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Abstract: On a compact Riemannian spin manifold with mean-convex boundary, we
analyse the ellipticity and the symmetry of four boundary conditions for the fundamental
Dirac operator including the (global) APS condition and a Riemannian version of the
(local) MIT bag condition. We show that Friedrich’s inequality for the eigenvalues of
the Dirac operator on closed spin manifolds holds for the corresponding four eigenvalue
boundary problems. More precisely, we prove that, for both the APS and the MIT con-
ditions, the equality cannot be achieved, and for the other two conditions, the equality
characterizes respectively half-spheres and domains bounded by minimal hypersurfaces
in manifolds carrying non-trivial real Killing spinors.

1. Introduction

The fundamental result of Lichnerowicz [Li] in the sixties regarding the spectrum of
the Dirac operator D on closed spin manifolds, revealed subtle information on both the
geometry and the topology of such manifolds (see for instance [BFGK, BHMM, Fr2,
LM] and references therein). A basic lower bound for the eigenvalues λ of the Dirac
operator is the Friedrich inequality [Fr1], which says that

λ2 ≥ n

4(n− 1)
inf
M
R, (F)

where R is the scalar curvature of the manifold and n its dimension. This inequality is
sharp and the equality characterizes those geometries carrying non-trivial real Killing
spinor fields (see also [Bä1]).

The Dirac operator has been also considered when the compact manifold has non-
empty boundary in order to look for corresponding ellipticity and index theorems [APS,
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BW, GLP], to study its determinant [Bun, FGMSS] and to model physical situations
in which the particle fields are confined in a bounded region of space [CJJTW, CJJT,
J]. Each one of these situations requires a particular boundary condition to be imposed.
However, from an analytical point of view, the ellipticity and other related properties of
these boundary conditions are usually studied in an abstract and unified setting [BW,
Hö, Se] based on the Calderón and Seeley theory of pseudo-differential operators.

In this paper, we study the spectrum of the fundamental Dirac operator on compact
Riemannian spin manifolds with non-empty boundary, under four different boundary
conditions: the global Atiyah-Patodi-Singer (APS) condition associated with the spec-
tral resolution of the intrinsic Dirac operator on the boundary hypersurface; the local
condition associated with a chirality (CHI) operator on the manifold (for example, if
its dimension is even or if it is a space-like hypersurface in a Lorentzian manifold); the
Riemannian version of the so-called (local) MIT bag condition; and finally a new global
boundary condition obtained by a suitable modification of the APS condition (mAPS).

We show that these four conditions satisfy ellipticity criteria and the corresponding
boundary problems are well-posed in the sense of Seeley [Se]. We prove (see Theorems
2, 3, 4 and 5) that the three APS, CHI and mAPS conditions make D a symmetric op-
erator and so the corresponding spectra are real sequences tending to +∞ and −∞.
Instead, under the MIT condition, the spectrum of the Dirac operator is an unbounded
discrete set of complex numbers with positive imaginary part. Finally we prove that,
under the four boundary conditions, one has the same lower bound (F) in terms of the
minimum of the scalar curvature as in the closed case, provided that the mean curvature
of the boundary hypersurface is non-negative. (In fact, in the case of the APS and CHI
conditions this fact is proved in [HMZ1, HMZ2], by other means.)

The four conditions have different behavior with respect to the equality in (F). In fact,
we show that such an equality is never achieved for the APS and MIT conditions, that it
occurs for the CHI boundary condition if and only if the manifold is a half-sphere and
that it is achieved for the mAPS condition if and only if the manifold admits a non-trivial
real Killing spinor field and the boundary is a minimal hypersurface (this was a principal
motivation to look for and introduce this new boundary condition). For example, all the
domains enclosed in a sphere by embedded minimal hypersurfaces have the same first
eigenvalue for the Dirac operator under the mAPS condition.

2. Riemannian Spin Manifolds and Their Boundaries

Consider an n-dimensional Riemannian spin manifoldM with non-empty boundary ∂M
and denote by 〈 , 〉 its scalar product and by ∇ its corresponding Levi-Civita connection
on the tangent bundle TM . We fix a spin structure (and so a corresponding orientation)
on the manifold M and denote by SM the associated spinor bundle, which is a complex
vector bundle of rank 2

[
n
2

]
. Then let

γ : C�(M) −→ EndC(SM)

be the Clifford multiplication, which provides a fibre preserving irreducible represen-
tation of the Clifford algebras constructed over the tangent spaces of M . When the
dimension n is even, we have the standard chirality decomposition

SM = SM+ ⊕ SM−, (1)

where the two direct summands are respectively the ±1-eigenspaces of the endomor-

phism γ (ωn), with ωn = i

[
n+1

2

]
e1 · · · en, the complex volume form. It is well-known
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(see [LM]) that there are, on the complex spinor bundle SM , a natural Hermitian metric
( , ) and a spinorial Levi-Civita connection, denoted also by ∇, which is compatible
with both ( , ) and γ in the following sense:

