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Abstract: We consider the Navier-Stokes equation on a two dimensional torus with a
random force which is white noise in time, and excites only a finite number of modes.
The number of excited modes depends on the viscosity ν, and grows like ν−3 when ν
goes to zero. We prove that this Markov process has a unique invariant measure and is
exponentially mixing in time.

1. Introduction

Homogenous isotropic turbulence is often mathematically modelled by the Navier Stokes
equation subjected to an external stochastic driving force which is stationary in space and
time and “large scale”, which in particular means smooth in space. The status of the exis-
tence and uniqueness of solutions to the stochastic PDE parallels that of the deterministic
one. In particular, in two dimensions, it holds under very general conditions.

However, for physical reasons, one is interested in the existence, uniqueness and
properties of the stationary state of the resulting Markov process. While the existence of
such a state follows with soft methods [10], uniqueness, i.e. ergodic and mixing prop-
erties of the process has been harder to establish. In a nonturbulent situation, i.e. with a
sufficiently rough forcing this was established in [5] and for large viscosity in [8]. The
first result for a smooth forcing was by Kuksin and Shirikyan [7] who considered a pe-
riodically kicked system with bounded kicks. In particular they could deal with the case
where only a finite number of modes are excited by the noise (the number depends both
on the viscosity and the size of the kicks). In [2], we proved uniqueness and exponential
mixing for such a kicked system where the kicks have a Gaussian distribution, but we
required that there be a nonzero noise for each mode. In this paper, we extend that analy-
sis to the case where only finitely many modes are excited, and the forcing is white noise
in time. An essential ingredient in our analysis is the Lyapunov-Schmidt type reduction
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introduced in [7], that allows to transform the original Markov process with infinite
dimensional state space to a non-Markovian process with finite dimensional state space.
We apply standard ideas of statistical mechanics (high temperature expansions) to this
process to deduce mixing properties of the dynamics. While preparing this manuscript
we received a preliminary draft [4] that claims similar results, using a somewhat more
probabilistic approach. We thank these authors for communicating us their ideas, some
of which helped us to simplify our arguments, especially in Sect. 8 below.

We consider the stochastic Navier-Stokes equation for the velocity field u(t, x) ∈ R2

defined on the torus T = (R/2πZ)2:

du+ ((u · ∇)u− ν∇2u+ ∇p)dt = df, (1)

where f (t, x) is a Wiener process with covariance

Efα(t, x)fβ(t
′, y) = min{t, t ′}Cαβ(x − y) (2)

and Cαβ is a smooth function satisfying
∑
α ∂αCαβ = 0. Equation (1) is supplement-

ed with the incompressibility condition ∇ · u = 0 = ∇ · f , and we will also assume
that the averages over the torus vanish:

∫
T u(0, x) = 0 = ∫T f (t, x), which imply that∫

T u(t, x) = 0 for all times t .
It is convenient to change to dimensionless variables so that ν becomes equal to one.

This is achieved by setting u(t, x) = νu′(νt, x).Then u′ satisfies (1), (2) with ν replaced
by 1, and C by

C′ = ν−3C.

From now on, we work with such variables and drop the primes. The dimensionless
control parameter in the problem is the (rescaled) energy injection rate 1

2 trC′(0), cus-

tomarily written as (Re)3,where Re is the Reynolds number:

Re = ε 1
3 ν−1,

and ε = 1
2 trC(0) is the energy injection rate in the original units (for explanations of

the terminology see [6]).
In two dimensions, the incompressibility condition can be conveniently solved by

expressing the velocity field in terms of the vorticity ω = ∂1u2 − ∂2u1. First (1) implies
the transport equation

dω + ((u · ∇)ω − ∇2ω)dt = db, (3)

where b = ∂1f2 − ∂2f1 has the covariance

Eb(t, x)b(t ′, y) = min{t, t ′}(2π)−1γ (x − y)
with γ = −2πν−3�trC.

Next, going to the Fourier transform, ωk(t) = 1
2π

∫
T e

ik·xω(t, x)dx, with k ∈ Z2; we

may express u as uk = i (−k2,k1)k2 ωk , and write the vorticity equation as

dω(t) = F(ω(t))dt + db(t), (4)

where the drift is given by

F(ω)k = −k2ωk + 1
2π

∑
l∈Z2\{0,k}

k1l2−l1k2

|l|2 ωk−lωl (5)
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and {bk} are Brownian motions with b̄k = b−k and

Ebk(t)bl(t
′) = min{t, t ′}δk,−l γk.

The dimensionless control parameter for the vorticity equation is

R =
∑
k∈Z2

γk = 2πγ (0) (6)

which is proportional to the ω injection rate, and also to the third power of the Reynolds
number. We will be interested in the turbulent regionR→∞; therefore, we will always
assume below, when it is convenient, that R is sufficiently large.

For turbulence one is interested in the properties of the stationary state of the sto-
chastic equation (4) in the case of smooth forcing (see [1] for some discussion of this
issue) and, ideally, one would like to consider the case where one excites only a finite
number of modes,

γk �= 0, k2 ≤ N,
with N of order of one. In this paper we assume that N scales as

N = κR, (7)

with κ an absolute constant fixed below. We take all the other γk = 0, although this
condition can easily be relaxed. Let us denote the minimum of the covariance by

ρ = min{|γk| | |k|2 ≤ N}.

Before stating our result, we need some definitions. Let P be the orthogonal projec-
tion inH = L2(T) to the subspaceHs of functions having zero Fourier components for
|k|2 > N . We will write

ω = s + l
with s = Pω, l = (1 − P)ω (respectively, the small k and large k parts of ω). Denote
also by Hl the complementary subspace (containing the nonzero components of l). H
is our probability space, equipped with B, the Borel σ -algebra.

The stochastic equation (4) gives rise to a Markov process ω(t) and we denote by
P t(ω,E) the transition probability of this process.

Our main result is the

Theorem. The stochastic Navier-Stokes equation (4) defines a Markov process with
state space (H,B) and for allR <∞, ρ > 0 it has a unique invariant measure µ there.
Moreover, ∀ω ∈ H , for all Borel sets E ∈ Hs and for all bounded Hölder continuous
functions F on Hl , we have,∣∣∣∣

∫
P t(ω, dω′)1E(s′)F (l′)−

∫
µ(dω′)1E(s′)F (l′))

∣∣∣∣ ≤ C(ω)||F ||αe−mt , (8)

where m = m(R, ρ, α) > 0, ||F ||α is the Hölder norm of exponent α, and C(ω) is a.s.
finite.
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Remark 1. In a previous paper [1] we have shown that, with probability 1, the functions
on the support of such a measure as constructed here are real analytic. In particular all
correlation functions of the form∫

µ(dω)
∏
i

∇ni u(xi)

exist.

Remark 2. The parameters in our problem are R and ρ. All constants that do not depend
on them will be generically denoted by C or c. Besides, we write C(X, Y,Z) for a
“constant” depending only on X, Y,Z. These constants can vary from place to place,
even in the same equation.

We close this section by giving the outline of the proof and explain its connection to
ideas coming from Statistical Mechanics.

Let us start by observing that, if we neglect the nonlinear term in (4–5), we expect

‖ω‖ to be of order R
1
2 , for typical realizations of the noise (R

1
2 is the typical size of

the noise, and the −k2ωk term will dominate in Eq. (4) for larger values of ‖ω‖). It
turns out that similar probabilistic estimates hold for the full Eq. (4) as shown in Sect. 3.

Now, if ‖ω‖ is of size R
1
2 , the −k2ωk term will dominate the nonlinear term (which is

roughly of size ‖ω‖2) in Eq. (4), for |k| ≥ κR
1
2 , and one can expect that those modes

(corresponding to l above) will behave somewhat like the solution of the heat equation
and, in particular, that they will converge to a stationary state.

Thus, the first step is to express the l-modes in terms of the s-modes at previous
times. This is done in Sect. 2 and produces a process for the s-modes that is no longer
Markovian but has an infinite memory. In Statistical Mechanics, this would correspond
to a system of unbounded spins (the s-modes) with infinite range interactions, with the
added complications that, here, the measure is not given in a Gibbsian form, but only
through a Girsanov formula, i.e. (23) below, and that time is continuous. Hence, we
have to solve several problems: the possibility that ω be atypically large, the long range
“interactions”, and finally, showing that a version of the s-process with a suitable cutoff
is ergodic and mixing.

The large ω problem is treated in Sect. 3, using probabilistic estimates developed
in [1], which, in Statistical Mechanics, would be called stability estimates. The infinite
memory problem is treated in Sects. 4 and 5, which are inspired by the idea of “high
temperature expansion” in Statistical Mechanics, namely writing the Gibbs measure or,
here, the Girsanov factor, as sum of products of factors having a finite range memory and
which become smaller as that range increases. However, in the situation considered here,
carrying out this expansion requires a careful and non standard partition of the phase
space (explained in Sect. 4). The problem is that, even though for typical noise, hence
for typical ω’s, the l-modes depend exponentially weakly on their past (see Sect. 2),
thus producing, typically, “interactions” that decay exponentially fast, they may depend
sensitively on their past when the noise is large. In the language of Statistical Mechanics,
atypically large noise produces long range correlations.

This problem of sensitive dependence is coupled to the last problem, that of the con-
vergence of the s-process with finite memory to a stationary state. We have to get lower
bounds on transition probabilities and we can prove those (see Sect. 8) only when the
s-modes remain for a sufficiently long time in a suitable region of the phase space; thus,
if we did not control the sensitive dependence, we would not be able to carry out that
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last step. Finally, in Sect. 7, we prove the bounds on our “high temperature” expansion
and, in Sect. 6, we use that expansion to prove the theorem. Note that, because we deal
with a stochastic process, we never have to “exponentiate” our expansion, unlike what
one would usually has to do in Statistical Mechanics (i.e., the analogue of the partition
function here equals 1). The choice of κ in (7) is explained in Remark 2 of Sect. 4.

2. Finite Dimensional Reduction

We will use an idea of [7] to reduce the problem of the study of a Markov process with in-
finite dimensional state space to that of a non-Markovian process with finite dimensional
state space.

For this purpose, write Eq. (4) for the small and large components of ω separately:

ds(t) = PF(s(t)+ l(t))dt + db(t), (9)
d

dt
l(t) = (1 − P)F(s(t)+ l(t)). (10)

The idea of [7] is to solve the l equation for a given function s, thereby defining l(t)
as a function of the entire history of s(t ′), t ′ ≤ t . Then the s equation will have a drift
with memory. Let us fix some notation. For a time interval I we denote the restriction
of ω (or s, l respectively) to I by ω(I), and use the boldface notation s(I ), to constrast
it with s(t), the value of s at a single time. ‖ · ‖ will denote the L2 norm. In [1] it was
proven that, for any τ <∞, there exists a set Bτ of Brownian paths b ∈ C([0, τ ], Hs)
of full measure such that, for b ∈ Bτ , (4) has a unique solution with ‖ω(t)‖ < ∞,
‖∇ω(t)‖ < ∞ for all t (actually, ω(t) is real analytic). In particular, the projections s
and l of this solution are in C([0, τ ], Hs(l)) respectively.

On the other hand, let us denote, given any s ∈ C([0, τ ], Hs), the solution - whose
existence we will prove below – of (10), with initial condition l(0) by l(t, s([0, t]), l(0)).
More generally, given initial data l(t ′) at time t ′ < τ and s([t ′, τ ]), the solution
of (10) is denoted, for σ ≤ τ , by l(σ, s([t ′, σ ]), l(t ′)) and the corresponding ω by
ω(σ, s([t ′, σ ]), l(t ′)). The existence and key properties of those functions are given by:

Proposition 1. Let l(0) ∈ Hl and s ∈ C([0, τ ], Hs) . Then l(·, s([0, t]), l(0)) ∈
C([0, τ ], Hl) ∩ L2([0, τ ], H 1

l ), where H 1
l = Hl ∩ H 1, and H 1 is the first Sobolev

space. In particular,

sup
t∈[0,τ ]

‖l(t, s([0, t]), l(0))‖ ≤ C(R, sup
t∈[0,τ ]

‖s(t)‖, ‖l(0)‖), (11)

where the notationC(R, supt∈[0,τ ] ‖s(t)‖, ‖l(0)‖) is defined in Remark 2, Sect. 1. More-
over, given two initial conditions l1, l2 and t ≤ τ ,

‖l(t, s([0, t]), l1)− l(t, s([0, t]), l2)‖ ≤ exp

[
−κRt + a

∫ t

0
‖∇ω1‖2

]
‖l1 − l2‖, (12)

where a = (2π)−2∑ |k|−4 and ω1(t) = s(t)+ l1(t, s([0, t]), l1). The solution satisfies

l(t, s([0, t]), l(0)) = l(t, s([τ, t]), l(τ, s([0, τ ]), l(0))). (13)
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Proof. The existence of l follows from standard a priori estimates which we recall for
completeness. We have from (10) (see also (3)), for sufficiently smooth l,

1

2

d

dt
‖l‖2 = −‖∇l‖2 + (l, u · ∇s)

since, by incompressibility, ∇ · u = 0, (l, u · ∇l) = 1
2

∫ ∇ · (ul2) = 0. Use now the
bound, for the functions d, v, b,

|(d, v · ∇b)| ≤ ‖d‖‖v‖∞‖∇b‖ ≤ √
a‖d‖‖�v‖‖∇b‖, (14)

which follows from ‖v‖∞ ≤ (2π)−1∑
k
|v(k)|k2

k2 and Schwarz’ inequality, and where

a = (2π)−2∑ |k|−4. Using (14), αβ ≤ 1
2 (α

2 + β2) and ‖�u‖ = ‖∇(s + l)‖, we get:

|(l, u · ∇s)| ≤ √
a‖l‖(‖∇s‖ + ‖∇l‖)‖∇s‖

≤
√
a

2 (‖l‖2 + ‖∇s‖4)+ 1
2 ‖∇l‖2 + a

2 ‖l‖2‖∇s‖2.

