∑
�b∈Bt (n) E

[
I [E]I [Tt (�b, (x, n))]K[0, t]

]
(1 ≤ t ≤ n).

(2.7)

The identity (2.7) can be understood by regarding the cluster of the origin as a “string
of sausages” as depicted in Fig. 1, where the “string” is specified by the bonds �b. The
event E occurs before time m.

The lace expansion involves a decomposition of K[0, t]. To describe this, we need
some standard terminology [6, 19]. A graph on an interval [s, t] is a set + = {i1j1, . . . ,

iMjM} of edges, with s ≤ il < jl ≤ t for each l. We say that a graph + is connected on
[s, t] if

⋃
ij∈+[i, j ] = [s, t]. We denote the set of connected graphs on [s, t] by G[s, t],

and let

J [s, t] =
∑

+∈G[s,t]

∏
ij∈+

Uij . (2.8)

We set J [0, 0] = 1. Expansion of the product in (2.6) gives a sum over all graphs, and
a partition of this sum according to the support of the connected component of m leads
to the decomposition

K[0, t] =
t∑

s=0

M[0, s;m]K[s + 1, t] (m ∈ [0, n] fixed, t ≥ 0), (2.9)
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Fig. 1. Schematic depiction of a configuration contributing to τn(x;E) as a “string of sausages.” The
event E ∈ Em is required to occur

where

M[0, s;m] =
s∑
i=0

K[0, i − 1]J [i, s]I [b̄i ≤ m ≤ bs+1]. (2.10)

See [24, (2.10)] or [19, Lemma 5.2.5] for more details on (2.9)–(2.10) in the case of a
slightly different definition of graph connectivity. For l ≥ m, we define

ϕl,s(v;E) =
{

P(E ∩ {(0, 0) �⇒ (v, l)}) (s = 0)∑
�b∈Bs(l) E

[
I [E]I [Ts(�b, (v, l))]M[0, s;m]

]
(1 ≤ s ≤ l)

(2.11)

with bs+1 = (v, l), and

ϕl(E) =
∑
v∈Zd

l∑
s=0

ϕl,s(v;E). (2.12)

Although it is not explicit in the notation,ϕl,s(v;E) andϕl(E) depend onm by definition.
In particular, we are restricting to E ∈ Em.

The following lemma relates τn,t (x;E) and ϕl,s(u;E).
Lemma 2.1. For E ∈ Em, n ≥ m, and 0 ≤ t ≤ n,

τn,t (x;E) =
∑
(u,v)

n−1∑
l=m

t−1∑
s=0

ϕl,s(u;E)pD(v − u)τn−l−1,t−s−1(x − v)+ ϕn,t (x;E),

(2.13)

where the first term on the right side is interpreted as zero when t = 0.
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Proof. The proof is a standard lace expansion argument. For t = 0, (2.13) follows im-
mediately from (2.7) and (2.11). For t ≥ 1, we substitute (2.9) into (2.7). The s = t term
of (2.9) gives rise to the second term on the right side of (2.13). It therefore remains to
show that

∑
�b∈Bt (n)

t−1∑
s=0

E
[
I [E]I [Tt (�b, (x, n))]M[0, s;m]K[s + 1, t]

]
(2.14)

is equal to the first term on the right side of (2.13). For this, given �b and s, we decompose
the random variables appearing in (2.14) into the three factors:

I [E]I [
⋂s

r=1{br occupied}⋂s
r=0{b̄r �⇒ br+1}]M[0, s;m], (2.15)

{bs+1 occupied}, (2.16)

I [
⋂t

r=s+2{br occupied}⋂t
r=s+1{b̄r �⇒ br+1}]K[s + 1, t]. (2.17)

These random variables depend on bonds below bs+1, between bs+1 and b̄s+1, and
above b̄s+1, respectively. Recalling (2.7) and (2.11), we see that the expectation factors
to give the first term on the right side of (2.13). In (2.13), l corresponds to the temporal
component of bs+1, while u and v are the lower and upper spatial components of bs+1.

��
Summation over t = 0, . . . , n and x ∈ Zd in (2.13) gives

∑
x∈Zd

τn(x;E) =
n−1∑
l=m

ϕl(E)pτn−l−1 + ϕn(E). (2.18)

With (2.3), this gives the expansion

Pn(E) = 1

τn

[
n−1∑
l=m

ϕl(E)pτn−l−1 + ϕn(E)

]
. (2.19)

Next, we rewrite ϕl(E) in terms of laces. A lace on [k, l] is an element of G[k, l] such
that the removal of any edge will result in a disconnected graph. Given a connected graph
+ ∈ G[k, l], we define the lace L+ ⊂ + to be the graph consisting of edges s1t1, s2t2, . . .
given by

t1 = max{t : kt ∈ +}, s1 = k,

ti+1 = max{t : ∃s ≤ ti such that st ∈ +}, si+1 = min{s : sti+1 ∈ +}. (2.20)

It is not difficult to check that L+ is indeed a lace. Given a lace L, let C(L) denote the
set of compatible edges, i.e., the set of edges ij such that LL∪{ij} = L. Define L(N)[k, l]
to be the set of laces on the interval [k, l] consisting of exactly N edges. It is then a
standard fact [6, 19] that

J [i, j ] =
∞∑
N=1

(−1)NJ (N)[i, j ] (j > i ≥ 0), (2.21)
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with

J (N)[i, j ] =
∑

L∈L(N)[i,j ]

∏
st∈L

(−Ust )
∏

s′t ′∈C(L)
(1 + Us′t ′). (2.22)

For l ≥ m, we define

ϕ
(0)
l (E) =

∑
v∈Zd

P(E ∩ {(0, 0) �⇒ (v, l)})

+
m∑
s=1

∑
v∈Zd

∑
�b∈Bs(l)

E
(
I [E]I [Ts(�b, (v, l))]K[0, s − 1]I [b̄s ≤ m ≤ bs+1]

)
,

(2.23)

which combines the first line of (2.11) for s = 0 with the contribution to the second line
of (2.11) due to i = s in the definition of M[0, s;m] in (2.10). (The upper limit of the
sum over s in (2.23) can be taken to be m rather than l in (2.23) because the restriction
b̄s ≤ m can occur only when s ≤ m.) For N ≥ 1 and l ≥ m, we also define

ϕ
(N)

l (E) =
l∑

s=1

∑
v∈Zd

∑
�b∈Bs(l)

E

(
I [E]I [Ts(�b, (v, l))]

×
s−1∑
i=0

K[0, i − 1]J (N)[i, s]I [b̄i ≤ m ≤ bs+1]

)
. (2.24)

It follows from (2.10)–(2.12) and (2.21) that

ϕl(E) =
∞∑
N=0

(−1)Nϕ(N)

l (E). (2.25)

Equations (2.19) and (2.23)–(2.25) constitute the lace expansion for Pn.

