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Abstract: A rigorous methodology for the analysis of initial-boundary value problems
on the half-line, 0 < x < ∞, t > 0, is applied to the nonlinear Schrödinger (NLS),
to the sine-Gordon (sG) in laboratory coordinates, and to the Korteweg-deVries (KdV)
with dominant surface tension. Decaying initial conditions as well as a smooth subset
of the boundary values {∂l

xq(0, t) = gl(t)}n−1
0 are given, where n = 2 for the NLS and

the sG and n = 3 for the KdV. For the NLS and the KdV equations, the initial condition
q(x, 0) = q0(x) as well as one and two boundary conditions are given respectively;
for the sG equation the initial conditions q(x, 0) = q0(x), qt (x, 0) = q1(x), as well
as one boundary condition are given. The construction of the solution q(x, t) of any of
these problems involves two separate steps: (a) Given decaying initial conditions define
the spectral (scattering) functions {a(k), b(k)}. Associated with the smooth functions
{gl(t)}n−1

0 , define the spectral functions {A(k), B(k)}. Define the function q(x, t) in
terms of the solution of a matrix Riemann-Hilbert problem formulated in the complex
k-plane and uniquely defined in terms of the spectral functions {a(k), b(k), A(k), B(k)}.
Under the assumption that there exist functions {gl(t)}n−1

0 such that the spectral func-
tions satisfy a certain global algebraic relation, prove that the function q(x, t) is defined
for all 0 < x < ∞, t > 0, it satisfies the given nonlinear PDE, and furthermore that
q(x, 0) = q0(x), {∂l

xq(0, t) = gl(t)}n−1
0 . (b) Given a subset of the functions {gl(t)}n−1

0
as boundary conditions, prove that the above algebraic relation characterizes the un-
known part of this set. In general this involves the solution of a nonlinear Volterra
integral equation which is shown to have a global solution. For a particular class of
boundary conditions, called linearizable, this nonlinear equation can be bypassed and
{A(k), B(k)} can be constructed using only the algebraic manipulation of the global
relation. For the NLS, the sG, and the KdV, the following particular linearizable cases
are solved: qx(0, t) − χq(0, t) = 0, q(0, t) = χ , {q(0, t) = χ , qxx(0, t) = χ + 3χ2},
respectively, where χ is a real constant.
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1. Introduction

We first review briefly the inverse scattering method, then we summarize the new
method.

A. The Inverse Scattering (Spectral) Method. There exist nonlinear evolution equations
in one space variable, such as the nonlinear Schrödinger (NLS), the Korteweg-deVries
(KdV) and the sine-Gordon (sG) equations, which can be written as the compatibility
condition of two linear eigenvalue equations. Such equations are called integrable and
the associated linear equations are called Lax pairs [1]. The two equations constituting
the Lax pair are usually referred to as the x part and the t part. A method for solving
the initial-value problem with decaying initial data was discovered in 1967 [2]. This
method can be thought of as a nonlinear Fourier transform method. However, this non-
linear Fourier transform is not the same for every nonlinear evolution equation, but it
is constructed from the x part of the Lax pair. Furthermore, neither the direct nonlinear
Fourier transform of the initial data, nor the inverse nonlinear Fourier transform can be
expressed in closed form: the former involves a linear Volterra integral equation and
the latter involves a matrix Riemann-Hilbert problem. It should be emphasized that the
construction of this nonlinear transform is based solely on the x part of the Lax pair and
it involves the spectral analysis of this eigenvalue equation; the t part (or alternatively
the nonlinear PDE itself) is used only to determine the evolution of the direct nonlinear
Fourier transform (see [3] for the early history and [4] for some recent developments).

A method for solving the initial value problem with space-periodic initial data was
developed in the mid-1970s [5–7]. This method involves algebraic-geometric techniques
and can be thought of as formulating a Riemann-Hilbert problem which can be solved
using functions defined on a Riemann surface.

Following the solution of the initial value problem with decaying and periodic initial
data, the outstanding open problem in the analysis of integrable equations became the
solution of initial-boundary value problems. The simplest such problem is formulated
on the half line; following the success of the nonlinearization of the Fourier transform,
a natural strategy is to solve the associated linear problem by an x transform and then
to nonlinearize this transform. However, this strategy fails: for the NLS the associated
linear equation can be solved by either the sine or the cosine transform depending on
whether q(0, t) or qx(0, t) is given, but neither of these transforms nonlinearizes; for the
KdV, the associated linear equation involves a third order spatial derivative and for such
equations there does not exist an appropriate x transform. The author has emphasized
that the failure of the nonlinearization of the sine and cosine transforms suggests that
these transforms are not fundamental; the fact that they are limited to equations with
second order spatial derivatives provides further support to this claim. The author has
introduced recently what appears to be the fundamental transform for a linear evolution
equation with arbitrary order spatial derivatives and this transform can be nonlinearized
[8].

B. The New Method. A general approach to solving boundary value problems for two-
dimensional integrable PDE’s was announced in [9] and further developed in several
publications, see the review [8]. An equation in two-dimensions (x, y) is called integ-
rable if and only if it can be written as the condition that an appropriate differential
1-form W(x, y, k), k ∈ C, is closed. Examples of integrable equations are linear PDEs
with constant coefficients and the usual nonlinear integrable PDEs. For the latter class
of PDEs, the existence of W is a direct consequence of the existence of a Lax Pair.
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The rigorous implementation of the new method for the solution of an initial-bound-
ary value problem on the half line for a linear dispersive evolution equation with spatial
derivatives of arbitrary order is presented in [10]. The rigorous implementation of the
new method for the analogous problem for the NLS equation is presented in [11]. Here
the method is first presented in general and then applied to the following equations in
particular: The NLS equation

i
∂q

∂t
+ ∂2q

∂x2 − 2λ|q|2q = 0, λ = ±1, (1.1)

the KdV equation with dominant surface tension

∂q

∂t
+ ∂q

∂x
− ∂3q

∂x3 + 6q
∂q

∂x
= 0, q real, (1.2)

and the sine-Gordon in laboratory coordinates

∂2q

∂t2 − ∂2q

∂x2 + sin q = 0, q real. (1.3)

Regarding Eq. (1.2), we recall that in the original derivation of Korteweg and deVries
[12] the coefficient of qxxx is given by h2/3 − T h/ρg, where h, ρ, T , denote the mean
height of the water, the density of the water, and the surface tension respectively; thus
for sufficiently large surface tension this coefficient is negative.

We have included the results for the NLS for the sake of completeness.

Notation. Subscripts with respect to x and to t denote partial derivatives, for example
qt = ∂q

∂t
, qx = ∂q

∂x
, etc.

• if f (k) is a function then f (k) denotes the complex conjugate of f (k).
• σ3 denotes the third Pauli’s matrix, σ̂3 denotes the matrix commutator with σ3; then

exp(σ̂3) can be easily computed,

σ3 = diag(1,−1), σ̂3A = [σ3, A], eσ̂3A = eσ3Ae−σ3 , (1.4)

where A is a 2 × 2-matrix.
• The constant ρ used throughout the paper takes values ρ = 1 for KdV, ρ = −1 for

sG, ρ = λ for NLS.
• S(R+) denotes the space of Schwartz functions on the positive real axis.
• D̄ denotes the closure of the domain D.
• a(k) and b(k) are the (22) and (12) elements of the matrix s(k) which is uniquely

defined in terms of the initial conditions.
• A(k) and B(k) are the (22) and (12) elements of the matrix S(k) which is uniquely

defined in terms of the boundary values of x = 0; these boundary values will be
denoted by {∂l

xq(0, t) = gl(t)}n−1
0 , where n = 2 for NLS and sG, and n = 3 for

KdV.

An exact 1-form. The starting point of the method is the construction of an exact differ-
ential 1-form W(x, t, k), k ∈ C. In order to present this form explicitly we assume that
the given nonlinear PDE admits a Lax pair formulation of the form

µx + if1(k)σ̂3µ = Q(x, t, k)µ,

µt + if2(k)σ̂3µ = Q̃(x, t, k)µ, k ∈ C,
(1.5)
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where the eigenfunction µ(x, t, k) is a 2 × 2 matrix valued function of the arguments
indicated, f1(k), f2(k) are given analytic functions of k, and the 2 × 2 matrix valued
functions Q, Q̃ are given analytic functions of k, of q(x, t), of q̄(x, t), and of the de-
rivatives of these functions. Equations (1.1)–(1.3), the modified KdV equation, as well
as several other nonlinear PDEs of physical significance admit a Lax pair of the form
(1.5). For example for the NLS equation (1.1) [13],

f1(k) = k, f2(k) = 2k2, Q(x, t) =
(

0 q

λq̄ 0

)
,

Q̃(x, t, k) = 2kQ − iQxσ3 − iλ|q|2σ3.

(1.6)

An exact 1-form W for an equation admitting the Lax pair (1.5) is given by

W(x, t, k) = ei(f1(k)x+f2(k)t)σ̂3
(
Q(x, t, k)µ(x, t, k)dx + Q̃(x, t, k)µ(x, t, k)dt

)
.

(1.7)

Indeed, the Lax pair (1.5) is equivalent to the statement that exp[i(f1(k)x + f2(k)t)σ̂3]
µ(x, t, k) is a differential 0-form associated with the exact differential 1-form W ,

d
[
ei(f1(k)x+f2(k)t)σ̂3µ(x, t, k)

]
= W(x, t, k), k ∈ C. (1.8)

Equations (1.5) are the coordinate form of Eq. (1.8); however, for the implementation
of the new method, it is often convenient to use Eq. (1.8).

Statement of the problem. Let q(x, t) satisfy a nonlinear evolution equation with spatial
derivatives of order n, on the half line 0 < x < ∞, and for 0 < t < T , where T

is a positive constant. Let q(x, t) satisfy decaying initial conditions at t = 0, as well
as appropriate boundary conditions at x = 0. Assume that this PDE admits a Lax pair
formulation of the type (1.5), i.e. assume that this PDE is equivalent to the compatibility
condition of Eqs. (1.5). Then such an initial-boundary value problem can be analyzed
using the following steps.

Step 1: A RH problem formulation under the assumption of existence. Assuming that
q(x, t) exists, express q(x, t) through the solution of a matrix Riemann-Hilbert problem
uniquely defined in terms of the so-called spectral functions denoted by {s(k), S(k)}.
Express s(k) and S(k) through the solution of linear integral equations uniquely defined
in terms of the initial conditions and of the boundary values {gl(t)}n−1

0 , respectively.
Furthermore, derive the global algebraic relation satisfied by the spectral functions.

More specifically: Let µj (x, t, k), j = 1, 2, 3, be the 2 × 2 matrix valued functions
defined by

ei(f1(k)x+f2(k)t)σ̂3µj (x, t, k) = I +
∫ (x,t)

(xj ,tj )

W(ξ, τ, k), 0 < x < ∞, 0 < t < T,

(1.9)
where I = diag(1, 1), the integral denotes a smooth curve from (xj , tj ) to (x, t), and
(x1, t1) = (0, T ), (x2, t2) = 0, (x3, t3) = (∞, t), see Fig. 1.1.

The fundamental theorem of calculus implies that the functions µj satisfy Eq. (1.8)
and that, since the 1-form W is closed, µj are independent of the path of integration.
The functions µ1 and µ2 are entire functions of k, while the function µ3 is defined only
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Fig. 1.1. The points 1, 2, 3 used for the definition of µj , j = 1, 2, 3

for k in some domain of the complex k-plane. The boundedness of µj with respect to k

depends on f1(k), f2(k) and (xj , tj ). It was shown in [14] that if (xj , tj ) are the corners
of the given polygonal domain (i.e. in our case the points denoted by 1, 2, 3), then the
exponential terms appearing in Eq. (1.9) are bounded in different sectors of the complex
k-plane whose union is the entire complex k-plane. Assuming that the dependence of Q

and Q̃ on k is such that µj = I + O(1/k) as k → ∞, it follows that the functions µj

are the fundamental eigenfunctions needed for the formulation of a RH problem in the
complex k-plane. The “jump matrix” of this RH problem is uniquely defined in terms
of the 2 × 2-matrix valued functions

s(k) = µ3(0, 0, k), S(k) =
(
eif2(k)T σ̂3µ2(0, T , k)

)−1
. (1.10)

This is a direct consequence of the fact that any two solutions of Eq. (1.9) are simply
related,

µ3(x, t, k) = µ2(x, t, k)e
−i(f1(k)x+f2(k)t)σ̂3µ3(0, 0, k),

µ1(x, t, k) = µ2(x, t, k)e
−i(f1(k)x+f2(k)t)σ̂3

(
eif2(k)T σ̂3µ2(0, T , k)

)−1
.

