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Abstract: We consider two standard models of surface-energy-driven coarsening: a
constant-mobility Cahn-Hilliard equation, whose large-time behavior corresponds to
Mullins-Sekerka dynamics; and a degenerate-mobility Cahn-Hilliard equation, whose
large-time behavior corresponds to motion by surface diffusion. Arguments based on
scaling suggest that the typical length scale should behave as �(t) ∼ t1/3 in the first case
and �(t) ∼ t1/4 in the second. We prove a weak, one-sided version of this assertion –
showing, roughly speaking, that no solution can coarsen faster than the expected rate.
Our result constrains the behavior in a time-averaged sense rather than pointwise in time,
and it constrains not the physical length scale but rather the perimeter per unit volume.
The argument is simple and robust, combining the basic dissipation relations with an
interpolation inequality and an ODE argument.

1. Introduction

We prove rigorous upper bounds on the coarsening rates for two standard models of sur-
face-energy-driven interfacial dynamics. The sharp-interface versions of these models
are the Mullins-Sekerka law (MS) and motion by surface diffusion (SD). Both evolutions
preserve volume and decrease surface energy. The difference between them lies in the
mechanism of rearrangement: MS corresponds to diffusion through the bulk, while SD
corresponds to diffusion along the interfacial layer.

We prefer to work with diffuse-interface versions of these models. Therefore rather
than analyze the sharp-interface MS and SD laws, we shall consider two Cahn-Hilliard
equations – one with constant mobility, the other with degenerate mobility – whose
large-time regimes are described by MS and SD respectively. We prefer the Cahn-
Hilliard models because they make sense even when the geometry becomes singular, for
example due to a topological transition such as pinch-off. The Cahn-Hilliard viewpoint
is also attractive because it can be derived from a stochastic Ising model, and because it
provides a unified description of spinodal decomposition and coarsening.
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Our focus is the large-time coarsening behavior, i.e. the growth of the characteristic
length scale �(t) as t → ∞. The expected behavior is

�(t) ∼ t1/3 for Mullins-Sekerka, �(t) ∼ t1/4 for surface diffusion. (1)

To explain why, recall that both MS and SD are scale-invariant: solutions of MS are
preserved by x → λx, t → λ3t , while those of SD are preserved by x → λx, t → λ4t .
Thus if there is any universal law for � it must be given by (1).

In truth, much more than (1) is conjectured: solutions with random initial data are
believed to be statistically self-similar. Such behavior has been confirmed by numerical
and physical experiments, but we know no rigorous results in this direction.

The proposed coarsening law (1) can be decomposed into two rather different asser-
tions:

(a) an upper bound for �(t), saying that microstructure cannot coarsen faster than the
similarity rate; and

(b) a lower bound for �(t), saying that microstructure must coarsen at least at the simi-
larity rate.

Assertion (b) is subtle: it may be true generically, or with probability one – but
viewed as a universal statement it is clearly false, since there are configurations that do
not coarsen at all (e.g. parallel planar layers). We have nothing new to say about it.

Assertion (a) is however different and easier, because it should be true universally.
Therefore it can be approached using deterministic methods. That is the goal of the
present paper. Our main achievement is a (very) weak version of (a). It constrains the
behavior in a time-averaged sense rather than pointwise in time, and it constrains not
the physical length scale but rather the surface energy per unit volume.

Our approach is relatively simple and robust. We outline it here using the language of
the sharp-interface models, though the proofs presented later are for the Cahn-Hilliard
equations. The argument makes use of interfacial energy density

E(t) = interfacial area per unit volume,

which has the dimensions of 1/length, and the physical scale

L(t) = a suitable negative norm of the order parameter,

which has dimensions of length. They are related by a sort of interpolation inequality –
a basic fact of analysis, having nothing to do with the dynamics – which says

EL ≥ C (2)

for some positive universal constant C. Of course the interfacial area decreases, in other
words

Ė ≤ 0, (3)

since the motion is surface-energy-driven. In addition – this is the heart of the matter –
we also have differential inequalities

(L̇)2 ≤ C (−Ė) for MS
(L̇)2 ≤ C E (−Ė) for SD

(4)
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as consequences of the basic energy-dissipating structure of the dynamics. Our upper
bound on the time-averaged coarsening rate follows from these relations by an elemen-
tary ODE argument. The main conclusion is

1
T

∫ T

0 E2 dt ≥ C 1
T

∫ T

0 (t−
1
3 )2 for MS

1
T

∫ T

0 E3 dt ≥ C 1
T

∫ T

0 (t−
1
4 )3 for SD

for T 	 1. This is a time-averaged version of the (unproved) pointwise statement

E−1 ≤ Ct1/3 for MS
E−1 ≤ Ct1/4 for SD,

which is in turn a one-sided version of (1) with � = E−1.
We emphasize that bounding the coarsening rate from above is quite different from

bounding it from below. Our upper bound is a matter of kinematics, while a lower bound
would be a matter of geometry. Indeed, a system cannot coarsen too quickly, no matter
how large its curvature, due to the kinematic restrictions (2)–(4); it can however coarsen
slowly if its curvature is small. The situation is roughly analogous to the blowup of
semilinear heat equations, where local-in-time existence theory gives a lower bound on
the blowup rate but faster blowup is possible, see e.g. [16, 19]. Another analogy is to
diffusion-enhanced convection of active scalars, where kinematic considerations lead to
upper but not lower bounds for the effective diffusivity, see e.g. [8].