X(ψ, ϕ) = (∇Xψ, ϕ)+ (ψ,∇Xϕ), (2)

∇X (γ (Y )ψ) = γ (∇XY)ψ + γ (Y )∇Xψ (3)

for any tangent vector fields X, Y ∈ �(TM) and any spinor fields ψ, ϕ ∈ �(SM) on
M . Moreover, with respect to this Hermitian product on SM , Clifford multiplication by
vector fields is skew-Hermitian or equivalently

(γ (X)ψ, γ (X)ϕ) = |X|2(ψ, ϕ). (4)

Since the complex volume form ωn is parallel with respect to the spinorial Levi-Civita
connection, when n = dimM is even, the chirality decomposition (1) is preserved by
∇. From (4) one sees that it is an orthogonal decomposition.

In this setting, the (fundamental) Dirac operator D on the manifold M is the first
order elliptic differential operator acting on spinor fields given locally by

D =
n∑
i=1

γ (ei)∇ei ,

where {e1, . . . , en} is a local orthonormal frame in TM . When n = dimM is even, D
interchanges the chirality subbundles SM±.

The boundary hypersurface ∂M is also an oriented Riemannian manifold with the
induced orientation and metric. If ∇∂M stands for the Levi-Civita connection of the
induced metric we have the Gauss and Weingarten equations

∇XY = ∇∂M
X Y + 〈AX, Y 〉N, ∇XN = −AX,

for any vector fields X, Y tangent to ∂M , where A is the shape operator or Weingarten
endomorphism of the hypersurface ∂M corresponding to the unit normal field N com-
patible with the given orientation. As the normal bundle of the boundary hypersurface
is trivial, the Riemannian manifold ∂M is also a spin manifold and so we will have the
corresponding spinor bundle S∂M , the Clifford multiplication γ ∂M , the spinorial Levi-
Civita connection ∇∂M and the intrinsic Dirac operator D∂M . It is not difficult to show
(see [Bä2, BFGK, HMZ1, HMZ3, Bur, Tr, Mo]) that the restricted Hermitian bundle

S := SM |∂M

can be identified with the intrinsic Hermitian spinor bundle S∂M , provided that n =
dimM is odd. Instead, if n = dimM is even, the restricted bundle S could be identified
with the sum S∂M ⊕ S∂M . With such identifications, for any spinor field ψ ∈ �(S)
on the boundary hypersurface ∂M and any vector field X ∈ �(T ∂M), define on the
restricted bundle S, the Clifford multiplication γ S and the connection ∇S by

γ S(X)ψ = γ (X)γ (N)ψ, (5)

∇S
Xψ = ∇Xψ − 1

2γ
S(AX)ψ = ∇Xψ − 1

2γ (AX)γ (N)ψ . (6)

Then it is easy to see that γ S and ∇S correspond respectively to γ ∂M and ∇∂M , for n
odd, and to γ ∂M ⊕ −γ ∂M and ∇∂M ⊕ ∇∂M , for n even. Then, γ S and ∇S satisfy the
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same compatibilty relations (2), (3) and (4) and together with the following additional
identity:

∇S
X (γ (N)ψ) = γ (N)∇S

Xψ.

As a consequence, the hypersurface Dirac operator D acts on smooth sections ψ ∈
�(S) as

Dψ :=
n−1∑
j=1

γ S(uj )∇S
uj
ψ = n− 1

2
Hψ − γ (N)

n−1∑
j=1

γ (uj )∇uj ψ,

where {u1, . . . , un−1} is a local orthonormal frame tangent to the boundary ∂M and
H = (1/(n − 1))traceA is its mean curvature function, coincides with the intrinsic
Dirac operator D∂M on the boundary, for n odd, and with the pair D∂M ⊕ −D∂M , for n
even. In the particular case where the field ψ ∈ �(S) is the restriction of a spinor field
ψ ∈ �(SM) on M , this means that

Dψ = n− 1

2
Hψ − γ (N)Dψ − ∇Nψ. (7)

Note that we always have the anticommutativity property

Dγ (N) = −γ (N)D (8)

and so, when ∂M is compact, the spectrum of D is symmetric with respect to zero and
coincides with the spectrum of D∂M , for n odd, and with Spec(D∂M) ∪ −Spec(D∂M),
for n even.

3. A Spinorial Reilly Inequality

Our main goal in this paper is to estimate the eigenvalues of the Dirac operatorD on the
compact Riemannian spin manifold M under suitable boundary conditions. By examin-
ing their limiting cases, one can study the geometry of certain hypersurfaces. When the
manifold M is closed (compact without boundary), D a self-adjoint elliptic operator of
order one and so its spectrum is a discrete unbounded sequence of real numbers. When
the boundary ∂M is non-empty, we shall see in the next section that there are boundary
conditions for which one may have a discrete and not necessarily real spectrum for the
Dirac operator with finite dimensional eigenspaces and smooth eigenspinors. The defect
of symmetry of D on the manifold with boundary M appears by integrating by parts to
obtain ∫

M

(Dψ, ϕ)−
∫
M

(ψ,Dϕ) = −
∫
∂M

(γ (N)ψ, ϕ), (9)

whereψ, ϕ ∈ �(SM) andN is the inner unit normal field along the boundary. When the
considered boundary condition forces the boundary integral on the r.h.s of (9) to vanish,
the spectrum is necessarily real.