2.2. Estimates on the lace expansion for Pn. Throughout this section, we fix p = pc. It
follows from [14, Theorem 1.1(a)] that, under the hypotheses of Theorem 1.1, there is
an A ∈ (0,∞) such that

lim
n→∞ τn = A. (2.26)

To prove Theorem 1.1, we will use (2.19), (2.26) and the following lemma. We write
β = L−d , and recall from [14] that pc = 1 + O(β) for d + 1 > 4 + 1.

Lemma 2.2. Let d + 1 > 4 + 1, p = pc and E ∈ Em. There are K = K(d) and
L0 = L0(d) such that for L ≥ L0,

|ϕl(E)| ≤ Kmβ(l −m+ 1)−d/2 (l ≥ m+ 1). (2.27)
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Proof of Theorem 1.1 subject to Lemma 2.2. Let E ∈ Em. By (2.19),

P∞(E) = lim
n→∞ Pn(E) = lim

n→∞
1

τn

[
n−1∑
l=m

ϕl(E)pcτn−l−1 + ϕn(E)

]
. (2.28)

It therefore follows from (2.26), Lemma 2.2 and the dominated convergence theorem
that

P∞(E) = pc

∞∑
l=m

ϕl(E) (E ∈ Em). (2.29)

This proves existence of and gives a formula for the limit (1.4), for every cylinder event
E ∈ F0.

To complete the proof of Theorem 1.1, it remains to show that P∞ can be extended to
a probability measure on the σ -algebra F , and that the origin is almost surely connected
to infinity under this extension. The extension of P∞ to F follows from Kolmogorov’s
extension theorem (see e.g. [23]), since the consistency hypothesis of Kolmogorov’s
extension theorem is satisfied by definition of Pn(E) and P∞(E) in (1.3)–(1.4). In ad-
dition, Pn((0, 0) −→ N) = 1 for every n ≥ N , so P∞((0, 0) −→ N) = 1 for every
N ≥ 1, and hence P∞((0, 0) −→ ∞) = limN→∞ P∞((0, 0) −→ N) = 1. ��
Proof of Lemma 2.2. Fix m, E ∈ Em, and l ≥ m+ 1. The proof involves a comparison
of ϕ(N)

l (E) with quantities arising in the Nguyen–Yang lace expansion for the two-point
function [20]. We use the notation and results of [14, Sects. 3.2 and 4.4]; this notation is
not identical to that of [20]. Quantities 3(N)

n (x) are defined in [14, Sect. 3.2] by

3(N)

n (x) =
{

P((0, 0) �⇒ (x, n))− δx,0δn,0 (N = 0)∑n
s=1

∑
�b∈Bs(n) E

[
I [Ts(�b, (x, n))]J (N)[0, s]

]
(N ≥ 1).

(2.30)

Disjoint connections implied by the right side of (2.30) are depicted in Fig. 2. We will
use the fact, proved in [14, (4.57)], that∑

x∈Zd

3(N)

n (x) ≤ CNβN∨1(n+ 1)−d/2 (N ≥ 0) (2.31)

assuming the hypotheses of Theorem 1.1. Our assumption that d > 4 is used only in
invoking (2.31).

We consider first the case N = 0. Recall the definition of ϕ(0)
l (E) in (2.23). Because

I [E] ≤ 1, the first term on the right side of (2.23) is bounded above by
∑

v 3
(0)
l (v),

which is at most Cβ(l + 1)−d/2 by (2.31). The second term on the right side of (2.23)
is bounded above by

m∑
s=1

∑
v∈Zd

∑
�b∈Bs(l)

E
(
I [Ts(�b, (v, l))]K[0, s − 1]I [b̄s ≤ m ≤ b s+1]

)

=
∑

w,y,v∈Zd

m−1∑
a=0

τa(y)pcD(w − y)3
(0)
l−a−1(v − w) =

m−1∑
a=0

τapc
∑
v∈Zd

3
(0)
l−a−1(v),

(2.32)
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(x,n)

3
(0)
n (x) =

(x,n)

3
(1)
n (x) =

3
(2)
n (x) = + +

(0,0)(0,0)(0,0)

(0,0) (0,0)

(x,n) (x,n) (x,n)

+

(0,0)

(x,n)

Fig. 2. Schematic depiction of disjoint connections required by 3(N)
n (x) (N = 0, 1, 2)

where we have factored the expectation as in the proof of Lemma 2.1, and where bs
in the first line corresponds to (y, a) in the second line. Therefore, letting C denote a
generic constant and using (2.26) and (2.31), we get

ϕ
(0)
l (E) ≤ Cβ(l + 1)−d/2 + Cβ

m−1∑
a=0

(l − a)−d/2 ≤ Cβm(l −m+ 1)−d/2. (2.33)

We next consider the case N ≥ 1. Applying the inequality I [E] ≤ 1 in (2.24), we
get

ϕ
(N)

l (E)

≤
l∑

s=1

∑
v∈Zd

∑
�b∈Bs(l)

E

(
I [Ts(�b, (v, l))]

s−1∑
i=0

K[0, i − 1]J (N)[i, s]I [b̄i ≤ m ≤ bs+1]

)
.