We need a scheme for spatial averaging, to define the quantities E and L, and to prove
the fundamental relations (2)–(4). Our choice is to consider solutions that are spatially
periodic. This does not significantly compromise the physics, since the size of the period
cell and the complexity of the initial data are unrestricted. The constants in our estimates
are of course independent of the period cell.

We shall focus on the case of a “critical mixture,” i.e. the two phases are assumed to
have equal volume fractions. This simplifies the notation somewhat, and it is physical-
ly natural when the mixture originates from spinodal decomposition. The restriction of
equal volume fractions is, however, merely a convenience, not a mathematical necessity.
Similar results hold, with similar proofs, at any volume fraction.

Our rigorous analysis is restricted to the diffuse-interface (Cahn-Hilliard) setting.
However, a similar analysis can be given for “reasonable” solutions of the sharp-inter-
face evolution laws – for example, solutions which are classical at all but finitely many
times, and continuous across the singular times.

The paper is organized as follows. Section 2 provides physical and mathematical
background concerning the Cahn-Hilliard and sharp-interface models. Section 3 states
our rigorous results on the coarsening rate, and Sect. 4 presents the proofs. Section 5
concludes with a brief discussion.

2. Background

We have been discussing four evolutions: the sharp-interface MS and SD laws, and the
diffuse-interface Cahn-Hilliard equations associated with them. There is, however, a nat-
ural unity to the story: all four evolutions arise as limits of a single equation, with a clear
link to stochastic Ising models. Sections 2.1 and 2.2 present this unifying viewpoint,
and explain how it leads to our two Cahn-Hilliard models – with constant vs. degen-
erate mobility – in the shallow-quench vs. deep-quench regimes. Section 2.3 discusses
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the large-time behavior of these Cahn-Hilliard models, explaining their connection with
the sharp-interface MS and SD laws. Finally Sect. 2.4 discusses the scale-invariance of
the sharp-interface laws, and the associated conjectures about their coarsening behav-
ior. None of this material is strictly necessary to understand our rigorous analysis: the
impatient reader can skip straight to Sect. 3.

2.1. A unifying Cahn-Hilliard model: Variable quench. Our starting point is the follow-
ing Cahn-Hilliard-type model. The free energy is given by

E = −
∫ {

β

2

(
|∇m|2 + (1−m2)

)
+ 1

2
((1+m) log(1+m) + (1−m) log(1−m))

}
dx,

(5)

where m ∈ (−1, 1). Here c = 1
2 (1 + m) ∈ (0, 1) stands for the relative concentration

of, say, the first species. We have normalized the total free energy by the volume of the
system, denoting the average by −∫ . The first term in (5) is of enthalpic, the second term
of entropic origin; β is the inverse temperature. The relative concentration evolves to
reduce E while preserving the volume of each phase:

∂m

∂t
− ∇ ·

(
(1 − m2)∇ ∂E

∂m

)
= 0, (6)

which leads to the equation

∂m

∂t
− ∇2m + β ∇ ·

(
(1 − m2)∇(m + ∇2m)

)
= 0. (7)

We will be interested in the case of a “critical mixture”, in other words one with

−
∫

mdx = 0. (8)

This model (7) is a natural starting point, because it has a firm microscopic foun-
dation: it is a local version of the macroscopic limit of an Ising model with long-range
Kac potential and Kawasaki dynamics; see [15] or the review article [14, Theorem 6.1].
In particular, the specific form of the mobility 1 − m2 in (6), which vanishes at the two
extreme values m = ±1, is natural.

It is well-known and easy to verify that for β > 1, (5) has two bulk equilibrium
values, m+ ∈ (0, 1) and m− = −m+. They behave as

m+ ≈
{

(3 (β − 1))
1
2 for 0 < β − 1 � 1

1 − 2 exp(−2 β) for β 	 1

}
.

Hence one is lead to consider two regimes, the “shallow quench” 0 < β − 1 � 1 and
the “deep quench” β 	 1.
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2.2. Shallow and deep quench regimes: Constant vs. degenerate mobility. In the shallow
quench regime, it is natural to rescale time, space, concentration and energy according
to

t =
(

2
β−1

)2
t̂ , x =

(
2

β−1

) 1
2
x̂,

m = (3 (β − 1))
1
2 m̂, E = 3

2
(β − 1)2 Ê + const.

As β → 1 the bulk equilibrium values become

m̂± = ±1

and Eqs. (5) and (6) become (formally, to leading order)

Ê = −
∫

1

2

(
|∇m̂|2 + (1 − m̂2)2

)
dx̂ (9)

and
∂m̂

∂t̂
− ∇̂2 ∂Ê

∂m̂
= 0,

yielding the Cahn-Hilliard equation with constant mobility

∂m̂

∂t̂
+ ∇̂2

(
∇̂2m̂ + 2 (1 − m̂2) m̂

)
= 0. (10)

This is the Cahn-Hilliard equation associated with MS dynamics, as we shall explain
presently.

