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Abstract: In this paper we explicitly construct local v-Euler derivations E, = va, +
Le, + Dy, where the &, are local, conformally symplectic vector fields and the D,
are formal series of locally defined differential operators, for Fedosov star products on
a symplectic manifold (M, w) by means of which we are able to compute Deligne's
characteristic class of these star products. We show that this class is given by %[a)] +

1[Q], where @ € vZ3,(M)[[v]] is a formal series of closed two-forms on M the
cohomology class of which coincides with the one introduced by Fedosov to classify
his star products. Moreover, we consider star products that have additional algebraic
structures and compute the effect of these structures on the corresponding characteristic
classes of these star products. Specifying the constituents of Fedosov’s construction we
obtain star products with these special properties. Finally, we investigate equivalence
transformations between such special star products and prove existence of equivalence
transformations being compatible with the considered algebraic structures.

1. Introduction

Since the very beginning of deformation quantization in the pioneering articles [2]
by Bayen, Flato, Frensdal, Lichnerowicz and Sternheimer there has been not only an
immense interest in answering the question of existence of star products  (i.e. formal,
associative deformations of the classical Poisson algebra of complex-valued functions
C°° (M) on a symplectic or, more generaly, Poisson manifold M, such that in the first
order of the formal parameter v the commutator of the star product yields the Poisson
bracket) positively, but also in finding a classification of the star product algebras up to
isomorphy of algebras. Thereforethe proofsof existence given by DeWilde and Lecomte
[11,12], Fedosov [13,14] in the symplectic case and recently by Kontsevich [20] in the
general case of aPoisson manifold always contained results on classification. Moreover,
there have been severa other results on classification up to equivalence by Nest and
Tsygan [22,23], Bertelson, Cahen and Guitt [3], Weinstein and Xu [24]. Their common
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result is that every star product on a symplectic manifold is equivalent to a Fedosov
star product. A comparison between the results of DeWilde, Lecomte and Fedosov is
due to Halbout and can be found in [17]. In the case of deformation quantizations with
separation of variables on Kahler manifolds Karabegov proved existence and gave a
classification using aformal deformation of the Kahler formin [18,19].

In hisarticle [10] Deligne has introduced the notions of intrinsic derivation-related
and characteristic class$n order to compare the different constructions and classifica
tions of DeWilde, Lecomte and Fedosov. In his paper Deligne uses the language of
algebraic geometry to approach deformation theory and proves (cf. [10, Prop. 3.6.])
that the relative class(x) — c(x) of two Fedosov star products bei nq the difference of
the characteristic classes of two Fedosov star products *, *" equals < (F(x) — F(x)),
where F (x) denotes the cohomology class of the Weyl-curvature Fedosov introduced to
classify his star products, that naturally arises when one constructs a star product using
Fedosov's method.

Recently, Gutt and Rawnsley [15] gave an alternative approach to Deligne’s various
classesthat avoids using methods of algebraic geometry. They also show how the classi-
fication of DeWilde and L ecomtefitsinto this framework (cf. [15, Sect. 7]). Using their
methods we succeed in slightly generalizing Deligne's result in proving that Deligne's
characteristic class eguals % times the cohomology class of the Weyl-curvature. We
should like to emphasise that our proof is purely agebraic and does not use any results
on sheaf cohomology except for the de Rham isomorphism relating the second Cech
cohomology with the second de Rham cohomol ogy.

The interest in the relation between the characteristic class and the Fedosov class
is also motivated by the occurrence of the latter in formulas for canonical traces resp.
trace densities obtained by Halbout in [16] whose results are based on investigations
of invariants in the cyclic cohomology of M made by Connes, Flato and Sternheimer
[9]. Moreover, he has shown that the cocycle of Connes, Flato, Sternheimer whichisan
invariant for closed star products on a symplectic manifold can be expressed by A(T M)
and the Fedosov class.