(2.34)

We may then factor the random variables on the right side into factors depending on bonds
below bi , between bi and b̄i , and above b̄i , respectively, as in the proof of Lemma 2.1.
This leads to

ϕ
(N)

l (E) ≤
∑
v∈Zd

3
(N)

l (v)+
m−1∑
a=0

τapc
∑
v∈Zd

3
(N)

l−a−1(v) (N ≥ 1), (2.35)

where the terms on the right side correspond to the contributions to (2.34) due to i = 0
and i > 0, respectively. Applying (2.31) and (2.26), we get

ϕ
(N)

l (E) ≤ CNβN(l + 1)−d/2 + C1C
NβN

m−1∑
a=0

(l − a)−d/2

≤ CN
1 β

Nm(l −m+ 1)−d/2 (N ≥ 1). (2.36)
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Combination of (2.25), (2.33) and (2.36) completes the proof. The factor βN permits
the sum over N to be performed, for β sufficiently small. ��

3. Proof of Theorem 1.2

The proof of Theorem 1.2 uses a lace expansion for Qn(E) defined in (1.6). This expan-
sion is again a modification of the Nguyen–Yang lace expansion for oriented percolation,
but is different from the expansion of Sect. 2.1. We derive the modified expansion in
Sect. 3.1, and use it to prove existence of the measure Q∞ in Sect. 3.2. We will derive
the same formula for Q∞(E) as was obtained in (2.29) for P∞(E), thereby proving
Q∞ = P∞.

3.1. The lace expansion for Qn. Throughout this section, we fix p ∈ [0, ‖D‖−1∞ ] and
m ≥ 0. Recall from (1.5), (1.6) and (1.8) that Sn = {(0, 0) −→ n}, θn = P(Sn), and
Qn(E) = θ−1

n P(E ∩ Sn). For E ∈ Em, n ≥ m, and 0 ≤ t ≤ n, we define

θn,t (E) = P(E ∩ {(0, 0) −→ n with exactly t occupied pivotal bonds}), (3.1)

θn(E) = P(E ∩ {(0, 0) −→ n}) =
n∑
t=0

θn,t (E), (3.2)

where the pivotal bonds are pivotal for the event Sn. Then (1.6) reads

Qn(E) = θn(E)

θn
. (3.3)

We will obtain formulas for θn,t (E) and Qn(E) analogous to (2.7) and (2.19). We again
regard the cluster of the origin in a configuration contributing to θn(E) as a string of
sausages, but now the top sausage may be open at the top, as depicted in Fig. 3.

Before beginning the expansion, with the help of Figs. 1 and 3 we provide some in-
tuition supporting the conjecture that Qn, Pn and P

(x)
n of (1.10) all converge to the same

limiting measure, in arbitrary dimensions. The basic idea is that the number of pivotal
bonds for the event {(0, 0) −→ (x, n)} should diverge with n, so that the top sausage
in Fig. 1 begins near n, far beyond m. In the limit n → ∞, the x-dependence inherent
in locating the top of the top sausage in Fig. 1 at (x, n) should be of no importance for
an event E ∈ Em with m fixed. Thus we expect the same limit whether x is fixed as in
P
(x)
n or summed over as in Pn. Similarly, the number of pivotal bonds for the event Sn

should diverge with n, so that the top sausage in Fig. 3 begins far above m. In the limit
n → ∞, the fact that the top sausage is open, rather than closed at some (x, n), should
be irrelevant for an event E ∈ Em. This supports the statement that Q∞ = P∞.

To begin to set up the expansion, we let (w, k) �⇒ n denote the event that there
exist x, y ∈ Zd with bond-disjoint paths from (w, k) to (x, n) and from (w, k) to (y, n).
Given t > 0 and �b ∈ Bt(n), we again set b̄0 = (0, 0) and bt+1 = n. We define

U ′
ij (t) = Uij (0 ≤ i < j ≤ t − 1), U ′

it (t) = −I [b̄i �⇒ n] (0 ≤ i ≤ t − 1).
(3.4)

As in (2.6), (2.8) and (2.10), for 0 ≤ i ≤ j ≤ t we define

K ′
t [i, j ] =

∏
i≤i′<j ′≤j

(1 + U ′
i′j ′(t)), J ′

t [i, j ] =
∑

+∈G[i,j ]

∏
i′j ′∈+

U ′
i′j ′(t), (3.5)
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n

E




0

m

0

Fig. 3. Schematic depiction of a configuration contributing to θn(E) as a string of sausages, with the top
sausage open at the top. The event E ∈ Em is required to occur

and

M ′
t [0, s;m] =

s∑
i=0

K ′
t [0, i − 1]J ′

t [i, s]I [b̄i ≤ m ≤ bs+1]. (3.6)

For �b ∈ Bt(n), we define

Tt (�b, n) =
{
{(0, 0) �⇒ n} (t = 0)⋂t

i=1{bi occupied}⋂t−1
j=0{b̄j �⇒ bj+1}

⋂{b̄t �⇒ n} (1 ≤ t ≤ n).

(3.7)

As in (2.7), (3.1) then becomes

θn,t (E) =
{

P(E ∩ {(0, 0) �⇒ n}) (t = 0)∑
�b∈Bt (n) E

[
I [E]I [Tt (�b, n)]K ′

t [0, t]
]

(1 ≤ t ≤ n).
(3.8)

For 0 ≤ s ≤ t , we define

φl,s(E) =
{

P(E ∩ {(0, 0) �⇒ n}) (s = 0)∑
�b∈Bs(l) E

[
I [E]I [Ts(�b, l)]M ′

t [0, s;m]
]

(1 ≤ s ≤ l).
(3.9)

It then follows exactly as in the proof of Lemma 2.1 that

θn,t (E) =
n−1∑
l=m

t−1∑
s=0

φl,s(E)pθn−l−1,t−s−1 + φn,t (E) (0 ≤ t ≤ n), (3.10)
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where the first term on the right side is interpreted as zero when t = 0. SinceU ′
ij (t) = Uij

when 0 ≤ i < j < t by (3.4), it follows from (2.6), (2.8), (2.10)–(2.11), (3.5)–(3.6) and
(3.9) that

φl,s(E) = ϕl,s(E) (0 ≤ s ≤ t − 1). (3.11)

Therefore, φl,s in (3.10) can be replaced with ϕl,s , except φn,t (E). Summation of (3.10)
over t = 0, . . . , n, after this replacement, then gives

θn(E) =
n−1∑
l=m

ϕl(E)pθn−l−1 + φn(E), (3.12)

with

φn(E) =
n∑
t=0

φn,t (E). (3.13)

Combining (3.3) with (3.12), we get

Qn(E) = 1

θn

[
n−1∑
l=m

ϕl(E)pθn−l−1 + φn(E)

]
, (3.14)

which is analogous to (2.19).
Finally, we rewrite the expansion for φn(E) in terms of laces, as in (2.23)–(2.25).