The deep quench regime is even more obvious: One rescales time and energy accord-
ing to

t = 1

β
t̂, E = β Ê + const,

and obtains formally from (5) and (6) to leading order

Ê = −
∫

1

2

(
|∇m|2 + (1 − m2)

)
dx

resp.
∂m

∂t̂
− ∇ ·

[
(1 − m2)∇ ∂Ê

∂m

]
= 0,

yielding the Cahn-Hilliard equation with degenerate mobility

∂m

∂t̂
+ ∇ ·

[
(1 − m2)∇

(
∇2m + m

)]
= 0. (11)

This is the Cahn-Hilliard equation associated with SD dynamics, as we shall explain
below. The preceding argument, deriving (11) as the deep-quench limit of (7), has been
made rigorous by Elliott & Garcke [9].

Our attention in the remainder of this paper will be restricted to the two Cahn-
Hilliard equations (10) and (11). We shall of course drop the hats. We remark that these
Cahn-Hilliard equations, being fourth-order, have no maximum principle. However, so-
lutions of (11) preserve the constraint −1 ≤ m ≤ 1, as a consequence of the degenerate
mobility 1 − m2, which vanishes at the bulk equilibrium values m = ±1 [9].
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2.3. The interfacial regime. Experimental observation and numerical simulation shows
the following scenario (see e.g. [11, 12, 28]). Consider as initial data the uniform critical
mixture m = 0, which is an unstable equilibrium of E, perturbed by some stationary ran-
dom fluctuations of amplitude o(1) and correlation length o(1). The linearization selects
a most unstable wavelength, which in our non-dimensionalization is O(1); fluctuations
of this wavelength grow fastest.

After this exponential growth regime, nonlinear effects kick in: m approximately
saturates at its bulk equilibrium values ±1 in most of the sample. The order parameter
m attains its bulk equilibrium value 1 in a convoluted region of characteristic length
scale � 	 1. Likewise, there is a region where m attains the other bulk equilibrium
value. These regions represent distinct “phases,” and their geometry is highly connected
(a “bicontinuous” phase distribution). Each phase has volume fraction 1/2, since the
evolution preserves the constraint −∫ m = 0. The phases are separated by a transition
layer of width O(1). The profile of m across the transition layer is approximately in
equilibrium. Based on the explicit form of the equilibrium profile, one obtains for the
energy E per unit volume

E ≈
{

4
3 interfacial area density in the constant mobility case
π
2 interfacial area density in the degenerate mobility case

}
. (12)

As the system matures it enters the “interfacial regime,” characterized by small energy
per unit volume and large characteristic length scale:

E � 1 and � 	 1. (13)

In this regime the evolution is essentially geometric, since the interface is sharp on the
scale � of the regions it separates. Motion is driven by the reduction of the total interfacial
area, limited by diffusion through the bulk for the case of constant mobility resp. along
the interface for the case of degenerate mobility. It leads to a coarsening of the phase
distribution, that is, to an increase of its characteristic length scale �.

The geometric evolution associated with our constant-mobility Cahn-Hilliard equa-
tion (10) is the Mullins-Sekerka law, which prescribes the normal velocity V of the
evolving interface � as follows. First, let p be the chemical potential defined by

−∇2p = 0 outside �, p = 1

3
H on �,

where H denotes the mean curvature. Then V is given by

V =
[
∂p

∂ν

]
on �, (14)

where [ ∂p
∂ν

] denotes the jump in the normal derivative ∂p
∂ν

of p across �. The fact that
large-time Cahn-Hilliard coarsening is described by the Mullins-Sekerka regime was
shown by Pego [27] using a formal, asymptotic-expansion-based argument (see [2] for
the multicomponent case).A rigorous proof of this result was given byAlikakos, Bates &
Chen, provided the limiting Mullins-Sekerka law has a smooth solution [1]. A rigorous
result not requiring any regularity hypotheses, using a very weak notion of solution of
the Mullins-Sekerka law, was given by Chen [4].
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The geometric evolution associated with our degenerate-mobility Cahn-Hilliard equa-
tion (11) is motion by surface diffusion. It prescribes the normal velocity V of the
evolving interface � by

V = −π2

16
∇2

s H on �, (15)

where ∇2
s denotes the surface Laplacian on �. This was shown by Cahn, Elliott &

Novick-Cohen [3] using a formal, asymptotic-expansion-based argument (see also [13]
for the multi component case). There is, to our knowledge, as yet no rigorous version of
this result.

The literature on Cahn-Hilliard equations, sharp-interface limits, and related topics
is vast; additional information and references can be found in the review [10].

2.4. Scaling. The sharp-interface models are important for their scale-invariance: solu-
tions are preserved under the scaling

x = λ x̂, t = λ3 t̂ for Mullins-Sekerka,
x = λ x̂, t = λ4 t̂ for surface diffusion,

(16)

as an easy consequence of the definitions (14) and (15). Solutions of the Cahn-Hilliard
equations are, therefore, approximately scale-invariant in the interfacial regime.