(1.11)

The functions s(k) and S(k) follow from the evaluation at x = 0 and at t = T of the
functions µ3(x, 0, k) and µ2(0, t, k) respectively; these functions satisfy the following
linear integral equations:

eif1(k)xσ̂3µ3(x, 0, k) = I −
∫ ∞

x

eif1(k)ξ σ̂3(Qµ3)(ξ, 0, k)dξ, (1.12)

eif2(k)tσ̂3µ2(0, t, k) = I +
∫ t

0
eif2(k)τ σ̂3(Q̃µ2)(0, τ, k)dτ. (1.13)

The functions µ3(x, 0, k) and µ2(0, t, k), and hence the functions s(k) and S(k), are
uniquely defined in terms of Q(x, 0, k) and Q̃(0, t, k), i.e. in terms of the initial condi-
tions and of the boundary values {gl(t)}n−1

0 , respectively.
The above RH problem yields µ(x, t, k) in terms of s(k) and S(k), then either of

Eqs. (1.5) yields q(x, t). The function S(k) involves explicitly T . However, the solution
of an evolution equation cannot depend on a “future time”; indeed, it can be shown that
for t such that 0 < t < T0 < T the above RH problem is equivalent to a RH problem
with S(k) replaced by
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S(T0, k) =
(
eif2(k)T0σ̂3µ2(0, T0, k)

)−1
. (1.14)

The spectral functions s(k) and S(k) are not independent but they satisfy a simple
algebraic relation, see Sect. 2:

−I + S(k)−1s(k) + eif2(k)T σ̂3C(k) = 0, k ∈ (D̄3 ∪ D̄4, D̄1 ∪ D̄2), (1.15)

where

C(k) =
∫ ∞

0
eif1(k)xσ̂3(Qµ3)(x, T , k)dx,

and k ∈ (D1,D2) means that the first and second columns of the matrix equation (1.15)
are valid for k ∈ D1 and k ∈ D2 respectively. The domains Dj , j = 1, 2, 3, 4, are
defined by

D1 = {k ∈ C, Imf1(k) > 0 ∩ Imf2(k) > 0},
D2 = {k ∈ C, Imf1(k) > 0 ∩ Imf2(k) < 0},
D3 = {k ∈ C, Imf1(k) < 0 ∩ Imf2(k) > 0},
D4 = {k ∈ C, Imf1(k) < 0 ∩ Imf2(k) < 0}.

(1.16)

We emphasize that although Eq. (1.15) involves the unknown function C(k) it does im-
pose a severe restriction between s(k) and S(k). This becomes immediately clear if the
domain is the quarter plane, 0 < x < ∞, 0 < t < ∞, in which case S(k) = S(∞, k)

and Eq. (1.15) becomes

−I + S(k)−1s(k) = 0, k ∈ (D̄3, D̄1). (1.15)∞

The global relation is a simple consequence of the fundamental fact that since the 1-form
W is closed, its integral around the boundary {0 < ξ < ∞, 0 < τ < T } vanishes.

Step 2: Existence under the assumption that the spectral functions satisfy the global
relation. Given q0(x) ∈ S(R+) use Eq. (1.12) to define s(k). Assume that there exist
smooth functions {gl(t)}n−1

0 , such that if S(k) is defined in terms of these functions by
Eq. (1.13), then the spectral functions satisfy the global relation (1.15), where C(k) is
some function analytic and bounded for k ∈ (D3∪D4,D1∪D2). Define µ(x, t, k) as the
solution of the RH problem formulated in Step 1 and define q(x, t) in terms of µ(x, t, k).
Then prove that: (a) q(x, t) is defined for all 0 < x < ∞, 0 < t < T . (b) q(x, t) solves
the given nonlinear PDE. (c) q(x, 0) = q0(x), 0 < x < ∞. (d) {∂l

xq(0, t) = gl(t)}n−1
0 ,

0 < t < T .
More specifically: The global existence of q(x, t) is based on the unique solvability

of the associated RH problem, which in turn is based on the distinctive nature of the
functions defining the jump matrix: these functions have explicit x, t dependence, in the
form of exp[i(f1(k)x+f2(k)t)], and involve the spectral functions s(k) and S(k); using
certain symmetry properties of the spectral functions it can be shown that in all cases
(1.1)–(1.3), the associated homogeneous RH problem has only the trivial solution (i.e.
there exists a so-called vanishing lemma).

The proof that q(x, t) solves the given nonlinear PDE uses the standard arguments
of the dressing method. The proof that q(0, t) = q0(x) is based on the fact that the RH
problem satisfied by µ(x, 0, k) is equivalent to the RH problem defined by s(k) which
characterizes q0(x).

The proof that {∂l
xq(0, t) = gl(t)}n−1

0 , makes crucial use of the global algebraic
relation (1.15). Indeed, the RH problem satisfied by µ(0, t, k) is equivalent to the RH
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problem defined by S(k), which characterizes gl(t), if and only if the spectral functions
satisfy this global relation.

From the above discussion the crucial role played by the global relation becomes
clear: it is not only a necessary but it is also a sufficient condition. Thus given q0(x) and
a subset of the functions {gl(t)}n−1

0 , the main problem becomes to show that the global
relation characterizes the unknown part of the set {gl(t)}n−1

0 .

Step 3: Analyse the global condition. (a) Identify a class of boundary conditions for
which it is possible to compute explicitly S(k), using only algebraic manipulations of
the global relation.

More specifically: The function S(k) is defined in terms of µ2(0, t, k) which satisfies

∂tµ2(0, t, k) + if2(k)σ̂3µ2(0, t, k) = Q̃(0, t, k)µ2(0, t, k). (1.17)

Let the transformation k → ν(k) be defined by the requirement that it leaves f2(k)

invariant. The function µ2(0, t, ν(k)) satisfies Eq. (1.17) with Q̃(0, t, k) replaced by
Q̃(0, t, ν(k)). Suppose that there exists a nonsingular matrix N(k) such that

N(k)−1
[
if2(k)σ3 − Q̃(0, t, ν(k))

]
N(k) = if2(k)σ3 − Q̃(0, t, k); (1.18)

then if µ2(0, t, k) = M(t, k) exp[if2(k)tσ3], it follows that

M(t, ν(k)) = N(k)M(t, k)N(k)−1. (1.19)

This equation yields a relation between S(k) and S(ν(k)), and then S(k) follows from
the algebraic manipulation of this relation and of the global relation.

Equation (1.18) implies that a necessary condition for the existence of N(k) is that
the determinant of if2(k)σ3 − Q̃(0, t, k) depends on k only in the form of f2(k).

For the non-linearizable boundary conditions:
(b) Given q0(x) ∈ S(R+) and a subset of smooth functions {gl(t)}n−1

0 , prove that
the global relation yields the unknown part of the set {gl(t)}n−1

0 for all 0 < t < T .
More specifically: Integrating the first and the second columns of the global relation

around the boundary of the domains of D3 and of D1 respectively, and using the analy-
ticity of the term exp[if2(k)T σ̂3]C(k), it follows that this term vanishes. Since S(k) is
defined in terms of µ2(0, T , k), this equation is a relation between s(k) and µ2(0, T , k).
This relation together with the definition of µ2(0, t, k), i.e. Eq. (1.13), define a nonlinear
Volterra integral equation for the unknown part of {gl(t)}n−1

0 . For such an equation it is
tedious but straightforward to establish solvability for small t (or equivalently for data
with small norm); the challenging question is to establish solvability for all 0 < t < T

(or equivalently without a small norm assumption). We emphasize that to achieve this
we make crucial use of the analyticity structure of the global relation, see Sect. 5.

C. Outline and Main Results. In Sects. 2–4 we implement Steps 1–3a for each of Eqs.
(1.1)–(1.3). In particular in Theorem 3.1 we formulate the basic RH problem; this prob-
lem has a jump matrix which is uniquely defined in terms of the scalar functions a(k),
b(k) and /(k), where /(k) involves a(k), b(k) and B(k)/A(k),

/(k̄) =
ρ

B(k)
A(k)

a(k̄)
[
a(k̄) − ρb(k̄)

B(k)
A(k)

] . (1.20)
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In Sect. 4 we analyse the following concrete linearizable cases:
NLS:

qx(0, t) − χq(0, t) = 0, χ constant, χ ≥ 0. (1.21)

sG:

q(0, t) = χ, χ constant. (1.22)

KdV:

q(0, t) = χ, qxx(0, t) = χ + 3χ2, χ constant. (1.23)

For each of these cases, B/A, and hence /(k), can be explicitly given in terms of a(k),
b(k):

NLS :
B(k)

A(k)
= −2k + iχ

2k − iχ

b(−k)

a(−k)
, (1.24)

KdV, sG :
B(k)

A(k)
= f (k)b(ν(k)) − a(ν(k))

f (k)a(ν(k)) − b(ν(k))
, (1.25)

where for the sG,

ν(k) = 1

k
, f (k) = i

k2 + 1

k2 − 1

sin χ

cos χ − 1
, (1.26)

while for the KdV,

ν2 + kν + k2 + 1

4
= 0, f (k) = ν + k

ν − k

(
1 − 4νk

χ

)
. (1.27)

The homogeneous Neumann and the homogeneous Dirichlet cases of the NLS, i.e.
qx(0, t) = 0 and q(0, t) = 0, follow from Eq. (1.24) as χ → 0 and χ → ∞ respective-
ly. Similarly the homogeneous case χ = 0 of the sG and KdV follow from Eq. (1.26)
as χ → 0, i.e. f (k) → ∞.

We emphasize that since {a(k), b(k)} are determined in terms of the initial conditions
and since B(k)/A(k) and therefore /(k) is explicitly written in terms of {a(k), b(k)}, it
follows that linearizable initial boundary value problems on the half line are solved as
effectively as initial value problems on the line.

In Sect. 5 we summarize the results of [11] which, in the case of the NLS, given g0(t)

establish the existence and uniqueness of g1(t). We also discuss the extension of these
results to other integrable nonlinear PDEs such as the KdV and sG.

In Sect. 6 we discuss further the new method.

Remark 1.1. For simplicity of presentation we give all relevant formulae for the soli-
tonless case. The solitons were included in [11]. Using the formula of [11] it is straight-
forward to add the solitonic part to the formulae for the KdV and the sG: the zeros for
0 < arg k < π/2 and π/2 < arg k < π in the NLS can occur in the domains D1 and
D2 for the sG and the KdV. The solitons for the sG are also discussed in [16]. We note
that the existence of solitons in the linearizable cases studied in Sect. 5 depends on the
sign of χ ; it is again straightforward to add the solitonic part.
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2. A RH Problem Formulation Under the Assumption of Existence

In this section we give the details of Step 1. Let σj denote the usual Pauli matrices

σ1 =
(

0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
. (2.1)

The NLS, the KdV, and the sG equations are equivalent to Eq. (1.8), where f1, f2, Q,
Q̃, are defined below.

NLS: see Eqs. (1.6).
KdV: f1 = −k, f2 = k + 4k3,

Q(x, t, k) = q

2k
(σ2 − iσ3),

Q̃(x, t, k) = −2kqσ2 + qxσ1 + 2q2 + q − qxx

2k
(iσ3 − σ2).

(2.2)

sG: f1 = 1
4

(
k − 1

k

)
, f2 = 1

4 (k + 1
k
),

Q(x, t, k) = − i

4
(qx + qt )σ1 − i

4k
(sin q)σ2 + i

4k
((cos q) − 1) σ3,

Q̃(x, t, k) = Q(x, t,−k).

(2.3)

2.1. Analytic and Bounded Eigenfunctions. For the contours appearing in the integral
of Eq. (1.9) we choose the specific contours depicted in Fig. 2.1

This choice implies the following inequalities:

µ1 : ξ − x ≤ 0, τ − t ≥ 0,

µ2 : ξ − x ≤ 0, τ − t ≤ 0,

µ3 : ξ − x ≥ 0.

The second column of the matrix equation (1.9) involves exp[if1(k)(ξ −x)+ if2(k)(τ −
t)]. Using the above inequalities it follows that this exponential is bounded in the fol-
lowing regions of the complex k-plane:

µ1 : {Imf1 ≤ 0 ∩ Imf2 ≥ 0},

µ2 : {Imf1 ≤ 0 ∩ Imf2 ≤ 0},

µ3 : {Imf1 ≥ 0}.
The first column of the matrix equation (1.9) involves the inverse of the above exponen-
tial, which is bounded in

µ1 : {Imf1 ≥ 0 ∩ Imf2 ≤ 0},

µ2 : {Imf1 ≥ 0 ∩ Imf2 ≥ 0},

µ3 : {Imf1 ≤ 0}.
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Fig. 2.1. The contours used for the definition of µj , j = 1, 2, 3

Using the definitions (1.16) of the domains {Dj }4
1, the above discussion can be summa-

rized schematically by:

µ1 : (D̄2, D̄3), µ2 : (D̄1, D̄4), µ3 : (D̄3 ∪ D̄4, D̄1 ∪ D̄2). (2.4)

The definitions of the domains Dj , j = 1, 2, 3, 4, imply that for Eqs. (1.1)–(1.3) these
domains are given below and depicted in Fig. 2.2.