This yields

φn(E) =
∞∑
N=0

(−1)Nφ(N)

n (E) (3.15)

with

φ(0)
n (E) = Pp(E ∩ {(0, 0) �⇒ n})

+
n∑
t=1

∑
�b∈Bt (n)

E
(
I [E]I [Tt (�b, n)]Kt [0, t − 1]I [b̄t ≤ m]

)
, (3.16)

φ(N)

n (E) =
n∑
t=1

∑
�b∈Bt (n)

E

(
I [E]I [Tt (�b, n)]

t−1∑
i=0

Kt [0, i−1]J (N)

t [i, t]I [b̄i≤m]

)
(N ≥ 1).

(3.17)

Here, J (N)

t [i, t] is obtained after replacing Uij by U ′
ij (t) in (2.22). Equations (3.14)–

(3.17), in combination with (2.23)–(2.25), constitute the lace expansion for Qn.
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3.2. Estimates on the lace expansion for Qn. Throughout this section, we fix p = pc.
To prove Theorem 1.2, we will use (1.9), (3.14) and the following lemma.

Lemma 3.1. Let d + 1 > 4 + 1, p = pc and E ∈ Em. Assume (1.9). There is an
L0 = L0(d) such that for L ≥ L0,

lim
n→∞

φn(E)

θn
= 0. (3.18)

Proof of Theorem 1.2 subject to Lemma 3.1. Let E ∈ Em. By (3.14),

Q∞(E) = lim
n→∞ Qn(E) = lim

n→∞
1

θn

[
n−1∑
l=m

ϕl(E)pcθn−l−1 + φn(E)

]
. (3.19)

The second term vanishes in the limit, by Lemma 3.1. Given a small a > 0, we decom-
pose the first term as

�n1−a ∑
l=m

ϕl(E)pc
θn−l−1

θn
+

n−1∑
l=�n1−a +1

ϕl(E)pc
θn−l−1

θn
. (3.20)

Using Lemma 2.2 to bound ϕl(E) and (1.9) to bound the ratio of survival probabilities,
we find that the second term in (3.20) is bounded above by

Kmβ

n−1∑
l=�n1−a +1

(l −m+ 1)−d/2O(n), (3.21)

which vanishes in the limit n → ∞ when d > 4 and a is sufficiently small. Similar-
ly, the first term in (3.20) can be analysed using Lemma 2.2, (1.9) and the dominated
convergence theorem. This leads to the conclusion that

Q∞(E) = pc

∞∑
l=m

ϕl(E). (3.22)

Comparing with the formula (2.29) for P∞(E), we see that the limit defining Q∞(E)
exists for every cylinder event E, and that it is equal to P∞(E). In view of Theorem 1.1,
this proves Theorem 1.2. ��
Proof of Lemma 3.1. The proof is somewhat technical. We start by bounding φ(0)

n (E),
defined in (3.16). In all our estimates, we will use I [E] ≤ 1. The first term on the right
side of (3.16) is bounded above by θ2

n , via the BK inequality. The second term on the
right side of (3.16) is bounded above by

m−1∑
a=0

∑
u,v∈Zd

P
(
(0, 0) −→ (u, a) −→ (v, a + 1) �⇒ n

)
, (3.23)

where ((u, a), (u, a+ 1)) represents the bond bt . By the BK inequality, this is bounded
above by

∑m−1
a=0 τapcθ

2
n−a−1, and therefore, using (2.26) and the monotonicity of θn, we

get

φ
(0)
n (E)

θn
≤ θn + Cm

θ2
n−m
θn

. (3.24)
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By (1.9), this goes to zero as n → ∞.
Next we bound φ(N)

n (E) for N ≥ 1, defined in (3.17). For N ≥ 1, let

8(N)

n =
n∑
t=1

∑
�b∈Bt (m)

E
[
I [Tt (�b, n)]J (N)

t [0, t]
]
, (3.25)

where, as explained under (3.17),

J
(N)

t [0, t] =
∑

L∈L(N)[0,t]

∏
ij∈L

(−U ′
ij (t))

∏
i′j ′∈C(L)

(1 + U ′
i′j ′(t)). (3.26)

Using I [E] ≤ 1 in (3.17), and then factoring as in the proof of Lemma 2.1, we obtain
the estimate

φ(N)

n (E) ≤ 8(N)

n +
m−1∑
a=0

τapc8
(N)

n−a−1 ≤ 8(N)

n + C

m−1∑
a=0

8
(N)

n−a−1 ≤ C

m∑
a=0

8
(N)

n−a. (3.27)

Consider first the case N = 1. The unique lace in L(1)[0, t] is 0t , and hence J (1)
t [0, t]

contains a factor −U0t (t), which implies that 0 �⇒ n. The event Tt (�b, n) implies con-
nections (0, 0) �⇒ b1 −→ b̄1 −→ n. Moreover, the factor 1 + U ′

1t (t) in the product
over C(L) in J (1)

t [0, t] implies that b̄1 is not doubly-connected to n. Thus8(1)
n is bounded

above by the probability of the disjoint connections depicted in Fig. 4. Using the BK
inequality, we therefore get

8(1)
n ≤

n∑
j=0

j∑
i=0

∑
x,y∈Zd

τj (x)τi(y)τj−i (x − y)θn−j θn−i

≤
n∑

j=0

θ2
n−j

j∑
i=0

∑
x,y∈Zd

τj (x)τi(y)τj−i (x − y), (3.28)

where we used the monotonicity of θn in the second inequality. The right side of (3.28)
can be easily bounded from above by using the methods and results of [14]. In fact, since
‖τn‖∞ ≤ K(n+ 1)−d/2 by [14, Theorem 1.1(c)], it follows from (2.26) that