Of course we do not expect the phase geometry to be pointwise scale invariant. But
for a critical mixture (one with −∫ m = 0), numerical simulations suggest that solutions
in the interfacial regime are statistically self-similar (see e.g. [11, 12, 28]). Such behavior
imposes itself after an initial transient, and persists as long as the length scale � of the
phase distribution is much smaller than the system size – after which finite-size effects
take over. Conceptually, statistical self-similarity means that the (suitably defined, ran-
dom) solution is invariant under the scaling (16). Practically, we can replace statistical
averaging by spatial averaging to derive the following very measurable consequence:
the two-point correlation function c(t, r) should have the form

c(t, r) = ĉ(
r

�
), where � = tα, (17)

for some universal profile ĉ(r), with α = 1/3 in the constant-mobility (MS) setting, and
α = 1/4 in the degenerate-mobility (SD) setting. Such self-similarity is indeed seen
experimentally; for example it is a robust feature of many experiments in the spinodal
decomposition of polymer melts, where the Fourier transform of the correlation function
(the “structure factor”) can be measured with high precision [18, 20].

To our knowledge, there is no convincing theoretical explanation for the observed
statistical self-similarity. The closest thing we know to such an explanation is the mean-
field theory of Ostwald ripening. This amounts to the constant-mobility Cahn Hilliard
model (or the Mullins-Sekerka law) applied to a strongly off-critical mixture (volume
fraction of one phase close to zero, i.e. −∫ mdx + 1 � 1). In this setting, the mi-
nority phase m ≈ 1 breaks into many nearly spherical droplets of varying radius. The
Lifshitz-Slyozov-Wagner mean field theory [21, 31] gives an evolution equation for the
number density f (t, R) dR of droplets of radius R at time t . This evolution equation
has been given a rigorous justification [24, 25]. It admits self-similar solutions, which
can be viewed as “statistically self-similar” configurations at the level of the distribution
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of radii. Surprisingly, however, the large-time behavior is not necessarily self-similar
within this simple mean–field theory [26].

The conjecture (17), asserting self-similarity of the correlation functions, seems in-
tractable. We therefore concentrate on the subsidiary, presumably easier conjecture that

� ∼ tα

with α determined by scaling. Let us work out the plausible range of validity of this state-
ment. Assume t = 0 corresponds to a fixed time where we are already in the interfacial
regime, that is

E0 := E(t = 0) � 1, �0 := �(t = 0) 	 1. (18)

In view of the scale invariance (16), we expect

� ∼
{

(t + �3
0)

1
3 ∼ t

1
3 for t 	 �3

0 constant mobility

(t + �4
0)

1
4 ∼ t

1
4 for t 	 �4

0 degenerate mobility

}
.

Because of (12), we expect that
E ∼ �−1,

so the preceding relation becomes

E ∼
{

t−
1
3 for t 	 �3

0 constant mobility

t−
1
4 for t 	 �4

0 degenerate mobility

}
.

Thus, taking into account the hypothesis (18), we expect

E ∼
{

t−
1
3 for t 	 �3

0 	 1 	 E0 constant mobility

t−
1
4 for t 	 �4

0 	 1 	 E0 degenerate mobility

}
. (19)

The main result of this paper is a one-sided, time-averaged version of (19).

3. The Main Result

The last two sections mixed rigorous statements with many heuristic arguments and con-
jectures. From here on, however, our treatment is fully rigorous. We consider solutions
of the “constant-mobility” Cahn-Hilliard equation

∂m

∂t
+ ∇2

(
∇2m + 2 (1 − m2)m

)
= 0 constant mobility, Eq. (10)

with associated energy

E = −
∫

1

2

(
|∇m|2 + (1 − m2)2

)
dx;

and solutions of the “degenerate-mobility” Cahn-Hilliard equation

∂m

∂t
+ ∇ ·

[
(1 − m2)∇

(
∇2m + m

)]
= 0 degenerate mobility, Eq. (11)
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with associated energy

E = −
∫

1

2

(
|∇m|2 + (1 − m2)

)
dx.

We restrict our attention for simplicity to the case of a critical mixture, i.e. to solutions
with

−
∫

mdx = 0 critical mixture, Eq. (8).

The initial value problem for the constant-mobility Cahn-Hilliard equation is well-
posed and solutions are smooth. Less is known about the degenerate-mobility: weak
solutions are known to exist [9] but uniqueness remains open. Our arguments are valid
for the weak solutions constructed in [9].

We always use periodic boundary conditions for the PDE’s, and −∫ denotes averaging
over the period cell. The size $ of the period cell is effectively the system size; the inter-
esting case is $ 	 1. We always work with averages, so the system size $ never enters
our analysis. In particular, our upper bounds on the coarsening rate are independent of
system size.

As a specific solution coarsens, its length scale must eventually approach the system
size. When this happens finite-size effects will slow and eventually stop the coarsening.
This behavior does not falsify our results, since we discuss only upper bounds on the
coarsening rate.

Our analysis uses two different measures of the length scale of the microstructure.
One is the interfacial energy density; we explained in Sect. 2.3 that E itself is a good
proxy for this. The other is the physical scale – the quantity � in our heuristic discussions.
The convenient definition of this quantity is the following:

Definition 1. For any spatially-periodic m(x) with mean value zero, its physical scale
L = L[m] is

L := −
∫

|∇−1m| dx := sup

{
−
∫

mζ dx | periodic ζ with sup |∇ζ | ≤ 1

}
. (20)

The notation −∫ |∇−1m| dx is purely formal: it is not the L1 norm of some function
∇−1m. Rather, it reminds us that L[m] is dual to the W 1,∞ norm on ζ . (To extend our
analysis to off-critical mixtures, i.e. to permit −∫ m �= 0, one must restrict ζ in (20) to
have mean value 0.)