NLS:
D1 = {0 < arg k < π

2 }, D2 = {π
2 < arg k < π},

D3 = {π < arg k < 3π
2 }, D4 = { 3π

2 < arg k < 2π}.
(2.5)

KdV: Let the curves l± be defined by

l+ = {
k = kR + ikI , kI > 0, 1

4 + 3k2
R − k2

I = 0
}
,

l− = {
k = kR + ikI , kI < 0, 1

4 + 3k2
R − k2

I = 0
}
.

Then
D1 = {Imk < Imk−}, D2 = {Imk− < Imk < 0}, k− ∈ l−,

D3 = {0 < Imk < Imk+}, D4 = {Imk > Imk+}, k+ ∈ l+.
(2.6)

sG:
D1 = {Imk > 0 ∩ |k| > 1}, D2 = {Imk > 0 ∩ |k| < 1},
D3 = {Imk < 0 ∩ |k| < 1}, D4 = {Imk < 0 ∩ |k| > 1}. (2.7)

For the NLS, Q(x, t) is independent of k and Q̃(x, t, k) depends linearly on k, thus
the region in the complex k-plane where µj is bounded and analytic is determined
completely by the associated exponential. Hence

µ1 =
(
µ

(2)
1 , µ

(3)
1

)
, µ2 =

(
µ

(1)
2 , µ

(4)
2

)
, µ3 =

(
µ

(34)
3 , µ

(12)
3

)
, (2.8)

where the first equation means that the first and the second column vectors of the matrix
µ are bounded and analytic in D2 and in D3 respectively, etc. We also note that µ1 and
µ2 are entire functions of k.

For the KdV and the sG equations similar considerations are valid in the punctured
complex k-plane, k ∈ C−{0}. The behavior of µj as k → 0 can be easily characterized,
see Appendix A.
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Fig. 2.2. The domains Dj , j = 1, . . . , 4, for the NLS, KdV and sG equations

2.2. Other Properties of the Eigenfunctions. For the NLS, as well as for the KdV and
the sG with q(x, t) real, the matrices Q and Q̃ have certain symmetry properties. These
symmetries imply the following symmetries for µ:

(µ(x, t, k))11 = (µ(x, t, k̄))22, (µ(x, t, k))12 = ρ(µ(x, t, k̄))21, (2.9)

where ρ = λ for the NLS, ρ = 1 for the KdV, and ρ = −1 for the sG.
In addition, in the case of the KdV and of the sG equations the following symmetries

are valid:

(µ(x, t, k))11 = (µ(x, t,−k))22, (µ(x, t, k))12 = (µ(x, t,−k))21.

Integration by parts implies that in the domains where µ is bounded and analytic

µ(x, t, k) = I + O

(
1

k

)
, k → ∞. (2.10)

The fact that Q and Q̃ are traceless together with Eq. (2.10) imply

det µ(x, t, k) = 1. (2.11)

2.3. The Spectral Functions. The spectral functions s(k) and S(k) are defined in terms
of µ3(x, 0, k) and µ2(0, t, k). The latter function and the function µ1(0, t, k) have larger
domains of analyticity

µ1(0, t, k) =
(
µ

(24)
1 (0, t, k), µ(13)

1 (0, t, k)
)
,

µ2(0, t, k) =
(
µ

(13)
2 (0, t, k), µ(24)

2 (0, t, k)
)
.

(2.12)

The symmetry properties (2.9) imply similar symmetry properties for the spectral

functions, for example if (s(k))22 is denoted by a(k), then (s(k))11 = a(k̄), etc. We will
use the following notations for the spectral functions:

s(k) =

 a(k̄) b(k)

ρb(k̄) a(k)


 , S(k) =


 A(k̄) B(k)

ρB(k̄) A(k)


 . (2.13)
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These notations and the definitions of s(k) and S(k), i.e. Eqs. (1.10), imply

(
b(k)

a(k)

)
= µ

(12)
3 (0, 0, k),

(
−e−2if2(k)T B(k)

A(k̄)

)
= µ

(24)
2 (0, T , k), (2.14)

where the vectors µ
(12)
3 (x, 0, k) and µ

(24)
2 (0, t, k) satisfy the following ODE’s:

∂xµ
(12)
3 (x, 0, k) + 2if1(k)

(
1 0

0 0

)
µ

(12)
3 (x, 0, k) = Q(x, 0, k)µ3(x, 0, k),

k ∈ D̄1 ∪ D̄2, 0 < x < ∞,

lim
x→∞ µ

(12)
3 (x, 0, k) =

(
0
1

)
, (2.15)

and

∂tµ
(24)
2 (0, t, k) + 2if2(k)

(
1 0

0 0

)
µ

(24)
2 (0, t, k) = Q̃(0, t, k)µ2(0, t, k),

k ∈ D̄2 ∪ D̄4, 0 < t < T,

µ
(24)
2 (0, 0, k) =

(
0
1

)
. (2.16)

The above definitions imply the following properties:
a(k), b(k)

• a(k), b(k) are defined and are analytic for k ∈ D1 ∪ D2.
• |a(k)|2 − ρ|b(k)|2 = 1, k ∈ R.
• a(k) = 1 + O( 1

k
), b(k) = O( 1

k
), k → ∞. (2.17)

A(k), B(k)

• A(k), B(k) are entire functions which are bounded for k ∈ D1 ∪D3; if T = ∞ these
functions are defined and are analytic for k in this domain.

• A(k)A(k̄) − ρB(k)B(k̄) = 1, k ∈ C.

• A(k) = 1 + O
(

1+e2if2(k)T

k

)
, B(k) = O

(
1+e2if2(k)T

k

)
, k → ∞. (2.18)

For the KdV equation the above are valid in the punctured complex k-plane, k ∈ C\{0}.
All of the above properties, except for the property that B(k) is bounded for k ∈

D1 ∪ D3, follow from the analyticity properties of µ3(x, 0, k), µ2(0, t, k) (see Eqs.
(2.8), (2.12)), from the conditions of unit determinant, and from the large k asympt-
otics of these eigenfunctions. Regarding B(k) we note that B(k) = B(T , k), where
B(t, k) = − exp[2if2(k)t](µ24

2 (0, t, k))1. Equations (2.16) imply a linear Volterra in-

tegral equation for the vector exp(2if2(k)t)µ
(24)
2 (0, t, k), from which it immediately

follows that B(t, k) is an entire function of k bounded for k ∈ D1 ∪ D3.
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Fig. 2.3. The oriented contours L and the jump matrices J for the NLS, KdV and sG equations

2.4. The RH Problem. Equations (1.11) can be rewritten in the form

M−(x, t, k) = M+(x, t, k)J (x, t, k), k ∈ L, (2.19)

where the matrices M−, M+ J , and the oriented contour L are defined below

M+ =
(

µ
(1)
2

a(k)
, µ

(12)
3

)
, k ∈ D1; M− =

(
µ

(2)
1

d(k)
, µ

(12)
3

)
, k ∈ D2;

M+ =
(
µ

(34)
3 ,

µ
(3)
1

d(k̄)

)
, k ∈ D3; M− =

(
µ

(34)
3 ,

µ
(4)
2

a(k̄)

)
, k ∈ D4, (2.20)

d(k) = a(k)A(k̄) − ρb(k)B(k̄), (2.21)

J (x, t, k) =




J1, k ∈ D1 ∩ D2 � L1

J2, k ∈ D2 ∩ D3 � L2

J3, k ∈ D3 ∩ D4 � L3

J4, k ∈ D4 ∩ D1 � L4, J2 = J3J
−1
4 J1,

(2.22)

J1 =
(

1 0

/(k)e2iθ 1

)
, J3 =


 1 −ρ/(k̄)e−2iθ

0 1


 ,

J4 =
(

1 −γ (k)e−2iθ

ργ̄ (k)e2iθ 1 − ρ|γ (k)|2

)
,

(2.23)

where

γ (k) = b(k)

a(k)
, k ∈ R; /(k) = ρB(k̄)

a(k)d(k)
, k ∈ D2; θ(x, t, k) = f1(k)x + f2(k)t.

(2.24)
In order to derive Eq. (2.19) we write Eqs. (1.11) in the form

(
µ

(34)
3 , µ

(12)
3

)
=
(
µ

(1)
2 , µ

(4)
2

)( ā be−2iθ

ρb̄e2iθ a

)
, (2.25)
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(
µ

(2)
1 , µ

(3)
1

)
=
(
µ

(1)
2 , µ

(4)
2

)( Ā Be−2iθ

ρB̄e2iθ A

)
. (2.26)

In order to compute J4 we must relate those eigenfunctions which are bounded in D1
and in D4; thus rearranging Eq. (2.25) and using (2.17b) we find Eq. (2.19) with J = J4
and M−, M+ given by Eqs. (2.20d), (2.20a) respectively. Similarly, in order to com-
pute J1 we must relate those eigenfunctions which are bounded in D1 and in D2; thus
eliminating µ

(4)
2 from the second column of Eq. (2.25) and from the first column of Eq.

(2.26) we find (2.19) with J = J1 and M−, M+ given by (2.20b), (2.20a) respectively.
The computation of J3 follows from the elimination of µ

(1)
2 from the first column of Eq.

(2.25) and from the second column of Eq. (2.26).
The jump condition (2.19), together with the analyticity properties and the large k

behavior of µj , define a 2 × 2 matrix RH problem for the determination of the matrix
M(x, t, k). This is in general a meromorphic function of k in C \ L. The possible poles
of M are generated by the zeros of a(k), k ∈ D1, of d(k), k ∈ D2, and from the complex
conjugates of these zeros. For compactness of presentation we assume that no such zeros
occur, see Remark 1.1.

2.5. The Global Relation. For t such that 0 < t < T0 < T , the following equation is
valid:

−I + S(T0, k)
−1s(k) + eif2(k)T0σ̂3

∫ ∞

0
eif1(k)ξ σ̂3(Qµ3)(ξ, T0, k)dξ = 0,

k ∈ (D̄3 ∪ D̄4, D̄1 ∪ D̄2), (2.27)

where S(T0, k) is defined by Eq. (1.14). In order to derive Eq. (2.27) we integrate the
closed 1-form W(ξ, τ, k) defined by Eq. (1.7) with µ = µ3 around the boundary of the
domain {0 < ξ < ∞, 0 < τ < T0}:∫ 0

∞
eif1ξ σ̂3(Qµ3)(ξ, 0, k)dξ +

∫ T0

0
eif2τ σ̂3(Q̃µ3)(0, τ, k)dτ

+ eif2T0σ̂3

∫ ∞

0
eif1ξ σ̂3(Qµ3)(ξ, T0, k)dξ+ lim

X→∞
eif1Xσ̂3

∫ 0

T0

eif2τ σ̂3(Q̃µ3)(X, τ, k)dτ =0.

(2.28)
The definition of s(k), i.e. Eq. (1.10a), implies that the first term of this equation equals
s(k) − I . Equation (1.11a) evaluated at x = 0 yields

µ3(0, τ, k) = µ2(0, τ, k)e
−if2τ σ̂3s(k),

thus
eif2τ σ̂3(Q̃µ3)(0, τ, k) =

(
eif2τ σ̂3(Q̃µ2)(0, τ, k)

)
s(k);

this equation together with the definition of µ2(0, t, k), i.e. Eq. (1.13), imply that the
second term of Eq. (2.28) equals(

eif2T0σ̂3µ2(0, T0, k) − I
)
s(k).

Hence, assuming that q has sufficient decay as x → ∞, Eq. (2.28) becomes Eq. (2.27).
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At T = ∞, S(k) is defined only for k ∈ (D̄3, D̄1), thus Eq. (2.27) with T0 replaced
by ∞ becomes Eq. (1.15)∞.

The function S(T0, k) has similar properties with those of S(k). In particular if
S(T0, k) is denoted by

S(T0, k) =

 A(T0, k̄) B(T0, k)

ρB(T0, k̄) A(T0, k)


 ,

it follows that A(T0, k), B(T0, k) have similar properties with those of A(k), B(k).
The (12) element of Eq. (2.27) is

a(k)B(T0, k) − b(k)A(T0, k) = e2if2(k)T0c(T0, k), k ∈ D̄1 ∪ D̄2, (2.29)

where the scalar function c(T0, k) = ∫∞
0 e2if1(k)ξ (Qµ3)12(ξ, T0, k)dξ , is defined and

is analytic in k for k ∈ D1 ∪ D2 and it is of O(1/k) as k → ∞. Evaluating Eq. (2.29)
at T0 = T we find

a(k)B(k) − b(k)A(k) = e2if2(k)T c(k), k ∈ D̄1, (2.30)

where c(k) = c(T , k) is an analytic function and for k ∈ D1 ∪ D2, is of O(1/k) as
k → ∞.