A basic tool to relate the eigenvalues of the Dirac operator and the geometry of the
manifold M and that of its boundary ∂M will be, as in the closed case (see [Fr1]), the
integral version of the Schrödinger-Lichnerowicz formula

D2 = ∇∗∇ + 1

4
R,
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where R is the scalar curvature of M . In fact, given a spinor field ψ on M , taking into
account the formula above, if we compute the divergence of the one-form α defined by

α(X) = (γ (X)Dψ + ∇Xψ,ψ), ∀X ∈ TM

and integrate, one gets

−
∫
∂M

(γ (N)Dψ + ∇Nψ,ψ) =
∫
M

(
|∇ψ |2 − |Dψ |2 + 1

4
R|ψ |2

)
,

which by (7), could be written as∫
∂M

(
(Dψ,ψ)− n− 1

2
H |ψ |2

)
=

∫
M

(
|∇ψ |2 − |Dψ |2 + 1

4
R|ψ |2

)
.

Finally, we will use the spinorial Schwarz inequality

|Dψ |2 ≤ n|∇ψ |2, ∀ψ ∈ �(SM),

where the equality is achieved only by the so-called twistor spinors, that is, those satis-
fying the following over-determined first order equation

∇Xψ = −1

n
γ (X)Dψ, ∀X ∈ TM.

Then we get the following integral inequality, called Reilly inequality [HMZ1, HMZ3]
because of its similarity with the corresponding one obtained in [Re] for the Laplace
operator,∫

∂M

(
(Dψ,ψ)− n− 1

2
H |ψ |2

)
≥

∫
M

(
1

4
R|ψ |2 − n− 1

n
|Dψ |2

)
, (10)

with equality only for twistor spinors on M .

4. Ellipticity of the Boundary Conditions

Now we introduce suitable boundary conditions for the fundamental Dirac operator D.
On a compact Riemannian spin manifold M with boundary, the Dirac operator D :
�(SM) → �(SM) has an infinite dimensional kernel and a closed image with finite
codimension. We look for conditionsB to be imposed on the restrictions to the boundary
∂M of the spinor fields on M so that this kernel becomes finite dimensional and then
the boundary problem {

Dψ = � on M
Bψ|∂M = χ along ∂M,

(BP)

for � ∈ �(SM) and χ ∈ �(S), is of Fredholm type. In this case, we will have smooth
solutions for any data � and χ belonging to a certain subspace with finite codimension
and these solutions will be unique up to a finite dimensional kernel.

To our knowledge, the study of boundary conditions suitable for an elliptic operator
D (of any order, although for simplicity, we only consider first order operators) acting on
smooth sections of a Hermitian vector bundle F → M has been first done in the fifties
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by Lopatinsky and Shapiro ([Hö, Lo]), but the main tool was discovered by Calderón in
the sixties: the so-called Calderón projector

P+(D) : H
1
2 (F|∂M) −→ {ψ|∂M |ψ ∈ H 1(F ),Dψ = 0}.

This is a pseudo-differential operator of order zero (see [BW, Se]) with principal symbol
p+(D) : T ∂M → EndC(F ) depending only on the principal symbol σD of the operator
D and can be calculated as follows:

p+(D)(u) = − 1

2πi

∫
�

[
(σD(N))−1σD(u)− ζ I

]−1
dζ, (11)

for any p ∈ ∂M and u ∈ Tp∂M , where N is the inner unit normal along the boundary
∂M and � is a positively oriented cycle in the complex plane enclosing the poles of the
integrand with negative imaginary part. Although the Calderón projector is not unique
for a given elliptic operator D, its principal symbol is uniquely determined by σD. One
of the important features of the Calderón projector is that its principal symbol detects
the ellipticity of a boundary condition, or in other words, if the corresponding boundary
problem (BP) is a well-posed problem (according to Seeley in [Se]). In fact (cfr. [Se] or
[BW, Chap. 18]),

A pseudo-differential operator

B : L2(F|∂M) −→ L2(V ),

where V → ∂M is a complex vector bundle over the boundary, is called a
(global) elliptic boundary condition when its principal symbol b : T ∂M →
HomC(F|∂M, V ) satisfies that, for any non-trivial u ∈ Tp∂M , p ∈ ∂M , the
restriction

b(u)|image p+(D)(u) : image p+(D)(u) ⊂ Fp −→ Vp

is an isomorphism onto image b(u)⊂Vp. Moreover, if rank V =dim image p+(D)(u),
we say that B is a local elliptic boundary condition.