Hence,

d

dt
‖l‖2 ≤ −‖∇l‖2 + (√a + a‖∇s‖2)‖l‖2 +√

a‖∇s‖4. (15)

The bound (11) on ‖l(t)‖ follows then, by Gronwall’s inequality, from (15) and the fi-
niteness of supt ‖∇s‖2 and of supt ‖∇s‖4 (which follow from the finiteness of supt ‖s‖2,
since s has only finitely many nonzero Fourier coefficients). Finally, the boundedness
of
∫ τ

0 ‖∇l‖2 follows from (15) by integration.
For the second claim, let δl(t) = l(t, s, l1) − l(t, s, l2) ≡ l1(t) − l2(t), and define

ul = (1 − P)u. We have:

1

2

d

dt
‖δl‖2 = −‖∇δl‖2 + (δl, δul · ∇ω1 + u1 · ∇δl + δul · ∇δl)

= −‖∇δl‖2 + (δl, δul · ∇ω1) (16)

using, as above, (δl, u1 · ∇δl) = 0 = (δl, δul · ∇δl), and defining ω1 = s + l1. Now,
estimate, using (14) and ‖�δul‖ = ‖∇δl‖,

|(δl, δul · ∇ω1)| ≤
√
a‖δl‖‖∇δl‖‖∇ω1‖ ≤ 1

2 (‖∇δl‖2 + a‖δl‖2‖∇ω1‖2). (17)

So, by (7) and the fact that lk �= 0 only for k2 > N ,

d

dt
‖δl‖2 ≤ −κR‖δl‖2 + a‖δl‖2‖∇ω1‖2, (18)

which implies the claim (12) using Gronwall’s inequality. The last claim (13) is
obvious. ��
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Now, if s = Pω with ω as above being the solution of (4) with noise b ∈ Bτ then
the l(s) constructed in the proposition equals (1 − P)ω and the stochastic process s(t)
satisfies the reduced equation

ds(t) = f (t)dt + db(t) (19)

with

f (t) = PF(ω(t)), (20)

where ω(t) is the function on C([0, t], Hs)×Hl given by

ω(t) = s(t)+ l(t, s([0, t]), l(0)). (21)

Equation (19) has almost surely bounded paths and we have a Girsanov representation
for the transition probability of the ω-process in terms of the s-variables

P t(ω(0), F ) =
∫
µtω(0)(ds)F (ω(t)) (22)

with

µtω(0)(ds) = e
∫ t

0 (f (τ ),γ
−1(ds(τ )− 1

2 f (τ)dτ))νts(0)(ds), (23)

where νts(0) is the Wiener measure with covariance γ on paths s = s([0, t])with starting

point s(0) and (·, ·) the 52 scalar product. We define the operator γ−1 in terms of its
action on the Fourier coefficients:

(f, γ−1f ) =
∑

|k|2≤N
|fk|2γ−1

k . (24)

The Girsanov representation (22) is convenient since the problem of a stochastic
PDE has been reduced to that of a stochastic process with finite dimensional state space.
The drawback is that this process has infinite memory. In Sects. 4 and 5 we present a
formalism, borrowed from statistical mechanics, that allows us to approximate it by a
process with finite memory; the approximation will be controlled in Sect. 7, while the
finite memory process will be studied in Sect. 8. This analysis is mostly done in the
s-picture, but an important ingredient in it will be some a priori estimates on the transi-
tion probabilities of the original Markov process generated by (4) that we prove in the
next section.

3. A Priori Estimates on the Transition Probabilities

The memory in the process (19) is coming from the dependence of the solution of (10) on
its initial conditions. By Proposition 1, the dependence is weak if

∫ t
0 ‖∇ω‖2 is less than

cR for a suitable c. We localize the time intervals where this condition holds by inserting
a suitable partition of unity in the expression (22). We shall show (in Sect. 8 below) that,
during such time intervals, the s process behaves qualitatively like an ergodic Markov
process. In this section we show that the complementary time intervals occur with small
probability.
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Let us first explain the partition of unity. We define, for each unit interval [n−1, n] ≡
n, a quantity measuring the size of ω on that interval by:

Dn = 1
2 sup
t∈n

‖ω(t)‖2 +
∫

n
‖∇ω(t)‖2dt. (25)

Let {φk}k∈N be a smooth partition of unity for R+, with the support of φk contained in
[2kR, 2k+2R] for k > 0, and in [0, 4R] for k = 0. Set, for k ∈ Nt ,

χk(ω) =
∏
n

φkn(Dn(ω)). (26)

We insert 1 =∑k χk in (23), to get

µtω(0)(ds) =
∑

k

χkµ
t
ω(0)(ds). (27)

The following proposition bounds the probability of the unlikely event that we are
interested in:

Proposition 2. There exist constants c > 0, c′ < ∞, β0 < ∞, such that for all t, t ′,
1 ≤ t < t ′ and all β ≥ β0,

P


t ′−1∑
n=t

Dn(ω) ≥ βR|t ′ − t |
∣∣∣∣ω(0)


 ≤ exp

(
1
R
c′e−t‖ω(0)‖2

)
exp(−cβ|t ′ − t |). (28)

In order to prove Proposition 2, we need some lemmas. We will start with a probabi-
listic analogue of the so-called enstrophy balance:

Lemma 3.1. For all ω(0) ∈ L2, and all t ≥ 0,

E
[
e

1
4R ‖ω(t)‖2 ∣∣∣ ω(0)] ≤ 3e

1
4R e

−t‖ω(0)‖2
, (29)

and

P
(
‖ω(t)‖2 ≥ D|ω(0)

)
≤ 3e−

D
4R e

1
4R e

−t‖ω(0)‖2
. (30)

Remark. This lemma shows that the distribution of ‖ω(t)‖2 satisfies an exponential
bound on scale R with a prefactor whose dependence on the initial condition decays
exponentially in time. Thus, if ‖ω(0)‖2 is of orderD, ‖ω(t)‖2 will be, with large prob-
ability, of order R after a time of order logD.

Proof. Let x(τ) = λ(τ)‖ω(τ)‖2 = λ(τ)∑k |ωk|2 for 0 ≤ τ ≤ t . Then by Ito’s formula
(remember that, by (6),

∑
k γk = R and thus γk ≤ R, ∀k):

d

dτ
E[ex] = E

[(
λ̇λ−1x − 2λ

∑
k

k2|ωk|2 + λ
∑
k

γk + 2λ2
∑
k

γk|ωk|2
)
ex

]

≤ E[((λ̇λ−1 − 2 + 2λR)x + λR)ex], (31)

where E denotes the conditional expectation, given ω(0), and where we used the
Navier-Stokes equation (3), |k| ≥ 1 for ωk �= 0, and the fact that the nonlinear term does
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not contribute (using integration by parts and ∇ · u = 0). Take now λ(τ) = 1
4R e

(τ−t) so

that λ ≤ 1
4R , λ̇λ−1 = 1, λ̇λ−1 − 2 + 2λR ≤ − 1

2 and λR ≤ 1
4 . So,

d

dτ
E[ex] ≤ E [( 1

4 − 1
2x
)
ex
] ≤ 1

2 − 1
4E[ex],

where the last inequality follows by using (1 − 2x)ex ≤ 2 − ex . Thus, Gronwall’s
inequality implies that:

E
[
ex(τ)

]
≤ e− τ

4 ex(0) + 2 ≤ 3ex(0),

i.e., using the definition of λ(τ),

E

[
exp

(
eτ−t

4R
‖ω(τ)‖2

)]
≤ 3 exp

(
e−t‖ω(0)‖2

4R

)
,

This proves (29) by putting τ = t ; (30) follows from (29) by Chebychev’s inequality.
��

Since the Dn in (28) is the supremum over unit time intervals of

Dt(ω) = 1

2
‖ω(t)‖2 +

∫ t

n−1
‖∇ω‖2dτ n− 1 ≤ t ≤ n, (32)

which does not involve only ‖ω(t)‖2, we need to control also the evolution of Dt(ω)
over a unit time interval, taken, for now, to be [0, 1]. From the Navier-Stokes equation
(3) and Ito’s formula, we obtain

Dt(ω) = D0(ω)+ Rt +
∫ t

0
(ω, db) (33)

(since the nonlinear term does not contribute, as in (31)). Our basic estimate is:

Lemma 3.2. There exist C <∞, c > 0 such that, ∀A ≥ 3D0(ω)

P

(
sup
t∈[0,1]

Dt(ω) ≥ A|ω(0)
)
≤ Ce− cA

R . (34)

Remark. While the previous lemma showed that ‖ω(t)‖2 tends to decrease as long as it
is larger than O(R), this lemma shows that, in a unit interval, Dt(ω) does not increase
too much relative to D0(ω) = 1

2‖ω(0)‖2. Thus, by combining these two lemmas, we
see that Dn(ω) = sup

t∈[n−1,n]
Dt(ω) is, with large probability, less than ‖ω(0)‖2, when

the latter is larger than O(R), at least for n ≥ n0 not too small. This is the content of
Lemma 3.3 below. Thus, it is unlikely thatDn(ω) remains much larger thanR over some
interval of (integer) times, and this fact will be the basis of the proof of Proposition 2.

Proof. From (33), we get that

P

(
sup
t∈[0,1]

Dt(ω) ≥ A
∣∣∣∣ω(0)

)
≤ P

(
sup
t∈[0,1]

∣∣∣∣
∫ t

0
(ω, db)

∣∣∣∣ ≥ (A−D0 − R)
∣∣∣∣ω(0)

)
.

(35)
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The process t → ∫ t
0 (ω, db) is a continuous martingale so, by Doob’s inequality (see

e.g. [9], p.24), the submartingale xt ≡ | ∫ t0 (ω, db)| satisfies the bounds

E((sup
t
xt )

p) ≤
(

p

p−1

)p
E
(
x
p
1

) ∀p ≥ 2, (36)

where E denotes the conditional expectation, given ω(0). These imply

E(eε sup xt ) ≤ 5E(eεx1), (37)

where ε will be chosen small below (to derive (37), expand both exponentials, use (36)

and
(

p
p−1

)p ≤ 4 for p ≥ 2; for p = 1, use Ea ≤ 1
2 (α + α−1Ea2) for a ≥ 0 and take

α = 2). Since

E(eεx1) ≤ 1

2

(
E
(
eε
∫ 1

0 (ω,db)
)
+ E

(
e−ε

∫ 1
0 (ω,db)

))
, (38)

using Novikov’s bound, we get

E
(
e±ε

∫ 1
0 (ω,db)

)
≤
(
E
(
e2ε2

∫ 1
0 dτ(ω(τ),γω(τ))

))1/2

≤
(∫ 1

0
dτE

(
e2ε2(ω(τ),γω(τ))

))1/2

≤
(∫ 1

0
dτE

(
e2ε2R‖ω(τ)‖2

))1/2

, (39)

where the last two inequalities follow from Jensen’s inequality, applied to

e2ε2
∫ 1

0 dτ(ω(τ),γω(τ)), and from γk ≤ R (see (6)).
So, altogether, we have, by Chebychev’s inequality and (37–39):

P

(
sup
t∈[0,1]

∣∣∣∣
∫ t

0
(ω, db)

∣∣∣∣ ≥ (A−D0 − R)
∣∣∣∣ω(0)

)

≤ 5e−ε(A−D0−R)
(∫ 1

0
dτE

(
e2ε2R‖ω(τ)‖2

))1/2

. (40)

Now, combine this with (35) and (29) in Lemma 3.1 above, choosing 2ε2R = 1
4R ,

i.e. ε = 1√
8R

, to get

P

(
sup
t∈[0,1]

Dt(ω) ≥ A|ω(0)
)
≤ 15e−ε(A−D0−R)eD0/4R (41)

which yields (34) for A ≥ 3D0(ω) and C = 15e
1√
8 and c = 1

3

(
2√
8
− 1

4

)
. ��
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Let Ak be, for k > 0, the interval [2kR, 2k+1R] and let A0 = [0, 2R]. Given an
integer n0 define, for k, k′ ≥ 0,

P(k|k′) = sup
ω′(0)

P (Dn0(ω)) ∈ Ak|ω′(0)) ≡ sup
ω′(0)

P (k|ω′(0)), (42)

where the supremum is taken over ω′(0) such that ‖ω′(0)‖2 ≤ 2k
′+1R (the intervals

labelled by k will play a role similar to the k’s introduced in (26), but, since we do not
need a smooth partition of unity here, we use a more conventional partition). Observe
that we have ∀k, k′ ≥ 0,

P(k|k′) ≤ 1. (43)

The main ingredient in the proof of Proposition 2 is

Lemma 3.3. There exist constants c > 0, C <∞ such that

P(k|k′) ≤ C exp
(− c2k) exp(e−(n0−1)2k

′−1). (44)

Proof. We split

P(k|ω′(0)) = E
(

1Ak (Dn0(ω))1
(
‖ω(n0 − 1)‖2 >

2
3 2kR

)
|ω′(0)

)
+E
(

1Ak (Dn0(ω))1
(
‖ω(n0 − 1)‖2 ≤ 2

3 2kR
)
|ω′(0)

)
,

where 1Ak is the indicator function of the intervalAk , and 1(X) is the indicator function
of the event X. Hence, we may bound

P(k|k′) ≤ supP
(
‖ω(n0 − 1)‖2 >

2
3 2kR|ω′(0)

)
+ supE

(
1Ak (Dn0(ω))|ω(n0 − 1)

)
, (45)

where the supremum in the first term is taken over ω′(0) such that ‖ω′(0)‖2 ≤ 2k
′+1R

and, in the second term, over ω(n0 − 1) such that ‖ω(n0 − 1)‖2 ≤ 2
3 2kR.

Using Lemma 3.1, we bound the first term of (45) :

P
(
‖ω(n0 − 1)‖2 > 2

3 2kR
∣∣ω′(0)) ≤ 3 exp

(
− 2k

6

)
exp

(
e−(n0−1)2k

′−1
)
. (46)

And, using Lemma 3.2, and the fact that the support of 1Ak is in [2kR, 2k+1R] for k > 0,
we bound the second term of (45), for k > 0, by

E
(
1Ak

(
Dn0(ω)

) ∣∣ω(n0 − 1)
) ≤ P

(
sup

t∈[n0−1,n0]
Dt(ω) ≥ 2kR

∣∣ω(n0 − 1)

)

≤ C exp(−c2k), (47)

sinceω(n0−1) is such that 2kR ≥ 3
2‖ω(n0−1)‖2 = 3D0(ω). For k = 0, (47) obviously

holds also. This proves (44). ��
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Proof of Proposition 2. By Lemma 3.3, we may find n0 so that ∃ c > 0, C < ∞ such
that

P(k|k′) ≤ C exp(−c2k) for k ≥ k′. (48)

Let us fix such n0. Let D be the sum ofDn in (28) and Dτ the same sum with n restricted
to the lattice n0Z + τ . We can write:

P
(
D ≥ βR|t ′ − t |

∣∣∣ω(0)) ≤ n0−1∑
τ=0

P

(
Dτ ≥ βR|t ′ − t |

n0

∣∣∣ω(0)) .
So, since |t ′ − t | ≥ 1, by changing the values of c, and β0 in (28), it suffices to prove
(28) for D replaced by Dτ , τ = 0, . . . , n0 − 1; and, since all the terms are similar, we
shall consider only τ = 0. Finally, by redefining t , t ′, it is enough to bound by the RHS
of (28) the probability of the event

t ′−1∑
n=t

Dnn0(ω) ≥ βR|t ′ − t |.

Using the Markov property, the definition (42) of P(k|k′), and the fact that Dnn0 ∈ Ak
means that Dnn0 ≤ 2knn0+1R, we see that it suffices (changing again c and β0) to prove
the estimate (28) for the expression

∑
{knn0 }

1


t ′−1∑
n=t

2knn0 ≥ β|t − t ′|

 t ′−2∏
n=t

P (k(n+1)n0 |knn0)P (ktn0 |ω(0)). (49)

We bound (49), using Chebychev’s inequality, by

(49) ≤ exp(−εβ|t ′ − t |)
∑
{knn0 }

exp


ε t

′−1∑
n=t

2knn0




×
t ′−2∏
n=t

P
(
k(n+1)n0 |knn0

)
P
(
ktn0 |ω(0)

)
, (50)

where ε will be chosen small below.
Consider now

∑
k exp(ε2k)P (k|k′). Splitting this sum into

∑
0≤k≤k′−1 and

∑
k≥k′

and using (43) for the first sum and (48) for the second, we get:∑
k

exp(ε2k)P (k|k′) ≤ k′ exp(ε2k
′−1)+ ea, (51)

where ea ≡ C∑∞
k=0 exp((ε− c)2k) is bounded as long as (say) ε ≤ c/2. Moreover, we

can bound k′ exp(ε2k
′−1)+ ea ≤ ec1 exp

(
ε2−

1
2 2k

′)
. Altogether, we have:

∑
k

exp(ε2k)P (k|k′) ≤ ec1 exp
(
ε2−

1
2 2k

′)
. (52)
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Let us apply this first to the sum over k(t ′−1)n0 , then k(t ′−2)n0 and so on. The result of (52)
is that, apart from the prefactor ec1 , we obtain, when we sum over k(t ′−2)n0 , the same

summand as in the first sum, but with ε replaced by ε + ε2− 1
2 . And, after m steps we

have ε replaced by ε
∑m
l=0 2−

1
2 l . Thus, we can use this inductively on P

(
k(n+1)n0 |knn0

)
for all n, with t ≤ n ≤ t ′ − 2, as long as ε

∑∞
l=0 2−

1
2 l = ε

(
1

1−2
− 1

2

)
≤ c/2, which

holds for ε small enough. Thus, we obtain, ∀t ′ > t , a bound for the sum in (50)

ec1|t ′−1−t |∑
ktn0

exp(c2ε2
ktn0 )P (ktn0 |ω(0)) (53)

with c2 = 1

1−2
− 1

2
. Observe that, using (42) and (44), with n0 replaced by t and k′ being

the smallest k such that ‖ω(0)‖2 ≤ 2k+1R, we may bound

P(ktn0 |ω(0)) ≤ C exp(−c2ktn0 ) exp(ee−t2k
′−1).