3. Existence Under the Assumption that the Spectral Functions
Satisfy the Global Relation

In this section we implement Step 2; to this end, we first define the spectral functions.

Definition 3.1. a(k), b(k). For the NLS and the KdV equations, let q0(x) ∈ S(R+); for
the sG equation, let q0(x)− 2πm ∈ S(R+) and q1(x) ∈ S(R+), where m is an integer.
Let the domains Dj , j = 1, · · · , 4, be defined in equations (2.5)–(2.7). The map

S :
{q0(x)}

or �⇒ {a(k), b(k)},
{q0(x), q1(x)}

(3.1)

is defined as follows: (
b(k)

a(k)

)
= ϕ(0, k), (3.2)

where the vector valued function ϕ(x, k) is defined in terms of q0(x) or {q0(x), q1(x)}
by

∂xϕ(x, k) + 2if1(k)

(
1 0

0 0

)
ϕ(x, k) = Q(x, k)ϕ(x, k), 0 < x < ∞, k ∈ D̄1 ∪ D̄2,

(3.3)

lim
x→∞ ϕ(x, k) =

(
0
1

)
,

and Q(x, k) is given for the NLS, KdV, sG respectively by:

Q(x) =
(

0 q0(x)

λq̄0(x) 0

)
,
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Q(x, k) = q0(x)

2k
(σ2 − iσ1),

(3.4)
Q(x, k) = − i

4

(
dq0(x)

dx
+ q1(x)

)
σ1 − i

4k
(sin q0(x))σ2 + i

4k
(cos q0(x) − 1)σ3.

Properties of a(k), b(k).

1. a(k), b(k) are analytic and bounded for k ∈ D1 ∪ D2.
2. |a(k)|2 − ρ|b(k)|2 = 1, k ∈ R.
3. a(k) = 1 + O( 1

k
), b(k) = O( 1

k
), k → ∞.

4. The inverse of the map (3.1) denoted by Q can be defined for (3.4a), (3.4b), (3.4c)
respectively as follows:

q0(x) = 2i lim
k→∞

(kM(x)(x, k))12;
q0(x) = −2i lim

k→∞
∂x(kM

(x)(x, k))22;
(3.5)

cos q0(x) = 1 + 2 lim
k→∞

{
(kM(x)(x, k))2

12 + 2i∂x(kM
(x)(x, k))22

}
,

q1(x) = − d

dx
q0(x) − 2 lim

k→∞
(kM(x)(x, k))12;

where M(x)(x, k) is the unique solution of the following RH problem:
•

M(x)(x, k) =

M

(x)
+ (x, k), k ∈ D1 ∪ D2

M
(x)
− (x, k), k ∈ D3 ∪ D4,

is a meromorphic function of k for k ∈ C \ R.
•

M(x)(x, k) = I + O

(
1

k

)
, k → ∞.

•
M

(x)
− (x, k) = M

(x)
+ (x, k)J (x)(x, k), k ∈ R,

where

J (x)(x, k) =

 1 − b(k)

ā(k)
e−2if1(k)x

ρ
b̄(k)
a(k)

e2if1(k)x 1
|a|2


 , k ∈ R. (3.6)

• For the KdV the jump condition is on R \ {0}. Also

M
(x)
+ (x, k) ∼ α(x)

k

( 0 1
0 −1

)
, k → 0.

• Appropriate residue conditions if a(k) has zeros for k ∈ D1 ∪ D2, see Remark
1.1.
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5. S−1 = Q.
For the KdV,

a(k) = iα

k
+ O (1) , b(k) = − iα

k
+ O (1) , k → 0,

where α is a real constant.

Proof. The definitions (3.2) and (3.3) are motivated by Eqs. (2.14a) and (2.15), with
the identification ϕ(x, k) = µ

(12)
3 (x, 0, k). Actually the matrix µ3(x, 0, k) motivates the

introduction of the matrix

µ3(x, k) =

 ϕ2(x, k̄) ϕ1(x, k)

ρϕ1(x, k̄) ϕ2(x, k)


 k ∈ (D̄3 ∪ D̄4, D̄1 ∪ D̄2), (3.7)

where ϕ1 and ϕ2 denote the first and the second components of the vector ϕ. This matrix
satisfies the integral equation (1.12) with µ3(x, 0, k) and Q(x, 0, k) replaced by µ3(x, k)

and Q(x, k). This integral equation is a linear Volterra integral equation. Furthermore it
is equivalent to the x-part of the Lax pair evaluated at x = 0,

∂xµ(x, k) + if1(k)σ̂3µ(x, k) = Q(x, k)µ(x, k), (3.8)

and supplemented with the boundary condition limx→∞ µ(x, k) = I . The analysis of the
above linear Volterra integral equation and of the associated ODE, immediately implies
properties (1)–(3).

The derivation of properties (4) and (5) is based on the spectral analysis of the ODE
(3.8). This analysis uses µ3(x, k) as well as the eigenfunction motivated by µ2(x, 0, k),
i.e. the eigenfunction

µ2(x, k) =
(

ψ1(x, k) ψ2(x, k̄)

ψ2(x, k) ρψ1(x, k̄)

)
, k ∈ (D̄1 ∪ D̄2, D̄3 ∪ D̄4),

defined as the unique solution of the linearVolterra integral equation satisfied byµ2(x, 0, k),
i.e. by the equation

eif1(k)xσ̂3µ2(x, k) = I +
∫ x

0
eif1(k)ξ σ̂3(Qµ2)(ξ, k)dξ.

Since both eigenfunctions µ3(x, k) and µ2(x, k) satisfy the same ODE (3.8) they are
related by the equation (compare with Eq. (1.11a))

µ3(x, k) = µ2(x, k)e
−if1(k)xσ̂3s(k), k ∈ R.

Introducing the notations

M
(x)
+ =

(
ψ

a(k)
, ϕ

)
, k ∈ D1 ∪ D2; M

(x)
− =

(
ϕ∗,

ψ∗
a(k̄)

)
, k ∈ D3 ∪ D4,

where

ϕ∗(x, k) =
(
ϕ2(x, k̄), ρϕ1(x, k̄)

)τ

, ψ∗(x, k) =
(
ψ2(x, k̄), ρψ1(x, k̄

)τ

,

the relation between µ3(x, t) and µ2(x, k) becomes Eq. (3.6).



18 A.S. Fokas

The substitution of the asymptotic expansion

M(x)(x, k) = I + m1(x)

k
+ O

(
1

k2

)
, k → ∞

into Eq. (3.8) with Q(x) given by Eq. (3.4a) yields q0(x) = 2i(m1(x))12, i.e. Eq. (3.5a).
Similarly for Eqs. (3.5b), (3.5c).

The investigation of properties (1)-(3) is called the “direct problem” in scattering
theory, while the investigation of property (4) is called the “inverse problem”. There is
an extensive investigation of these problems in the literature, see for example [3]. The
derivation of property (5) is discussed in [11]. ��
Definition 3.2. A(k), B(k). Let {gl(t)}n−1

0 , be smooth functions for 0 < t < T , where
n = 2 for NLS, sG and n = 3 for KdV. Let the domains Dj , j = 1, · · · , 4, be defined in
Equations (2.5)–(2.7). The map

S̃ : {gl(t)}n−1
0 → {A(k), B(k)} (3.9)

is defined as follows: (
−e−2if2(k)T B(k)

A(k̄)

)
= :(T , k), (3.10)

where the vector valued function :(t, k) is defined in terms of {gl(t)}n−1
0 by

∂t:(t, k) + 2if2(k)

(
1 0

0 0

)
:(t, k) = Q̃(t, k):(t, k), 0 < t < T, k ∈ D2 ∪ D4,

:(0, k) =
(

0
1

)
, (3.11)

and Q̃(t, k) is given for the NLS, KdV, sG respectively by:

Q̃(t, k) = 2k

(
0 g0(t)

λḡ0(t) 0

)
− i

(
0 g1(t)

λḡ1(t) 0

)
σ3 − iλ|g0(t)|2σ3,

Q̃(t, k) = −2kg0(t)σ2 + g1(t)σ1 + 2g0(t)
2 + g0(t) − g2(t)

2k
(iσ3 − σ2), (3.12)

Q̃(t, k) = − i

4

(
dg0(t)

dt
+ g1(t)

)
σ1 + i

4k
(sin g0(t))σ2 − i

4k
((cos g0(t)) − 1)σ3.

Properties of A(k), B(k).

1. A(k), B(k) are entire functions which are bounded for k ∈ D1 ∪ D3. If T = ∞ they
are defined and are analytic for k in this domain.

2. A(k)A(k̄) − ρB(k)B(k̄) = 1, k ∈ C.

3. A(k) = 1 + O
(

1+e2if2(k)T

k

)
, B(k) = O

(
1+e2if2(k)T

k

)
, k → ∞.
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4. The inverse of the map (3.9) denoted by Q̃ can be defined for (3.12a), (3.12b), (3.12c),
respectively as follows:

g0(t) = 2i lim
k→∞

(kM(t))12,

g1(t) = lim
k→∞

{
4(k2M(t))12 + 2ig0(t)kM

(t)
22

}
;

g0(t) = 4 lim
k→∞

(k2M(t))12,

g1(t) = 2i lim
k→∞

[
4(k3M(t))12 − g0(t)kM

(t)
22 − 4kg0

]
,

(3.13)
g2(t) = g0(t) + g0(t)

2 + 2i
d

dt
lim

k→∞
(kM(t))11;

cos g0(t) = 1 − 2 lim
k→∞

{
(kM(t)(t, k))2

12 + 2i∂t (kM
(t)(t, k))22

}
,

g1(t) = − d

dt
g0(t) − 2 lim

k→∞
(kM(t)(t, k))12;

where M(t)(t, k) is the unique solution of the following RH problem:

•

M(t)(t, k) =

M

(t)
+ (t, k), k ∈ D1 ∪ D3

M
(t)
− (t, k), k ∈ D2 ∪ D4,

is a meromorphic function of k for k ∈ C \ L and L is defined in Sect. 2.4.
•

M(t)(t, k) = I + O

(
1

k

)
, k → ∞.

•
M

(t)
− (t, k) = M

(t)
+ (t, k)J (t)(t, k), k ∈ L,

where

J (t)(t, k) =




1 −B(k)

A(k̄)
e−2if2(k)t

ρB(k̄)
A(k)

e2if2(k)t 1

A(k)A(k̄)


 . (3.14)

• Appropriate residue conditions if A(k) has zeros for k ∈ D1 ∪ D3, see Remark
1.1.

5. S̃−1 = Q̃.
For the KdV,

A(k) = iβ

k
+ O (1) , B(k) = − iβ

k
+ O (1) , k → 0,

where β is a real constant.
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Proof. The definitions (3.10), (3.11) are motivated by Eqs. (2.14b) and (2.16). Actually
the matrix µ2(0, t, k) motivates the introduction of the matrix

µ2(t, k) =

 :2(t, k̄) :1(t, k)

ρ:1(t, k̄) :2(t, k)


 , k ∈ (D̄1 ∪ D̄3, D̄2 ∪ D̄4), (3.15)

where :1,:2 denote the first, second component of the vector :. This matrix satisfies
the integral equation (1.13) with µ2(0, t, k) and Q̃(0, t, k) replaced by µ2(t, k) and
Q̃(t, k). This integral equation is a linear Volterra integral equation. Furthermore, it is
equivalent to the t-part of the Lax pair evaluated at x = 0,

∂tµ(t, k) + if2(k)σ̂3µ(t, k) = Q̃(t, k)µ(t, k), (3.16)

and supplemented with the boundary condition µ(0, k) = I . The analysis of the above
linear Volterra integral equation and of the associated ODE implies properties (1)–(3).

The derivation of properties (4) and (5) is based on the spectral analysis of the ODE
(3.16). This analysis uses µ2(t, k) as well as the eigenfunction motivated by µ1(0, t, k),
i.e. the eigenfunction

µ1(t, k) =

 <2(t, k̄) <1(t, k)

ρ<1(t, k̄) <2(t, k)


 , k ∈ (D̄2 ∪ D̄4, D̄1 ∪ D̄3)

defined as the unique solution of the linearVolterra integral equation satisfied byµ1(0, t, k),
i.e. by the equation

eif2(k)tσ̂3µ1(t, k) = I −
∫ T

t

eif2(k)τ σ̂3(Q̃µ1)(τ, k)dτ.

The eigenfunctions µ2(t, k) and µ1(t, k) are related by the equation (compare with
Eq. (1.11b))

µ1(t, k) = µ2(t, k)e
−if2(k)tσ̂3S(k), k ∈ L.