When B is a local operator this definition yields the so-called Lopatinsky-Shapiro con-
ditions for ellipticity (see for example [Hö]). When these definitions and the subsequent
theorems are applied to the case where the vector bundle F is the spinor bundle SM and
the elliptic operator D is the Dirac operator D on the spin Riemannian manifold M , we
obtain the following well-known facts in the setting of the general theory of boundary
problems for elliptic operators (see for example [BrL, BW, GLP, Hö, Se]):

Proposition 1. Let M be an n-dimensional compact Riemannian spin manifold with
non-empty boundary ∂M . Consider the restriction S to the boundary ∂M of the spinor
bundle SM of M . A pseudo-differential operator

B : L2(S) −→ L2(V ),

where V → ∂M is a Hermitian vector bundle, is an elliptic boundary condition for the
fundamental Dirac operator D of M if and only if its principal symbol b : T ∂M →
HomC(S, V ) satisfies the following two conditions:

ker b(u) ∩ {η ∈ SMp | iγ (N)γ (u)η = −|u|η} = {0},
dim image b(u) = 1

2 dim SMp = 2[ n2 ]−1.
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Moreover, if V is a bundle with rank 1
2 dim SMp = 2[ n2 ]−1, we have a local elliptic

boundary condition. When these ellipticity conditions are satisfied, the problem (BP) is
of Fredholm type and the corresponding eigenvalue boundary problem{

Dψ = λψ on M
Bψ|∂M = 0 along ∂M,

(EBP)

has a discrete spectrum with finite dimensional eigenspaces consisting of smooth spinor
fields, unless it is the whole complex plane.

Proof. Since the principal symbol σD of the Dirac operator D on M is given by

σD(v) = iγ (v), ∀v ∈ TM,

then by (11), the principal symbol of the Calderón projector of the Dirac operator is
given by

p+(D)(u) = − 1

2|u| (iγ (N)γ (u)− |u|I ) = 1

2|u|
(
iγ S(u)+ |u|I

)
,

for each non-trivial u ∈ T ∂M and where γ S is identified in (5) as the intrinsic Clifford
product on the boundary. As the endomorphism iγ (N)γ (u) = −iγ S(u) is self-adjoint
and its square is |u|2 times the identity map, then it has exactly two eigenvalues, say |u|
and −|u|, whose eigenspaces are of the same dimension 1

2 dim SMp = 2[ n2 ]−1, since
they are interchanged by γ (N). Hence the symbol p+(D)(u) is, up to a constant, the
orthogonal projection onto the eigenspace corresponding to the eigenvalue −|u| and so

image p+(D)(u) = {η ∈ SMp | iγ (N)γ (u)η = −|u|η},
dim image p+(D)(u) = 1

2 dim SMp = 2[ n2 ]−1.

From these equalities and from the definition of ellipticity for the boundary condition
represented by the pseudo-differential operator B, we have that the first equation in the
statement of this proposition is equivalent to the injectivity of the map b(u)|image p+(D)(u).
The second one implies that dim image b(u) = dim image p+(D)(u) and so, together
with the injectivity above, this means that b(u)|image p+(D)(u) is surjective. So we have
proved that the two claimed conditions are equivalent to the ellipticity of the boundary
condition B for the Dirac operator D on M . Now, from this ellipticity, one may deduce
that the problems (BP) and (EBP) are of Fredholm type and the remaining assertions on
eigenvalues and eigenspaces follow in a standard way (see [BW, Hö]). ��

5. Four Boundary Conditions

In this last section, on a compact Riemannian spin manifold M with boundary, we will
study the ellipticity of four boundary conditions for the Dirac operator D, where two of
them are of global nature and the others are of local type. We will prove that, under each
of these conditions, the square of any eigenvalue of D is bounded from below in terms
of the minimum of the scalar curvature R of M . In fact, we show that, under the four
boundary conditions, Friedrich’s inequality (F) is still true. In the case of closed man-
ifolds, the equality is achieved only when the manifold carries some non-trivial (real)
Killing spinor fields. The important point is that these four conditions behave differently
with respect to the equality case: two of them are never achieved and the others charac-
terize half-spheres and domains enclosed by embedded minimal hypersurfaces in mani-
folds with non-trivial Killing spinors.



382 O. Hijazi, S. Montiel, A. Roldán

5.1. The Atiyah-Patodi-Singer (APS) condition. Atiyah, Patodi and Singer introduced
in [APS] this well-known boundary condition in order to establish index theorems for
compact manifolds with boundary. Later, this condition has been used to study the pos-
itive mass and the Penrose inequalities (see [He2, Wi]). Such a condition does not allow
to model confined particle fields since, from the physical point of view, its global nature
is interpreted as a causality violation. Although it is a well-kown fact that the APS con-
dition is an elliptic boundary condition, we are going to sketch the proof in the setting of
Proposition 1, for two reasons: first for completeness and second for pointing out that the
APS condition for a chiral Dirac operator covers both cases of odd and even dimension,
although the latter case is not referred to the spectral resolution of the intrinsic Dirac
operator D∂M but to the system D∂M ⊕ −D∂M .