The paper isorganized asfollows: After abrief summary of Fedosov’s construction of
star products on symplectic manifol dswe close Sect. 2 by ashort review of the definitions
of Deligne's various classes. Section 3 constitutes the main part of our work, where
we give an explicit construction of local v-Euler derivations for an arbitrary Fedosov
star product. After these preparationsit is an easy task computing Deligne’s derivation-
related and characteristic classin Sect. 4. Asan application of the properties of Deligne’s
characteristic class and its relation to Fedosov’s Weyl-curvature we study star products
of special typein Sect. 5 that satisfy special algebraic identities with respect to complex
conjugation and the mapping v — —v changing the sign of the formal parameter
and compute the influence on the corresponding characteristic classes. Moreover, we
can show that there are always Fedosov star products satisfying these specia algebraic
identities the characteristic class of which coincides with a suitably given element of
@ + HdZR(M )[[v]]. Considering equivalent star products satisfying the same algebraic
identities with respect to the mappings mentioned above we can show that there are
always equival ence transformations between these star products commuting with these
mappings. InAppendix A we give ashort proof of the deformed Cartan formulathat is of
great valuefor our considerationsin Sect. 4, but seemsto befolklore. A further Appendix
B isadded for completeness giving the computation of the term of the characteristic class
that cannot be determined from the algebraic considerations in Sect. 4.
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2. Fedosov Star Products and Deligne’s Characteristic Class

In this section we shall briefly recall Fedosov’s construction of astar product for agiven
symplectic manifold (M, w). The notation ismainly the same asin Fedosov’s book [14]
and in [13]. In addition we collect the definitions as they were introduced in [10] of
Deligne’s intrinsic derivation-related classd Deligne’s characteristic clasand the
relations between them. For proofs and a detailed discussion of these topics the reader
isreferred to the exposition [15].

Let (M, w) be asmooth symplectic manifold and define

WRAM) = (XZ2C (I (\V*T*M @ \T*M))) [[V]1. oy

If there is no possibility for confusion we simply write W® A and denote by W® A*
the elements of anti-symmetric degree k and set W := W®AC. For two elements
a,b € W®A one defines their pointwise product denoted by (e ® b) = ab by the
symmetric v-product in the first factor and the anti-symmetric A-product in the second
factor. Then the degree-maps deg, and deg, with respect to the symmetric and anti-
symmetric degree are derivations of this product and W® A, ) is super-commutative
with respect to the anti-symmetric degree. For avector field X we define the symmet-
ric substitution (insertion) i;(X) and the anti-symmetric substitution i, (X) which are
super-derivations of symmetric degree —1 resp. 0 and anti-symmetric degree O resp.
—1. Following Fedosov we define § := (1 ® dx)is(3;) and 8* := (dx’ @ 1)i,(3;),
where x1, ..., x" arelocal coordinatesfor M and 3; = 9, denotes the corresponding
coordinate vector fields. For a € W® A with deg;a = ka and deg,a = la we define

§7%a = 8*aifk+1#0ands71a := 0if k +1 = 0. Clearly 62 = 5*? = 0. More-
over,wedenoteby o : WA — C°°(M)[[v]] the projection onto the part of symmetric
and anti-symmetric degree 0. Then one has the following * Hodge-decomposition’ for
anya € WRA (seeeq. [13, Eq. (2.8)]): a = 86 ta + 8 18a + o (a). Now we consider
the fibrewise associative deformation o of the pointwise product having the form

aob=poep (A7) ®i0)) @@b), )

where A’/ denotes the components of the Poisson tensor corresponding to the symplectic
form w. Moreover, we define deg,, -graded super-commutators with respect to o and set
ad(a)b := [a, b]. Now deg, is no longer a derivation of the deformed product o but
Deg := deg, + 2deg,, is still aderivation and hence the algebra ()W® A, o) isformally
Deg-graded, where deg,, := vd,,. We shall refer to this degree as total degree.

According to Fedosov's construction of a star product we consider a torsion free,
symplectic connection V on T M that extends in the usual way to a connection V on
T*M and symmetric resp. anti-symmetric products thereof. Using this connection we
definethemapV: W®A — WA by V := (1®dx')V;,. Then dueto the property of
the connection being symplectic V turns out to be a super-derivation of anti-symmetric
degree 1 and symmetric and total degree O of the fibrewise product o. Moreover [§, V] =
0 since the connection is torsion free and V2 turns out to be an inner super-derivation
V2 = —Llad(R), where R := %wi,R§kldxi v dx) @ dx* Adx! e W®A? involvesthe
curvature of the connection. Moreover, onehas R = 0 = VR as consequences of the
Bianchi identities.