Then the sum over ktn0 in (53) can be bounded, since
∑
ktn0

exp((c2ε − c)2ktn0 ) ≤ C

for ε small, and we get:∑
ktn0

exp(c2ε2
ktn0 )P (ktn0 |ω(0)) ≤ C exp(ee−t2k

′−1).

Moreover, we have, by definition of k′, 2k
′ ≤ c ‖ω(0)‖2

R
. Thus, we obtain the bound (28)

for (49), for β0 large enough (e.g. take 1
2 εβ ≥ 1

2 εβ0 ≥ c1 + logC, use |t ′ − t | ≥ 1, and,
in (28), take c = ε

2 ), by combining these inequalities with (50) and (53). ��

4. Partition of the Path Space

Consider the expression (27) for the measure µ. Given k, we will now decompose the
time axis into regions where Eq. (10) may have sensitive dependence on initial condi-
tions and the complement of those regions. Motivated by Proposition 2, let us consider,
for time intervals L, the expressions

γL =
∑
n⊂L

2kn . (54)

Let T be a number to be fixed later (in Sects. 6–8), depending on ρ, the minimum of the
noise covariance. Define

β(L) =
{
β|L| if |L| > 1

2 T
1
2 βT if |L| ≤ 1

2 T
. (55)

β is a constant to be fixed later (see Remark 2 below). Call the time intervals with end
points on the lattice TZ T -intervals, and, for an intervalL = [m, n], let L̄ be the smallest
T -interval containing [m, n] . Consider the set L of intervals L such that, either

γL > β(L), (56)
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or L = [(n− 1)T , nT ], so that

2knT > β ′T , (57)

where β ′ < β is a constant also to be fixed later (see Remark 2 below). Let L̄ be the
union of all L̄withL ∈ L. We call the connected components of L̄ large intervals and the
T -intervals of length T in its complement small intervals. Note that intervals of length
T can be either small or large (those of length at least 2T are always large). Hence, we
introduce labels small/large on those intervals. By construction, two large intervals are
always separated by at least one small one.

Remark 1. “Large” and “small” refer to ω(J ) being large or small, not to the size of the
interval. We use this slightly misleading terminology for the sake of brevity. γL are the
natural random variables entering in the sensitive dependence estimate (12) and whose
probability distribution was studied in Proposition 2. Since the estimate (28) involves
the initial condition at the beginning of the time interval we consider and, since this
initial condition is the size of ω at the end of a time interval where (56) is violated, we
need to be sure it does not dominate the bound (28). For that reason, we include in our
set of unlikely events also the ones defined by (57).

Remark 2. The three constants in our construction, κ, β, β ′ entering (7), (56) and (57)
are fixed as follows: β ′ ≥ β ′0, β ≥ β(β ′) and κ ≥ κ(β).
Remark 3. The virtues of this partition of phase space can be seen in Lemma 4.1 and 7.4
below. The bound (59) and Proposition 2 will imply that large intervals are unprobable.
On the other hand, (58) and (139) will allow us to show that the argument of the expo-
nential in (12) is less than −cR|J |, when the interval [0, t] is replaced by an interval J
strictly including one of the intervals constructed here. This property will be essential
in order to obtain bounds on the terms of the expansion constructed in the next section.

Taken together, the small and large intervals form a partition π(k) = J1, . . . , JN of
the total time interval [0, t]. We arrange them in temporal order and write Ji = [τi−1, τi]
with τ0 = 0, τN = t .

Our construction has the following properties:

Lemma 4.1. Let J = [τ ′, τ ] be a T -interval J ∈ π(k).
(a) If J is small, then ∑

n⊂J
2kn ≤ βT and 2kτ ≤ β ′T , (58)

(b) If J is large, then J may be written as a union J ′ ∪ J ′′ so that

γJ ′ >
1
4 β|J ′| (59)

and J ′′ is a union of intervals [(n− 1)T , nT ] satisfying (57).

Remark 4. At both ends of any interval, either large or small, we have 2kn ≤ βT (other-
wise the interval would be large, not small, or would not end there). Note that we have
β here, not the smaller β ′ of (58). So, if ω is such that Dn(ω) is in the support of φkn ,
we have:

‖ω(τ)‖2 ≤ 8βRT, (60)

where τ is the endpoint of the interval.
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Proof of Lemma 4.1. (a) A small interval cannot be an L for which (56) holds nor an
interval [(n− 1)T , nT ] satisfying (57); hence, (58) holds.

For (b), let J ′ be the union of the L̄ in J with L such that (56) holds. We may cover
J ′ by a subset L̄i , i = 1, . . . p, of these intervals, in such a way that L̄i ∩ L̄j = ∅ for
|i − j | > 1. From (56, 55), we deduce that γL̄ >

1
2 β|L̄| and then,

γJ ′ ≥ 1
2

∑
γL̄j ≥

1
4 β|J ′|. ��

In order to obtain the analogue of what in Statistical Mechanics is called the high
temperature expansion, we need to write the sum in (27) as a sum of products of inde-
pendent factors. As a first step in that direction, we would like to express the sum in
(27) as a sum of partitions π = (J1, . . . , Jn) of [0, t] into T -intervals and sums over
ki ∈ NJi . However, a moment’s thought reveals that the sum over k creates correlations
between the different ki . E.g. Ji being small is a very nonlocal condition in terms of k:
nowhere in the whole interval [0, t] can there be a kn large enough to create aL ∈ L that
intersects Ji . Given an arbitrary T -interval J and k ∈ NJ , we may define, in the same
way as we did above for [0, t], the partition π(k) of J into small and large intervals.
In particular, π(k) = {J } means, if |J | = T , that k is such that J is small or large
depending on the label on J and, if |J | > T , that k is such that J is large. Then, we
have:

Lemma 4.2. Let π = {J1, . . . , JN } be a partition of [0, t] into T -intervals and let
ki ∈ NJi be given such that π(ki ) = {Ji}. Let k = (k1, . . . ,kN). Then π(k) = ∪iπ(ki )
if and only if the ki satisfy the constraints

∀L ⊂ Ji ∪ Ji+1 so that L ∩ Ji �= ∅ �= L ∩ Ji+1 : γL ≤ β(L) (61)

for all i = 1, . . . , N − 1.

Proof. Assume first that π(k) = ∪iπ(ki ). Hence π(k) = π and by the definition of
π(k), every L such that γL > β(L) is contained in some Ji . Thus, (61) holds.

For the converse, observe first that, by the definition of the partitions π(k) and
∪iπ(ki ), their sets of small and large J ’s are entirely determined by the set of connected
components of L given by k on [0, t] for π(k) and the set of connected components of
Li given by ki on each Ji for ∪iπ(ki ). Thus it is enough to show that their connected
components coincide. The intervals satisfying (57) obviously coincide. By definition
of γL and of the large intervals, each connected component of Li must be contained
in a connected component of L, since k = (k1, . . . ,kN). Now, using (61), we show
the converse, which will establish the claim. Let L be a connected component of L. If
L ⊂ Ji , then L is a connected component of Li . Thus, if the claim is not true, there
must exist a connected component L of L, such that L is not included in any Ji and
such that γL > β(L). By (61), L cannot be included in two adjacent J ’s either. Thus,
there must be a connected L with γL > β(L) = β|L| and Ji such that L ∩ Ji−1 �= ∅,
L ∩ Ji+1 �= ∅. Then L = L1 ∪ L2 with L1, L2 having the midpoint of Ji as a com-
mon boundary point. Hence, by (61), γLi ≤ β(Li) = β|Li | since |Li | > 1

2 T . Thus
γL = γL1 + γL2 ≤ β|L| = β(L), which is a contradiction. ��

Consider now the sum (27). Let π(k) = {J1, . . . , JN }. Define the Girsanov factor

gJi (ω) = e
∫
Ji
(f (t),γ−1(ds(t)− 1

2 f (t)dt)), (62)
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where we recall that f (t) and ω, given by (20) and (21), and thus gJi , depend on the
whole past i.e. on s([0, τi]) and l(0). Let ki ∈ NJi be the restriction of k to Ji , let us
denote by χki the corresponding product (26), and let

µki (ds(Ji)) = χki gJi ν
|Ji |
s(τi−1)

(ds(Ji)). (63)

We can then write

χkµ
t
ω(0)(ds) =

N∏
i=1

µki (ds(Ji)). (64)

Let π be a partition of [0, t] into T -intervals with labels “small” or “large” on the ones
of length T . Let us define, for such a labelled T -interval J , 1J (k) to be the indicator
function for the set of k ∈ NJ such that π(k) = {J } (i.e. if |J | = T 1J is supported
on k so that J is small or large depending on the label and if |J | > T on k so that J
is large). For two adjacent T -intervals J, J ′ let 1JJ ′(k,k′) be the indicator function for
the set of (k,k′) ∈ NJ × NJ

′
, such that γL ≤ β(L) for all L ⊂ J ∪ J ′ which intersect

both J and J ′. Using Lemma 4.2, we may then write Eq. (27) as

µtω(0)(ds) =
∑
π

∑
k1...kN

N∏
i=1

1Ji (ki )µki (ds(Ji))
N−1∏
i=1

1JiJi+1(ki ,ki+1). (65)

Note that this expression has a Markovian structure in the sets Ji , but each µki depends
on the whole past history. In the next section, we shall decouple this dependence.

5. Decoupling

By decoupling we mean that we shall write µtω(0) as a product of measures whose
dependence on the past extends only over two adjacent intervals, and corrections. To
achieve that, consider µki , for i > 2; remember that [0, t] is partitioned into intervals
Ji = [τi−1, τi] with τ0 = 0, τN = t . Fix j < i, and introduce the drift with memory on
[τj−1, t]:

fj (t) = PF(ωj (t)), (66)

where
ωj (t) = (s(t), l(t, s([τj−1, t]), 0))

is the solution of (9, 10), with initial condition l(τj−1) = 0. We denote by gij the Girsa-
nov factor gJi (ωj ) (given by (62), with f (t) replaced by fj (t)). Note that it depends
only on the history s([τj−1, τi]).

Since the characteristic function χki also depends on the past through the ω depen-
dence of (26), we need to decouple this too. We let

χki j =
∏

n⊂Ji
φkn(Dn(ωj )). (67)

We can now define the decoupled measure for j = 2, . . . , i − 1:

µki j (ds(Ji)|s([τj−1, τi−1])) = χki j gij ν
|Ji |
s(τi−1)

(ds(Ji)); (68)
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this measure is defined on the paths on the time interval Ji and depends on the past up to
and including the interval Jj . To connect to (64), we write, for i ≥ 3, a telescopic sum

µki = µki i−1 +
i−2∑
j=1

(µki j − µki j+1) ≡
i−1∑
j=1

µki ,j , (69)

where by definition µki1 = µki ; note that this term is the only one depending on l(0).
For i = 1, 2 we will set by convention ji = i − 1, s([τ−1, τ0]) = ω(0), and define
µki ji = µki . Inserting (69) into (65), we get

µtω(0)(ds) =
∑
π

∑
k1...kN

∑
j

N∏
i=1

1Ji (ki )µki ,ji (ds(Ji)|s([τji−1, τi−1]))

×
N−1∏
i=1

1JiJi+1(ki ,ki+1). (70)

One should realize that the leading term in the sum (70) is the one with all ji = i − 1
and k such that the partition π(k) consists of only small intervals. Indeed, µki ,ji with
ji �= i − 1 describes the change of µki under variation in the distant past. This will
be shown to be small as a consequence of Proposition 1 and Lemma 4.1. On the other
hand, the occurrence of large intervals will be shown to have a small probability, using
Proposition 2.

Therefore, we will group all these small terms as follows. Consider the set

L′ =
⋃

ji<i−1

[τji−1, τi]
⋃

Ji large

(Ji ∪ Ji+1), (71)

where we have grouped the terms mentioned above, and also included the small inter-
vals following the large ones for later convenience. Since our initial condition ω(0) is
arbitrary, it is convenient to include also the intervals J1, J2, and to let

L = J1 ∪ J2 ∪ L′. (72)

LetK1, . . . , KN be the partition of [0, t] into T -intervals, in chronological order, where
the Kl’s, which are unions of intervals Ji , are given by the connected components of L
and by the small intervals Ji ⊂ Lc. In the first case, |Kl | ≥ 2T , since we always attach
to a large interval Ji the interval Ji+1, see (72, 71); in the second case, |Kl | = T .

Fix nowK = [τ0, τ ], aT -interval and let J0 = [τ0−T , τ0] if 0 /∈ K . Let k+,k0 ∈ NT

and s(J0) ∈ C(J0, Hs). We define

µK(ds(K),k+|s(J0),k0) =
∑
π

∑
k1...kN−1

∑
j

N∏
i=1

1Ji (ki )µki ,ji (ds(Ji)|s([τji−1, τi−1]))

×
N−1∏
i=0

1JiJi+1(ki ,ki+1), (73)

where kN = k+, for i = 1, s([τji−1, τi−1] is replaced by s(J0), and the sum is over π
and j so that K equals L′ of (71) if 0 /∈ K , or L of (72) if 0 ∈ K . In the latter case, we
replace s(J0),k0 by ω(0) and the last product starts at i = 1. Note that, because of the
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presence of Ji+1 in (71), the last interval inK is small. With this definition, we can then
rewrite (70) as:

µtω(0)(ds) =
∑
π

∑
k1...kM

M∏
i=1

µKi (ds(Ki),ki |s(Ji−1),ki−1), (74)

where the sum is over partitions π = (K1, . . . , KM) of [0, t] into T -intervals Ki =
[τi−1, τi] so that |K1| ≥ 2T (because we included J1, J2 into K1, see (72)), and for
i = 1, s(Ji−1),ki−1 is replaced by ω0. Note that all the Kl’s so that |Kl | = T are small
intervals, and, in that case, Kl coincides with an interval Ji = [τi − T , τi].

The expansion in (74) has a Markovian structure in the pairs σ = (s(K),k) ≡ (s,k),
and it is convenient to set

µK(dσ |σ ′) = µK(ds,k|s′,k′). (75)

We write for the convolution of such kernels:

µKµK ′′(dσ |σ ′′) =
∫
µK(dσ |σ ′)µK ′′(dσ ′|σ ′′), (76)

where the integral means both the integral over ds′ and the sum over k′. For |K| = T ,
i.e. for a small interval, we drop the indexK altogether in our notation and write µn for
the n-fold convolution. With these preparations, let us then consider the expression (22)
when the function F depends only on s:

P t(ω(0), F ) =
∫
µtω(0)(ds)F (s(t))

=
∑
K,n

∫
µnMµKM . . . µ

n1µK1(dσ |ω(0))F (s(t)), (77)

where K = (K1, . . . , KM) are disjoint T -intervals of length at least 2T ,
∑ |Ki | +

T
∑
ni = t , nM ≥ 0, ni > 0 for other i’s andM ≥ 1.

