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Abstract: We present a simple strategy in order to show the existence and uniqueness
of the infinite volume limit of thermodynamic quantities, for a large class of mean field
disordered models, as for example the Sherrington-Kirkpatrick model, and the Derrida
p-spin model. The main argument is based on a smooth interpolation between a large
system, made of N spin sites, and two similar but independent subsystems, made of N1
andN2 sites, respectively, withN1 +N2 = N . The quenched average of the free energy
turns out to be subadditive with respect to the size of the system. This gives immediately
convergence of the free energy per site, in the infinite volume limit. Moreover, a simple
argument, based on concentration of measure, gives the almost sure convergence, with
respect to the external noise. Similar results hold also for the ground state energy per site.

1. Introduction

The main objective of this paper is to propose a general strategy in order to control the infi-
nite volume limit of thermodynamic quantities for a class of mean field spin glass models.
For the sake of definiteness, we consider firstly in full detail the Sherrington-Kirkpatrick
(SK) model, [12, 13, 8]. Then, we show how to generalize our method to similar related
mean field disordered models, as for example the Derrida p-spin model, [2, 3].

It is very well known that the rigorous control of the infinite volume limit for these
mean field models is very difficult, due to the effects of very large fluctuations pro-
duced by the external noise. In particular, it is very difficult to produce very effective
trial states, to be exploited in variational principles. It is only for the high temperature,
or high external field, regime that a satisfactory control can be reached, as shown for
example in [11, 16, 6].

We will introduce a very simple strategy for the control of the infinite volume limit.
The main idea is to split a large system, made of N spin sites, into two subsystems,
made ofN1 andN2 sites, respectively, where each subsystem is subject to some external
noise, similar but independent from the noise acting on the large system. By a smooth
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interpolation between the system and the subsystems, we will show subadditivity of
the quenched average of the free energy, with respect to the size of the system, and,
therefore, obtain complete control of the infinite volume limit.

Moreover, the well known selfaveraging of the free energy density, as shown original-
ly by Pastur and Shcherbina in [9], extended to the estimates given by the concentration
of measure, as explained in [15, 7], does allow an even more detailed control of the
limit. In effect, it will turn out that the free energy per site, without quenched average,
converges almost surely, with respect to the external noise. These results extend to other
thermodynamic quantities, in particular to the ground state energy per site, as will be
shown in the paper.

The organization of the paper is as follows. In Sect. 2 we recall the general structure
of the Sherrington-Kirkpatrick mean field spin glass model, in order to define the main
quantities, and fix the notations. Next, Sect. 3 contains the main results of the paper,
related to the control of the infinite volume limit. In Sect. 4 we show how to extend our
results to other mean field spin glass models, in particular to the Derrida p-spin model
and to models with non-Gaussian couplings. Section 5 contains conclusions and outlook
for future developments and extensions.

2. The Structure of the Sherrington-Kirkpatrick Model

Let us recall some basic definitions.
Ising spin variables σi = ±1, attached to each site i = 1, 2, . . . , N , define the ge-

neric configuration of the mean field spin glass model. The external quenched disorder
is given by the N(N − 1)/2 independent and identical distributed random variables Jij ,
defined for each couple of sites. For the sake of simplicity, we assume each Jij to be a
centered unit Gaussian with averages

E(Jij ) = 0, E(J 2
ij ) = 1.

The Hamiltonian of the model, in some external field of strength h, is given by

HN(σ, h, J ) = − 1√
N

∑
1≤i<j≤N

Jijσiσj − h

N∑
i=1

σi. (1)

The first term in (1) is a long range random two body interaction, while the second
represents the interaction of the spins with a fixed external magnetic field h.

For a given inverse temperature β, we introduce the disorder dependent partition
function ZN(β, h, J ), the quenched average of the free energy per site fN(β, h), the
Boltzmann state ωJ , and the auxiliary function αN(β, h), according to the definitions

ZN(β, h, J ) =
∑
{σ }

exp(−βHN(σ, h, J )), (2)

−βfN(β, h) = N−1E logZN(β, h, J ) = αN(β, h), (3)

ωJ (A) = ZN(β, h, J )
−1

∑
{σ }

A exp(−βHN(σ, h, J )), (4)

where A is a generic function of the σ ’s. In the notation ωJ , we have stressed the de-
pendence of the Boltzmann state on the external noise J, but, of course, there is also a
dependence on β, h and N .
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Let us now introduce the important concept of replicas. Consider a generic number
s of independent copies of the system, characterized by the Boltzmann variables σ (1)i ,