Now remember the following facts which are just restatements of Fedosov’soriginal
theoremsin [13, Thm. 3.2, 3.3] resp. [14, Thm. 5.3.3]:
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Foral @ = 32, vIQ; e vZ3(M)[[v]] and al s € W of total degree > 3 with
o (s) = O there exists aunique element » € W® A of total degree > 2 such that

1
Sr=R+Vr—=ror+1®Q and s =s. 3
vV
Moreover r satisfies the formula
1 1
r=248s+36 R+1QQ+Vr——ror 4
vV
from which » can be determined recursively. In this case the Fedosov derivation
1
D:=-86+V——-ad@r) (5)
vV

is a super-derivation of anti-symmetric degree 1 and has square zero: D? = 0.

Then for any f € C°°(M)[[v]] there exists a unique element = (f) € ker(D) N W
such that o (t(f)) = fand t : C®WM)[[v]] — ker(D) N W is C[[v]]-linear and
referred to as the Fedosov-Taylor series corresponding to D. In addition z(f) can be
obtained recursively for f € C*°(M) from

(f)=f+51 (Vrm - %ad(r)t(f)) : (6)

Since D as constructed above is a o-super-derivation ker (D) N W isao-sub-algebraand
a new associative product x for C°°(M)[[v]] is defined by pull-back of o via z, which
turns out to be a star product.

Observe that in (3) we allowed for an arbitrary element s € W witho(s) = 0
that contains no terms of total degree lower than 3, as normalization condition for r, i.e.
§~1r = s instead of theusually used equation s ~1r = 0. Inthe sequel weshall especially
show that thismore general normalization condition does not affect the equival ence class
of the resulting star product. In the following we shall refer to the associative product =
defined above asthe Fedosov star product. Moreover, we shall denote by F (x) Fedosov's
characteristic class of the star product * as discussed in [14, Sect. 5.3] whichisgiven by
F(x) = [w] + [Q].

Next we collect some basic concepts of characteristic classes for star products as
they can be found in [10,15]. Deligne’s characteristic class c(x) of a star product has
been introduced in [10] and classifiesin afunctorial way the equivalence classes of star
products on asymplectic manifold (M, w). It liesin the affine space @ + H§R(M)[[u]]
and can be calculated by methods of Cech cohomology. Let us provide some details of
the calculation as far as they are needed for our purposes. At this instance we should
mention that our conventions, that are asin [1], differ from those used in [15] by asign
in the Poisson bracket causing the positive sign in front of [—‘5] inc(x).

If x is a star product on the symplectic manifold (M, w) there exists a good open
cover {Uy}aer Of M (i.e. dl finite intersections of the U, are contractible) together
with afamily {E,}4<; of local v-Euler derivationof (C°(Uy)[[v]], %) i.e. afamily of
derivations E,, of x over U, having the form

Ee =19, + Lg, + Do, (7
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where &, is conformally symplectic ([,gaa)|ua = wly,) and Dy, = Y 1Dy, isa
formal seriesof differential operatorsover U, . The existence of such v-Euler derivations
has aready been shown in [15] using cohomological methods, whereas in the case of
a Fedosov star product we are going to give a very direct, purely algebraic proof of
this fact in the next section since for our purposes we need a quite concrete formula
for the differential operators D,,. As every v-linear derivation over a contractible, open
set U is of the form %ad*(d) withd e C*®°WU)[[v]] there exist formal functions d,p €
C™ U NUR)IIV] fulfilling

1
Eq — EB = ;ad*(daﬂ) (8)

over Uy, NUg. Thisfact can also be seen directly from the results of the following two
sections. Now, whenever U, NUg NU, # P thesumsdyg, = dg, — doy + dug lie
in C[[v]] and define a 2-cocycle whose Cech class [dopy] € H?%(M, C)[[v]] does not
depend on the choices made and the corresponding class d(x) € H§R(M )[[v]] iscalled
Deligne’s intrinsic derivation-related class