There are two kinds of transition kernels in (77), the unlikely ones µK and the likely
ones µn. The latter will be responsible for the convergence to stationarity and we will
discuss them next. Let σ = (s,k) with s = s(J ) and J = [τ, τ + T ], J0 = [τ − T , τ ].
Define

P(ds|s′) = gJ (ω)νTs(τ)(ds), (78)

where ω(t) = (s(t), l(t, s ∨ s′([τ − T , t]), 0), with s ∨ s′ being the configuration on
[τ − T , τ + T ] coinciding with s′ on [τ − T , τ ], and with s on [τ, τ + T ]; we put
P(ds|s′) = 0 if s(τ ) �= s′(τ ); gJ (ω) is the Girsanov factor (62) (which here, of course,
because of the definition of ω, depends only on s ∨ s′([τ − T , t])). Let also

χk(s, s′) = χk(ω)1J (k), (79)

where 1J (k) is supported on k so that J is a small interval. Then, (75) in the special
case |K| = T gives:

µ(dσ |σ ′) = χk(s, s′)P (ds|s′)1J0J (k
′,k). (80)
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Let µ̄ be given by (80) without the 1J0J (k
′,k) factor:

µ̄(dσ |σ ′) = χk(s, s′)P (ds|s′) (81)

and write

µ = µ̄+�. (82)

�(dσ |σ ′) is a measure of small total mass, since it is supported on σ ’s such that large
intervals L intersect two adjacent small ones. So, let us expand:

µn = (µ̄+�)n =
∑

µ̄n1�n2 . . . µ̄nk−1�nk . (83)

We will state now the basic bounds for the transition kernels that allow us to control
the expansions (80) and (83). Remember that the initial states s′ in our kernels are on
small intervals J0 = [τ −T , τ ] (except for the µK with 0 ∈ K which has ω(0) as initial
state). This means that ω′(t) = ω(t, s′([τ −T , t]), l′(τ −T )) is constrained to be on the
support of the χk with k such that J0 is small. This implies that all the transition kernels
have initial states s′ ∈ Cs ⊂ C(J0, Hs) given by (see (26) and the support of φk)

Cs =

s′ |

∑
n⊂J0

Dn(ω
′) ≤ 4βRT, Dτ (ω

′) ≤ 4β ′RT


 . (84)

The first proposition controls the unlikely events of having either�n, n ≥ 1, or µK with
|K| ≥ 2T (or both):

Proposition 3. There exists c > 0, c′ < ∞, T0 = T0(ρ, R) < ∞ such that, ∀T ≥ T0,
and for |K| ≥ 2T , or m ≥ 2, or m = 1 and |K| ≥ T ,

sup
k′

sup
s′∈Cs

∫
|�mµK(dσ |σ ′)| ≤ e−c(|K|+Tm)CK(ω(0)), (85)

where the sup is over k′ so that J0 is small, if 0 /∈ K . CK(ω(0)) = 1 if 0 /∈ K and

CK(ω(0)) = ec′β ′T e
‖ω(0)‖2

8R (86)

if 0 ∈ K .

For the likely events we look more closely at µ̄n:

µ̄n(dσ |σ ′) =
∫
µ̄(dσ |σ ′′)λn−1(ds′′|s′) (87)

with λ given by, see (81),

λ(ds|s′) =
∑

k

µ̄(dσ |σ ′) =
∑

k

χk(s, s′)P (ds|s′). (88)

The content of the following proposition is that λn relaxes to equilibrium:

Proposition 4. There exist δ = δ(ρ, R) > 0, p = p(ρ,R) <∞, such that, ∀T ≥ T0,

sup
s′∈Cs

∫
|λp(ds|s′)− λp(ds|0)| ≤ 1 − δ. (89)
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6. Proof of the Theorem

The proof of the theorem is rather straightforward, given the estimates, stated in Propo-
sitions 3 and 4, on the measures in (77). Note that the length T of the intervals entering
in the expansion (77) is a parameter that has not yet been fixed. For simplicity, we shall
consider only times t in (8) that are multiples of T ; the general case is easy to obtain.

We divide the proof into two parts: in the first one, F = 1 in (8) and, in the second,
F is a general Hölder continuous function.

In the case F = 1, we integrate a function, 1E , depending only on s′ and we may use
(77). Let

µ0(ds) ≡ λp(ds|0)
and rewrite (89) as

sup
s′∈Cs

∫
|λp(ds|s′)− µ0(ds)| ≤ 1 − δ. (90)

In (77), first, expand each µni factor, for i = 1, . . .M using (83):

µni = (µ̄+�)ni =
∑

µ̄ni1�mi1 . . . µ̄niki �miki . (91)

Then we write, using (87),

µ̄nij = µ̄(λp − µ0 + µ0)

[
nij−1
p

]
λqij , (92)

where λ is defined by (88) and nij − 1 =
[
nij−1
p

]
p + qij , i.e. qij < p. Finally, expand

each of the resulting factors

(λp − µ0 + µ0)

[
nij−1
p

]
=
∑

Maij (λ
p − µ0, µ0), (93)

where Maij is a monomial, of degree aij in the first variable. This way we end up with
an expansion of P t(ω(0), 1E) in terms of products of µK with |K| ≥ 2T ,�m, λp−µ0,
�µ̄, µ̄, λq , with q < p, and of µ0.

Consider now two initial conditions ω(0) = ω0, ω
′
0 and let ‖ω′0‖ ≤ ‖ω0‖. Let

t0 = C
βR ‖ω0‖2 + T , and perform the expansion (91–93) for the factors µni that occur

after t0 in (77). Let, for n ≥ t0, P tn(ω0, 1E) consist of all the terms in the resulting
sum that have µ0(ds) with s = s([(n − 1)T , nT ]) as one of the factors in the product.
Note that, if n is larger than t0, such terms always exist. Indeed, D1 ≥ 1

2 ‖ω0‖2 forces

2k1 ≥ 1
8R ‖ω0‖2 and thus implies that the origin is contained in a large interval of length

C
β 2k1 ; but longer intervals are not forced by the initial condition, and so, µni factors are
not forbidden in (77), after t0. The same will be true for ω′0, since ‖ω′0‖ ≤ ‖ω0‖. Since,
µ0(ds) is independent of the past, the sum in P tn(ω0, 1E) factorizes and, for the times
before (n− p)T , we recover the full P (n−p)T . We have then

P tn(ω0, 1E) =
∫
P (n−p)T (ω0, ds′)µ0(ds)f (n, s, E) =

∫
µ0(ds)f (n, s, E),

since P (n−p)T (ω0, Hs) = 1. Thus,

P tn(ω0, 1E) = P tn(ω′0, 1E),
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and we conclude that

P t(ω0, 1E)− P t(ω′0, 1E) = Rt(ω0, 1E)− Rt(ω′0, 1E),
whereRt(ω0, 1E) is given by the same sum as P t(ω0, 1E) except for the terms that have
a factor µ0(ds) with s = s([(n− 1)T , nT ]) for n ≥ t0.

We will estimate |Rt(ω0, 1E)|. Note that it contains only, after time t0, the factors
µK with |K| ≥ 2T , �m, λp − µ0, �µ̄, µ̄, λq , with q < p, i.e. no µ0 factors. Let us
count the powers of the various factors in this expansion, using the definitions in Eqs.
(91), (92) and (93). The number N� of �-factors is

N� =
∑
ij

mij .

To count the number of λp − µ0 factors, note that only the term with aij =
[
nij−1
p

]
in (93) enters (all the others having at least one µ0);∑

ij

aij =
∑
ij

[
nij−1

p

]
≥ 1

p

∑
ij

(nij − 2) = 1
p

∑
i

ni − 1
p

∑
ij

(mij + 2), (94)

where, in the last step, we used (91). Since
∑
i 1 = M ′, where M ′ is the number of Ki

factors in (77) that do not occur before t0, we get
∑
ij (mij + 2) ≤ 3N� + 2M ′, where

the first term bounds the sum overmij �= 0, and the second the sum overmij = 0. Thus,

(94) ≥ 1
p

(∑
i

ni − 3N� − 2M ′
)
≥ 1

p

(
t−t0
T

− 1
T

∑
i

(|Ki | + 2)− 3N�

)
, (95)

where in the last step we used T
∑
ni +

∑ |Ki | ≥ t − t0 (remembering that we use the
expansion in (91–93) only after time t0).

In order to bound |Rt(ω0, 1E)|, which is a sum of terms, we shall first bound all the
factors in each term. For µK , for |K| ≥ 2T , and �m, m ≥ 2 we use (85) and, writing
�µ̄ = �µ−�2, we obtain a bound like (85) (with another c), for �µ̄ instead of �µ;
for λp −µ0, we use (89). The other terms have simple bounds: since µ̄(dσ |σ ′), defined
in (81), is positive, we have

sup
σ ′

∫
|µ̄(dσ |σ ′)| = sup

σ ′

∫
µ̄(dσ |σ ′) ≤ 1, (96)

and, similarly, by (88),

sup
s′

∫
|λq(ds|s′)| ≤ 1.

We also have, for �m with m = 1,

sup
σ ′

∫
|�(dσ |σ ′)| ≤ sup

σ ′

∫
|µ̄(dσ |σ ′)| + sup

σ ′

∫
|µ(dσ |σ ′)| ≤ 2.

Observe that the last three factors occur always next to other factors: µ̄ or � at the
beginning or the end of the products in (91) (actually, there is, in the full expansion, at
most one factor� not multiplied by µ̄ or by µK ) or λq at the end of the product in (92).
So, the summation in Rt runs only over the sets Ki in (77) and over the occurrences of
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� in (91) (since only the term without a µ0 factor in (93) enters in Rt ). Combining this
observation, all the above inequalities and (95), we can bound Rt by a sum of

C(ω(0))(1 − δ) 1
p

(
t−t0
T

)
e−c(

∑ |Ki |+TN�),

over the subsets K ′ consisting of the union of the T -intervals Ki and of the T -intervals
where � occurs; here, C(ω(0)) = CK(ω(0)), given by (86). Since t0 depends on ω0,

we may absorb the factor (1 − δ) 1
p

(−t0
T

)
into C(ω(0)), and we get:

|Rt(ω0, 1E)| ≤ C(ω(0))(1 − δ)
1
p (

t
T )
∑
K ′
e−c|K

′| ≤ C(ω(0))(1 − δ′) tT ee−cT t
T , (97)

since the sums over subsets of [0, t] made of T -intervals can be identified with sums over
subsets of [0, t/T ] (remember that t is a multiple of T ). δ′ is defined by 1−δ′ = (1−δ) 1

p

and, like δ and p, is independent of T . Therefore, choosing T large enough, (97) can
be bounded by C(ω(0))e−mt for some m > 0 depending on R and T , i.e. on R and
ρ (T will be chosen as a function of ρ in the next section). Using a similar bound for
Rt(ω′0, 1E), we obtain that

|P t(ω(0), 1E)− P t(ω′(0), 1E)| ≤ C(ω(0))e−mt . (98)

From this, the existence of the limit limt→∞ P t(ω(0), 1E) follows: indeed, write, for
t > t ′,

P t(ω(0), 1E)− P t ′(ω(0), 1E) =
∫
P t−t

′
(ω(0), dω)(P t

′
(ω, 1E)− P t ′(ω(0), 1E))

(99)

and use (98)

|P t ′(ω, 1E)− P t ′(ω(0), 1E)| ≤ (C(ω)+ C(ω(0)))e−mt ′ .
Then we have, by (30) and (86),∫

P t−t
′
(ω(0), dω)C(ω) ≤ 3ec

′β ′T
∑

n≥|‖ω0‖2

e
n

8R e
− n

4R + C(ω(0)) = C′(ω(0)). (100)

Hence, limt→∞ P t(ω(0), 1E) exists, and (8) with F(l′) = 1 also follows.
Now, consider (8) for a general F = F(l′). Write F = F − F0 + F0, where, by

definition, F0(l) = F(l(t, s([ t2 , t]), 0)). Then,

P t(ω(0), F ) =
∫
µtω(0)(ds)(F − F0)+

∫
µtω(0)(ds)F0. (101)

Let us start with the first term. We write it as∫
µtω(0)(ds)(F − F0)=

∫
µtω(0)(ds)(F − F0)1ω+

∫
µtω(0)(ds)(F − F0)(1 − 1ω),

(102)
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where 1ω is the indicator function of the event ‖ω( t2 )‖2 > Rt . By the probabilistic
estimate (30) the first term may be bounded by

2‖F‖∞P(‖ω( t2 )‖2 > Rt |ω(0)) ≤ C(ω(0))‖F‖αe−ct , (103)

where ‖F‖α is the Hölder norm of F .
For the second term, write it as a sum∫
µtω(0)(ds)(F − F0)(1 − 1ω)1D +

∫
µtω(0)(ds)(F − F0)(1 − 1ω)(1 − 1D), (104)

where 1D is the indicator function of the event a
∑t
n= t

2+1Dn(ω) >
κ
2Rt . Using again

the probabilistic estimates, we have, by (28) (with 0 replaced by t
2 ) and the constraint

1 − 1ω, i.e. ‖ω( t2 )‖2 ≤ Rt , that, for κ large:∣∣∣∣
∫
µtω(0)(ds)(F − F0)(1 − 1ω)1D

∣∣∣∣ ≤ C‖F‖αe−ct . (105)

For the second term in (104), we use the fact that F is Hölder continuous:

|F − F0| ≤ ‖F‖α‖l(t, s([ t2 , t], 0)− l(t, s([0, t], l0)‖α,
and

‖l(t, s([ t2 , t], 0)− l(t, s([0, t], l0)‖ = ‖l(t, s([ t2 , t], 0)− l(t, s([ t2 , t], l( t2 ))‖ ≤ e−cRt ,
which follows from (12), with [0, t] replaced by [ t2 , t], given that we have here both the
constraint that

a

∫ t

t
2

‖∇ω‖2 ≤ a
t∑

n= t
2+1

Dn(ω) ≤ κ

2
Rt,

and that ‖l1( t2 )− l2( t2 )‖2 = ‖l( t2 )‖2 ≤ ‖ω( t2 )‖2 ≤ Rt . Thus,∣∣∣∣
∫
µtω(0)(ds)(F − F0)(1 − 1ω)(1 − 1D)

∣∣∣∣ ≤ ‖F‖αe−cαRt . (106)

Altogether, combining (102–106), we get:∣∣∣∣
∫
µtω(0)(ds)(F − F0)

∣∣∣∣ ≤ C(ω(0))‖F‖αe−ct , (107)

where c = c(R, α).
Returning to (101), we will finish the proof by bounding∫

µtω0
(ds)F0 −

∫
µt
ω′0
(ds)F0.

We insert the expansion (74) in each term and integrate over s([0, t]); since F0 depends
only on s([ t2 , t]), we obtain, in each term of the sum, a formula like (77) for the factors
occurring before the first Ki intersecting [ t2 , t] (and an expression depending on F0 for
the rest). Now, expand the resulting factors µni , after t0, as above (see the arguments
leading to (97)). As before, let P tn(ω0, F0) collect all the terms containing a factor µ0
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(after t0 and before the first Ki intersecting [ t2 , t]). Again, P tn(ω0, F0) = P tn(ω
′
0, F0).