8(1)
n ≤

n∑
j=0

θ2
n−j

j∑
i=0

‖τj‖∞τiτj−i ≤ C

n∑
j=0

θ2
n−j (j + 1)−(d−2)/2. (3.29)

Using (1.9), we find that

8(1)
n ≤ C

n∑
j=0

(n− j + 1)−2(j + 1)−(d−2)/2 ≤ C(n+ 1)−(2∧(d−2)/2). (3.30)

Therefore, (1.9) and (3.27) yield

φ
(1)
n (E)

θn
≤ Cn

m∑
a=0

(n− a + 1)−(2∧(d−2)/2) ≤ Cm2(n−m+ 1)−(1∧(d−4)/2). (3.31)

The right side goes to zero as n → ∞, when d > 4.
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0

n

0

Fig. 4. Schematic depiction of disjoint connections required by 8(1)
n

Before proceeding with N ≥ 2, it is worth noting that the sum
∑j

i=0

∑
x,y∈Zd τj (x)

τi(y)τj−i (x − y) in (3.28) can be bounded using another method from [14]. The above
sum can be obtained from the simpler sum

∑
x∈Zd τj (x)

2 by replacing one factor τj (x)
by τi(y)τj−i (x − y) and then summing over y and i. The first part of this procedure is
referred to in [14, Definition 4.1] as Construction 1λ(y, i), where λ labels the diagram
line that is modified. According to [14, Lemma 4.6(a)], the diagram obtained after Con-
struction 1λ(y, i) followed by summation over y obeys the same bound as the original
diagram, up to a multiplicative constant. Thus, Construction 1λ(y, i) followed by sum-
mation over y produces a diagram that is bounded by a constant multiple of the bound on∑

x∈Zd 3
(0)
j (x), namely the bound C(j + 1)−d/2 of (2.31) (we have omitted the factor

β from (2.31) to allow for the possibility that j = 0). The bound (3.29) could thus be
replaced by

8(1)
n ≤

n∑
j=0

θ2
n−j

j∑
i=0

C(j + 1)−d/2 ≤ C

n∑
j=0

θ2
n−j (j + 1)−(d−2)/2, (3.32)

which yields the same conclusion as (3.29). In dealing with N ≥ 2, we will prefer
the above method using Construction 1λ(y, i), rather than the method of the previous
paragraph. In (3.32), we have bounded 8(1)

n using 3(0)
j . Similarly, for N ≥ 2, we will

bound 8(N)
n using 3(N−1)

j with 0 ≤ j ≤ n.

Fix N ≥ 2. We begin with a decomposition of J (N)

t [0, t]. We write a lace L ∈
L(N)[0, t] in the form L = {i1j1, . . . , iNjN }, with 0 = i1 < i2 < · · · < iN < t . We
write L as L− ∪ {iN t}, where L− ∈ L(N−1)[0, jN−1]. Let 9(L−) = 1 if N = 2, and
9(L−) = jN−2 if N ≥ 3. Then we may write

∑
L∈L(N)[0,t]

=
t−1∑

jN−1=1

∑
L−∈L(N−1)[0,jN−1]

jN−1−1∑
iN=9(L−)

. (3.33)

We make the decomposition∏
ij∈L

(−U ′
ij (t)) = (−U ′

iN t
(t))

∏
ij∈L−

(−Uij ), (3.34)

and note that

C(L−) ∪ {iN r : iN < r < t} ⊂ C(L). (3.35)
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Therefore

J
(N)

t [0, t] ≤
t−1∑

jN−1=1

∑
L−∈L(N−1)[0,jN−1]

∏
ij∈L−

(−Uij )
∏

i′j ′∈C(L−)
(1 + Ui′j ′)

×
jN−1−1∑
iN=9(L−)

(−U ′
iN t
(t))

∏
iN<r<t

(1 + UiNr). (3.36)

Were it not for the dependence of the second line of (3.36) on L− through the lower
limit of summation over iN , we would be able to rewrite the sum over L− in the first
line simply as J (N−1)[0, jN−1]. The effect of the second line is twofold. First, the factor
(−U ′

iN t
(t)) ensures that b̄iN �⇒ n. Second, together with the indicator I [Tt (�b, n)], the

factor
∏

iN<r<t
(1 + UiNr) ensures that, in addition to the disjoint connections implied

by J (N−1)[0, jN−1] (leading to an upper bound by a diagram 3(N−1)), there are addition-
al disjoint connections bt −→ n and b̄iN −→ n that accomplish the requirement that
b̄iN �⇒ n. The required disjoint connections are depicted schematically in Fig. 5. These
connections are the connections relevant for 3(N−1), together with a line from the top
of the diagram representing 3(N−1) to n and a line from a new vertex on 3(N−1) to n.
Explicitly, we have the upper bound

8(N)

n ≤
n∑

j=0

j∑
i=0

∑
x,y∈Zd

3̄
(N−1)
j (x; (y, i))θn−iθn−j , (3.37)

where 3̄(N−1)
j (x; (y, i)) denotes the result of applying Construction 1λ(y, i) to a diagram

bounding 3(N−1)
j (x), followed by an appropriate sum over λ. By [14, Lemma 4.6(a)],∑

x,y∈Zd 3̄
(N−1)
j (x; (y, i)) obeys the bound on

∑
x∈Zd 3

(N−1)
j (x) of (2.31), with a dif-

ferent constant. Since θn−i ≤ θn−j , it follows that

8(N)

n ≤
n∑

j=0

j∑
i=0

(Cβ)N−1(j + 1)−d/2θ2
n−j . (3.38)

Via (1.9), this gives

8(N)

n ≤ (C′β)N−1
n∑

j=0

(j + 1)−(d−2)/2(n− j + 1)−2 ≤ (C′β)N−1(j + 1)−(2∧(d−2)/2),

(3.39)

and the desired result follows from (3.27) as in (3.31), again using (1.9). The factor
βN−1 permits the summation over N to be performed, for β sufficiently small. ��



454 R. van der Hofstad, F. den Hollander, G. Slade

n

0

0

Fig. 5. Example of disjoint connections required by a configuration contributing to 8(3)
n

4. Oriented Percolation and Super-Brownian Motion

4.1. Convergence of moment measures. The oriented percolation r-point functions are
defined, for ni ≥ 0 and xi ∈ Zd , by

τ (r)n1,... ,nr−1
(x1, . . . , xr−1) = Pp((0, 0) −→ (xi, ni) for each i = 1, . . . , r − 1). (4.1)

In particular, τ (2)n (x) is the two-point function τn(x). Given m ∈ N, an absolutely sum-
mable function f : Zmd → C, and �k = (k1, . . . , km) with each kj ∈ (−π, π ]d , we
define the Fourier transform

f̂ (�k) =
∑

y1,... ,ym∈Zd

f (�y)ei�k·�y, (4.2)

where �k · �y = ∑m
j=1 kj · yj . When m = 1, we write simply k in place of �k.