We now state our main results. For maximum clarity we state a special case of our
result as Theorem 1, then the general case as Theorem 2.

Theorem 1. If the initial energy is E0 and the initial length scale is L0 then we have

−
∫ T

0
E2dt

>∼ −
∫ T

0
(t−

1
3 )2dt for T 	 L3

0 	 1 	 E0 constant mobility,

−
∫ T

0
E3dt

>∼ −
∫ T

0
(t−

1
4 )3dt for T 	 L4

0 	 1 	 E0 degenerate mobility.
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Remark 1. The detailed statement of Theorem 1 is this: There exists a (possibly large
but controlled) universal constant C < ∞ (depending only on the space dimension N )
such that

1

T

∫ T

0
E2dt ≥ 1

C
T − 2

3 provided T ≥ C L3
0 and E0 ≤ 1

C

for the constant mobility case and a similar statement in the degenerate mobility case.

Here and throughout, the symbols
>∼, 	 resp.

<∼ and � bear precisely this meaning.

The symbol ∼ means both
>∼ and

<∼.

Theorem 1 asserts that E
>∼ t−1/3 in a suitable time-averaged sense for the case

of constant mobility, and E
>∼ t−1/4 in a different time-averaged sense for the case of

degenerate mobility. It is natural to ask whether similar bounds hold for other norms of
E, and with E replaced by EθL−(1−θ). The answer is yes: the method used to prove
Theorem 1 actually shows the following stronger result.

Theorem 2. For any 0 ≤ θ ≤ 1, suppose r satisfies

r < 3, θr > 1 and (1 − θ)r < 2 in the case of constant mobility, (21)

r < 4, θr > 2 and (1 − θ)r < 2 in the case of degenerate mobility. (22)

Then we have

−
∫ T

0
EθrL−(1−θ)rdt

>∼ −
∫ T

0
(t−

1
3 )rdt for T 	 L3

0 	 1 	 E0 constant mobility,

−
∫ T

0
EθrL−(1−θ)rdt

>∼ −
∫ T

0
(t−

1
4 )rdt for T 	 L4

0 	 1 	 E0 degenerate mobility.

The values of r and θ permitted by (21) and (22) are shown in Fig. 1, resp. 2. Notice
that when θ = 1, (21) permits any 1 < r < 3 and (22) permits any 2 < r < 4. Also
notice that the minimum possible θ permitted by (21) is 1/3, while the minimum permit-
ted by (22) is 1/2. The conclusion of the theorem is strongest when θ and r are smallest,
i.e. for values close to the curve θr = 1 (constant mobility), resp. θr = 2 (degenerate
mobility). Indeed, focusing for simplicity on the constant mobility case, if the estimate
holds for a given r0 < 3 then it holds for all r between r0 and 3 by an application of
Jensen’s inequality; and if the estimate holds for a given θ0 < 1, then it holds for all
θ > θ0 by an application of Lemma 1 below.

4. The Proof

Theorems 1 and 2 are immediate consequences of three basic lemmas. We state them in
Sect. 4.1, then prove each in turn in Sects. 4.2–4.4.
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Fig. 1. Constant mobility Fig. 2. Degenerate mobility

4.1. Ingredients. The first basic lemma relates L and E using just their definitions –
making no use of the Cahn-Hilliard dynamics. As motivation, we observe that L scales
like length. In the interfacial regime E � 1, according to (12), E is essentially the
interfacial area density, which scales like inverse length. So it is tempting to suggest that
E L ∼ 1. This is true for sufficiently simple geometries with a single length scale. In
general, however, there is only an inequality:

Lemma 1 (Interpolation).

E L
>∼ 1 for E � 1.

We call this an “interpolation” lemma because it is closely related to the following
relation, asserted for spatially periodic f with mean value 0:

−
∫

|f | dx <∼
(

−
∫

|∇f | dx
)1/2 (

−
∫

|∇−1f | dx
)1/2

. (23)

The proof is similar to (but easier than) the one given below for Lemma 1. We obtain
a geometric statement by choosing f to take only the values ±1, so that −∫ |f | dx = 1
and −∫ |∇f | dx is twice the interfacial area density. Thus (23) contains a sharp-interface
version of Lemma 1.

We note in passing that interpolation inequalities similar to (23) – interpolating be-
tween the BV norm −∫ |∇f | dx and a suitable negative norm – were central to our recent
work with Choksi on domain branching in uniaxial ferromagnets [5]. Inequalities of this
type have also emerged from recent work on nonlinear approximation theory [6, 7].
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The second basic lemma restricts the rate at which L can change. In our Cahn-
Hilliard models, the free energy E is dissipated by friction. The following lemma says
that a change of the length scale L has to overcome significant friction, and is therefore
accompanied by a significant reduction of the free energy E.

Lemma 2 (Dissipation).

(L̇)2 <∼ −Ė constant mobility,

(L̇)2 <∼ E (−Ė) degenerate mobility.

The third basic lemma is a pure ODE result, reaping the benefits of the other two.