Precisely, this condition can be described as follows. Choose the Hermitian bundle
V (of Proposition 1) over the boundary hypersurface ∂M as the restricted spinor bundle
S defined in Sect. 2, and define BAPS : L2(S) → L2(S) as the orthogonal projection
onto the subspace spanned by the eigenspinors corresponding to the non-negative
eigenvalues of the self-adjoint intrinsic operator D. Atiyah, Patodi and Singer showed
in [APS] (see also [BW, Prop. 14.2]) that BAPS is a zero order pseudo-differential
operator whose principal symbol bAPS satisfies the following fact: for each p ∈ ∂M and
u ∈ Tp∂M − {0}, the map bAPS (u) is the orthogonal projection onto the eigenspace of
σD(u) = iγ S(u) corresponding to the positive eigenvalue |u|. That is

bAPS (u) = 1

2

(
iγ S(u)+ |u|I

)
= 1

2
(−iγ (N)γ (u)+ |u|I ) , (12)

and so the principal symbol bAPS of the APS operator coincides, up to a constant, with
the principal symbol p+(D) of the Calderón projector of D. From this, it is immediate
to see that the two ellipticity conditions in Proposition 1 are satisfied.

The following result (see [HMZ1, HMZ2] and also [FS, Theorem 10] for a weaker
version) provides a lower bound for the eigenvalues of the Dirac operator with the APS
boundary condition. We give a short proof of this estimate to illustrate the difference
with the other boundary conditions.

Theorem 2. LetM be a compact Riemannian spin manifold whose non-empty boundary
∂M has non-negative mean curvature (w.r.t. the inner normal). Under the APS boundary
condition, the spectrum of the Dirac operator D of M is a sequence of unbounded real
numbers {λAPS

k | k ∈ Z} which satisfy the following strict inequality:(
λAPS
k

)2
>

n

4(n− 1)
inf
M
R, k ∈ Z.

Proof. We know that the APS condition referred to the spectral resolution of D is an
elliptic boundary condition. Moreover, from the supercommutativity relation (8), we
have

BAPS γ (N)+ γ (N)BAPS = γ (N)(I + π0), (13)

BAPS D = DBAPS , (14)

where π0 is the L2-orthogonal projection on the space of harmonic spinors of D. This
implies that, if ψ, ϕ ∈ �(S) satisfy BAPS ψ = BAPS ϕ = 0 (and subsequently π0ψ =
π0ϕ = 0), then

BAPS γ (N)ψ = γ (N)ψ, and BAPS γ (N)ϕ = γ (N)ϕ.
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As a consequence we deduce that, for ψ, ϕ ∈ �(SM),∫
∂M

(γ (N)ψ, ϕ) =
∫
∂M

(BAPS γ (N)ψ, ϕ) =
∫
∂M

(γ (N)ψ,BAPS ϕ) = 0

and under the APS boundary condition, by (9) the Dirac operator D on the bulk man-
ifold M is a symmetric operator. Then the corresponding spectrum is real and so an
unbounded discrete sequence (see [Hö, GLP] for instance).

Now consider an eigenspinor ψ ∈ �(SM) associated with an arbitrary eigenvalue
λAPS
k , k ∈ Z, in the Reilly inequality (10). Then∫

M

(
1

4
R − n− 1

n

(
λAPS
k

)2
)

|ψ |2 ≤
∫
∂M

(Dψ,ψ),

since H ≥ 0. But, using BAPS ψ = 0 and the commutativity (13), one gets∫
∂M

(Dψ,ψ) ≤ 0

and the equality holds only when the restriction ψ|∂M vanishes. Hence

(
λAPS
k

)2 ≥ n

4(n− 1)
inf
M
R

and the equality is achieved if and only if the eigenspinor ψ is simultaneously a twis-
tor spinor (and so a real Killing spinor) and its restriction ψ|∂M is zero. But, since a
real Killing spinor is of constant length, then ψ = 0, which is impossible. Hence, the
inequality above is strict. ��

5.2. The condition associated with a chirality (CHI) operator. This type of (local)
boundary condition has already been considered in the context of comparison results
[Bun], to estimate the mass of asymptotically flat manifolds including black holes
[GHHP, He1] and also in order to study eigenvalue estimates [FS, HMZ2]. By con-
trast to the APS condition, which exists on any spin manifold with boundary, the second
boundary condition which we shall consider is subjected to the existence on the manifold
M of a linear map G : γ (SM) → γ (SM) satisfying

G2 = I, (Gψ,Gϕ) = (ψ, ϕ), (15)