Now, for Rt(ω0, F0), we first bound F0 by its supremum, then bound each term of the
resulting expansion, using (96) for theµ factors and (85) for the other factors. The result
is ∣∣∣∣

∫
µtω0

(ds)F0 −
∫
µt
ω′0
(ds)F0

∣∣∣∣ ≤ C(ω(0))‖F0‖∞(1 − δ′)t/2T ee
−cT t

T ,

where the (1 − δ′)t/2T factor comes from the fact that, in R, we have only the factors
µK with |K| ≥ 2T , �m, λp − µ0, �µ̄, µ̄, λq , with q < p, appearing during the time
interval [t0, t/2] and we can therefore use (95), with t replaced by t/2 to obtain a lower
bound on the number of λp(ds|s′)− µ0(ds) factors. Combining this with (107), (101),
we obtain (98) with 1E replaced by F . To finish the proof, we can now use arguments
like (99–100) to get (8) in general. ��

The next two sections will be devoted to the proof of, respectively, Propositions 3
and 4.

7. Proof of Proposition 3

Consider the expression

X(σ ′) ≡
∫

|�mµK(dσ |σ ′)| (108)

for K = [τ0, τ ] a T -interval. Let π = (J1, . . . , Jn−m) be a partition of K in the sum
(73) and define also for i ∈ [1,m]Jn−m+i = [τ + (i − 1)T , τ + iT ]. Hence the Ji , for
i ∈ [1, n], form a partition of the set K̄ = [τ0, τ + mT ]. Let ki ∈ NJi , i = 1, . . . , n.
Set k = (k1, . . . ,kn, ) ∈ N|K|+mT . Finally, let j = (j3, . . . , jn−m). Then combining the
definitions (73), (75), (80) and (82), we can bound

X(σ ′) ≤
∑
πkj

∫ ∣∣∣ n−m∏
i=1

µki ,ji (ds(Ji)|s([τji−1, τi−1]))

×
n∏

i=n−m+1

µki i−1(ds(Ji)|s(Ji−1))

∣∣∣1(k|k′), (109)

where s([τ0 − T , τ0]) = s′ unless 0 ∈ K , in which case s′ ≡ ω(0). We also put

1(k|k′) =
n−m−1∏
i=0

1JiJ i+1(ki ,ki+1)

n−1∏
i=n−m

|1JiJ i+1(ki ,ki+1)− 1|
n∏
i=1

1Ji (ki ), (110)

with k0 = k′ and the sum over π , j, has the constraint that the set (72) or (71) is K . Let
I = {i | ji �= i − 1} ⊂ {3, . . . , n−m}. For i ∈ I, we rewrite µki ,ji (see Eq. (69)) as

µki ,ji = χki ji giji − χki ji+1giji+1 = (δiχ + χki ji+1δig)giji

where

δiχ = χki ji − χki ji+1 (111)
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and

δig = 1 − giji+1

giji
. (112)

Introducing the probability measures

µj =
n∏
i=1

giji ν
|K|
s(τ ), (113)

where ji ≡ i − 1 if i > n−m, we can write (109) as

X(σ ′) ≤
∑
πkj

∑
A⊂I

∫ ∏
i∈A

|δiχ |
∏
i∈B
χki ji+1|δig|

∏
i∈C
χki i−1µj1(k|k′)

≡
∑
πkjA

∫
RkjAµj1(k|k′), (114)

where B = I \ A and C = {1, . . . , n} \ I.
Letting

δif = fji+1 − fji ,
(112) can be written as

δig = 1 − e
∫
Ji
(δif (t),γ

−1(ds(t)−fji (t)dt))− 1
2

∫
Ji
(δif (t),γ

−1δif (t))dt ≡ 1 −Hi, (115)

and

δiχ =
∏

n⊂Ji
φkn(Dn(ωji ))−

∏
n⊂Ji

φkn(Dn(ωji+1)). (116)

We will now undo the Girsanov transformation, i.e. change variables from s back to
b. Let E denote the expectation with respect to the Brownian motion b with covariance
γ on the time interval K . Then,∫

RkjAµj = ERkjA. (117)

where R is given by the same expression as before, but the symbols s and ωji have to be
interpreted as follows: s is the progressively measurable function of b defined on each
interval Ji as the solution of

ds(t) = fji (t)dt + db(t), (118)

where fj (t) = PF(ωj (t)) and ωj (t) = s(t) + l(t, s([τj−1, t]), 0), with, for i = 1,
s([τj1−1, τ0]) replaced by s′(J0), which expresses the dependence of (117) on s′; Hi ,
defined by (115), can be written:

Hi = e
∫
Ji
(δif (t),γ

−1db(t))− 1
2

∫
Ji
(δif (t),γ

−1δif (t))dt. (119)

We will call the ωji (t) collectively by

ωj(t) = ωji (t) for t ∈ Ji, (120)

and reserve the notation ω(t) for the solution of the Navier Stokes equation (4) with
given b(K̄) and with initial condition ω(τ0) = (s(τ0), l(τ0, s′(J0), 0)) determined by
the s′ in (109).
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Remark. ωj(t) is not a solution of (4) on the interval K̄ with initial condition given at
time τ . On each interval Ji it solves (4) but when moving to the next interval the l-part
is possibly set equal to zero, depending on j.

The following proposition contains the key bounds needed to estimate (117).

Proposition 5. Let b belong to the support of RkjA in (117). Then, there exists a constant
c such that

‖δif (t)‖ ≤ e−cκRdist(Ji ,Jji ) ≡ εi (121)

and ∏
i∈A

|δiχ |
∏
i∈B
χki ji+1

∏
i∈C
χki i−1 ≤

∏
i∈A

|Ji |εi1k(ω), (122)

where 1k(ω) is the indicator function of the set of b ∈ C(K̄,Hs) such that, for all n ⊂ K̄ ,
we have

Dn(ω) ∈ [2kn−1R, 2kn+3R], f or kn �= 0; Dn(ω) ∈ [0, 5R], f or kn = 0, (123)

and ω is the solution of the Navier-Stokes equation explained above.

Let ηi(t) be the indicator function of the event that δif (t) satisfies the bound (121).
ηi(t) is progressively measurable. Since ηi = 1 on the support of the summand in (114),
we may replace δif (t) there by ηi(t)δif (t). Denote Hi , defined in (115), after this
replacement, by H̄i . We have, using (122),

ERkjA ≤
∏
i∈A

|Ji |εiE
(∏
i∈B
(1 − H̄i)1k

)
,

and inserting this to (114)

X(σ ′) ≤
∑
π jA

∏
i∈A

|Ji |εiE
(∏
i∈B
(1 − H̄i)1π (ω)

)
, (124)

where

1π (ω) =
∑

k

1k(ω)1(k|k′). (125)

The expectation in (124) is bounded using Schwarz’ inequality by

(
E
∏
i∈B
(1 − H̄i)2

) 1
2 (
E12

π

) 1
2
. (126)

To estimate the first square root renumber the intervals Ji for i ∈ B as J1, . . . , Jb,
Ji = [σ ′i , σi] with σ1 > σ

′
1 ≥ σ2 . . . . Denote expectations in the Brownian filtration Fτ

by Eτ . Then

E
∏
i∈B
(1 − H̄i)2 = Eσ ′1

(
Eσ1((1 − H̄1)

2 | Fσ ′1)
∏
i>1

(1 − H̄i)2
)
. (127)
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Expanding (1 − H̄i)2 = 1 − 2H̄i + H̄ 2
i , we first bound from below, using (121) and

Jensen’s inequality,

Eσ1(H̄1|Fσ ′1) ≥ exp
(
− 1

2 |J1|ε2
1ρ

−1
)
. (128)

For an upper bound for the expectation of H̄ 2
1 , we use

Lemma 7.1. Let ζ(t) ∈ C([0, t], Hs) be progressively measurable. Then

Ee
∫ t

0 (ζ,γ
−1db)+λ ∫ t0 (ζ,γ−1ζ )dt ≤ e2(1+λ)t‖ζ‖2ρ−1

(129)

where ‖ζ‖ = supτ ‖ζ(τ )‖2.

Proof. This is just a Novikov bound: we bound the LHS, using Schwarz’ inequality, by

(
Ee

∫ t
0 (2ζ,γ

−1db)−2
∫ t

0 (ζ,γ
−1ζdt)

) 1
2
(
Ee2(1+λ) ∫ t0 (ζ,γ−1ζ )dt

) 1
2

and note that the expression inside the first square root is the expectation of a martingale
and equals one. ��

Applying Lemma 7.1 to ζ = 2ηiδif and λ = − 1
4 we obtain

Eσ1(H̄
2
1 |Fσ ′1) ≤ exp(3|J1|ε2

1ρ
−1). (130)

This and (128) imply

Eσ1((1 − H̄1)
2 | Fσ ′1) ≤ C|J1|ε2

1ρ
−1 exp(C|J1|ε2

1ρ
−1).

Iterating the argument, we arrive at

E
∏
i∈B
(1 − H̄i)2 ≤

∏
i∈B
C|Ji |ε2

i ρ
−1 exp(C|Ji |ε2

i ρ
−1). (131)

Since dist(Ji, Jji ) ≥ T , by choosing T > T (ρ) we may bound the ith factor in (131)
by εi if Ji is small (so that |Ji | = T ) and, by εieδ|Ji | if Ji is large, where δ can be made
arbitarily small by increasing T . Thus, we may combine (124), (126) and (131), to get

X(σ ′) ≤
∑
π jA

∏
i∈A∪B

e−cκRdist(Ji ,Jji )
∏

|Ji |>T
eδ|Ji |(E12

π )
1
2 .

Writing c = 2c1, the sums over j and A are controlled by∑
j

∏
i∈A∪B

e−c1κRdist(Ji ,Jji ) ≤ e−c2κRT |A∪B|

(since dist(Ji, Jji ) ≥ T ) and ∑
A⊂K

e−c
′′κRT |A| < 2|K|

and the last expectation by
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Lemma 7.2. Under the assumptions of Proposition 3,

E12
π ≤ CK(ω(0))C|K|+mT e−cβ

′mT
∏

Ji large

e−cβ
′|Ji |,

where CK(ω(0)) has the same form as in Proposition 3 (with another c′).

We are thus left with the bound

X(σ ′) ≤ CK(ω(0))C|K|+mT e−cβ
′mT
∑
π

∏
Ji large

e−cβ
′|Ji | sup

j

∏
i∈I
e−c1κRdist(Ji ,Jji ),

(132)

where we recall that I = A ∪ B = {i | ji �= i − 1}.
Let first 0 /∈ K . Then K is the union of the sets on the LHS of (71). Each small J is

either a subset of [τji−1, τi] or a Ji+1 for Ji large. Thus the summand in (132) is smaller
than e−cβ ′|K|, for κR ≥ β ′. For 0 ∈ K , we have a similar bound, except that J1, J2 may
be small and not in any [τji−1, τi] so that |K| is replaced by |K| − 2T ; but the 2T may
be absorbed to the c′β ′T in CK(ω0) (see (86)). The sum over π is a sum over partitions
of K into T-intervals (with labels for the intervals of length T ), and thus is bounded by
C|K|. Thus the claim (85) follows for β ′ large enough. ��
Proof of Proposition 5. Let us start with the proof of (122). For that, we need to have
a bound on the difference |Dn(ωji ) − Dn(ωji+1

)|, which is the difference between the
arguments of the two χ functions in (111) (see (67)). For that, we need some lemmas.
Remember the definition ωj (t) = ω(t, s([τj−1, t]), 0). We have

Lemma 7.3. Let n > m ≥ τi , i > j . Then

|Dn(ωi)−Dn(ωj )| ≤ e−κR(n−m−1)+a∑n
p=m+1Dp(ωi)(‖δl(m)‖ + ‖δl(m)‖2), (133)

where δl = li − lj .

Proof. By definition,

|Dn(ωi)−Dn(ωj )| ≤ 1
2 | sup

t
‖li (t)‖2 − sup

t
‖lj (t)‖2|

+|
∫

n
‖∇li (t)‖2dt −

∫
n
‖∇lj (t)‖2dt |. (134)

The second term is bounded by∫
n
‖∇δl(t)‖(2‖∇ωi(t)‖ + ‖∇δl(t)‖)dt. (135)

Remembering the calculation in Proposition 1, (16), (17), we have:∫
n
‖∇δl(t)‖2dt ≤ ‖δl(n− 1)‖2 + a

∫
n
‖δl(t)‖2‖∇ωi(t)‖2dt. (136)

Using (12), the second term is bounded by

a

∫
n
‖∇ωi(t)‖2e2a

∫ t
n−1 ‖∇ωi(τ )‖2‖δl(n− 1)‖2 ≤ (e2aDn(ωi) − 1)‖δl(n− 1)‖2 (137)
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which, together with (136), yields∫
n
‖∇δl(t)‖2dt ≤ e2aDn(ωi)‖δl(n− 1)‖2.

Now, using this for the second term on the RHS of (135), and Schwarz’ inequality to
bound the first one, we get

(135) ≤ 2Dn(ωi)
1
2 eaDn(ωi)‖δl(n− 1)‖ + e2aDn(ωi)‖δl(n− 1)‖2, (138)

since
∫

n ‖∇ωi(t)‖2dt ≤ Dn(ωi).
For the first term of (134), use ‖lj (t)‖2 = ‖li (t)‖2 + 2(δl(t), li(t)) + ‖δl(t)‖2 to

bound it by 2 supt∈n |(δl(t), li(t))| + supt∈n ‖δl(t)‖2, which, by Schwarz’ inequality,
supt∈n ‖li (t))‖ ≤ Dn(ωi), and (12), leads again to the bound (138). This yields our
claim if we use (12) to bound ‖δl(n− 1)‖. ��

To be able to apply this lemma, we need to bound Dp(ωi) in the exponent of (133);
Note that the functions χ in (114) put constraints (to be in the interval [2kpR, 2kp+2R],
for p ∈ Ji), but the latter apply to Dp(ωji ) or Dp(ωji+1), not directly to Dp(ωi). So,
we need to compare those differentDp’s. This will be done in Lemma 7.5 below, whose
proof will use

Lemma 7.4. Suppose that u ⊂ Jq and p ≤ q − 1. Then∑
τp−1<l≤u

2kl ≤ 2β(u− τp−1). (139)

Proof. Let q ≤ n − m. Then L = [τp−1, u] cannot satisfy (56) (otherwise [τp−1, u]
would be inside the same large interval) and so,

γL ≤ β(u− τp−1) (140)

and the claim is true. So, suppose that n−m < q. The interval L = [τp−1, τn−m−1 + 1]
(which is empty if n−m < p) cannot satisfy (56) either and so,

γL ≤ β(|L| + 1). (141)

The intervals Ji are small if i ≥ n − m (Jn−m is small since the last interval in K is
small) and thus γJi ≤ β|Ji | = β(τi − τi−1). Hence, (141) holds for L = [τp−1, τq−1].
Altogether, we get ∑

τp−1<l≤u
2kl ≤ β(τq−1 − τp−1 + 1)+

∑
τq−1<l≤u

2kl . (142)

The last term in (142) is bounded by β max{ 1
2 T , u − τq−1} ≤ β(u − τq−1 + 1

2 T ),
since the small Jq cannot contain an L satisfying (56). Hence, (141) is bounded by
β(u− τp−1 + 1 + 1

2 T ) which in turn is bounded by (139) since u− τp−1 ≥ T . ��
Lemma 7.5. Let s be in the support of the measure in the summand of (114). Let q ≥ 2
if 0 /∈ K , q ≥ 3 if 0 ∈ K . Let n ⊂ Jq and i, j ≤ q − 1. Then,

|Dn(ωi)−Dn(ωj )| ≤ e−
κ
2 T R. (143)
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Proof. We perform an induction in q. Suppose that the claim holds up to q − 1. Let
n ⊂ Jq . In Eq. (114), because of the functions χ , the measure is supported on con-
figurations where, for each p, either, ∀m ⊂ Jp, Dm(ωjp) is constrained to be in the
interval [2kmR, 2km+2R], or, ∀m ⊂ Jp,Dm(ωjp+1) is constrained to be in that interval;
remember that both jp and jp + 1 are less than or equal to p − 1. Let us consider, for
each p, an arbitrary choice between jp and jp + 1 and call it jp. Thus, to repeat,

Dm(ωjp) ∈ [2kmR, 2km+2R] for m ⊂ Jp , jp ≤ p − 1. (144)

Since the support of the measure in (114) contains only configurations such that (144)
holds for some choice of the function jp, it is enough to bound |Dn(ωi)−Dn(ωjq )| and
|Dn(ωj )−Dn(ωjq )| for an arbitrary function jp, assuming that (144) holds.