Lemma 3 (ODE). If 0 ≤ θ ≤ 1 and r > 0 satisfy (21), then E L
>∼ 1 and (L̇)2 <∼ −Ė

imply

−
∫ T

0
EθrL−(1−θ)r dt

>∼ T − r
3 for T 	 L3

0. (24)

If 0 ≤ θ ≤ 1 and r > 0 satisfy (22), then E L
>∼ 1 and (L̇)2 <∼ E (−Ė) imply

−
∫ T

0
EθrL−(1−θ)r dt

>∼ T − r
4 for T 	 L4

0. (25)

4.2. Proof of Lemma 1. We present the proof for the case of constant mobility. The
argument for the case of degenerate mobility is similar (actually slightly easier, since
when the mobility is degenerate we have −1 ≤ m ≤ 1).

The first ingredient is the well-known Modica-Mortola [22] inequality. Defining

W(m) :=
∫ m

0
|1 − t2| dt, (26)

we have
∂W

∂m
= |1 − m2|,

so

−
∫

|∇(W(m))| dx = −
∫

|∇m| ∂W

∂m
dx ≤ −

∫
1

2

(
|∇m|2 +

(
∂W

∂m

)2
)

dx = E.

(27)

The second ingredient is the interpolation estimate

−
∫

m2 dx
<∼
(

−
∫

|∇(W(m))| dx −
∫

|∇−1m| dx
) 1

2

+ E (28)

with −∫ |∇−1m| dx = L defined by (20). The proof of (28) makes use of a smooth mol-
lifier ϕ which is radially symmetric, non-negative, and supported in the unit ball with∫
RN ϕ = 1. Let the subscript ε denote the convolution with the kernel

1

εN
ϕ
( ·
ε

)
.
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We split the L2-norm according to

−
∫

m2 dx
<∼ −
∫

(m − mε)
2 dx + −

∫
m2

ε dx. (29)

For the first term in (29), we observe that

(m1 − m2)
2 <∼ |W(m1) − W(m2)|

as an easy consequence of the definition (26). Therefore

−
∫

(m − mε)
2 dx ≤ sup

|h|≤ε

−
∫

(m(x) − m(x + h))2 dx

<∼ sup
|h|≤ε

−
∫

|W(m(x)) − W(m(x + h))| dx

<∼ ε −
∫

|∇(W(m))| dx. (30)

For the second term in (29), we must deal separately with large and small |mε|-values:

−
∫

m2
ε dx = −

∫
(m2

ε − min{m2
ε, 4}) dx + −

∫
min{m2

ε, 4} dx. (31)

(The case of degenerate mobility is easier at this point, since sup |mε| ≤ 1.) To estimate
the first term in (31) we observe that since m2 −min{m2, 4} is non-zero only for |m| > 2,
we have the following pointwise estimate by the energy density:

m2 − min{m2, 4} <∼ 1

2
(1 − m2)2. (32)

Furthermore, m2 − min{m2, 4} is convex in m. Hence we obtain by Jensen’s inequality

−
∫

(m2
ε − min{m2

ε, 4}) dx ≤ −
∫

(m2 − min{m2, 4}) dx
(32)
<∼ −
∫

1

2
(1 − m2)2 dx ≤ E. (33)

To estimate the second term in (31), we observe that

−
∫

min{m2
ε, 4}dx <∼ −

∫
|mε| dx. (34)

Since the convolution operator is symmetric in the L2 norm and

sup |∇ζε| <∼ 1

ε
sup |ζ | for any function ζ,

a duality argument gives

−
∫

|mε| dx <∼ 1

ε
−
∫

|∇−1m| dx. (35)
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Combining (30), (33), (34) and (35), we conclude that

−
∫

m2 dx
<∼ ε −

∫
|∇(W(m))| dx + 1

ε
−
∫

|∇−1m| dx + E.

Optimization over ε gives the desired interpolation inequality (28).
The final ingredient is the elementary estimate

1 − −
∫

m2 dx = −
∫

(1 − m2) dx ≤
(

−
∫

(1 − m2)2 dx

)1/2
<∼ E1/2.

Together with (27) and (28), we obtain as desired

1
<∼ (E L)1/2 + E + E1/2,

which yields Lemma 1 for E � 1.

4.3. Proof of Lemma 2. In the constant mobility setting, the PDE (10) can be written as

∂m

∂t
+ ∇ · J = 0 where J := −∇ ∂E

∂m
, (36)

and its solutions are known to be classical. Therefore the rate of change of E is

−Ė = − −
∫

∂E

∂m
mt dx = −

∫
|J |2 dx. (37)

Concerning the rate of change of L, we claim that for any t1 < t2,

|L(t2) − L(t1)| ≤
∫ t2

t1

−
∫

|J | dx dt. (38)

Indeed, let ζ∗(x) be an optimal test function in the definition of (20) of L(t2); thus

L(t2) = −
∫

m(x, t2) ζ∗(x) dx

and ζ∗ is periodic and Lipschitz continuous with |∇ζ∗| ≤ 1. Using ζ∗ as a test function
in the definition of L(t1) gives