Using the notations

M
(t)
− (t, k) =

(
:∗

A(k)
,<

)
, k ∈ D1∪D3; M

(t)
+ (t, k) =

(
<∗,

:

A(k̄)

)
, k ∈ D2∪D4,

where :∗, <∗ are defined as φ, ψ with x replaced by t , the relation between µ1(t, k)

and µ2(t, k) becomes Eq. (3.14).
The substitution of the asymptotic expansion

M(t)(t, k) = I + m1(t)

k
+ m2(t)

k2 + O

(
1

k3

)
, k → ∞

into Eq. (3.16) with Q̃(t, k) given by Eq. (3.12a) yields

g0(t) = 2i(m1(t))12, g1(t) = 4(m2(t))12 + 2ig0(t)(m1(t))22,

which imply Eqs. (3.13a) and (3.13b). Similarly for Eqs. (3.13c)–(3.13e). ��
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Theorem 3.1. For the NLS and the KdV let q0(x) ∈ S(R+), for the sG let q0(x) −
2πm ∈ S(R+) and q1(x) ∈ S(R+), where m is an integer. Given these functions de-
fine {a(k), b(k)} according to Definition 3.1. Suppose that there exist smooth functions
{gl(t)}n−1

0 satisfying {gl(0) = ∂l
xq0(0)}n−1

0 , such that the functions {A(k), B(k)} which
are defined from gl(t) according to Definition 3.2 satisfy the global relation

a(k)B(k) − b(k)A(k) = e2if2(k)T c(k), k ∈ D̄1 ∪ D̄2, (3.17)

where c(k) is analytic and bounded for k ∈ D1 ∪ D2 and is of O(1/k), k → ∞.

Define M(x, t, k) as the solution of the following 2 × 2 matrix RH problem:

• M is meromorphic for k in C \ L, where L is defined in Sect. 2.4.
•

M−(x, t, k) = M+(x, t, k)J (x, t, k), k ∈ L, (3.18)

where M is M− for k ∈ D2 ∪ D4, M is M+ for k ∈ D1 ∪ D3, and J is defined in
terms of a, b,A,B in Sect. 2.4.

•
M(x, t, k) = I + O

(
1

k

)
, k → ∞. (3.19)

• Appropriate residue conditions if a(k) has zeros in D1 ∪D2 and/or d(k) has zeros in
D2.

• In the case of the KdV, M(x, t, k) has a pole at k = 0 satisfying

M(x, t, k) ∼ iα(x, t)

k

(
0 1

0 −1

)
, k → 0.

Then M(x, t, k) exists and is unique.
Define q(x, t) for the NLS, KdV, sG respectively by

q(x, t) = 2i lim
k→∞

(kM(x, t, k))12,

q(x, t) = −2i lim
k→∞

∂x(kM(x, t, k))22, (3.20)

cos q(x, t) = 1 + 2 lim
k→∞

{
(kM(x, t, k))2

12 + 2i∂x(kM(x, t, k))22

}
.

Then q(x, t) solves the NLS, the KdV and the sG respectively. Furthermore

q(x, 0) = q0(x), {∂l
xq(0, t) = gl(t)}n−1

0

and for the sG qt (x, 0) = q1(x).

Proof. In the absence of poles the unique solvability of the RH problem is a consequence
of a “vanishing lemma”, i.e. the RH problem obtained from the above RH by replacing
Eq. (3.19) with M = O(1/k) as k → ∞, has only the trivial solution. The vanishing
lemma can be established using the symmetry properties of J ; for the NLS and sG the
details are given in [15] and [16], for the KdV the proof is similar. In the presence of
poles M(x, t, k) is a meromorphic function of k. In this case the RH problem can be
mapped to a RH problem without poles coupled with a system of algebraic equations,
see [15, 16]. The unique solvability of the relevant algebraic equations is also based on
the symmetry properties of J , see [15, 16].
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The proof that the solution of certain RH problems can be used to solve certain linear
PDEs is the basic idea of the so-called dressing method [17]. In this method q(x, t) and
its derivatives are defined in terms of the coefficients of the asymptotic expansion of M

for large k, and then it is shown that M and these functions solve the x and the t parts of
the Lax pair. The proof, which is essentially algebraic, makes crucial use of the explicit
x and t dependence of the jump matrix and it is independent of the particular choice of
the contour L. Since the x, t dependence of the jump matrix J is identical with the x, t

dependence of the jump matrix that appears in the usual inverse scattering method, the
proof that q(x, t) solves the given PDE follows immediately from the corresponding
proof for the Cauchy problem on the line. ��
Proof that q(x, 0) = q0(x). For the NLS q(x, 0) is determined by q(x, 0) = 2i limk→∞
(kM(x, 0, k))12 in terms of M(x, 0, k); similarly for the KdV and the sG. The function
M(x, 0, k) satisfies the jump condition

M−(x, 0, k) = M+(x, 0, k)J (x, 0, k), k ∈ L. (3.21)

q0(x) is determined by a similar formula in terms of M(x)(x, k), which satisfies the jump
condition, see Eq. (3.6),

M
(x)
− (x, k) = M

(x)
+ (x, k)J (x)(x, k), k ∈ R.

We will show that it is possible to map Eq. (3.21) into the above equation. Let M(x)(x, k)

be defined in terms of M(x, 0, k) by

M(x) =

M(x, 0, k), k ∈ D1 ∪ D4

M(x, 0, k)J−1
1 (x, 0, k), k ∈ D2

M(x, 0, k)J3(x, 0, k), k ∈ D3.

(3.22)

The function M(x) is a sectionally meromorphic function. Indeed, J1(x, 0, k) involves
/(k) exp(2if1(k)x); /(k) is bounded and analytic for k ∈ D2, while exp(2if1(k)x) is
bounded and analytic for k ∈ D1 ∪ D2, thus J1(x, 0, k) is bounded and analytic for
k ∈ D2. Similarly for J3(x, 0, k), k ∈ D3.

The definition (3.22) implies that the jump conditions of M(x) can be computed
in terms of Jj (x, 0, k), j = 1, · · · , 4. Indeed, let us introduce the following notations:

Mj(x, 0, k) and M
(x)
j (x, k) denote M(x, 0, k) and M(x)(x, k) for k ∈ Dj , j = 1, · · · , 4.

Using these notations Eqs. (3.21) and (3.22) can be written as

M2(x, 0, k) = M1(x, 0, k)J1(x, 0, k), M2(x, 0, k) = M3(x, 0, k)J2(x, 0, k),

M4(x, 0, k) = M3(x, 0, k)J3(x, 0, k), M4(x, 0, k) = M1(x, 0, k)J4(x, 0, k),
(3.23)

and
M

(x)
1 = M1(x, 0, k), M

(x)
2 = M2(x, 0, k)J−1

1 (x, 0, k),

M
(x)
3 = M3(x, 0, k)J3(x, 0, k), M

(x)
4 = M4(x, 0, k),

(3.24)

where Eqs. (3.23) are valid on the respective parts of the contour L, i.e. on L1, L2, L3,
L4, respectively. Substituting Eqs. (3.24) into (3.23) we find

M
(x)
2 J1(x, 0, k) = M

(x)
1 J1(x, 0, k), M

(x)
2 J1(x, 0, k) = M

(x)
3 (J−1

3 J2)(x, 0, k),

(3.24a)
M

(x)
4 = M

(x)
3 , M

(x)
4 = M

(x)
1 J4(x, 0, k).
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Hence, M(x) does not have a jump along L1 and L3. Furthermore, recalling that J2 =
J3J

−1
4 J1, noting J4(x, 0, k) = J (x)(x, k), and using the notation M(x) = M

(x)
+ for

k ∈ D1 ∪ D2, M(x) = M
(x)
− for k ∈ D3 ∪ D4, Eqs. (3.24) become Eq. (3.6).

The proof that these transformations preserve the residue conditions is given in [11]
for the NLS; for the KdV and sG see Remark 1.1.

Proof that ∂l
xq(0, t) = gl(t). In the dressing method, as mentioned earlier one first

obtains expressions for ∂l
xq(x, t) in terms of M(x, t, k). These expressions evaluated

at t = 0 are Eqs. (3.13) with M(t) replaced by M(0, t, k). Thus since ∂l
xq(0, t) are

determined by M(0, t, k), while gl(t) are determined by M(t)(t, k) we must establish
a relation between M(0, t, k) and M(t)(t, k). The former satisfies the jump condition
(3.18) evaluated at x = 0, i.e.

M2(0, t, k) = M1(0, t, k)J1(0, t, k), M2(0, t, k) = M3(0, t, k)J2(0, t, k),

(3.25)
M4(0, t, k) = M3(0, t, k)J3(0, t, k), M4(0, t, k) = M1(0, t, k)J4(0, t, k),

on the respective parts of the contour L, where we have used the notations Mj(0, t, k) =
M(0, t, k) for k ∈ Dj , j = 1, · · · , 4. The function M(t)(t, k) satisfies the jump condi-
tion (3.14). We will show that Eqs. (3.25) imply Eq. (3.14) if and only if the spectral
functions satisfy the global relation (3.17). Let us define M(t)(t, k) by

M
(t)
j (t, k) = Mj(0, t, k)Fj (t, k), k ∈ Dj, j = 1, · · · , 4. (3.26)

In order for M(t)(t, k) to satisfy the RH problem with the jump condition (3.14), Fj

must have the following properties: be bounded and analytic in the domains of their
definition, tend to I as k → ∞, and satisfy the relations

J1(0, t, k)F2(t, k) = F1(t, k)J
(t)(t, k), k ∈ L1,

J3(0, t, k)F4(t, k) = F3(t, k)J
(t)(t, k), k ∈ L3, (3.27)

J4(0, t, k)F4(t, k) = F1(t, k)J
(t)(t, k), k ∈ L4.

Indeed, substituting Eqs. (3.26) into Eqs. (3.25) and using Eqs. (3.27), Eqs. (3.25)
become Eqs. (3.14).

We will show that such Fj (t, k) are the matrices

F1 =

 a(k)

A(k)
c(k)e2if2(T −t)

0 A(k)
a(k)


 , F4 =




A(k̄)

a(k̄)
0

ρc(k̄)e−2if2(T −t) a(k̄)

A(k̄)


 ,

(3.28)

F2 =

 d(k)

−b(k)e−2if2 t

A(k̄)

0 1
d(k)


 , F3 =




1

d(k̄)
0

−ρb(k̄)
A(k)

e2if2t d(k̄)


 .

We verify the first of Eqs. (3.27): The (12) element is proportional to the global relation;
the (21) and (22) elements are satisfied identically. The (11) element is satisfied iff

d = a

A
+ ρB̄

A
ce2if2T . (3.29)
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Using AĀ − λBB̄ = 1, we find

d = a

A
AĀ − ρbB̄ = a

A
(1 + ρBB̄) − ρbB̄ = a

A
+ ρB̄

A
(aB − bA),

which equals the rhs of Eq. (3.29) in view of the global relation.
The second of Eqs. (3.27) follows from the first one and the symmetry relations. The

third of Eqs. (3.27) can be verified in a way similar to the first equation. The proof that
these transformations preserve the residue conditions is given in [11] for the NLS; for
the KdV and the sG see Remark 1.1.

Proposition 3.1 (Independence of T ). Let 0 < t < T0 < T ; let A(T0, k), B(T0, k) be
defined as in Definition 3.2 with Eq. (3.10) replaced by(−e−2if2(k)T0B(T0, k)

A(T0, k̄)

)
= :(T0, k). (3.30)

Let J̃1(x, T0, k), J̃3(x, T0, k), denote the jump matrices obtained from J1(x, T0, k),
J3(x, T0, k) by replacing A(k), B(k) with A(T0, k), B(T0, k). Let J̃2 = J̃3J

−1
4 J̃1. Let

M̃(x, t, k) satisfy a RH problem similar to that of M(x, t, k) but with jump matrices
J̃1, J̃2, J̃3, J4. Let Mj(x, t, k) = M(x, t, k), M̃j (x, t, k) = M̃(x, t, k) for k ∈ Dj ,
j = 1, 2, 3, 4. Then

M1 = M̃1, M4 = M̃4, M2 = M̃2J̃
−1
1 J1, M3 = M̃3J̃3J

−1
3 . (3.31)

Proof. Using Eqs. (3.31) it is straightforward to verify that the jump conditions for M ,
i.e. Eq. (3.18), yield similar jump conditions for M̃ with J1, J3 replaced by J̃1, J̃3. As-
suming the solitonless case it remains to show that the functions J̃−1

1 J1 and J̃3J
−1
3 are

analytic and bounded for k ∈ D2 and k ∈ D3 respectively. We will show this fact for
the function J̃−1

3 J3, the proof for J̃−1
1 J1 follows from symmetry considerations.

The diagonal elements of J̃−1
3 J3 are 1, its (21) element is 0, and its (12) element

equals

ρ(/(k̄) − /(T0, k̄))e
−2iθ = B(k)A(T0, k) − A(k)B(T0, k)

d(k̄) d(T0, k̄)

×e−2if2(k)T0e−2if1(k)x+2if2(k)(T0−t), (3.32)

where the rhs of this equation follows from the lhs using the definitions of /(k), of
/(T0, k), and the notation

d(T0, k) = a(k)A(T0, k̄) − ρb(k)B(T0, k̄). (3.33)

The definition (3.30) implies that A(T0, k) and B(T0, k) have the same properties with

A(k), B(k), where T is replaced by T0 in the third property. Thus since d(k̄) is bounded

and analytic for k ∈ D3 the same is true for d(T0, k̄). Definition (3.30) implies[
B(k)A(T0, k) − B(T0, k)A(k)

]
e−2if2(k)T0

= :2(k̄):1(T0, k) − :1(k):2(T0, k̄)e
2if2(k)(T −T0). (3.34)
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We will show that the r.h.s. of Eq. (3.34) is bounded and analytic for k ∈ D1 ∪ D3;
this result together with the fact that exp[−2if1(k)x + 2if2(k)(T0 − t)] is bounded for
k ∈ D3 imply that the r.h.s. of Eq. (3.33) is bounded and analytic for k ∈ D3.