σ
(2)
i , . . . , distributed according to the product state

�J = ω
(1)
J ω

(2)
J . . . ω

(s)
J ,

where allω(α)J act on each one σ (α)i ’s, and are subject to the same sample J of the external
noise. Clearly, the Boltzmannfaktor for the replicated system is given by

exp
(
−β(HN(σ

(1), h, J )+HN(σ
(2), h, J )+ · · · +HN(σ

(s), h, J ))
)
. (5)

The overlaps between any two replicas a, b are defined according to

qab(σ
(a), σ (b)) = 1

N

∑
i

σ
(a)
i σ

(b)
i ,

and they satisfy the obvious bounds

−1 ≤ qab ≤ 1.

For a generic smooth function F of the overlaps, we define the 〈〉 averages

〈F(q12, q13, . . . )〉 = E�J

(
F(q12, q13, . . . )

)
,

where the Boltzmann averages�J act on the replicated σ variables, andE is the average
with respect to the external noise J .

3. Control of the Infinite Volume Limit

Let us explain the main idea behind our method. We divide the N sites into two blocks
N1, N2 with N1 +N2 = N , and define

ZN(t) =
∑
{σ }

exp


β

√
t

N

∑
1≤i<j≤N

Jijσiσj + β

√
1 − t

N1

∑
1≤i<j≤N1

J ′
ij σiσj

+β
√

1 − t

N2

∑
N1<i<j≤N

J ′′
ij σiσj


 expβh

N∑
i=1

σi, (6)

with 0 ≤ t ≤ 1.
The external noise is represented by the independent families of unit Gaussian ran-

dom variables J , J ′ and J ′′. Notice that the two subsystems are subject to a different
external noise, with respect to the original system. But, of course, the probability distri-
butions are the same. The parameter t allows to interpolate between the original N spin
system at t = 1 and a system composed of two non-interacting parts at t = 0, so that

ZN(1) = ZN(β, h, J ), (7)

ZN(0) = ZN1(β, h, J
′)ZN2(β, h, J

′′). (8)
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As a consequence, by taking into account the definition in (3), we have

E lnZN(1) = NαN(β, h), (9)

E lnZN(0) = N1αN1(β, h)+N2αN2(β, h). (10)

By taking the derivative of N−1E lnZN(t) with respect to the parameter t , we obtain

d

dt

1

N
E lnZN(t) = β

2N
E


 1√

tN

∑
1≤i<j≤N

Jijωt (σiσj )

− 1√
(1 − t)N1

∑
1≤i<j≤N1

J ′
ijωt (σiσj )

− 1√
(1 − t)N2

∑
N1<i<j≤N

J ′′
ijωt (σiσj )


 , (11)

where ωt(.) denotes the Gibbs state corresponding to the partition function (6). A stan-
dard integration by parts on the Gaussian noise, as done for example in [8, 5], gives

d

dt

1

N
E lnZN(t) = β2

4N2

N∑
i,j=1

E(1 − ω2
t (σiσj ))− β2

4NN1

N1∑
i,j=1

E(1 − ω2
t (σiσj ))

− β2

4NN2

N∑
i,j=N1+1

E(1 − ω2
t (σiσj )) (12)

= −β2

4

〈
q2

12 − N1

N
(q
(1)
12 )

2 − N2

N
(q
(2)
12 )

2
〉
, (13)

where we have defined

N1 q
(1)
12 =

N1∑
i=1

σ 1
i σ

2
i , (14)

N2 q
(2)
12 =

N∑
i=N1+1

σ 1
i σ

2
i . (15)

Since q12 is a convex linear combination of q(1)12 and q(2)12 in the form

q12 = N1

N
q
(1)
12 + N2

N
q
(2)
12 ,

due to convexity of the function f : x → x2, we have the inequality〈
q2

12 − N1

N
(q
(1)
12 )

2 − N2

N
(q
(2)
12 )

2
〉

≤ 0.

Therefore, we can state our first preliminary result.
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Lemma 1. The quenched average of the logarithm of the interpolating partition func-
tion, defined by (6), is increasing in t , i.e.

d

dt

1

N
E lnZN(t) ≥ 0. (16)

By integrating in t and recalling the boundary conditions (9), we get the first main
result.