In [14], the Fourier transforms of (4.1) are related, in an appropriate scaling limit,
to the Fourier transforms of the moment measures of the canonical measure of super-
Brownian motion [18, 22]. The canonical measure of super-Brownian motion is a certain
scaling limit of critical branching random walk, started from a single particle located at
the origin. It is a Markov process whose state Xt at time t > 0 is a finite non-negative
measure on Rd . By definition, its lth moment measure has Fourier transform

M̂
(l)

�t (�k) = E


∫

Rdl

Xt1(dx1) · · ·Xtl (dxl)

l∏
j=1

eikj xj


, (4.3)

where �t = (t1, . . . , tl) with each ti ∈ (0,∞), and �k = (k1, . . . , kl) with each ki ∈ Rd .
The following result is a combination of [14, Theorems 1.1(a) and 1.2] with [14,

(1.25)]. In its statement, the parameter ε is fixed such that
∑

x∈Zd |x|2+2εD(x) ≤
CL2+2ε . The existence of such an ε > 0 is part of the assumptions on D from [14]
discussed in Sect. 1.2 and assumed in this paper.
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Theorem 4.1. Let d > 4, p = pc, δ ∈ (0, 1 ∧ ε ∧ d−4
2 ), r ≥ 2, �t = (t1, . . . , tr−1) ∈

(0,∞)r−1, and �k = (k1, . . . , kr−1) ∈ R(r−1)d . There exist L0 = L0(d) and finite posi-
tive constants A = A(d,L), v = v(d, L), V = V (d, L) (with L0, A, v, V independent
of r) such that for L ≥ L0,

τ̂
(r)

�n�t 
(
�k/
√
vσ 2n

)
= A2r−3V r−2nr−2[M̂(r−1)

�t (�k)+ O(n−δ)]. (4.4)

Rather than applying Theorem 4.1 directly, we use an auxiliary result that was derived
in [14] in the course of proving Theorem 4.1. Let n̄ denote the second largest component
of �n = (n1, . . . , nr−1). In Sect. 5, we will use [14, (2.52)], which states that

τ̂
(r)

�n
(
�k/
√
vσ 2n

)
= A(A2V )r−2nr−2

[
M̂

(r−1)

�n/n (�k)+ O((n̄+ 1)−δ)
]

(r ≥ 3) (4.5)

holds uniformly in n ≥ n̄.

4.2. The moment measures of super-Brownian motion. In Sect. 5, we will make use of
elementary properties of the M̂(l)

�t (�k), which we now summarise. For l = 1,

M̂
(1)
t (

�k) = e−|k|2t/2d . (4.6)

For l > 1, the M̂(l)

�t (�k) are given recursively by

M̂
(l)

�t (�k) =
∫ t

0
dt M̂

(1)
t (k1 + · · · + kl)

∑
I⊂J1:|I |≥1

M̂
(i)

�tI−t (
�kI )M̂(l−i)

�tJ\I−t (
�kJ\I ), (4.7)

where i = |I |, J = {1, . . . , l}, J1 = J\{1}, t = mini ti , �tI denotes the vector consist-
ing of the components ti of �t with i ∈ I , and �tI − t denotes subtraction of t from each
component of �tI [9]. The explicit solution to the recursive formula (4.7) can be found in
[14, (1.25)]. For example,

M̂
(2)
t1,t2

(k1, k2) =
∫ t1∧t2

0
dt e−|k1+k2|2t/2de−|k1|2(t1−t)/2de−|k2|2(t2−t)/2d . (4.8)

Equation (4.8) is a statement, in Fourier language, that mass arrives at given points
(x1, t1), (x2, t2) via a Brownian path from the origin that splits into two Brownian paths
at a time chosen uniformly from the interval [0, t1 ∧ t2]. The recursive formula (4.7) has
a related interpretation for all l ≥ 2, in which t is the time of the first branching. The
sets I and J\I label the offspring of each of the two particles after the first branching.

Lemma 4.2. (a) For k ∈ Rd ,

M̂
(2)
1,1(0, k) = e−

|k|2
2d . (4.9)

(b) For l ≥ 0, t ≥ s and kj ∈ Rd ,

M̂
(l+1)
t,s,... ,s(0, k2, . . . , kl) = M̂(l+1)

s,s,... ,s(0, k2, . . . , kl). (4.10)

(c) For l ≥ 0,

M̂
(l+1)
t,... ,t (�0) = t l2−l (l + 1)!. (4.11)
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Proof. (a) This follows immediately from (4.8).
(b) The proof is by induction on l. For l = 0, both sides of (4.10) equal 1, by (4.6). For
l ≥ 1, we use (4.7) with �t = (t, s, . . . , s) to obtain

M̂
(l+1)
t,s,... ,s(0, k2, . . . , kl)=

∫ s

0
du M̂(1)

u (k2 + · · · + kl)
∑

I⊂J1:|I |≥1

M̂
(i)

�tI−u(
�kI )M̂(l−i)

�tJ\I−u(
�kJ\I ).