Definition 1 (cf.[15, Def. 6.3]). Deligne’s characteristic class(x) of a star produck on
(M, w) is the element(x) = 12l + 3% vic(x) of the affine spack + HZ; (M)[[v]]
defined by

c(%)° = —2C£ﬁ, dyc(x) = v_lzd(*)‘ (9)

HerebyCz‘tI is the image under the projection onto the second part in the decomposition
Héhev’nc(coo(M), C*M)=Co HdzR(M) of the second Chevalley cohomology (null
on constants, oC*>° (M), {, }) with respect to the adjoint representation) of the anti-
symmetric parC; (f, g) = % (Ca(f, g) — Ca(g, f)) of the bidifferential operator,

in the expansion of which is a2-cocycle with respect to this cohomology by the Jacobi-
identity for star commutators.

Remark 1 Noticethat for Fedosov star products« wehave C1(f, g) = %{f, g}implying
(cf. [15, Rem. 6.1]) that C, (f,g) = p2(Xy, X,) for a closed two-form p2 on M,
where X  denotes the Hamiltonian vector field with respect to » that corresponds to

f € C®(M), and hence C; " = [pa].

3. Explicit Construction of Local v-Euler Derivations

To simplify the notation we use the convention that whenever an equation contains
indicesa, B, y thismeansthat it isvalid on the intersection of the members of the good
open cover whose indices occur init. As afirst step in the construction of local v-Euler
derivationswe haveto find local, conformally symplectic vector fields&,. Sincedw = 0
we can find one-formsé,, on each{, suchthat w = —d6, by the Poincarélemma. Using
these local one-formswe can define local vector fields &, by ig, w = —6, that obviously
satisty Lg, 0 = w. Using these vector fields we find the following lemma:

Lemma l.LetH, : WRAUy) — WRAU,,) be defined by
He =00, + Lg,, (20)
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thenH, is a local (super-)derivation with respect to the fibrewise producf anti-
symmetric and total degrei i.e.

Ho(aob) =Heaob +aoHeb (11)

forall a, b € W®A(Uy). Moreover, we havel, , 8] = [Lg,. §*] = 0and[Hy, 8] =
[HD(’ 8*] = 0

Proof. The proof is a straightforward computation using that vd, as well as Lg, are
derivations of the undeformed product .. and the equation Lg, A = —A which follows
from Lg, w = w. The commutation relations are obvious from the very definitions. O

At first sight it might be desirable to construct local derivations with respect to = by
restricting H,, to C°° (Uy)[[v]]. In fact this can be done in some special cases where the
connection V is compatible with the Lie derivative with respect to the vector fields &, .
An important example for this situation are homogeneous star products on cotangent
bundles that have been discussed in [5,6]. But this cannot be done in general since the
failure of the connection to be compatible with the above Lie derivatives causes that the
Fedosov derivation D does not commute with +,, and hence H,, does not map el ements
of ker(D) to elements of ker(D). So we try to extend H,, to a o-(super-)derivation of
anti-symmetric degree 0 that commutes with D. To this end we make the ansatz

1 1
Eo = Ho + ;ad(ha) =0, + LSQ + ;ad(ha) (12)

with h, € W(U,) such that o (h,) = 0 and compute [D, &,].

Lemma 2. Let &, be defined as above, then we have
1 1
[D, &l = ;ad(Dha) + 1V, Lg, 1+ ;ad(”Har —r). (13)

Proof. The proof of this formularelies on the fact that D is a super-derivation of anti-
symmetric degree 1 with respectto o andthat #,, isa(super-)derivation of anti-symmetric
degree O with respect to o. Moreover, we used [8, Ho] = 0 and [V, Hqo] = [V, Lg, ].
O

Now we consider the mapping [V, Lg,] more closely. The formulas we collect in
the following two lemmas are essential for the whole construction of loca v-Euler
derivations.