Theorem 1. The following superadditivity property holds

N αN(β, h) ≥ N1 αN1(β, h)+N2 αN2(β, h). (17)

Of course, due to the minus sign in (3), we have subadditivity for the quenched average
of the free energy.

The subadditivity property gives an immediate control on the infinite volume limit,
as explained for example in [10]. In fact, we have

Theorem 2. The infinite volume limit for αN(β, h) does exist and equals its sup

lim
N→∞

αN(β, h) = sup
N

αN(β, h) ≡ α(β, h). (18)

For finite N and a given realization J of the disorder, define the ground state energy
density −eN(J, h) as

−eN(J, h) = 1

N
inf
σ
HN(σ, h, J ). (19)

Now we show, from simple thermodynamic properties, that Eq. (18) implies the ex-
istence of the thermodynamic limit for E (eN(h, J )). First of all, notice that the bounds

eβNeN (J,h) ≤
∑
{σ }

e−βHN(σ,h,J ) ≤ 2NeβNeN (J,h) (20)

hold for any J,N, β, h, so that

0 ≤ lnZN(β, h, J )

βN
− eN(J, h) ≤ ln 2

β
. (21)

The bounds (21), together with the obvious

∂β
lnZN(β, h, J )

β
≤ 0,

imply that

lim
β→∞

lnZN(β, h, J )

βN
↓ eN(J, h). (22)

Of course, by taking the expectation value in (21) and defining

eN(h) = E eN(J, h),

one also finds

lim
β→∞

αN(β, h)

β
↓ eN(h). (23)

Therefore, by taking into account the superadditivity (17), the inequalities (21), and the
existence of the limit α(β, h) for αN(β, h), we have from (23) the proof of the following
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Theorem 3. For the quenched average of the ground state energy we have the subaddi-
tivity property

N eN(h) ≥ N1 eN1(h)+N2 eN2(h) (24)

and the existence of the infinite volume limit

lim
N→∞

eN(h) = sup
N

eN(h) ≡ e0(h). (25)

Finally, we can write the limit e0(h) in terms of α(β, h) as

lim
β→∞

α(β, h)

β
↓ e0(h). (26)

After proving the existence of the thermodynamic limit for the quenched averages, we
can easily extend our results to prove that convergence holds for almost every disorder
realization J . In fact, we can state

Theorem 4. The infinite volume limits

lim
N→∞

1

N
lnZN(β, h, J ) = α(β, h), (27)

lim
N→∞

eN(J, h) = e0(h), (28)

do exist J-almost surely.

For the proof, we notice that the fluctuations of the free energy per site vanish expo-
nentially fast as N grows, a result strengthening the pioneering quadratic selfaveraging
proven in [9]. Indeed, the following result holds [15]:

P

(∣∣∣∣ 1

βN
lnZN(β, h, J )− 1

βN
E lnZN(β, h, J )

∣∣∣∣ ≥ u

)
≤ e−Nu

2/2. (29)

Since the r.h.s. of (29) is summable in N for every fixed u, the Borel-Cantelli lemma
[14], and the convergence given by (18) imply (27). The same argument can be exploited
for the ground state energy. In fact, by taking the β → ∞ limit in (29), we get

P (|eN(J, h)− eN(h)| ≥ u) ≤ e−Nu
2/2. (30)

Again, the Borel-Cantelli lemma implies (28), and the theorem is proven.
Notice that all the results of this section hold also in the case where on each spin σi

acts on a random magnetic field hi , where the hi’s are i.i.d. random variables.

4. Existence of the Thermodynamic Limit for Other Mean Field
Spin Glass Models

In this section, we show how the above results on the (almost sure) existence of the ther-
modynamic limit for the free energy and for the ground state energy can be extended
to other mean field spin glass models. In the first place, we can immediately extend the
approach to p-spin models, for even p. On the other hand, we can allow the quenched
disorder variables to be non-Gaussian, provided that suitable bounds are imposed on
their moments.
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4.1. p-spin models. The p-spin model is defined by the Hamiltonian

H
(p)
N (σ, h, J ) = −

√
p!

2Np−1

∑
(i1,... ,ip)

Ji1...ipσi1 . . . σip − h
∑
i

σi, (31)

where p is an integer and Ji1...ip are i.i.d. unit Gaussian random variables. The summa-
tion in the first term is performed on all the different p-ples of indices i1, . . . , ip. Note
that for p = 2 this is just the SK model. The p-spin model has been proposed by Derrida
in [2], and extensively studied thereafter, see for example [3, 8, 17, 18].