∇X (Gψ) = G∇Xψ, γ (X)Gψ = −Gγ (X)ψ (16)

for each vector field X and spinor fields ψ, ϕ on M . This map G is often called a chi-
rality operator because, when the dimension n of M is even, the standard candidate is
G = γ (ωn), the Clifford multiplication by the complex volume form ωn which yields
to the chirality decomposition (1) of the spinor bundle. In this case,G would be nothing
but the usual conjugation changing chirality of spinors. But there is another important
situation where such an operator appears, this is when the manifold M is a spacelike
hypersurface of a Lorentzian manifold M̃ of dimension n+ 1 and both the Riemannian
and spinorial structures on M are the induced ones from M̃ . In this case one can choose
G = γ (T ), the Clifford multiplication by a unit time-like normal field T on M (see for
example [He1]).
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Anyway, given such a chirality operatorG onM , the fibre preserving endomorphism
γ (N)G : �(S) → �(S), acting on sections of the restricted spinor bundle, is self-adjoint
with respect to the pointwise Hermitian product, whose square is the identity. Hence it has
two eigenvalues +1 and −1 whose corresponding eigenspaces are interchanged by, for
example, the isomorphism γ (N). Hence the eigensubbundle V over ∂M corresponding
to the eigenvalue −1 verifies

rank V = 1

2
rank S = 2[ n2 ]−1.

Define now the boundary condition BCHI : L2(S) → L2(V ) as the linear operator

BCHI = 1

2
(I − γ (N)G) ,

that is, the orthogonal projection onto the eigensubbundle V . This is a differential op-
erator of order zero and so its principal symbol bCHI (u), on each vector u ∈ T ∂M ,
coincides with the operator itself, that is,

bCHI (u) = 1

2
(I − γ (N)G), ∀u ∈ T ∂M

and, in particular,
dim image bCHI (u) = rank V = 2[ n2 ]−1.

Now it is easy to check that the two conditions in Proposition 1 are satisfied and soBCHI
is a local elliptic boundary condition. We have

Theorem 3. LetM be a compact Riemannian spin manifold whose non-empty boundary
∂M has non-negative mean curvature (w.r.t. the inner normal). Under the CHI bound-
ary condition, the spectrum of the Dirac operator D of M associated with a chirality
operator on M , is a non-decreasing sequence of real numbers{

λCHI
k | k ∈ Z

}
with limk→±∞ λCHI

k = ±∞ and satisfying the following inequality:(
λCHI
k

)2 ≥ n

4(n− 1)
inf
M
R, k ∈ Z.

Moreover the equality holds (for λCHI = λCHI
±1 ) if and only if M is isometric to the

half-sphere with radius n/2|λCHI |.
Proof. The spectrum being real is a consequence of the fact that the Dirac operator D
is symmetric when it acts on spinor fields ψ ∈ �(SM) such that BCHI ψ|∂M = 0, that
is, γ (N)Gψ = ψ . In fact, if ϕ ∈ �(SM) is another field satisfying the same boundary
condition, we have from (15) and (16),

(γ (N)ψ, ϕ) = (Gγ (N)ψ,Gϕ) = (ψ, γ (N)ϕ) = −(γ (N)ψ, ϕ).
Integrating over ∂M this pointwise equality and using (9) one has the symmetry property.

Consider a smooth spinor field on M such that

Dψ = λCHI ψ, and BCHI ψ|∂M = 0
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and plug it into the Reilly inequality (10). As in the proof of Theorem 2, we will have
the desired inequality if we are able to show that the mass term on the boundary∫

∂M

(Dψ,ψ)

is non-positive. But, in this case, this term is exactly zero. In fact we only have to realize
that (16), (5) and (6) imply

DG = GD.

Then, we have the following pointwise equation:

(Dψ,ψ) = (γ (N)GDψ, γ (N)Gψ) = −(Dψ,ψ)
because of (8) and γ (N)Gψ = ψ . As a consequence we have the claimed inequality.

Suppose now that equality is achieved.As in the proof of Theorem 2, we have equality
in (10) and so the eigenspinor ψ is a twistor spinor and hence a non-trivial real Killing
spinor. In fact

∇vψ = −λCHI

n
γ (v)ψ, ∀v ∈ TM. (17)

This implies that the length |ψ |2 is a non-zero constant and that M is an Einstein mani-
fold with scalar curvature R = 4n(n− 1)

(
λCHI

)2
(see for example [BFGK]). Since the

assumption ∫
∂M

H |ψ |2 ≥ 0,

has been used to get the inequality, we deduce that H = 0, that is, the boundary is a
minimal hypersurface. Consider now the smooth function f = (Gψ,ψ) which takes
real values, since from (15),G is pointwise self-adjoint. Moreover, if we take ϕ = Gψ in
equality (9), considering that D and G anticommute (because of (16) and the boundary
condition γ (N)Gψ = ψ), we have

2λCHI
∫
M

f =
∫
∂M

|ψ |2.

This yields the following two important facts:

λCHI �= 0 and f �≡ 0.

On the other hand, since ψ is a Killing spinor and from (15), one can easily compute
that the Hessian of the function f is given by

∇2f = −
(

2λCHI

n

)2

f 〈 , 〉.