From Lemma 7.3, we get, for n ⊂ Jq ,

|Dn(ωi)−Dn(ωjq )|
≤ e−κR(n−τq−1−1)+a∑n

m=τq−1+1Dm(ωjq )(‖δl(τq−1)‖ + ‖δl(τq−1)‖2), (145)

where δl = li − ljq . We need to estimate ‖δl(τq−1)‖. For this to be nonzero, i and jq

cannot be equal, and they are both less than or equal to q−1. So, let us say that i < q−1.
Then, by Proposition 1,

‖δl(τq−1)‖ ≤ e−κR(τq−1−τq−2)+a
∑τq−1
m=τq−2+1Dm(ωi)‖δl(τq−2)‖. (146)

Now, use (144) for p = q, to get that, in (145), Dm(ωjq ) ≤ 2km+2R; in (146), we
note that, since m ⊂ Jq−1, and since both i and jq−1 are less than or equal to q − 2, we
have, by the induction hypothesis,

|Dm(ωi)−Dm(ωjq−1)| ≤ e− κ
2 T R

and so, Dm(ωi) ≤ 2km+2R + e
− κ

2 T R < 2km+3R. Since we shall show below that
‖δl(τq−1)‖ ≤ 1 which implies ‖δl(τq−1)‖ + ‖δl(τq−1)‖2 ≤ 2‖δl(τq−1)‖ we obtain, by
combining (145) and (146),

(145) ≤ 2e
−κR(n−τq−2−1)+aR∑n

m=τq−2+1 2km+3

‖δl(τq−2)‖. (147)

Now, remember that i ≤ q − 2. If jq = q − 1, then ljq (τq−2) = 0 and

‖δl(τq−2)‖ = ‖li (τq−2)‖ ≤ ‖li (τq−2)− ljq−1(τq−2)‖ + ‖ljq−1(τq−2)‖.
Since both i and jq−1 are less than or equal to q − 2, the first term is bounded by
e
− κ

2 T R , using the inductive hypothesis. For the second term, we use ‖ljq−1(τq−2)‖2 ≤
‖ωjq−1(τq−2)‖2 ≤ 8βRT , see (60). Thus, altogether,

‖δl(τq−2)‖ ≤ (CβRT )
1
2 .

If jq < q − 1 then, by induction, ‖δl(τq−2)‖ ≤ e−
κ
2 T R . By Lemma 7.4 , Eq. (139),

n∑
m=τq−2+1

2km ≤ 2β(n− τq−2).



Exponential Mixing of the 2D Stochastic Navier-Stokes Dynamics 117

Combining these observations,

(145) ≤ e−(κ−Cβ)T R(CβRT ) 1
2

since n − τq−2 ≥ T . The same result holds for i replaced by j and hence also for
Dn(ωi)−Dn(ωj ). Thus, the inductive claim (143) follows provided κ > κ(β).

To start the induction, we need to distinguish the cases 0 ∈ K and 0 /∈ K . Start with
the latter. Let J0 = [τ0 − T , τ0]. We have q = 2, {i, j} = {0, 1} (since the case i = j

is trivial). Now j1 must be 0 or 1, i.e. we may assume ωi − ωj = ωi − ωj1 . Since for
m ⊂ J1, Dm(ωj1) ≤ 2km+2R, Proposition 1 implies, with δl = li − lj ,

‖δl(τ1)‖ ≤ e−κR(τ1−τ0−1)+aR∑τ1
m=τ0+1 2km+2‖δl(τ0)‖. (148)

Thus we need to estimate ‖δl(τ0)‖. Since l1(τ0) = 0, this equals ‖l0(τ0)‖. But this

in turn is, by (60), bounded by ‖ω0(τ0)‖ ≤ (8βRT )
1
2 . We may now proceed as above,

using (145) to obtain the claim for q = 2.
Let finally 0 ∈ K . Now we start the induction from q = 3, and may assume i = 1

and j = 2. We should also remember that now, ω1(t) = (s(t), l(t, s([0, t]), l(0)) for
t ∈ [0, τ2], where l(0) = (1−P)ω(0). By contrast, ω2(t) = (s(t), l(t, s([τ1, t]), 0) for
t ∈ [τ1, τ2]. For m ⊂ J1 ∪ J2 we have Dm(ω1) ≤ 2km+2R since no decoupling was
done on those intervals. Proceeding as in the previous case we obtain

‖δl(τ2)‖ ≤ e−κR(τ2−τ1−1)+aR∑τ2
m=τ1+1 2km+2‖l1(τ1)‖. (149)

Now, again by (60), ‖l1(τ1)‖2 ≤ ‖ω1(τ1)‖2 ≤ 8βRT . We complete the proof for q = 3
again by using (145). ��

Returning to the proof of Proposition 5 and, combining Lemmas 7.3 and 7.5, we
deduce that, for n ∈ Ji ,

|Dn(ωji )−Dn(ωji+1)|
≤ e−κR(n−τji−1)+aR∑n

m=τji+1 2kp+3

(‖lji (τji )‖ + ‖lji (τji )‖2). (150)

By (139) the exponent is bounded from above by−cκRdist(Ji, Jji ), for κ ≥ κ(β). Since
dist(Ji, Jji ) ≥ T and ‖lji (τji )‖2 ≤ CRβT (using (60) and (143)), (150) is bounded by
εi . Then,

|δiχ | = |
∏

n⊂Ji
φk(Dn(ωji ))−

∏
n⊂Ji

φk(Dn(ωji+1))| ≤ |Ji |εi1k|Ji

since we may choose φk such that its derivative is uniformly bounded in k. We also used
the fact that φk is supported on [2k, 2k+2] combined with Lemma 7.5 to bound by 1k
that has a larger support (the latter is much larger than what is needed, but our choice is
notationally convenient). Similarly, Lemma 7.5 allows us to bound χki i−1 and χki ji+1
by 1k. These observations lead to (122).

The bound (121) follows from (151) below, using (12) to bound‖δl‖, supt∈n ‖ω(t)‖ ≤
(2Dn)

1
2 , and Lemmas 7.4, 7.5 to bound the exponent in (12).
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Lemma 7.6. Let f (ω) = PF(ω) and ω = s + l, ω′ = s + l′. Then,

‖f (ω)− f (ω′)‖ ≤ C(R)(2‖ω‖‖δl‖ + ‖δl‖2) (151)

with δl = l − l′. Moreover

‖f (ω)‖ ≤ C(R)(‖ω‖ + ‖ω‖2). (152)

Proof. We have

|fk(ω)− fk(ω′)| ≤
∑
p

|ωk−pωp − ω′κ−pω′p|
|k|
|p|

which, since |k| ≤ √
κR is bounded by

√
κR
∑
p

|sk−pδlp + spδlk−p + lplk−p − l′pl′k−p|. (153)

Writing lplk−p− l′pl′k−p = lpδlk−p+ lk−pδlp−δlpδlk−p and using Schwarz’ inequality,
we get

(153) ≤
√
κR(2‖ω‖‖δl‖‖ + ‖δl‖2)

which proves (151), since fk �= 0 only for k ≤ κR. The proof of (152) is similar. ��
To finish this section, we have only to give the

Proof of Lemma 7.2. From (123) we see that a given ω can belong to the support of at
most 5|K̄| different 1k. Furthermore, if 1π (ω) �= 0 then ω must satisfy the following
conditions (remember that β ≥ Cβ ′):
a. For each Ji , i ≤ n−m such that Ji is large and 0 /∈ Ji , using (58) in Lemma 4.1 and
(123), we get

‖ω(τi−1)‖2 ≤ 16β ′T R, (154)

(since Ji−1 is small), and, writing Ji = [τi−1, τi−1+T ]∪J̄i , either [τi−1, τi−1+T ] ⊂ J ′′i
(see Lemma 4.1, b, for the definition of J ′′) and so

Dτi−1+T ≥ 1
2 β

′T R and
∑
n⊂J̄i

Dn(ω) >
1
2 β

′R|J̄i |, (155)

(where the second bound always hold for large intervals since we have β ′ on the RHS;
note, however, that J̄i could be empty) or J ′i ∩ [τi−1, τi−1+T ] �= ∅ and so, in particular,
J ′i �= ∅ and by (59) and (123),∑

n⊂Ji
Dn(ω) >

1
8 βRT + 1

2 β
′R(|Ji | − T ). (156)

Let li be the event (155) and Li the event (156).
b. For 0 ∈ J1, if J1 is large, then∑

n⊂J1

Dn >
1
2 β

′R|J1|. (157)

Let l1 be this event.
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c. For the set K ′ = K̄ \ K = [τn−m, τn], (154) holds for i − 1 = n − m, because, by
construction, the last interval in K is small and∑

n⊂K ′
Dn(ω) >

1
8 βR(m− 1)T (158)

(since nearest neighbour Ji’s have to be intersected by L with γL > 1
2 T ). Let L′ be the

event (158).
Let B be the ball in H of radius 16β ′RT and define

ηi = sup
ω(τi−1)∈B

P (li | ω(τi−1)),

εi = sup
ω(τi−1)∈B

P (Li | ω(τi−1)),

ε′ = sup
ω(τn−m)∈B

P (L′| ω(τn−m)),

and in the case of 0 ∈ K ,
η1 = P(l1|ω(0)).

Then we have, for 0 /∈ K ,

E12
π ≤ 52|K̄|ε′

∏
Ji large

(ηi + εi)

and, if 0 ∈ K , we have η1 for i = 1 replacing η1 + ε1. We estimate the ε’s and η using
Proposition 2.

For ηi , 0 /∈ Ji , apply Proposition 2 with 0 replaced by τi−1 (where we use (154)) and
t by τi−1 + T − 1, and (155):

ηi ≤ ec1e
−cT β ′T−c2β

′|Ji | ≤ e−cβ ′|Ji |,
for T large, using also |Ji | = |J̄i | + T ;

For εi , Proposition 2, with 0 replaced by τi−1 and (156) give:

εi ≤ ec′β ′T−c2βT−c3β
′|Ji | ≤ e−cβ ′|Ji |,

which holds for β > Cβ ′; for ε′, Proposition 2, with 0 replaced by τn−m, and (158) give

ε′ ≤ ecβ ′T−c′β(m−1)T ≤ e−cβ(m−1)T (159)

using β > Cβ ′, and providedm > 1. For 0 ∈ J1, J1 large, Proposition 2 and (157) give

η1 ≤ min
{
e
c
R ‖ω(0)‖2−c′β ′|J1|, 1

}
≤ e δR ‖ω(0)‖2−c(δ)β ′|J1|

for any c > δ > 0 with c(δ) = δ c
′
c (write c = c − δ + δ, and use the fact that

c−δ
R
‖ω(0)‖2 ≤ (c′ − c(δ))β ′|J1|, whenever c

R ‖ω(0)‖2 − c′β ′|J1| ≤ 0). We take δ = 1
8

(we can always assume that c is larger than that). Hence, altogether, if 0 ∈ K ,

E12
π ≤ e 1

8R ‖ω(0)‖2
ecβ

′T ec|K̄|e−cβ
′(
∑
Ji large |Ji |+mT ),
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where ecβ
′T allows one to replace m− 1 by m. Finally, if 0 /∈ K ,

E12
π ≤ ec|K̄|e−cβ ′(

∑
Ji large |Ji |+(m−1)T )

.

These inequalities give the claim (since |K ′| = |K| + mT ) except in one case: no
large Ji , 0 /∈ K and m = 1. In that case, Jn−m+1 and Jn−m and Jn−m−1 are all small
(Jn−m−1 is included inK , unless |K| = T , in which case the supremum in (85) is taken
over s′ ∈ Cs , with J0 in (84) equal to Jn−m−1). Hence, (85) holds for i−1 = n−m−1.
We may then apply Proposition 2 with 0 replaced by τn−m−1, use the fact that m = 1
means that there is an interval L, where (61) is violated, intersecting both Jn−m+1 and
Jn−m, and get (159) with m− 1 replaced by 1(= m). ��

8. Markov Chain Estimates

The goal of this section is to prove Proposition 4. Although λ(ds|s′) defined in (88)
does not define a Markov chain, because of the indicator function

∑
k χk(s, s′), it is

close to one, at least up to the time p in which we are interested, and the proof will
be based essentially on Markov chain ideas. To see how close λ is to a Markov chain,
compare it with P(ds|s′) = gJ (ω)νTs(τ)(ds) (see (78)), which is thus like λ, but without
the
∑

k χk(s, s′); the function 1−∑k χk(s, s′) is supported on k’s such that J is a large
interval. For s′ ∈ Cs , we have ‖ω(τ)‖2 ≤ 2β ′T R and we can use Proposition 2 to show
that there exists a c > 0, such that, ∀s′ ∈ Cs , ∀B ⊂ Cs (note that the support of λ is
included in Cs),

|λ(B|s′)− P(B|s′)| ≤ e−cT , (160)

and

P(Cs |s′) ≥ 1 − e−cT . (161)

Indeed, if J is large, either there is an interval L ⊂ J where (56) holds, and we use (28)
for that interval, with 0 replaced by τ , ‖ω(τ)‖2 ≤ 2β ′T R and β ≥ Cβ ′. Or (57) holds,
i.e. Dτ+T ≥ β ′T R, and we can use (28) with 0 replaced by τ and t = t ′ − 1 replaced
by τ + T . Now, we state the main result of this section:

Proposition 6. There exists a constant δ > 0, δ = δ(R, ρ) but independent of T , such
that ∀s1, s2 ∈ Cs and ∀B ⊂ Cs ,

λ2(B|s1)+ λ2(Bc|s2) ≥ δ. (162)

Remark. The important point in this proposition is that δ is independent of T . The same
will be true about the constants δ1, δ2, used in the proof (see (174), (176)).

Before proving this proposition, we use it to give the

Proof of Proposition 4. We shall use the previous proposition and a slightly modified
version of an argument taken from [3], pp. 197–198. Let, for B ⊂ Cs ,

λ(n, B) = inf
s∈Cs

λn(B|s), λ(n, B) = sup
s∈Cs

λn(B|s).
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Fix s1, s2 ∈ Cs and consider the function defined on subsets B ⊂ Cs :

ψs1,s2(B) = λ2(B|s1)− λ2(B|s2).