(4.12)

On the right side, all the arguments in �tI − u and �tJ\I − u are equal to s − u, except
for one, which is t − u. The distinguished time variable also has k1 = 0. Applying the
induction hypothesis, we get

M̂
(l+1)
t,s,... ,s(0, k2, . . . , kl) =

∫ s

0
du M̂(1)

u (k2 + · · · + kl) (4.13)

×
∑

I⊂J1:|I |≥1

M̂
(i)

s−u,... ,s−u(�kI )M̂(l−i+1)
s−u,... ,s−u(�kJ\I )

= M̂(l+1)
s,s,... ,s(0, k2, . . . , kl), (4.14)

which advances the induction and proves (4.10).
(c) The proof is again by induction on l. For l = 0, (4.11) follows from (4.6). For l ≥ 1
we use (4.7) and the induction hypothesis to obtain

M̂
(l+1)

�t (�0) =
∫ t

0
ds

l∑
i=1

(
l

i

)
(t − s)i−12−(i−1)i!(t − s)l−i2−(l−i)(l − i + 1)!

= 2−(l−1)
l∑

i=1

(
l

i

)
i!(l − i + 1)!

∫ t

0
(t − s)l−1ds

= t l2−(l−1)(l − 1)!
l∑

i=1

(l − i + 1) = t l2−l (l + 1)!, (4.15)

which advances the induction and proves (4.11). ��

5. Proof of Theorems 1.3–1.5

5.1. Proof of Theorem 1.3. Before proving Theorem 1.3, we first derive upper and lower
bounds on the IIC two-point function, defined by

ρm(y) = P∞((0, 0) −→ (y,m)) = lim
n→∞

1

τn

∑
x∈Zd

τ (3)n,m(x, y). (5.1)

In addition to the fact that τn → A by (2.26), we will use the fact that

sup
x∈Zd

τn(x) ≤ C(n+ 1)−d/2 (5.2)

by [14, Theorem 1.1(c)].



Incipient Infinite Cluster for Spread-out Oriented Percolation 457

Beginning with the upper bounds, we show that∑
y∈Zd

ρm(y) ≤ Cm, sup
y∈Zd

ρm(y) ≤ C(m+ 1)−(d−2)/2. (5.3)

For the first bound in (5.3), we use the tree-graph bound [2] to obtain the estimate

τ (3)n,m(x, y) ≤
∑
z∈Zd

m∑
l=0

τl(z)τm−l (y − z)τn−l (x − z). (5.4)

Therefore, by (5.1) and (2.26),

ρm(y) ≤ C
∑
z∈Zd

m∑
l=0

τl(z)τm−l (y − z). (5.5)

Summing over y and again using (2.26), we get the first bound of (5.3). For the second
bound in (5.3), we apply (5.2) to either the first or the second factor on the right side of
(5.5), according to whether l ≥ m/2 or l ≤ m/2. This gives, as required,

sup
y∈Zd

ρm(y) ≤ C

m∑
l=0

(l ∨ (m− l))−d/2 ≤ C(m+ 1)−(d−2)/2. (5.6)

Continuing with the lower bound, we show that there is a constant c > 0 such that∑
|y|≤√

m

ρm(y) ≥ cm. (5.7)

To prove this, we note that, by (5.1),

ρ̂m(k) = lim
n→∞

1

τn
τ̂ (3)n,m(0, k). (5.8)

We use (4.5) with (n1, n2) = (n,m), n̄ = m, and with n of (4.5) equal to m. Combining
this with Lemma 4.2(a,b), we get

lim
n→∞ τ̂ (3)n,m

(
0,

k√
vσ 2m

)
= A(A2V )mM̂

(2)
n
m
,1(0, k)[1 + O(m−δ)]

= A(A2V )me−
|k|2
2d [1 + O(m−δ)]. (5.9)

Therefore, using (5.8) and (2.26), we obtain

lim
m→∞

1

mA2V
ρ̂m

(
k/
√
vσ 2m

)
= e−

|k|2
2d , (5.10)

and hence the discrete measure on Rd that assigns mass (mA2V )−1ρm(x) to x/
√
vσ 2m

(x ∈ Zd ) converges weakly to a Gaussian. This implies (5.7).
Proof of Theorem 1.3. For the upper bound on DR , we use the decomposition

DR =
∑
m

∑
|y|≤R

ρm(y) =
∑
m≤R2

∑
|y|≤R

ρm(y)+
∑
m>R2

∑
|y|≤R

ρm(y). (5.11)
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By the first bound of (5.3), the first term is bounded above by C
∑

m≤R2 m = O(R4).
By the second bound of (5.3), the second term is bounded above by∑

m>R2

CRd sup
y∈Zd

ρm(y) ≤ CRd
∑
m>R2

(m+ 1)−(d−2)/2 = O(R4). (5.12)

This proves the upper bound on DR .
For the lower bound on DR , we use that (5.7) implies

DR ≥
∑
m≤R2

∑
|y|≤R

ρm(y) ≥
∑
m≤R2

∑
|y|≤√

m

ρm(y) ≥
∑
m≤R2

cm ≥ 1

2
cR4. (5.13)

��
Finally, we make an observation about the scaling of the IIC r-point functions for gen-

eral r , although we will not need this. Let �y = (y1, . . . , yr−1) and �m = (m1, . . . , mr−1)

with yi ∈ Zd , mi ∈ Z+, and define the IIC r-point function by

ρ
(r)

�m (�y) = P∞((0, 0) −→ (yi,mi) for all i = 1, . . . , r − 1). (5.14)

In particular, ρ(2)m (y) is the same as ρm(y) of (5.1). The methods employed to prove
(5.10) can also be used to show that

lim
m→∞

1

(mA2V )r−1 ρ̂
(r)

m�t
(
�k/
√
vσ 2m

)
= M̂

(r)

1,�t (0, �k), (5.15)

for all r ≥ 2, �t = (t1, . . . , tr−1) ∈ (0, 1]r−1 and �k ∈ Rd(r−1).