L(t2) − L(t1) ≤ −
∫

(m(x, t2) − m(x, t1)) ζ∗ dx

=
∫ t2

t1

−
∫

∂m

∂t
ζ∗ dx dt

(36)=
∫ t2

t1

−
∫

J · ∇ζ∗ dx dt

≤
∫ t2

t1

−
∫

|J | dx dt.
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The opposite inequality

L(t1) − L(t2) ≤
∫ t2

t1

−
∫

|J | dx dt

is proved similarly, choosing ζ∗ to be optimal for the definition of L(t1). Thus (38) holds.
The conclusion of Lemma 2 follows easily from (37) and (38). Indeed, from the latter

we see that L is an absolutely continuous function of t and

|L̇| ≤ −
∫

|J | dx. (39)

Applying the Cauchy-Schwarz inequality and using (37) we conclude that

|L̇| ≤
(

−
∫

|J |2 dx

)1/2

= (−Ė
)1/2

,

which is the assertion of the lemma in the constant mobility setting.
The proof in the degenerate mobility setting is very similar. The PDE in this case is

(11), which can be written as

∂m

∂t
+ ∇ · J = 0 where J := −(1 − m2)∇ ∂E

∂m
. (40)

For a classical solution, (40) implies

−Ė = −
∫

1

1 − m2 |J |2 dx. (41)

The variation of L is still estimated by (39), and the Cauchy-Schwarz inequality gives

−
∫

|J | dx ≤
(

−
∫

1

1 − m2 |J |2 dx −
∫

(1 − m2) dx

) 1
2

. (42)

We also have

E ≥ −
∫

1

2
(1 − m2) dx. (43)

Combining inequalities (39), (41), (42) and (43) we conclude that

(L̇)2 ≤ −2EĖ, (44)

which is the assertion of Lemma 2 in the degenerate mobility setting.
It is not known whether the degenerate-mobility Cahn-Hilliard equation (40) has a

global-in-time classical solution. However Elliott & Garcke proved the existence of a
global-in-time weak solution in [9], and the argument just presented extends to the weak
solutions constructed by those authors. Indeed, their solutions are obtained by a limiting
procedure involving Cahn-Hilliard equations similar to (40), but with a finite quench
(so the energy is (5) with β > 0) and regularized mobility. The regularized equations
have classical solutions and support estimates analogous to (41)–(43). There is sufficient
compactness to pass to the limit in L and E, and the analogues of (41) give in the limit
the energy inequality

−Ė ≥ −
∫

1

1 − m2 |J |2 dx



390 R.V. Kohn, F. Otto

(the situation is analogous to Leray-Hopf weak solutions of the Navier-Stokes equa-
tions). This is, fortunately, all we really needed from (41): passing to the limit in the
regularized version of

|L̇| ≤
(

−
∫

1

1 − m2 |J |2 dx −
∫

(1 − m2) dx

) 1
2

,

and noting that −2EĖ = −dE2/dt , we conclude that for the limiting weak solution L

is absolutely continuous, −dE2/dt is a bounded measure, and

(L̇)2 ≤ −2dE2/dt.

This is the sense in which the dissipation relation holds for weak solutions.

4.4. Proof of Lemma 3. We begin with some remarks, showing that Lemma 3 takes
more or less optimal advantage of its hypotheses. Let us focus for simplicity on the case
of constant mobility.

Remark 2. We shall prove a weak form of the statement E
>∼ t−1/3, but we cannot expect

to prove any form of the analogous-looking statement L
<∼ t1/3.

Indeed, the hypotheses E L
>∼ 1 and (L̇)2 <∼ −Ė are consistent with the choice

L := tα and E := t−β

provided

0 ≤ β ≤ α and β ≤ 1 − 2 α. (45)

These inequalities imply that β ≤ 1/3, consistent with the expected result E
>∼ t−1/3.

However they permit α to take any value between 0 and 1/2. Thus our approach cannot

give an upper bound on L better than L
<∼ t1/2.

Remark 3. Extending the preceding comment: we can expect to prove a weak form of

the statement EθL−(1−θ) >∼ t−1/3 only for 1/3 ≤ θ ≤ 1.

Indeed, it is easy to see that

0 ≤ β ≤ α and β ≤ 1 − 2α imply θβ + (1 − θ)α ≤ 1/3

only if 1/3 ≤ θ ≤ 1.

Remark 4. Our tools are not sufficient to prove a pointwise version of the statement

E
>∼ t−1/3.
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Indeed, for any 0 < E1 � 1, consider the functions

E(t) := 1 − E2
1 t and L(t) := 1 + E1 t.

They satisfy the restrictions Ė ≤ 0 and (L̇)2 <∼ −Ė trivially, and they also satisfy

E L
>∼ 1 on the finite time horizon

t ≤ t1 := 1 − E1

E2
1

≈ 1

E2
1

.

Since
E(t1) = E1,

this example rules out any pointwise lower bound of the form

E(t)
>∼ t−γ with γ <

1

2
.

We now begin the proof of Lemma 3. We present the argument just for the case of
degenerate mobility; the other case, when the mobility is constant, is entirely similar.

We may assume E(t) and L(t) are differentiable since the hypotheses E L
>∼ 1 and

(L̇)2 <∼ −d(E2)/dt are preserved under mollification.

The differential inequality (L̇)2 <∼ E(−Ė) implies that E is a monotone function of
time, and L is an absolutely continuous function of E. Therefore L can be viewed as a
function of E, and the differential inequality can be rewritten as(

dL

de

)2

(Ė)2 <∼ E|Ė|.