Let S+ be the set such that ψs1,s2(B) ≥ 0 for B ⊂ S+ and ψs1,s2(B) ≤ 0 for B ⊂
Cs\S+ ≡ S− (S± depend on s1, s2, but we suppress this dependence). Observe that, by
(160, 161), we have, ∀s ∈ Cs ,

1 − e−cT ≤ λ2(Cs |s) ≤ 1 (163)

(with a smaller c than in (160, 161)). Then,

|ψs1,s2(S
+)+ ψs1,s2(S

−)| = |λ2(Cs |s1)− λ2(Cs |s2)| ≤ e−cT . (164)

Moreover, using (163, 162), and S+ ∪ S− = Cs ,

ψs1,s2(S
+) = λ2(S+|s1)− λ2(S+|s2)

≤ 1 − (λ2(S−|s1)+ λ2(S+|s2)) ≤ 1 − δ. (165)

Thus,

λ(t + 2, B)− λ(t + 2, B) = sup
s1,s2

∫
(λ2(ds|s1)− λ2(ds|s2))λ

t (B|s)

= sup
s1,s2

∫
ψs1,s2(ds)λt (B|s)

≤ sup
s1,s2

(ψs1,s2(S
+)λ(t, B)+ ψs1,s2(S

−)λ(t, B))

= sup
s1,s2

(ψs1,s2(S
+)(λ(t, B)− λ(t, B))+ (ψs1,s2(S

+)

+ψs1,s2(S
−))λ(t, B))

≤ (1 − δ)(λ(t, B)− λ(t, B))+ e−cT ,

where, to get the last inequality, we used (165) and (164) and λ(t, B) ≤ 1. We conclude
that ∀s′ ∈ Cs ,

|λ2n(B|s′)− λ2n(B|0)| ≤ λ(2n,B)− λ(2n,B) ≤ (1 − δ)n−1 + e−cT

δ
.

Now, choose first n sufficiently large so that (1− δ)n−1 ≤ 1−δ̄
4 , for some δ̄ > 0 and then

T sufficiently large so that e
−cT
δ

≤ 1−δ̄
4 . Since, with p = 2n,

∫
|λp(ds|s′)− λp(ds|0)| ≤ 2 sup

B

|λ2n(B|s′)− λ2n(B|0)|,

(89) follows, with δ in that equation equal to δ̄ here. ��
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Proof of Proposition 6. First of all, observe that it is enough to prove (162) with λ
replaced by P :

P 2(B|s1)+ P 2(Bc|s2) ≥ δ (166)

since we can then use (160) and choose T large enough to obtain the same result for λ,
since δ is independent of T .

It will be convenient to write P 2(ds+|s1) =
∫
P(ds+|s)P (ds|s1), where we write

s+ ∈ C+
s meaning s+ ∈ Cs ⊂ C([0, T ], Hs) (see (84)), and similarly s1 ∈ C−

s ⊂
C([−2T ,−T ], Hs), s ∈ C0

s ⊂ C([−T , 0], Hs), which is the variable over which we
integrate.

Turning to the proof, we first get a lower bound on (166) by replacing B, Bc by
B ∩ V +, Bc ∩ V +, where V + is defined by

V + =
{

s+ ∈ C+
s

∣∣∣∣∣
t∑
n=1

Dn(ω0) < ζRt, ∀t ∈ [1, T ]

}
, (167)

where ζ will be chosen large enough below and ω0(t) = s(t) + l(t, s+([0, t]), 0). To
simplify the notation, we shall assume, from now on, that B ⊂ V + and Bc ≡ V +\B.

Next, we obtain also a lower bound on P 2(B|s1) = ∫
P(B|s)P (ds|s1) and on

P 2(Bc|s2) by restricting the integrations over s, so that we have:

(166) ≥
∫
P(B|s)1(s|s1)P (ds|s1)+

∫
P(Bc|s)1(s|s2)P (ds|s2), (168)

where 1(s|s′) = 101[−1,0]1≤−1 with

10(s(0)) = 1(‖s(0)‖2 ≤ 3ζ ′R),

1[−1,0](s([−1, 0])) = 1

(
sup

t∈[−1,0]
‖s(t)‖2 ≤ ζR

)
,

1≤−1(s([−T ,−1])|s′) = 1(‖ω(−1)‖2 ≤ ζ ′R), (169)

where ω(−1) = s(−1) + l(−1, s([−T ,−1]), l(−T )), with l(−T ) = l(−T , s′([−2T ,
−T ]), 0), and ζ , ζ ′ are constants that will be chosen large enough below, but with
ζ ′ ≤ Cζ forC large (ζ , ζ ′ play a role somewhat similar to β, β ′ in the previous sections,
but they are not necessarily equal to the latter).

Before proceeding further, let us explain the basic idea of the proof. To prove (166),

it would be enough to bound P 2(B|s1)

P 2(B|s2)
≥ δ. We do not quite do that, but first give, in

Lemma 8.1 below, a lower bound on P(B|s)
P (B|s′) for s, s′ in a “good” set of configurations,

i.e. in the support of the indicator functions that we just introduced. Good here means
that the “interaction” (or, to be more precise, the analogue of what is called in Statistical
Mechanics the relative Hamiltonian), expressed through the Girsanov formula (see e.g.
(179)), between the paths in C0

s that are in the support of those indicator functions and
those in V + is, in some sense, bounded. This relies on Lemma 8.5, which itself follows
from the results of the previous section. Next, we show that the probability of reaching
that good set, does not depend very much on whether we start from s1 or s2 in C−

s (see
Lemma 8.2). This is rather straightforward, but depends on standard estimates on the
Brownian bridge (see Lemmas 8.6 and 8.7) that we give in detail, for the sake of com-
pleteness. Finally, we need to show that the probability of the set of good configurations,
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as well as the one of V +, is bounded from below; this is done in Lemma 8.3. Remember
that all the bounds here have to be T -independent, since this was used in an essential
way in the proof of the Theorem (Sect. 6).

Now, we shall state and use the lemmas that we need and that will be proven below.
Let

W = ∪s̄∈C−
s

supp(1(·|s̄)).

Lemma 8.1. ∃c = c(R, ρ) > 0, such that, ∀B ⊂ V +, ∀s, s′ ∈ W with s(0) = s′(0) and
P(B|s′) �= 0:

P(B|s)
P (B|s′) ≥ e

− c(R,ρ)

P (B|s′) . (170)

Defining

h(B, s0) = sup
s∈W : s(0)=s0

P(B|s) (171)

we conclude from the lemma that for all s ∈ W such that s(0) = s0,

P(B|s) ≥ 5B(s0) ≡ h(B, s0)e−
c(R,ρ)
h(B,s0) , (172)

where both sides vanish if h(B, s0) = 0. Hence, applying the same argument toP(Bc|s),
we get:

(168) ≥ E(5B1(·|s1)|s1)+ E(5Bc1(·|s2)|s2), (173)

where here 5B , 5Bc are functions of s(0) and E is the (conditional) expectation.
The next lemma controls the dependence on the past in (173):

Lemma 8.2. ∃δ1 > 0, δ1 = δ1(R, ρ) such that ∀s1, s2 ∈ C−
s , ∀B ⊂ V +,

E(5Bc1(·|s2)|s2)

E(5Bc1(·|s1)|s1)
≥ δ1, (174)

provided that, in (167), (169), ζ ′ is large enough and ζ ≥ Cζ ′ for C large.

Then, since any δ1 satisfying (174) must be less than 1,

(173) ≥ δ1(E(5B1(·|s1)|s1)+ E(5Bc1(·|s1)|s1)). (175)

But, we also have:

Lemma 8.3. ∃δ2 > 0, δ2 = δ2(R, ρ), such that, ∀s′ ∈ C−
s ,∫

P(V +|s)1(s|s′)P (ds|s′) ≥ δ2, (176)

and ∫
1(s|s′)P (ds|s′) ≥ 1

2 , (177)

provided that, in (167), (169), ζ ′ is large enough and ζ ≥ Cζ ′ for C large.
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Remark. The important point here is that δ2 is independent of T ; to show this, we will
use the fact that, in (167), the condition on

∑t
1 increases sufficiently fast in time, so that,

see below, (217) is finite (however, it should not grow too fast because, to prove Lemma
8.1, we need that it does not grow faster than linearly, so that (183) below holds, leading
to the finiteness of (185)).

By definition (171) of hB , and using this lemma, we have

E(hB1(·|s1)|s1)+ E(hBc1(·|s1)|s1)

≥
∫
P(B|s)1(s|s1)P (ds|s1)+

∫
P(Bc|s)1(s|s1)P (ds|s1)

=
∫
P(V +|s)1(s|s1)P (ds|s1) ≥ δ2, (178)

since B ∪ Bc = V +. Now, we need the following straightforward consequence of
Jensen’s inequality:

Lemma 8.4. For any probability measure P ,

E(51) ≥ E(h1) exp

(
− cE(1)
E(h1)

)
≥ E(h1) exp

(
− c

E(h1)

)
,

whereE is the expectation with respect toP , 5 = he− c
h , the functions h, 1, satisfy 0 ≤ h,

0 ≤ 1 ≤ 1, h is integrable, and c ∈ R+.

From (178), we may assume E(hB1(·|s1)|s1) ≥ δ2
2 (if not, exchange B and Bc).

Hence, applying Lemma 8.4 to E(5B1(·|s1)|s1), we get

E(5B1(·|s1)|s1) ≥ δ2

2
exp

(
−2c(R, ρ)

δ2

)
.

So, combining this with (168), (173), (175), we get:

(166) ≥ δ1δ2

2
exp

(
−2c(R, ρ)

δ2

)

which finishes the proof of the proposition. ��
Now, we still have to prove Lemmas 8.1, 8.2, 8.3.

Proof of Lemma 8.1. Recalling (78) we have

P(B|s) =
∫
e
∫ T

0 (f,γ
−1(ds+− 1

2 f dt))1Bνs(0)(ds+) ≡
∫
g1Bνs(0)(ds+), (179)

where f (t) = f (t, s+([0, t]), l(0)), with l(0) = l(0, s([−T , 0]), 0), is a function of
s+ ∨ s (the symbol ∨ was defined after Eq. (78)), and νs(0)(ds+) is the Wiener measure
with covariance γ , on paths starting at s(0). P(B|s′) is defined similarly with f ′(t) =
f (t, s+([0, t]), l′(0)) and l′(0) = l(0, s′([−T , 0]), 0). The corresponding Girsanov fac-
tor is denoted g′. Since s(0) = s′(0), we can write

P(B|s)
P (B|s′) = Ee

∫ T
0 (f,γ

−1(ds+− 1
2 f dt))−(f ′,γ−1(ds+− 1

2 f
′dt))

= Ee
∫ T

0 (f−f ′,γ−1(ds+−f ′dt))− 1
2

∫
(f−f ′,γ−1(f−f ′))dt , (180)
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where the expectation is taken with respect to the normalized measure

1Bg′νs(0)(ds+)∫
1Bg′νs(0)(ds+)

= 1Bg′νs(0)(ds+)
P (B|s′) . (181)

By Jensen’s inequality,

(180) ≥ eE(
∫ T

0 (f−f ′,γ−1(ds+−f ′dt))− 1
2

∫
(f−f ′,γ−1(f−f ′))dt), (182)

We will bound the argument of the exponential. For that, we need some estimates
that follow from the results of the previous section:

Lemma 8.5. ∀s, s′ ∈ W and ∀s+ ∈ V +,

‖f (t)− f ′(t)‖ ≤ C(R)e−ctR. (183)

The proof of this lemma will be given at the end of this section. Returning to the proof
of Lemma 8.1, ∣∣∣∣E

∫ T

0
(f − f ′, γ−1(f − f ′))dt

∣∣∣∣ ≤ c(R, ρ), (184)

since γk ≥ ρ and, by (183),∫ ∞

0
‖f (t)− f ′(t)‖2dt ≤ C(R). (185)

To bound the stochastic integral in (182) we proceed as in Sect. 7 by defining

η(t) = 1
(
‖f (t)− f ′(t)‖ ≤ C(R)e−ctR

)
with c, C(R) as in (183). Since the measure with respect to which the expectation E is
taken has support in B ⊂ V + and since (183) holds in V +, we can write, see (181),∣∣∣∣E

(∫ T

0
(f − f ′, γ−1(ds+ − f ′dt

)∣∣∣∣
=
∣∣∣∣
∫
g′dνs(0)

(∫ T

0
(η(f − f ′), γ−1(ds+ − f ′dt))

)
1B

∣∣∣∣
≤ (Eb(

∫ T
0 (η(f − f ′), γ−1db))2)

1
2 (
∫
g′dνs(0)12

B)
1
2

P(B|s′) , (186)

where we changed variables: ds+ − f ′dt = db, using Girsanov’s formula (backwards),
and whereEb denotes the expectation with respect to Brownian motion with covariance
γ . Finally, using (185) on the support of η and the fact that

∫
g′dνs(0) = 1, we get:

(186) ≤ c(R, ρ)

P (B|s′) .

Combining this, (184) and (182), we conclude

P(B|s)
P (B|s′) ≥ e

− c(R,ρ)

P (B|s′) ,

which proves the lemma. ��
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Let us turn to Lemma 8.2. It will be useful to study in some detail the paths over the
interval [−1, 0]. Let νs−1s0(ds) be the (unnormalized) measure defined by the Brownian
bridge going from s−1 at time −1 to s0 at time 0, whose total mass is:

M(s0, s−1) =
∏
k

1

2πγk
exp

(
−|s0k − s−1k|2

2γk

)
, (187)

where the product runs over k such that |k|2 ≤ κR. Define

P(s0, s−1|s ∨ s1) =
∫
e

∫ 0
−1(f,γ

−1(ds(t)− 1
2 f dt))1[−1,0](s)νs−1s0(ds), (188)

where f (t) = f (t, s[−1, t], l(−1)), with l(−1) = l(−1, s ∨ s1([−2T ,−1]), 0) and
similarly

Ps−1(ds|s1) = e
∫ −1
−T (f,γ

−1(ds(t)− 1
2 f dt))νs1(−T )s−1(ds). (189)

Then we can write

E(1(·|s1)5Bc |s1) =
∫
5Bc(s0)10(s0)P (s0, s−1|s ∨ s1)1≤−1(s|s1)Ps−1(ds|s1)ds0ds−1.

(190)

We shall need

Lemma 8.6. ∃C1, C2, Ci = Ci(R, ρ), i = 1, 2, such that ∀s̄ ∈ C−
s , and ∀s0, s−1, s ∈

supp(1(·|s̄)):
C1 ≤ P(s0, s−1|s ∨ s̄) ≤ C2, (191)

provided that, in (167), (169), ζ ′ is large enough and ζ ≥ Cζ ′ for C large.