5.2. Proof of Theorem 1.4. We first prove (1.16). Let l ≥ 1. By (1.3), (1.14) and (4.1),
we have

EPn [Nl
m] = 1

τn

∑
x∈Zd

∑
y1,... ,yl∈Zd

P

(
(0, 0) −→ (x, n), (0, 0) −→ (yi,m)

for each i = 1, . . . , l
)

= 1

τn
τ̂ (l+2)
n,m,... ,m(

�0). (5.16)

We take n ≥ m, and use (4.5) with r = l + 2, �k = �0, �n = (n,m, . . . , m), and with n of
(4.5) equal to n̄ = m. This gives

τ̂ (l+2)
n,m,... ,m(

�0) = A(A2V )lml
[
M̂

(l+1)
n
m
,1,... ,1(

�0)+ O(m−δ)
]
. (5.17)

Applying Lemma 4.2(b,c), we get

τ̂ (l+2)
n,m,... ,m(

�0) = A(A2V )lml[2−l (l + 1)! + O(m−δ)]. (5.18)

Combining (5.16) and (5.18), we find

EPn

[(
Nm

m

)l]
= A

τn
(A2V )l[2−l (l + 1)! + O(m−δ)]. (5.19)
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Taking the limit n → ∞, and using (2.26), we arrive at

E∞

[(
Nm

m

)l]
= (A2V )l2−l (l + 1)! + O(m−δ), (5.20)

and hence at (1.16) after letting m → ∞.
The distribution of the size-biased exponential random variable is determined by

its moments, since its moment generating function has a positive radius of conver-
gence. It therefore follows from the convergence of moments expressed by (1.16) that
m−1Nm converges weakly to a size-biased exponential random variable with parameter
λ = 2/(A2V ) (see [4, Theorem 30.2]). This completes the proof of Theorem 1.4.

5.3. Proof of Theorem 1.5. It follows from (1.6), (1.8), (1.14) and (4.1) that

EQm
[Nl

m] = 1

θm
τ̂
(l+1)

�m (�0), (5.21)

with �m = (m, . . . , m). As in the proof of Theorem 1.4 we find, now also with the help
of (1.9), that

lim
m→∞ EQm

[(
Nm

m

)l]
= 2B

AV
(A2V )l2−l l! (l = 1, 2, . . . ). (5.22)

Let α = 2B/(AV ) and suppose for the moment that α = 1. Then (1.18) holds, and the
right side of (5.22) gives the moments of an exponential random variable with parameter
λ = 2/(A2V ). It then follows as in the proof of Theorem 1.4 that m−1Nm converges
to this exponential random variable in distribution. To complete the proof, it suffices to
show that α = 1. We first prove that α ≤ 1 and then prove that α ≥ 1.
Proof that α ≤ 1. Since τ−1

m Nm has expectation 1 under P, we can define a new expec-
tation by

E′
m[X] = E[τ−1

m NmX]. (5.23)

By definition of E′
m, (1.3) and (5.16),

E′
m

[(
Nm

m

)l]
= EPm

[(
Nm

m

)l]
= 1

mlτm
τ̂ (l+2)
m,m,... ,m(

�0). (5.24)

As in (5.20), it follows that the moments of m−1Nm under E′
m converge to those of a

size-biased exponential random variable with parameter λ = 2/(A2V ). Therefore, under
this measure, m−1Nm converges weakly to a size-biased exponential random variable.

In particular, for real t , the moment generating function E′
m

[
e−t

Nm
m

]
converges to that

of a size-biased exponential distribution with parameter λ, which is λ2

(λ+t)2 .

Let t ≥ 0. In terms of E′
m, we can rewrite the moment generating function ofm−1Nm,

under Qm, as (recall (1.5)–(1.6) and (1.8))

EQm

[
e−t

Nm
m

]
= 1 − 1

m
EQm

[∫ t

0
Nme

−s Nm
m ds

]
= 1 − τm

mθm

∫ t

0
E′
m

[
e−s

Nm
m

]
ds.

(5.25)



460 R. van der Hofstad, F. den Hollander, G. Slade

By the dominated convergence theorem, together with (1.9) and (2.26), it follows from
the identity α = ABλ that

0 ≤ lim
m→∞ EQm

[e−t
Nm
m ] = 1 − AB

∫ t

0

λ2

(λ+ s)2
ds = 1 − α + α

λ

λ+ t
. (5.26)

By letting t → ∞, we conclude from (5.26) that α ≤ 1.
Proof that α ≥ 1. Fix s > 0. By definition (recall (1.5)–(1.6)),

θ�m(1+s) = θmP(S�m(1+s) |Sm). (5.27)

Let n be any positive integer and let A ⊂ Zd be any finite set, and define

θn(A) = P(∃a ∈ A : (a, 0) −→ n) = 1 − P(∀a ∈ A : (a, 0) −→/ n). (5.28)

Since, for any a ∈ Zd , {(a, 0) −→/ n} is a decreasing event, it follows from the FKG
inequality that

θn(A) ≤ 1 − (1 − θn)
|A|. (5.29)

Therefore, using n = �ms and A = {a ∈ Zd : (0, 0) −→ (a,m)}, we have

θ�m(1+s) ≤ θmE
(
1 − (1 − θ�ms )Nm

∣∣Sm) = θm

{
1 − EQm

(
(1 − θ�ms )Nm

)}
, (5.30)

and hence, by (1.9), for any η > 0 we have

1

B(1 + s)
= lim

m→∞mθ�m(1+s) ≤ 1

B

{
1 − lim

m→∞ EQm

(
(1 − θ�ms )m

Nm
m
)}

≤ 1

B

{
1 − lim

m→∞ EQm

(
e−(

1
Bs

+η) Nm
m
)}
. (5.31)

With minor changes, the calculations leading to (5.26) can also be carried out for
t = −iu with u ∈ R. This yields

lim
m→∞ EQm

[eiu
Nm
m ] = 1 − α + α

λ

λ− iu
. (5.32)

It follows from (5.32) that m−1Nm under Qm converges in distribution to a random
variable Y having the property that P(Y = 0) = 1 − α and that the distribution of Y
conditional on Y > 0 is that of an exponential random variable with parameter λ. By
(5.31), it follows that

1

B(1 + s)
≤ 1

B

{
1 − E[e−(

1
Bs

+η)Y ]
} = α

B

{
1 − E[e−(

1
Bs

+η)Y |Y > 0]
}

= α

B

{
1 − λ

λ+ 1
Bs

+ η

}
. (5.33)

Now we let η ↓ 0 and s ↓ 0 to conclude that α ≥ 1. This completes the proof.
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19. Madras, N., Slade, G.: The Self-Avoiding Walk. Boston: Birkhäuser, 1993
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