In other words, the function f is a non-trivial solution on M of the Obata equation. But
using again the boundary condition satisfied by the eigenspinor ψ we see that

f|∂M = (Gψ|∂M,ψ|∂M) = (γ (N)Gψ|∂M, γ (N)ψ|∂M) = (ψ|∂M, γ (N)ψ|∂M),

and hence f|∂M is identically zero since (ψ|∂M, γ (N)ψ|∂M) is a purely imaginary func-
tion. Now we apply the boundary version of the Obata theorem found by Reilly in [Re]
in order to conclude that M is isometric to the required half-sphere. ��
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5.3. The Riemannian version of the MIT bag condition. In the seventies, some physicists
at the Massachusetts Institute of Technology proposed a model for elementary particles
(see [CJJTW, CJJT, J]) which has been called later the MIT bag model. It works with
fields confined in a finite region of the space which, in the massless spin- 1

2 case, are mod-
eled by spinor fields satisfying the (Lorentzian) Dirac equation defined in the region of
the space-time swept out by a bounded bag of a given rest-space. These solutions of the
Dirac equation should obey a local boundary condition, which we shall examine now
in the Riemannian setup. It is interesting to point out that such a Riemannian version of
the MIT boundary condition has been used in another context (see [FGMSS, HMZ3]),
because of its invariance under conformal changes of the metric of the manifold.

Consider the pointwise endomorphism iγ (N) : �(S) → �(S) acting on sections of
the spinor bundle of the compact Riemannian spin manifold M restricted to the bound-
ary hypersurface ∂M , where N is the inner unit normal field along ∂M . The square of
this endomorphism is the identity, its eigenvalues are ±1 with the same multiplicity. In
a similar way to the CHI condition, we denote by V → ∂M the eigensubbundle of S
corresponding to the eigenvalue −1 and so we have again

rank V = 1

2
rank S = 2[ n2 ]−1.

The new boundary condition BMIT : L2(S) → L2(V ) is also the corresponding orthog-
onal projection

BMIT = 1

2
(I − iγ (N))

ontoV . Hence, for each vectoru tangent to the boundary, we have the following principal
symbol bMIT with the following properties:

bMIT (u) = 1

2
(I − iγ (N)), dim image bMIT = rank V = 2[ n2 ]−1.

As above, from this it is immediate to check the ellipticity conditions given by Proposition
1. Now we state the corresponding result estimating the eigenvalues of the corresponding
eigenvalue boundary problem.

Theorem 4. Let M be a compact Riemannian spin manifold whose non-empty bound-
ary ∂M has non-negative mean curvature (w.r.t. the inner normal). Under the MIT bag
boundary condition, the spectrum of the Dirac operatorD ofM is an unbounded discrete
set of complex numbers λMIT with positive imaginary part which satisfy the following
inequality ∣∣∣λMIT

∣∣∣2
>

n

4(n− 1)
inf
M
R.

Proof. Let λMIT be an eigenvalue of the considered problem. That is

Dψ = λMIT ψ, BMIT ψ = 0, i.e., iγ (N)ψ = ψ

for a non-trivial spinor field ψ on M . Then, taking such a spinor in (9) and choosing
ϕ = iψ we obtain

2�(λMIT )

∫
M

|ψ |2 =
∫
∂M

|ψ |2
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and so the eigenvalue has non-negative imaginary part. If �(λMIT ) = 0, then the re-
strictionψ|∂M would vanish and the unique continuation principle (see for intance [BW,
Chap. 8]) would imply that ψ is identically zero on the whole of M . Hence all the ei-
genvalues for the MIT boundary condition belong to the upper complex half-plane and
so [Hö] that spectrum has to be discrete.

In order to obtain the estimate of the length of the λMIT we will proceed as in the
two previous cases by taking the associated eigenspinor ψ in the Reilly inequality (10)
and recalling that we are assuming that ∂M is mean-convex, i.e., H ≥ 0. Then∫

M

(
1

4
R − n− 1

n

∣∣∣λMIT
∣∣∣2

)
|ψ |2 ≤

∫
∂M

(Dψ,ψ).

Here the mass integrand is identically zero, since by (8), one has

(Dψ,ψ) = (iγ (N)Dψ, iγ (N)ψ) = −(Dψ,ψ).
This proves the inequality. We still need to prove that equality could not be achieved.
Assume the contrary, that is ∣∣∣λMIT

∣∣∣2 = n

4(n− 1)
inf
M
R,

then we also have equality in (10) and ψ is a twistor eigenspinor. In other words, ψ is
a Killing spinor field with associated constant −λMIT /n. But it is well-known [BFGK]
that non-trivial imaginary Killing spinors only live on Einstein manifolds with negative
scalar curvature. This contradicts the equality above. ��

5.4. A new boundary condition for the Dirac operator. We have just studied, in a unified
frame, the spectra of the fundamental Dirac operator on a compact Riemannian manifold
with boundary, under three more or less known (global and local) boundary conditions.
Finally, we introduce a new global condition which, in our opinion is of special inter-
est, since the corresponding eigenvalues satisfy again (F) and where the limiting case
includes relevant geometries.