In order to prove that the r.h.s. of (3.34) is bounded and analytic for k ∈ D1 ∪D3 we
introduce the notations

χ1(t, k) = :2(k̄):1(t, k) − :1(k):2(t, k̄)e
2if2(k)(T −t),

(3.35)
χ2(t, k) = :2(k̄):2(t, k) − ρ:1(k):1(t, k̄)e

2if2(k)(T −t).

We will prove that the functions χ1 and χ2 satisfy the following system of linear integral
equations:

χ1(t, k) = −
∫ T

t

[
Q̃11(τ, k)χ1(τ, k) + Q̃12(τ, k)χ2(τ, k)

]
e2if2(τ−t) dτ,

(3.36)

χ2(t, k) = 1 −
∫ T

t

[
Q̃22(τ, k)χ2(τ, k) + Q̃21(τ, k)χ1(τ, k)

]
dτ,

where Q̃ij denote the entries of the matrix Q̃(t, k). Indeed, the symmetry properties of
Q̃(t, k) imply that if the vector :(t, k) with the two components :1 and :2 satisfies
Eq. (3.11), then the vector (

:2(t, k̄)

:1(t, k̄)

)
e−2if2(k)t

also satisfies the same equation. Hence the vector χ(t, k) with the two components χ1
and χ2 defined by Eqs. (3.35) satisfies Eq. (3.11). Furthermore,

χ1(T , k) = :2(k̄):1(k) − :1(k):2(k̄) = 0,

χ2(T , k) = :2(k̄):2(k) − ρ:1(k):1(k̄) = 1.

The unique solution of Eq. (3.11) with the boundary condition {χ1(T , k) = 0, χ2(T , k) =
1} satisfies Eqs. (3.36).

Equations (3.36) imply that χ1(t, k) is bounded and analytic for k ∈ D1 ∪ D3 for all
0 < t < T . Since the r.h.s. of Eq. (3.34) equals χ1(T0, k), T0 < T , it follows that the
r.h.s. of Eq. (3.34) is also bounded and analytic for k ∈ D1 ∪ D3. ��

4. Linearizable Boundary Conditions

The spectral functions A(k), B(k) are defined in terms of the matrix eigenfunction
µ2(t, k), see Eq. (3.15), which satisfies the ODE (3.16) and the initial condition µ2(0, k)
= I .

Let M(t, k) = µ2(t, k) exp[−if2tσ3], i.e.

M(t, k) =

 M2(t, k̄) M1(t, k)

ρM1(t, k̄) M2(t, k)


 , M1 = :1e

if2t , M2 = :2e
if2t . (4.1)

M(t, k) satisfies

Mt + if2(k)σ3M = Q̃(t, k)M, M(0, k) = I. (4.2)
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Let ν(k) be defined by
f2(ν(k)) = f2(k). (4.3)

Suppose that given a subset of the boundary values {gl(t)}n−1
0 , we can compute a non-

singular matrix N(k) such that

(if2(k)σ3 − Q̃(t, ν(k)))N(k) = N(k)(if2(k)σ3 − Q̃(t, k)). (4.4)

Then
M(t, ν(k)) = N(k)M(t, k)N(k)−1. (4.5)

Indeed, Eq. (4.4) implies a relation of the form (4.5) and furthermore Eq. (4.5) is satisfied
identically at t = 0.

Equations (4.1) and the definition of A(k), B(k) imply

A(k) = M2(T , k̄)eif2(k)T , B(k) = −M1(T , k)eif2(k)T . (4.6)

Equation (4.4) implies that a necessary condition for the existence of N(k) is that the
determinant of the matrix

U(t, k) = Q̃(t, k) − if2(k)σ3, (4.7)

depends on k only in the form of f2(k).

We will use the notations

N1 = N11, N2 = N12, N3 = N21, N4 = N22. (4.8)

4.1. The NLS. The determinant of U depends only on k2 iff

g0(t)ḡ1(t) − ḡ0(t)g1(t) = 0. (4.9)

The invariance of f2 yields ν(k) = −k. A particular case of boundary conditions satis-
fying Eq. (4.9) is given by Eq. (1.21). In this case, if N2 = N3 = 0, then the diagonal
part of Eq. (4.4) is satisfied identically, and the off diagonal elements yield

(2k − iχ)N4 + (2k + iχ)N1 = 0.

Using this equation, the second column vector of Eq. (4.5) yields

M2(t, k) = M2(t,−k),M1(t, k) = − 1

f (k)
M1(t,−k), f (k) = 2k − iχ

2k + iχ
. (4.10)

Thus the spectral functions A(k), B(k) satisfy the symmetry relations

A(k) = A(−k), B(k) = −B(−k)

f (k)
, k ∈ C. (4.11)

We will now show that the global relation (3.17) supplemented by these symmetry
conditions yields /(k) explicitly in terms of a(k), b(k). Indeed, letting k → −k in the

definition of d(k̄) and using Eqs. (4.11) we find

A(k)a(−k̄) + λf (k)B(k)b(−k̄) = d(−k̄), k ∈ D1. (4.12)
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This equation and the global relation (3.17), which is also valid for k ∈ D1, can be
thought of as two algebraic equations for the unknown functions A(k), B(k). Their
solution yields

A(k) = a(k)d(−k̄)

@(k)
− λf (k)b(−k̄)e4ik2T c(k)

@(k)
,

(4.13)

B(k) = b(k)d(−k̄)

@(k)
+ a(−k̄)e4ik2T c(k)

@(k)
, k ∈ D1,

where
@(k) = a(k)a(−k̄) + λf (k)b(k)b(−k̄).

Equations (4.13) express {A(k), B(k)} for k ∈ D1, then the transformation k → −k and
Eqs. (4.11) yield these functions for k ∈ D3,

A(k) = a(−k)d(k̄)

@(−k)
− λf (−k)b(k̄)e4ik2T c(−k)

@(−k)
,

(4.14)

B(k) = −f (−k)b(−k)d(k̄)

@(−k)
− f (−k)a(k̄)e4ik2T c(−k)

@(−k)
, k ∈ D3.

In Eqs. (4.13), (4.14), the functions c(k) and d(k) are unknown, however because of the
distinctive features of the RH problem of Theorem 3.1, these unknown functions do not
contribute to M(x, t, k). Indeed, we first show that the functions (4.13), (4.14) can be
replaced by

Ã(k) =




a(k)d(−k̄)
@(k)

a(−k)d(k̄)
@(−k)

,

B̃(k) =




b(k)d(−k̄)
@(k)

, k ∈ D1,

−f (−k)b(−k)d(k̄)
@(−k)

, k ∈ D3.

(4.15)

The proof of this fact is similar to the proof of Proposition 3.1: Let J̃1, J̃3 denote the
matrices obtained from J1, J3 by replacing A,B with Ã, B̃; let J̃2 = J̃3J

−1
4 J̃1. Let M̃

be defined in terms of M by Eqs. (3.31). Then M̃ satisfies a RH problem similar to M

with J1, J2, J3 replaced by J̃1, J̃2, J̃3. The derivation of this result in the solitonless case
is based on the fact that the functions J̃−1

1 J1 and J̃3J
−1
3 are bounded and analytic for

k ∈ D2 and k ∈ D3 respectively. The proof of the latter fact involves (compare with
Eq. (3.32))

ρ
(
/(k̄) − /̃(k̄)

)
e−2iθ = BÃ − AB̃

d(k̄)d̃(k̄)
e−4ik2t−2ikx, k ∈ D3.

Writing A, B in terms of Ã, B̃ and the terms involving c, we find

(BÃ − AB̃)e−4ik2t = f (−k)

@(−k)
(λb(k̄)B̃(k) − a(k̄)Ã(k))c(−k)e4ik2(T −t),

which is analytic for k ∈ D3.
The above discussion indicates that we can use Eqs. (4.15) instead of Eqs. (4.13),

(4.14); Eqs. (4.15) imply Eq. (1.24).
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4.2. The sG. The determinant of the matrix U is proportional to(
k + 1

k

)2

+ 2 [(cos g0(t)) − 1] +
(

dg0(t)

dt
+ g1(t)

)2

.

Thus the necessary condition for linearizable boundary conditions is always satisfied.
The invariance of f2(k) yields

ν(k) = 1

k
.

Let N3 = N2, N4 = N1, then both the (11) and the (22) elements of Eq. (4.4) yield
Eq. (4.16a) below, while both the (12) and (21) elements of Eq. (4.4) yield (4.16b),

(k2 − 1)(cos χ − 1)N1 = i(k2 + 1)(sin χ)N2, (4.16a)

i(k2 − 1)(sin χ)N1 = (k2 + 1)(cos χ + 1)N2. (4.16b)

These equations are equivalent. Using either of these equations, Eq. (4.5) yields

M1

(
1

k

)
= 1

f − 1
f

[(
M2(k) − ρ

f
M1(k̄)

)
−
(
M2(k̄) − fM1(k)

)]
,

f (k) = i
k2 + 1

k2 − 1

sin χ

cos χ − 1
, (4.17)

M2

(
1

k

)
= 1

f − 1
f

[
f

(
M2(k) − ρ

f
M1(k̄)

)
− 1

f

(
M2(k̄) − fM1(k)

)]
, ρ = −1,

where for convenience of notation we have suppressed the t dependence.
We note that rhs of the equations for M1(1/k) and M2(1/k) involve only the two

expressions appearing in the two parentheses; solving for these expressions and using
the definitions of A(k), B(k), i.e. Eqs. (4.6), we find

f e−if2T B

(
1

k

)
+ eif2T A

(
1

k̄

)
= e−if2T (A(k) + fB(k)),

e−if2T B

(
1

k

)
+ f eif2T A

(
1

k̄

)
= eif2T (fA(k̄) + ρB(k̄).

Solving the first equation for B(1/k), taking the complex conjugate of the second equa-

tion and then solving the resulting equation for A(1/k̄) we obtain (using f (k̄) = ρf (k)),

B

(
1

k

)
= −e2if2T

f
A

(
1

k̄

)
+ A(k)

f
+ B(k),

(4.18)

A

(
1

k

)
= −ρ

e2if2T

f
B

(
1

k̄

)
+ A(k) + B(k)

f
.

Letting k → 1
k

in the definition of d(k̄) and then replacing A( 1
k
) and B( 1

k
) in the resulting

expression by the rhs of Eqs. (4.18) we find(
a(1/k̄) − ρ

f
b(1/k̄)

)
A(k) +

(
−ρb(1/k̄) + 1

f
a(1/k̄)

)
B(k)

= d(1/k̄) + ρ

f
c(1/k̄), k ∈ D1. (4.19)
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For the derivation of this equation we have used the remarkable fact that the terms
exp[2if2T ], Ā, and B̄ are eliminated because of the global relation (3.17).

Solving Eq. (4.19) and the global relation (which is also valid for k ∈ D1) for A(k)

and B(k), we find

A(k) =
a(k)

(
d
(

1
k̄

)
+ ρ

f
c
(

1
k̄

))
@(k)

+
e2if2T

(
ρb

(
1
k̄

)
− 1

f
a
(

1
k̄

))
c(k)

@(k)
,

(4.20)

B(k) =
b(k)

(
d
(

1
k̄

)
+ ρ

f
c
(

1
k̄

))
@(k)

+
e2if2T

(
a
(

1
k̄

)
− ρ

f
b
(

1
k̄

))
c(k)

@(k)
, k ∈ D1,

where

@(k) = a(k)a

(
1

k̄

)
− ρb(k)b

(
1

k̄

)
+ 1

f

(
−ρa(k)b

(
1

k̄

)
+ b(k)a

(
1

k̄

))
.