From this, Lemma 8.2 follows easily:

Proof of Lemma 8.2. Using (190), we have:

E(5Bc1(·|s2)|s2)

E(5Bc1(·|s1)|s1)
=
∫
5Bc(s0)10(s0)P (s0, s−1|s ∨ s2)1≤−1(s|s2)Ps−1(ds|s2)ds0ds−1∫
5Bc(s0)10(s0)P (s0, s−1|s ∨ s1)1≤−1(s|s1)Ps−1(ds|s1)ds0ds−1

≥ inf
s0

∫
P(s0, s−1|s ∨ s2)1≤−1(s|s2)Ps−1(ds|s2)ds−1∫
P(s0, s−1|s ∨ s1)1≤−1(s|s1)Ps−1(ds|s1)ds−1

, (192)

where the infimum is taken over s0 ∈ supp(10). Now use (191) and∫
1≤−1(s|si)Ps−1(ds|si)ds−1 =

∫
1≤−1(s|si)P (ds|si),

for i = 1, 2 to bound from below (192) by

(192) ≥ C1
∫

1≤−1(s|s2)P (ds|s2)

C2
∫

1≤−1(s|s1)P (ds|s1)
≥ C1

C2

∫
1≤−1(s|s2)P (ds|s2) ≥ C1

2C2
= δ1.

where in the last inequality, we used:∫
1≤−1(s|s2)P (ds|s2) ≥

∫
1(s|s2)P (ds|s2) ≥ 1

2
, (193)

where the first inequality is trivial, see (169), and the second follows from (177) in
Lemma 8.3. ��
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Now, we will prove Lemma 8.6, to complete the proof of Lemma 8.2, before proving
Lemma 8.3.

Proof of Lemma 8.6. We write, for t ∈ [−1, 0] :

s(t) = (1 + t)s0 − ts−1 + α(t), (194)

where α(·) is the Brownian bridge with covariance γ , going from 0 at time −1 to 0 at
time 0, i.e. the Gaussian process with covariance:

E(αk(t
′)αp(t)) = δk,−pγk(1 + t ′)(−t) (−1 ≤ t ′ ≤ t ≤ 0) (195)

for k2, p2 ≤ κR. Substituting (194) into (188), we get:

P(s0, s−1|s ∨ s̄) = M(s0, s−1)

∫
e

∫ 0
−1(f,γ

−1(dα(t)+(s0−s−1− 1
2 f )dt))1[−1,0](s)ν(dα),

(196)

where ν is the probability distribution of the Brownian bridge α.
To boundM(s0, s−1) remember, from (169), that, for s0, s−1 in the support of 1(·|s̄),

we have

‖s0‖2 ≤ 3ζ ′R, (197)

and

‖s−1‖2 ≤ ‖ω(−1)‖2 ≤ ζ ′R. (198)

These bounds, combined with the definition (187) ofM(s0, s−1) imply that, for s0, s−1
in the support of 1(·|s̄),

C2(R, ρ) ≤ M(s0, s−1) ≤ C1(R, ρ). (199)

Thus, to prove (191), we need only to bound from above and from below the integral∫
e

∫ 0
−1(f,γ

−1(dα(t)+(s0−s−1− 1
2 f )dt))1[−1,0](s)ν(dα) (200)

by a constant depending only on R and ρ. For this, some elementary facts about the
Brownian bridge will be needed:

Lemma 8.7. Let α be the Brownian Bridge on [−1, 0] with covariance γ . Then
(a) There exists a constant c(R) > 0 such that∫

1

(
sup

τ∈[−1,0]
‖α(τ)‖2 ≤ ζ ′R

)
ν(dα) ≥ c(R). (201)

(b) Let g(t) be progressively measurable with supt∈[−1,0]‖g(t)‖ ≤ A. Then∫
e
∫ 0
−1(g,dα)ν(dα) ≤ C(A,R, ρ), (202)

and ∫ (∫ 0

−1
(g, dα)

)2

ν(dα) ≤ C(A,R, ρ). (203)
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Continuing with (200), we need some bounds on ‖f (t)‖ for s in the support of 1(·|s̄).
First, we have, ∀s ∈ supp(1(·|s̄)),

sup
t∈[−1,0]

‖l(t)‖ ≤ C(R), (204)

where l(t) = l(t, s([−1, t]), l(−1)), which holds combining (11) in Proposition 1, and
the fact that, on supp(1(·|s̄)) (see (169)), bothω(−1) and supt∈[−1,0] ‖s(t)‖2 are of order
R. This and supt∈[−1,0] ‖s(t)‖2 ≤ ζR on supp(1(·|s̄)) imply that ‖ω(t)‖ also satisfies
(204). Then, using (152), we get:

sup
t∈[−1,0]

‖f (t)‖ ≤ C(R). (205)

Consider now the lower bound on (200). By Jensen’s inequality,

(200) ≥ C(R, ρ)
[∫

1[−1,0](s)ν(dα)
]

exp

[∫
(
∫ 0
−1(f, γ

−1dα)1[−1,0](s)ν(dα)∫
1[−1,0](s)ν(dα)

]
,

(206)

where C(R, ρ) is a lower bound on exp(
∫ 0
−1(f, γ

−1(s0 − s−1 − 1
2 f )dt) (which holds

because of (205) and (197), (198)).
Using (197), (198), we obtain from (194) that, for s0, s−1 in the support of 1(·|s̄), if

supt∈[−1,0] ‖α(t)‖2 ≤ ζ ′R, then supt∈[−1,0] ‖s(t)‖2 ≤ Cζ ′R for ζ ≥ Cζ ′; hence,

1[−1,0](s) ≥ 1

(
sup

τ∈[−1,0]
‖α(τ)‖2 ≤ ζ ′R

)
.

Combining this with (206) and (201), we get

(200) ≥ c(R)C(R, ρ)e−c(R)−1
∫ | ∫ 0

−1(f,γ
−1dα)|1[−1,0](s)ν(dα), (207)

Now, let g = f γ−1 and use Schwarz’ inequality to get the upper bound

∫ ∣∣∣∣
∫ 0

−1
(f, γ−1dα)

∣∣∣∣ 1[−1,0](s)ν(dα) ≤
(∫ (∫ 0

−1
(g, dα)

)2

ν(dα)

) 1
2

, (208)

(since
∫
ν(dα) = 1). Using (205) and γk ≥ ρ we obtain that sup

t∈[−1,0]
‖g(t)‖ ≤ A =

C(R, ρ) and so (203) leads to an upper bound C(R, ρ) for (208) and thus, a lower
bound C(R, ρ) for (200).

Finally, we bound from above (200) by C(R, ρ), using 1[−1,0](s) ≤ 1 and then
combining (205), (197), (198), and (202) with g = f γ−1. ��
Proof of Lemma 8.7. (a) Observe that α(τ) has the same distribution as (−τ)b(− 1+τ

τ
),

where b(·) is the Brownian motion starting at 0, with covariance γ . So that, with t =
− 1+τ

τ
, (201) translates into:

∫
1

(
sup

t∈[0,∞[

(‖b(t)‖
1 + t

)2

≤ ζ ′R
)
ν0(db) ≥ c(R).
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This is readily proven, since b(t) ∈ Rd with d = d(R) and the covariance γ has an
R-dependent upper bound.

(b) Let

Mt = e2
∫ t
−1(g,dα−( ατ +γg)dτ).

It is easy to see that Mt is a martingale (see e.g. [9] p. 158), and that, therefore, ∀t ∈
[−1, 0], E(Mt) = 1, where E is the expectation with respect to ν(dα). So, write

e
∫ 0
−1(g,dα) = M

1
2

0 e
∫ 0
−1(g,(

α
τ
+γg))dτ

and use Schwarz’ inequality and E(M0) = 1 to get

∫
e
∫ 0
−1(g,dα)ν(dα) ≤

(∫
e2
∫ 0
−1(g,(

α
τ
+γg))dτ

) 1
2

≤ C(A,R, ρ)
(∫

e2
∫ 0
−1

(g,α)
τ
dτ ν(dα)

) 1
2

,

where C(A,R, ρ) is an upper bound on exp
(∫ 0

−1(g, γg)dτ
)

. Applying Jensen’s in-

equality to e2
∫ 0
−1

(g,α)
τ
dτ , with dτ

2
√|τ | as probability measure on [−1, 0], we may bound

the RHS by

C(A,R, ρ)

(∫ 0

−1

dτ

2
√|τ |

∫
e4A‖α(τ) ‖τ |−

1
2
ν(dα)

) 1
2

,

where sup
τ∈[−1,0]

‖g(τ)‖ ≤ A was used. To finish the proof, observe that

∫
e4A‖α(τ) ‖τ |−

1
2
ν(dα) ≤ C(A,R, ρ)

since ‖α‖ = (∑
k |αk|2

) 1
2 ≤ ∑

k |αk|, and αk(τ ) is a Gaussian random variable with
variance (see (195)) γk(1 + τ)(−τ). Equation (203) is an easy consequence of (202).
��

This completes the proof of Lemma 8.6, hence of Lemma 8.2; so, we turn to the

Proof of Lemma 8.3. First, writing∫
P(V +|s)1(s|s′)P (ds|s′)

=
∫
ds0P(V

+|(s0, l(0, s))1(s|s′)e
∫ 0
−T (f,γ

−1(ds− 1
2 f dt))νs′(−T )s0(ds), (209)

where l(0, s) = l(0, s([−T , 0]), 0) and f (t) = f (t, s ∨ s′([−2T , t]), 0), we obtain the
lower bound: ∫

P(V +|s)1(s|s′)P (ds|s′) ≥ I1I2
∫

1(s|s′)P (ds|s′), (210)
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where

I1 = inf
s

P(V +|(s0, l(0, s))
P (V +|(s0, 0)) , (211)

I2 = inf
s(0)
P (V +|(s(0), 0)). (212)

and the infimum in (211) is taken over s ∈ supp(1(·|s′)) with s(0) = s0, while in (212)
it is taken over s(0) ∈ supp(10) . Now, Lemma 8.1 implies that

I1 ≥ exp
(
−c(R, ρ)

I2

)
, (213)

provided I2 �= 0, which we shall show now. Since ω0(t) in terms of which V + was
defined (see (167)) satisfies ω0(0) = (s(0), 0), we can write:

I2 = 1 − sup
s(0)
(E(1 − 1V+|ω0(0)). (214)

To bound E(1 − 1V+|ω0(0)) we use the probabilistic estimates (28):

P

(
t∑
n=1

Dn(ω) > ζRt |ω(0)
)
≤ Ce−cζ t (215)

which hold for any t , 1 ≤ t ≤ T , and any ω(0) with ‖ω(0)‖2 ≤ 3ζ ′R, provided ζ is
large enough. Note that this condition on ω(0) holds for ω(0) = ω0(0) = (s(0), 0) and
s(0) ∈ supp(10) (see (169)).

Thus, since 1 − 1V+ is the indicator function of the event that

t∑
n=1

Dn(ω0) ≥ ζRt (216)

for some t ≥ 1, (215) applied to ω0 implies

E(1 − 1V+|ω0(0)) ≤
∞∑
t=1

Ce−cζ t ≤ Ce−cζ , (217)

and, by (214),

I2 ≥ 1 − Ce−cζ . (218)

This and (213) implies:

I1 ≥ exp(−c′(R, ρ)). (219)

Finally, consider the last factor in (210); let us write∫
1(s|s′)P (ds|s′) = 1 − E((1 − 1(·|s′))|s′), (220)
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and let us bound from above E((1 − 1(·|s′))|s′); remember that, by (169), 1(·|s′)) =
101[−1,0]1≤−1. We have

1 − 1(·|s′)) = 1 − 1≤−1 + (1 − 101[−1,0])1≤−1

≤ 1 − 1≤−1 + 1
(

sup
t∈[−1,0]

‖s(t)‖2 ≥ 3ζ ′R
)

1≤−1, (221)

where we bounded ζR ≥ 3ζ ′R, in the argument of 1[−1,0]; So,

E
(
(1 − 1(·|s′))

∣∣∣s′)
≤ E

(
1(‖ω(−1)‖2 ≥ ζ ′R)

∣∣∣s′)+ supE
(

1( sup
t∈[−1,0]

‖s(t)‖2 ≥ 3ζ ′R)
∣∣∣ω(−1)

)

= E
(
1(‖ω(−1)‖2 > ζ ′R)

∣∣∣ω′(−T ))+ supE
(
1( sup
t∈[−1,0]

‖s(t)‖2 ≥ 3ζ ′R)
∣∣∣ω(−1)

)
,

(222)

where the last term comes from

E
(

1( sup
t∈[−1,0]

‖s(t)‖2 ≥ 3ζ ′R)1≤−1(·|s′)
∣∣∣s′)

≤ supE
(

1( sup
t∈[−1,0]

‖s(t)‖2 ≥ 3ζ ′R)
∣∣∣ω(−1)

)
,

and the supremum is taken over all s ∈ supp(1≤−1(·|s′)), i.e. so that ω(−1) satisfies
‖ω(−1)‖2 ≤ ζ ′R.

The first term of (222) is bounded by

E
(

1(‖ω(−1)‖2 > ζ ′R)
∣∣∣ω′(−T )) ≤ C exp(−cζ ′), (223)

for T large: this follows from (30), with 0 replaced by −T , t by −1 and the fact that,
since s′ ∈ Cs , ω′(−T ) satisfies, by (84),

‖ω′(−T )‖ ≤ 4β ′RT . (224)

For the second term of (222), we useDt(ω) ≥ 1
2 ‖s(t)‖2, ‖ω(−1)‖2 ≤ ζ ′R and (34)

to bound it also by C exp(−cζ ′). So, we have

E
(
(1 − 1(·|s′))

∣∣∣s′) ≤ C exp(−cζ ′). (225)

So, combining (210), (219), (218) and (220, 225), we get that the LHS of

(176) ≥ exp(−c′(R, ρ))(1 − C exp(−cζ ))(1 − C exp(−cζ ′)) = δ2 > 0

for ζ , ζ ′ large enough; obviously (177) follows from (220, 225), for ζ ′ large enough;
this proves the lemma. ��

We are left with the
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Proof of Lemma 8.5. To prove (183), bound its LHS by

‖f (t)− f0(t)‖ + ‖f0(t)− f ′(t)‖, (226)

where f0(t) = f (t, s+([0, t]), 0) corresponds to ω0. Now, to bound each term in (226)
by C(R)e−cRt , use (151), with ω there replaced by ω0 here, to get:

‖f (t)− f0(t)‖ ≤ C(R)(‖ω0(t)‖‖δl(t)‖ + ‖δl(t)‖2) (227)

with δl(t) = ω(t)− ω0(t). We have, for t ≥ 1, the bound:

‖δl(t)‖ ≤ exp(−cRt)‖δl(0)‖ = exp(−cRt)‖l(0)‖, (228)

where the equality holds since ω0(0) = (s(0), 0), and the inequality follows from (12)
(with ω1 replaced by ω0) and using the bound, which holds for t ≥ 1 and where [t] is
the integer part of t :

a

∫ t

0
‖∇ω0‖2 ≤ a

[t]+1∑
n=1

Dn(ω0) ≤ aζR([t] + 1) ≤ κRt

2

for t ≥ 1 and κ large. For t ≤ 1, (12) yields: ‖δl(t)‖ ≤ C(R)‖δl(0)‖ = C(R)‖l(0)‖,
since, by definition (167) of V +,

∫ t
0 ‖∇ω0‖2 ≤ D1(ω0) ≤ ζR. Finally, ‖ω0(t)‖ in (227)

is bounded by ‖ω0(t)‖2 ≤ D[t]+1(ω0) ≤ ζR([t] + 1), which also follows from the
definition of V + and which we can write as ζR([t]+ 1) ≤ C(R) exp( cRt2 ). Combining
this with (228, 227) gives

‖f (t)− f0(t)‖ ≤ C(R) exp

(
−cRt

2

)
(‖l(0)‖ + ‖l(0)‖2), (229)

and a similar bound on ‖f0(t)− f ′(t)‖ with l(0) replaced by l′(0). Now, on the support
of 1(·|s̄), for any s̄ ∈ C−

s , i.e. in W , we have ‖l(0)‖ ≤ C(R), ‖l′(0)‖ ≤ C(R) (see
(204)), which finishes the proof of (183). ��
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