We again choose the bundle V → ∂M to be the restricted spinor bundle S and
introduce the following operator BmAPS : L2(S) → L2(S) given by

BmAPS = BAPS (I + γ (N)),

which is the composition of the zero order differential operator I + γ (N) and the APS
pseudo-differential operator. This composition is also a pseudo-differential operator of
zero order (see for example [LM]) and, from (12), its principal symbol bmAPS satisfies
for all u ∈ T ∂M , the relation

bmAPS (u) = bAPS (u)(I + γ (N))

= 1

2
(−iγ (N)γ (u)+ |u|I )(I + γ (N)).

The first ellipticity condition in Proposition 1 arises now immediately. For the second
one, take into account that I + γ (N) is an isomorphism and so

dim image bmAPS (u) = dim image bAPS (u) = 2[ n2 ]−1.

Once we checked the ellipticity of the proposed boundary condition, we have now:
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Theorem 5. LetM be a compact Riemannian spin manifold whose non-empty boundary
∂M has non-negative mean curvature (w.r.t. the inner normal). Under the modified APS
boundary condition,

BmAPS = BAPS (I + γ (N)) = 0,

the spectrum of the Dirac operatorD ofM is a non-decreasing sequence of real numbers
{λk | k ∈ Z} tending to ±∞ which satisfy the following inequality:

λ2
k ≥ n

4(n− 1)
inf
M
R, k ∈ Z.

Moreover, the equality holds if and only if M carries a non-trivial real Killing spinor
field with negative Killing constant and the boundary ∂M is minimal.

Proof. We first prove that, under the boundary condition BmAPS , D is symmetric. In
fact, let ψ, ϕ ∈ �(SM) be such that

BmAPS ψ = BAPS (ψ + γ (N)ψ) = 0, BmAPS ϕ = BAPS (ϕ + γ (N)ϕ) = 0.

Using (14), we deduce that

BAPS (γ (N)ψ − ψ) = γ (N)ψ − ψ.

Now as BAPS is an orthogonal L2-projection, we have∫
∂M

(γ (N)ψ, ϕ) =
∫
∂M

(ψ + BAPS χ, ϕ) =
∫
∂M

(ψ, ϕ)+
∫
∂M

(χ, BAPS ϕ),

where we have put χ = γ (N)ψ − ψ . But BAPS ϕ = −BAPS γ (N)ϕ and hence∫
∂M

(γ (N)ψ, ϕ) =
∫
∂M

(ψ, ϕ)−
∫
∂M

(BAPS χ, γ (N)ϕ).

Finally, we use that BAPS χ = χ to get∫
∂M

(γ (N)ψ, ϕ) =
∫
∂M

(ψ, γ (N)ϕ).

As a consequence we have from (9) the required symmetry. So the considered spectrum
is real.

We take again an eigenspinorψ corresponding to an eigenvalue λk , k ∈ Z, satisfying
the boundary condition

BmAPS ψ = BAPS (ψ + γ (N)ψ) = 0,

which we plug in inequality (10). Under the assumption H ≥ 0, the claimed inequality
follows, if we show that the boundary mass term∫

∂M

(Dψ,ψ)

vanishes. In fact, the supercommutativity relation (8) implies that

(Dψ,ψ) = 1

2
(D(ψ + γ (N)ψ), ψ − γ (N)ψ).
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But, since BAPS (ψ + γ (N)ψ) = 0 and BAPS (ψ − γ (N)ψ) = ψ − γ (N)ψ , a suitable
use of (13) gives ∫

∂M

(D(ψ + γ (N)ψ), ψ − γ (N)ψ) = 0.

If the equality occurs we deduce, as in the three preceding cases, that ψ is a non-trivial
real Killing spinor onM . Then its length is a non-trivial constant and soH must be zero
as claimed. Moreover, from (7) and (8) we get

D(ψ + γ (N)ψ) = −n− 1

n
λ(ψ + γ (N)ψ).

Since BmAPS ψ = 0 (and so π0ψ = 0) we deduce that λ > 0.
Conversely, assume that M is a compact Riemannian spin manifold with minimal

boundary ∂M carrying a non-trivial Killing spinorψ with a real Killing constant −λ/n <
0. It is clear thatDψ = λψ . Moreover, from (7) and the fact that ∇Nψ = −(λ/n)γ (N)ψ
we have that the restriction of ψ to the boundary satisfies

Dψ = −n− 1

n
γ (N)ψ.

From this and (8) we have that

D(ψ + γ (N)ψ) = −n− 1

n
λ(ψ + γ (N)ψ).

Since we assumed λ > 0, the spinor field ψ + γ (N)ψ is an eigenspinor of D associated
with a negative eigenvalue. Then its APS projection has to vanish and so BmAPS ψ = 0.
��
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