In order to obtain A(k) and B(k) for k ∈ D3 we let k → 1
k

in the global relation and
then replace A(1/k) and B(1/k) in the resulting expression by the rhs of Eqs. (4.18),(

1

f
a

(
1

k

)
− b

(
1

k

))
A(k) +

(
a

(
1

k

)
− 1

f
b

(
1

k

))
B(k)

= e2if2T

(
c

(
1

k

)
+ 1

f
d

(
1

k

))
, k ∈ D3. (4.21)

This time the terms Ā and B̄ are eliminated using the definition of d( 1
k
).

Solving Eq. (4.21) and the equation defining d(k̄) (which is also valid for k ∈ D3)
we find

A(k) =
(
a
( 1
k

)− 1
f
b
( 1
k

))
d(k̄)

@(k̄)
+

ρe2if2T b(k̄)
(
c
( 1
k

)+ 1
f
d
( 1
k

))
@(k̄)

,

(4.22)

B(k) =
(
b
( 1
k

)− 1
f
a
( 1
k

))
d(k̄)

@(k̄)
+

e2if2T a(k̄)
(
c
( 1
k

)+ 1
f
d
( 1
k

))
@(k̄)

, k ∈ D3.

Following arguments very similar with those used in Sect. 4.1, it can be shown that
A(k), B(k) can be replaced by the expressions obtained from the rhs of Eqs. (4.20)
and (4.22) after deleting the terms involving exp(2f2T ). Then the ratios B/A yield
Eqs. (1.25).

4.3. The KdV. The determinant of the matrix U equals

(k + 4k3)2 −
[
g1(t)

2 + (2 + 4g0(t))V (t) + 4k2(g2
0(t) + 2V (t))

]
,

V (t) = g2
0 + 1

2
g0 − 1

2
g2. (4.23)
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The condition that the coefficient of k2 vanishes yields

3g2
0(t) + g0(t) − g2(t) = 0. (4.24)

A particular case of boundary conditions satisfying this condition is given by Eqs. (1.23).
The invariance of f2(k) yields

ν2 + kν + k2 + 1

4
= 0. (4.25)

We first discuss the case of χ = 0, i.e. g0 = g2 = 0. In this case the matrix
if2σ3 − Q̃(t, k) depends on k only through f2(k), thus N = I , and

A(k) = A(ν(k)), B(k) = B(ν(k)), k ∈ C. (4.26)

These equations following the arguments used in Sect. 4.1 imply equations (1.25).
If χ �= 0, we let N3 = N2, N4 = N1, then both the (11) and the (22) elements of

Eq. (4.4) yield Eq. (4.27a) below, while both the (12) and (21) elements of Eq. (4.4)
yield (4.27b),

(ν − k)VN1 = (ν + k)(V + 2χkν)N2, (4.27a)

(ν − k)(V − 2χkν)N1 = [V (ν + k) − 2kν(k + 4k3)]N2. (4.27b)

These two equations are equivalent; indeed their ratio yields

k + 4k3

k + ν
= 2χ2

V
kν,

and since the definition of V and the boundary conditions imply V = −χ2/2, the above
equation becomes Eq. (4.25).

Since the form of N is the same as the one used in the sG, Eq. (4.5) implies that
M1(ν(k)), M2(ν(k)) are given by the rhs of Eqs. (4.17), where f (k) = N1/N2 is now
defined by

f (k) = ν + k

ν − k

(
1 − 4kν

χ

)
. (4.28)

Then the derivation of B/A is identical to that for the sG except that 1/k is replaced by
ν(k) which is defined by Eq. (4.25).

5. A Nonlinear Volterra Integral Equation

The functions A(k), B(k) are defined by Eqs. (3.10),

A(k) = :2(T , k̄), B(k) = −e2if2(k)T :1(T , k), (5.1)

where the vector :(t, k) = (:1,:2)
τ satisfies Eqs. (3.11), and is uniquely defined in

terms of {gl(t)}n−1
0 .

For the analysis of the global relation associated with the NLS is convenient to in-
troduce the functions ϕ(t, k), ψ(t, k) and f0(t), f1(t), instead of the functions :1(t, k),
:2(t, k) and g0(t), g1(t):

ϕ(t, k) = e4ik2t+iλ
∫ t

0 |g0(τ )|2dτ:1(t, k), ψ(t, k) = e4ik2t−iλ
∫ t

0 |g0|2τ:2(t, k), (5.2)
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f0(t) = g0(t)e
2iλ

∫ t
0 |g0(τ )|2dτ , f1(t) = g1(t)e

2iλ
∫ t

0 |g0(τ )|2dτ . (5.3)

Using these notations it follows that Eq. (3.11) can be written as the following system
of linear Volterra integral equations:

ϕ(t, k) =
∫ t

0
[2kf0(t

′) + if1(t
′)]ψ(t ′, k)dt ′, (5.4a)

ψ(t, k) = e4ik2t + λ

∫ t

0
e4ik2(t−t ′)[2kf0(t ′) − if1(t ′)]ϕ(t ′, k)dt ′. (5.4b)

The definitions (5.1) and the notations (5.2) imply that the global relation (3.17) can be
written in the form

a(k)ϕ(T , k) + b(k)e4ik2T ψ(T , k̄) = −eiλ
∫ T

0 |q0|2dτ e4ik2T c(k).

Multiplying this equation by 4ke−4ik2t /π and integrating around ∂D1, i.e. the first quad-
rant of the complex k-plane, we find

1

2π

∫
∂D1

8ke−4ik2t
(
a(k)ϕ(T , k) + b(k)e4ik2T ψ(T , k̄)

)
dk = 0. (5.5)

Equations (5.4) and (5.5) can be used to obtain the missing boundary value. In order to
illustrate the basic ideas with a minimum of algebra we consider the particular case of
zero initial data and Dirichlet boundary conditions, i.e.

q0(x) = 0, q(0, t) = g0(t). (5.6)

We assume that g0(0) = 0 and that g0(t) is a smooth function in (0, T ).
In this case a = 1 and b = 0, thus replacing ϕ(T , k) in Eq. (5.5) by the rhs of

Eq. (5.4a) we find

1

2π

∫
∂D1

8ke−4ik2t

(∫ T

0
(2kf0(t

′) + if1(t
′))ψ(t ′, k)dt ′

)
dk = 0. (5.7)

The most tedious step in the analysis of Eqs. (5.4) and (5.7) involves the rigorous esti-
mates of the large k behavior of ψ(t, k),

ψ(t, k) = e4ik2t

(
e−iλ

∫ t
0 |q0(τ )|2dτ +

3∑
1

χj (t)

kj

)
+ ψ4(t, k). (5.8)

The derivation of appropriate estimates for χj (t) and ψ4(t, k) in terms of the H1 norm
of f0 and f1 is based entirely on the analysis of the linear equations (5.4) and uses the
investigation of certain linear Volterra integral equations satisfied by these functions, see
Sect. 5 of [11].

Writing the term ψ(t, k) in Eq. (5.7) in the form

ψ(t, k) =
(
ψ(t, k) − e4ik2t−iλ

∫ t
0 |q0(τ )|2dτ

)
+ e4ik2t−iλ

∫ t
0 |q0(τ )|2dτ ,

and using the inverse Fourier transform to compute the term

ke4ik2(t ′−t)

(
f1(t

′)e−iλ
∫ t ′

0 |q0(τ )|2dτ
)
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we find

f1(t)e
−iλ

∫ t
0 |g0(τ )|2dτ = 8

π

∫
∂D1

k2
(∫ T

0
e4ik2(t ′−t)f0(t

′)e−iλ
∫ t ′

0 |g0(τ )|2dτ dt ′
)

dk

+ 1

2π

∫
∂D1

8ke−4ik2t

{∫ T

0

[
2kf0(t

′) + if1(t
′)
]

×
[
ψ(t ′, k) − e4ik2t ′e−iλ

∫ t ′
0 |q0(τ )|2dτ

]
dt ′
}

dk. (5.9)

The first term of the rhs of this equation is known; using Eq. (5.8), it follows that the
second term involves f1(t) as well as the functions χj (t), j = 1, 2, 3 and ψ4. Having
apriori estimates of these functions in terms of f1(t), it is possible to establish the exis-
tence of f1(t) for T sufficiently small, using a standard fixed point argument. The details
of this analysis can be found in Sect. 5 of [11].

The above analysis establishes the existence and uniqueness of g1(t) on (0, T∗),
where T∗ is a sufficiently small positive number. In order to extend g1 beyond T∗, we
write the global relation at T∗ + T̃ , and split the relevant integrals from 0 to T∗ and from
T∗ to T∗ + T̃ .

The integrals involving the first term of the rhs of Eq. (5.9) as well as the integral from
0 to T∗ of the second term of the rhs of Eq. (5.9) are known. Hence, following exactly
the same analysis as for Eq. (5.9) it follows that g1(t) exists for T∗ < t < T∗ + T̃ . Also
using the analyticity properties of ψ(t, k) it follows that for 0 < t < T∗ the integrals
from T∗ to T∗ + T̃ vanish and hence the equation becomes precisely Eq. (5.9) (which
has a solution for 0 < t < T∗). These facts together imply existence and uniqueness for
0 < t < T∗ + T̃ .

In summary, if q0(x) = 0, g1(t) is sufficiently smooth in (0, T ) and g1(0) = 0, then
g1(t) exists, is unique and is smooth in (0, T ).

The extension of this result to the case that q0(x) �= 0, follows precisely the same
logical steps; the only difference is that the fixed-point theorem proof of the existence
of the solution of the analogue of Eq. (5.9) is slightly more complicated.

In order to extend this result to other integrable nonlinear PDEs, such as the sG and
the KdV, one must first obtain rigorous estimates for the large k behavior of the eigen-
function satisfying the t-part of the Lax pair. Actually the derivation of these estimates
is part of the investigation of the “direct problem” of this eigenvalue equation. Although
such eigenvalue equations have already been used in scattering theory, to our knowledge
the derivation of these estimates has not been carried out. This is in principle possible,
but the actual derivation can be cumbersome.

6. Conclusions

After many years of intense investigation it appears that there exists now an elegant, rig-
orous method for solving the half line problem for integrable nonlinear PDE’s. An effort
has been made to present this new method in a form that will be accessible to a wide
audience. This is important, since it is hoped that researchers will consider using this
method to solve a large class of physically important boundary value problems which
remain open.

We now discuss some of the features of this method as well as its impact on other
areas of mathematics such as the theory of linear elliptic PDEs and the study of the
Ehrenpreis principle.



Integrable Nonlinear Evolution Equations on the Half-Line 33

(1) The method is simple to implement. Indeed, both the construction of the basic
RH problem as well as the derivation of the global algebraic relation follow from the
existence of the exact differential 1-form W(x, t, k). The fundamental properties of an
exact form W(x, t, k) are the existence of a 0-form, and the vanishing of the integral of
W around a closed contour. The spectral analysis of the associate 0-form gives rise to
the basic RH problem, while the vanishing of the integral of W around the boundary of
the domain gives rise to the global relation.

(2) The “jump matrix” of the RH problem has explicit x, t dependence of the form
exp[if1(k)x + if2(k)t], and it depends on the scalar functions {a(k), b(k), A(k), B(k)}.
This means that the associated expression for q(x, t) provides the proper spectral rep-
resentation of the solution. This representation involves the direct and the inverse map
between the values of q(x, t) on the boundary, i.e. {q(x, 0), {∂l

xq(0, t)}n−1
0 } and the

spectral functions {a(k), b(k), A(k), B(k)}. We emphasize that for a proper spectral
decomposition (since the values of q(x, t) on the boundary are functions of one variable
only) the spectral functions must be functions of only one variable.

(3) Precisely because the solution is given in the above spectral representation form,
it is possible to study effectively the asymptotic properties of the solution, such as its
long t behavior. For the NLS, sG and KdV equations on the half line this has been done
in [15, 16, 18], respectively. The relevant analysis is based on the basic RH problem and
on the Deift-Zhou method [19–20]. The latter method is an elegant nonlinearization of
the steepest descent method and it yields rigorous asymptotic results for RH problems
with exponential x, t dependence. In our opinion this result is one of the most important
developments in the theory of integrable systems in particular and in the theory of RH
problems in general, thus it is quite satisfying that the new method gives rise to RH
problems precisely of the type that can be analyzed by the Deift-Zhou method. We also
note that recently a highly nontrivial generalization of the Deift-Zhou method has been
developed which is able to analyze the zero-dispersion limit of the Cauchy problem on
the line [21]. Since this method is also based on the analysis of a RH problem with ex-
ponential x, t dependence, we expect that the method of [21] applied to our RH problem
will yield an effective description of the zero dispersion limit of initial-boundary value
problems on the half-line.