Here we use the lower case e for the energy as an independent variable to distinguish it
from E = E(t). Division by E|Ė| ≥ 0 gives

1

E

(
dL

de

)2

|Ė| <∼ 1. (46)

(The division is inadmissible if Ė = 0, but the conclusion (46) is trivial in that case,
so this conclusion is valid for all t > 0.) Multiplying by any function f (E(t)) and
integrating in time gives∫ T

0
f (E(t))dt

>∼
∫ E(0)

E(T )

f (e)

e

(
dL

de

)2

de.

Taking f = eθrL−(1−θ)r and writing E0 = E(0), ET = E(T ), we reach the conclusion
that ∫ T

0
Eθr(t) L−(1−θ)r (t)dt

>∼
∫ E0

ET

eθr−1L−(1−θ)r

(
dL

de

)2

de (47)

for all T > 0.
Now we must estimate the right-hand side of (47). Consider the change of variables

ê = 1
2−θr

e2−θr , and L̂ = 1
1− (1−θ)r

2

L1− (1−θ)r
2 .
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Our hypotheses

θ r > 2, (1 − θ) r < 2 (48)

assure that ê → −∞ and L̂ → ∞ as e → 0 and L → ∞ respectively. They also imply

θ > 1/2, (49)

which will be needed below. Since(
dL

de

)2

de =
(

dL̂

dê

)2 (
dL

dL̂

)2 (
dê

de

)
dê

we have ∫ E0

ET

eθr−1L−(1−θ)r

(
dL

de

)2

de =
∫ Ê0

ÊT

(
dL̂

dê

)2

dê.

The right-hand side is bounded below by the minimum over all functions L̂(ê) with the
same end conditions

L̂(Ê0) = 1

1 − (1−θ)r
2

(L(0))1− (1−θ)r
2 , L̂(ÊT ) = 1

1 − (1−θ)r
2

(L(T ))1− (1−θ)r
2 .

To simplify notation we denote these end conditions by L̂0 and L̂T respectively. The
extremal L̂ is of course linear in ê, so we have

∫ T

0
Eθr(t)L−(1−θ)r (t)dt

>∼
(
L̂T − L̂0

)2

Ê0 − ÊT

. (50)

When T is such that
L(T ) ≥ 2L(0),

the right side of (50) is easy to control: we have

L̂T − L̂0
>∼ L̂T and Ê0 − ÊT ≤ −ÊT

so ∫ T

0
EθrL−(1−θ)r dt

>∼ L̂2
T

−ÊT

∼ L
2−(1−θ)r
T Eθr−2

T .

Rewriting the right-hand side as

L
2−(1−θ)r
T Eθr−2

T = [Eθ
T L

−(1−θ)
T ]r−4 [LT ET ]4θ−2,

we conclude, using EL
>∼ 1 and (49), that∫ T

0
EθrL−(1−θ)r dt

>∼ [Eθ
T L

−(1−θ)
T ]r−4 provided L(T ) ≥ 2L(0). (51)

Introducing

h(T ) :=
∫ T

0
EθrL−(1−θ)rdt,
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we can rewrite (51) as h
>∼ (h′)(r−4)/r , so we have shown that

hr/(4−r)(T )h′(T )
>∼ 1 provided L(T ) ≥ 2L(0). (52)

Here, we have used r < 4.
The preceding method doesn’t work when L(T ) < 2L(0), but for such T we can

estimate h′(T ) = Eθr(T )L−(1−θ)r (T ) by different, more elementary means. Indeed,
for such T we have

E(T )
>∼ L−1(T )

>∼ L−1
0 ,

which implies

Eθ(T )L−(1−θ)(T )
>∼ L−1

0 .

Thus

h′(T )
>∼ L−r

0 if L(T ) < 2L0. (53)

Combining (52) and (53) we conclude, using r < 4, that

d

dt

(
h + L4−r

0

) 4
4−r ∼

(
h(t) + L4−r

0

) r
4−r

h′(t) >∼ 1 for all t > 0.

Integration in time gives

h(T ) + L4−r
0

>∼ T
4−r

4 for all T > 0.

Restricting attention to T 	 L4
0, this becomes

∫ T

0
EθrL−(1−θ)rdt = h(T )

>∼ T
4−r

4 for T 	 L4
0,

which is precisely the conclusion of Lemma 3.

5. Discussion

We explained in Sect. 1 that upper bounds on coarsening rates are different from low-
er bounds, because upper bounds are kinematic and universal, while lower bounds are
geometry-dependent. Our rigorous results demonstrate the merit of this viewpoint, by
using simple dissipation and interpolation relations to prove weak, time-averaged upper
bounds.

It would be nice to prove more. We suppose E and L should satisfy pointwise-in-time
bounds. But proving this seems to require a new idea, if not an entirely new method.

This paper addresses just two of the many energy-driven coarsening models in ma-
terials science. Other examples include the coarsening of mounds in epitaxial growth
(see e.g. [23, 29, 30]) and the coarsening of defect structures in soft condensed matter
(see e.g. [17]). We wonder whether the viewpoint and methods of this paper might be
applicable to such problems.
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