For the sake of simplicity, we consider the case of even p. As we did for the SK
model, we define the auxiliary partition function ZN(t), in analogy with (6). By taking
the t derivative, we find after integration by parts

d

dt

1

N
E lnZN(t) = −β2

4

〈
q
p
12 − N1

N
(q
(1)
12 )

p − N2

N
(q
(2)
12 )

p

〉
+O(1/N) (32)

≥ O(1/N),

for p even, by the same convexity argument as before. It is easy to realize the reason for
the appearance of the terms O(1/N). In fact, for p = 2, we can write

2

N2

∑
(i,j)

E (1 − ω2
t (σiσj )) = 1

N2

N∑
i,j=1

E (1 − ω2
t (σiσj )) = (1 − 〈q2

12〉), (33)

as already exploited in (12). On the other hand, for p > 2 one has

p!

Np

∑
(i1,... ,ip)

E (1 − ω2
t (σi1 . . . σip )) = 1

Np

N∑
i1,... ,ip=1

E (1 − ω2
t (σi1 . . . σip ))+O(1/N)

= (1 − 〈qp12〉)+O(1/N). (34)

From (32) one finds, as in the previous section, the existence of the infinite volume limits

lim
N→∞

α
(p)
N (β, h) ≡ α(p)(β, h), (35)

lim
N→∞

e
(p)
N (h) ≡ e

(p)
0 (h) = lim

β→∞
α(p)(β, h)

β
. (36)

Moreover, the estimate (29) holds also in this case, since it is based only on the fact that
1/Nβ lnZN(β, h, J ), as a function of the variables J , has a Lipshitz constant of order
C/

√
N , where C is a constant independent of β [15]. Therefore, also in this case we

have almost sure convergence for the free energy and for the ground state energy.

4.2. Non-Gaussian couplings. The method developed in the previous sections allows
to prove the existence of the thermodynamic limit for αN(β, h) and for eN(h) also for
SK (or p-spin) models with non-Gaussian couplings, provided that the variables Jij
(respectively, Ji1,... ,ip ) are i.i.d. symmetric random variables with finite fourth moment,
i.e., P(Jij ) = P(−Jij ) and EJ 4

ij < ∞. A similar condition has been also exploited
for the study of the model, at zero external field and high temperature, see for example
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[1] and [4]. Consider for instance the SK case. The integration by parts on the disorder
variables in (11) can be performed by use of the formula

E ηF(η) = E η2F ′(η)− 1

4
E |η|

∫ |η|

−|η|
(η2 − t2)F ′′′(t) dt, (37)

which holds for any symmetric random variable η and for sufficiently regular functions
F , as a simple direct calculation shows. A similar expression has been exploited by Tala-
grand in [19], for dichotomic variables. By applying this formula to the various terms
in (11), one finds that

d

dt

1

N
E lnZN(t) = −β2J 2

4

〈
q2

12 − N1

N
(q
(1)
12 )

2 − N2

N
(q
(2)
12 )

2
〉
+O(N−1/2), (38)

where

J 2 = E J 2
ij .

The error terms arise from the estimates

∂3
Jij
ωt (σiσj ) = O(N−3/2)

and

E J 2
ijω

2
t (σiσj ) = J 2E ω2

t (σiσj )+O(N−1/2).

The existence of the thermodynamic limit for the quenched averages of the free energy
and the ground state energy then follows.

In order to prove J-almost sure convergence, for the sake of simplicity, let us con-
sider the case where the random variables Jij are bounded. Then, the estimate (29) still
holds, with the r.h.s. modified into exp(−N K u2), whereK does not depend on β. This
can be proved, for instance, by using Theorem 6.6 of [20]. Almost sure convergence
for the free energy and for the ground state energy then follows immediately from the
Borel-Cantelli lemma. In particular, this includes the important case where Jij = ±1
with equal probability. The extension to more general cases, where only the condition
EJ 4

ij < ∞ is required, is possible, and will be reported in future work.

5. Conclusions and Outlook

We have seen that the rigorous control of the infinite volume limit for mean field spin
glass models can be obtained through a simple strategy, by a smooth interpolation be-
tween a large system and its splitting into subsystems, provided the external noises are
taken independent.

The extension of our methods to the important cases of diluted models, and other
models of the neural network type, will be taken into account in future work.
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3. Gross, D.J., Mézard, M.: The simplest spin glass. Nucl. Phys. B 240, 431–452 (1984)
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