(4) The new method is not only able to identify the linearizable class of boundary
conditions, but what is more important, it is able to solve this class of boundary value
problems as effectively as the usual class of initial value problems on the line.

(5) It is the author’s opinion that the most remarkable fact about boundary value
problems for integrable nonlinear PDEs is the simplicity of the global algebraic re-
lation. Indeed, although the relation between the initial and the boundary values of
q is very complicated, this relation takes a simple algebraic form in the k-space, see
Eq. (3.17). The simplicity of the global relation has two important consequences:
(a) Under the assumption that there exist spectral functions satisfying this relation, it is
straightforward to prove that the associated q(x, t) exists, satisfies the given nonlinear
PDE, and q(x, 0) = q0(x), {∂l

xq(0, t) = gl(t)}n−1
0 . (b) Given initial conditions and a

subset of {gl(t)}n−1
0 it is possible to prove the global existence of the remaining part of

this set. We emphasize that the global relation is a simple algebraic relation between the
two components of an eigensolution of the t-part of the Lax pair evaluated at x = 0. Thus
since these components satisfy a linear eigenvalue equation, the derivation of appropri-
ate estimates for their large k behavior is based on the analysis of a linear problem. Thus,
although the global relation is a nonlinear equation its rigorous investigation involves
mostly the analysis of a linear equation.
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(6) The linear limit of the method yields a new method for solving the half line problem
for linear evolution equations [10]. This method appears to be the best existing method
for solving linear boundary value equations, and is able to solve half line problems as
effectively as the Cauchy problem on the line. There exist two basic differences between
the linear and the nonlinear problems: (a) The RH problem in the linear case is additive
and hence can be solved in closed form. Thus q(x, t) (rather than be given through the
solution of a matrix RH problem) can be expressed through an explicit integral involving
exp[if1(k)x + if2(k)t] and the spectral functions q̂0(k) and Q̂(k). These functions are
the linear limit of b(k) and of B(k) respectively (the linear limits of a(k) and A(k) are
unity). (b) The global relation can always be solved using algebraic manipulations. This
is a consequence of the fact that the unknown part of Q̂(k) is invariant under the trans-
formation k → ν(k). Unfortunately in the nonlinear case {A(k), B(k)} involve M(t, k)

which in general is not invariant under this transformation. The linearizable cases are
precisely those cases for which it is possible to find a simple relation between M(t, ν(k))

and M(t, k), see Eq. (4.5).
The new method for solving linear boundary value problems is also able to analyze

linear elliptic boundary value problems in an arbitrary convex polygon with n sides
[22–26]. The global relation again plays a crucial role, but for general elliptic equations
this equation cannot be solved algebraically but can be formulated as an (n − 1)-ma-
trix RH problem [26]. For very simple polygons and simple boundary conditions this
problem degenerates into a Wiener-Hopf factorization problem, which explains the ubiq-
uitous role played by the latter problem in previous works. This shows that ideas from
the theory of integrable equations have led to a completely new and powerful method for
solving boundary value problems for linear elliptic PDEs. Furthermore, it is interesting
that this new method gives rise to a new numerical method for solving linear elliptic
boundary value problems (this method is based on the numerical solution of the global
relation [27]).

(7) The expression of q(x, y) for linear equations has explicit exponential x, y de-
pendence consistent with the Euler-Palamodov-Ehrenpreis [28–30] representation. The
expression of q(x, t) for nonlinear equations involves a RH problem whose jump matrix
has an explicit exponential x, t dependence. Thus the new method provides the concrete
implementation as well as the nonlinearization of this fundamental representation. It is
quite interesting that ideas from the theory of integrable equations have an impact on
this important field of mathematics.

(8) In recent years there have been important developments in the analysis of bound-
ary value problems of nonlinear PDEs using PDE techniques [31, 32]. It is remarkable
that some of these techniques yield global results. It is satisfying that there exist now a
rigorous theory using the integrability machinery, so that it is possible to make compar-
isons between these different approaches. Although at the moment the PDE results are
proven in less restrictive functional spaces, the advantage of our method is that it yields
rigorous asymptotic results. We reiterate that this is a consequence of the Deift-Zhou
theory and of our simple RH problem.

We conclude with some historical remarks concerning integrable nonlinear PDEs on
the half-line. The first such problem to be solved was the NLS with either q(0, t) = 0
or qx(0, t) = 0 in the work of Ablowitz and Segur [33]. These authors made crucial
use of an even and an odd extension to the full line. We recall that in the linear case the
inhomogeneous versions of these problems can be solved by either the sine or the cosine
transform. This motivated the author to construct a nonlinearization of these transforms
[34]. However, this effort, in our opinion, was a failure. Indeed, the associated “nonlinear
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sine” and “nonlinear cosine” transforms denoted by B(t, k) satisfy a highly nonlinear
nonlocal equation, which becomes linear only in the particular cases of either q(0, t) = 0
or qx(0, t) = 0. The situation is similar for the nonlinearization of the transform asso-
ciated with the boundary condition qx(0, t) − χq(0, t) = f (t), only the case f (t) = 0
can be solved using this approach. We emphasize that since B(t, k) depends on time, it
is not possible to obtain long time results, furthermore since the equation for B(t, k) is
highly complicated the task of obtaining rigorous results is prohibitingly complicated.
Other works devoted to linearizable cases include [35–38].

The new method is the result of several developments: It was first realized by the
author [39] that, in addition to analyzing the x-part of the Lax pair, it is now necessary
to analyze the t-part of the Lax pair; this yields q(x, t) in terms of two RH prob-
lems. These two problems were combined into one basic RH problem in the works of
A.R. Its and the author [15, 16, 18]. These basic RH problems for the NLS and the sG
equations are identical to the ones presented in Theorem 3.1. This made it possible,
using the Deift-Zhou theory, to obtain long time asymptotic results. However, since
the global relation was not analyzed at that time, these results were based on the apri-
ori assumption of existence; furthermore the derivation of the basic RH problem was
based on the separate spectral analysis of the x and t parts of the Lax pair and was
very complicated. This derivation was greatly simplified in [9] using the simultaneous
spectral analysis of the Lax pair. This derivation was further simplified in [8] where
it was realized that the best way to implement the simultaneous spectral analysis is to
use the formulation of the exact 1-form presented in Sect. 2. Furthermore, this formu-
lation yields the global algebraic relation in a straightforward manner, see Sect. 2.5.
The proof that the global relation is not only a necessary but also a sufficient condition
for existence, as well as the rigorous investigation of the global relation was presented
in [11].

Several authors have identified linearizable boundary conditions using the existence
of infinitely many symmetries and conservation laws, see for example [40–42].

The important gauge transformation (4.5) for the analysis of the linearizable cases
of the NLS was first used in [43]. However, the global relation was not used in [43],
hence an attempt was made to compute the unknown boundary values instead of the
unknown spectral functions. Thus instead of the algebraic manipulation used in
Sect. 4.1, the approach of [43] involves the formulation of several formal matrix RH
problems whose solution is not established.

The physical significance of the sG equation with q(0, t) = χ as well as several
approaches for the analysis of this problem can be found in [44–46].

A rigorous investigation of the spectral functions {a, b,A,B} for the NLS equation
is presented in [47].

The extension of this method to linear and integrable nonlinear PDEs on the finite
integral is presented in [48] and [49] respectively. Its extension to moving boundary
value problems is presented in [50] and [51].

An interesting alternative approach to boundary value problems for integrable non-
linear evolution equations was recently introduced by Sabatier [52].

Remark 6.1. In this paper all relevant formulae are given in terms of the basic domains
D1, · · · ,D4 defined in Eqs. (1.16). These domains are defined explicitly in terms of
the functions f1(k) and f2(k) appearing in the Lax pair. This, we hope, will make it
convenient for other researchers to apply this method to other nonlinear PDE’s since
these basic domains will be immediately known.
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Appendix A

A.1. The eigenfunctions associated with the sG equation as k → 0. The functions
{a(k), b(k)} are defined in terms of ϕ(0, k), see Eq. (3.2). The vector ϕ(x, k) is the sec-
ond column vector of the matrix µ3(x, k) (see Eq. (3.7)) which satisfies the ODE (3.8).
We will show that

µ3(x, k) = (−1)m
[

cos

(
q0(x)

2

)
I − i sin

(
q0(x)

2

)
σ1 + o(1)

]
, k → 0, (A.1)

where q0(x) → 2πm as x → ∞, and I = diag(1, 1).
Indeed, let

µ3(x, k) = ψ(x, k)E(x, k), E(x, k) = e
i
4 x(k− 1

k
)σ3 .

Then ψ(x, k) satisfies

ψx + i

4

(
k − 1

k

)
σ3ψ = Q(x, k), lim

x→∞ ψ(x, k)E(x, k) = I,

where Q(x, k) is defined in (3.4c). Thus

ψx = i

4k

[
cos(q0(x)) σ3 − sin(q0(x)) σ2

]
ψ + O(1), k → 0.

Noting that

cos(q0(x)) σ3 − sin(q0(x)) σ2 = f σ3f
−1, f = cos

(
q0(x)

2

)
I − i sin

(
q0(x)

2

)
σ1,

it follows that

(f −1ψ)x = i

4k
σ3(f

−1ψ) + O(1), k → 0.

Solving this equation and using the boundary condition

f −1ψ → (−1)m exp

[
i

4k
xσ3

]
,

we find

ψ(x, k) = (−1)m
[

cos

(
q0(x)

2

)
I − i sin

(
q0(x)

2

)
σ1 + o(1)

]
e

i
4k xσ3 , k → 0,

which yields Eq. (A.1).
The functions {A(k), B(k)} are defined in terms of :(T , k), see Eq. (3.10). The vec-

tor :(T , k) is the second column vector of the matrix µ2(t, k) (see Eq. (3.15)) which
satisfies the ODE (3.16). We will show that

µ2(t, k) =
[

cos

(
g0(t)

2

)
I − i sin

(
g0(t)

2

)
σ1 + o(1)

]
e− i

4k t σ̂3 f̃ −1
0 ,

f̃0 = cos

(
g0(0)

2

)
I − i sin

(
g0(0)

2

)
σ1. (A.2)
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Indeed, let
µ2(t, k) = <(t, k)Ẽ(t, k), Ẽ(t, k) = e

i
4 (k+ 1

k
)tσ3 .

Then <(t, k) satisfies

<t + i

4

(
k + 1

k

)
σ3< = Q̃(t, k), <(0, k) = I,

where Q̃(t, k) is defined in (3.12). Thus

<t = i

4k
[cos(g0(t)) σ3 − sin(g0(t)) σ2] < + O(1), k → 0.

The bracket in the above equation can be written as f̃ σ3f̃
−1,

f̃ = cos

(
g0(t)

2

)
I − i sin

(
g0(t)

2

)
σ1,

thus

(f̃ −1<)t = i

4k
σ3(f̃

−1<) + O(1), k → 0.

This equation together with the boundary condition (f̃ −1<)(0, k) = f̃ −1
0 yields (A.2).

A.2. The eigenfunctions associated with the KdV equation as k → 0. Let µ(x, t, k)

satisfy Eq. (1.5), where f1(k), f2(k), Q(x, t, k), Q̃(x, t, k) are defined by Eqs. (2.2).
Then

µ(x, t, k) = i
α(x, t)

k

( 1 1
−1 −1

)
+ O(1), k → 0, α(x, t) real. (A.3)

Indeed, the coefficient of 1/k in both Eqs. (1.5) involves the matrix σ2 − iσ3. This
suggests that

µ(x, t, k) = 1

k

(
α1(x, t) α2(x, t)

−α1(x, t) −α2(x, t)

)
+ O(1), k → 0.

The symmetry condition with respect to k �→ −k (see Sect. 2.2) implies that α2(x, t) =
α1(x, t). Furthermore, the symmetry condition with respect to complex conjugation (see
Eqs. (2.9)) imply that α1(x, t) is purely imaginary.

Equation (A.3) suggests that

µ3(x, k) = i
α(x)

k

( 1 1
−1 −1

)
+ O(1), k → 0, α(x) real, (A.4)

and

µ2(t, k) = i
β(t)

k

( 1 1
−1 −1

)
+ O(1), k → 0, β(t) real. (A.5)

These equations can be rigorously justified using the associated linear integral equations.
The evaluation of Eqs. (A.4) and (A.5) at x = 0 and t = T determines the behavior of
{a(k), b(k)} and of {A(k), B(k)} as k → 0.

The ODE (3.8) associated with the KdV equation is the time-independent Schrödinger
equation. The scattering data {a(k), b(k)} for this equation have been studied extensively
in the literature; for a comprehensive recent review see [53].
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