Lemma 3. For the locally defined vector fields, the mapping[V, Lg,] enjoys the
following properties:

(i) Inlocal coordinates one has
[V, Le,]1 = (dx! @ dx")is (L, V)5,0)) = (dx’ @ dx")is(Sx(3:,97)),  (14)
where the local tensor fiel§,, € I'*°(T*U, ® T*U, ® TU,) is defined by
Sa(3,9;) = (Le,V)a,d; == Le,Va,0; — Vo, Le,0j — Vi, 5,0,
= R(Ex, 0)0; + V(3 6a (15)
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(ii) Sy as defined above is symmetric, iSg.€ 1“"0(\/2 T Uy @ TUy).
(iii) Forall X, Y, Z € T*(TU,) we havew (Z, Sy(X,Y)) = —w(Sx(X, Z), Y).

Proof. The proof of thelocal expression for [V, L, ] isastraightforward computation.
Thelast equality in (15) follows from the torsion freeness of the connection V. The fact
that S, is symmetric is aconsequence from thefirst Bianchi identity for the connection
V. (iii) follows from adirect computation essentially using Vo = 0and Lg, w0 = w. O

Now the local tensor fields S, as defined above naturally give rise to elements 7y, of
W® A (Uy) of symmetric degree 2 and anti-symmetric degree 1 by

To(Z,Y; X) i= 0(Z, Su(X, Y)). (16)

In local coordinates this reads 7, = %Ll)l‘jSa']ildXi v dx! ® dx*, where Saiz =
dx/ (S, (8, 9;)) denotes the components of S, in local coordinates.

Lemma 4. The local tensor field, as defined in (16) satisfies the following equations:
(i)

1

;ad(Ta) = [V, Lg,], 17)

(i)

1
Ty = ia(sa)R +V (EDQa ® 1) s (18)
where the operator of symmetric covariant derivatibris defined byD := dx’ v
Vo,
(iii)
8T, =0 and VT, = L, R — R. (29)

Proof. Thefirst assertion easily followsfrom the propertiesof S, giveninLemma3by a
direct computation. Part (ii) can beeasily proven by direct computation using (15) and the
definitionsof R and T,,. Theequationsgivenin (iii) follow from the super-Jacobi-identity
applied to the equations [H,, [8, V1] = 0 and [H,, %[V, V]l = —[Ha, %ad(R)]. For
the second equation one hasto observe that R does not depend on v and againthat #H,, is
aderivation with respect to o. Moreover, we used the fact that the only central elements
of the Fedosov algebra W® A with respect to o with symmetric degree 1 resp. 2 are
zero. O

Collecting our results we have shown that
1
[D, ] = ;ad(Dha + Ty + Har —1). (20)

Our next aimisto provethat i, canbechosen suchthat Dhy + Ty +Her —r = 1® Ay,
where A, isaformal series of locally defined one-formsthat have to be chosen suitably,
since then [D, &,] = 0. The necessary condition for this equation to be solvable is
DA Ay — Ty — Hor +r) = 0since D2 = 0. But this is also sufficient since
the D-cohomology on elements a with positive anti-symmetric degree is trivial since
one has the following homotopy formula DD~1a + D~'Da = a, where D~1g =

-1 1
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Lemma 5. Choosing local potential®; , for the closed two-form&; oni4,, and defin-
ing

o0
Ay = (id — Ha)Ou = (id — Ho) Y v/ Oy, (21)
i=1
the equatioD(1® Ay, — T, — Her + r) = Ois fulfilled.
Proof. Using Eq. (3), [He«, 6] = Oand Eq. (11) aswell asLemmad4 (i), (iii) onecomputes
DHoar —r) =10 (Q—HaQQ) + R —Lg, R+ [V, Le,Ir
1
=1Q (id — Ho)Q — VT, + =ad(Ty)r.
Vv

On the other hand we get from 8T, = 0and d A, = d(id — H) O, = (id — H,,) S that
1
DARA, —T,) =1Q (id—Hy)R — VT, + —ad(r)T,,
V

proving thelemma. O

This lemma enables us to prove the following important proposition.

Proposition 1. There are uniquely determined elemeitse W (U, ) such thatDh, =
1® Aqg +r — Hor — Ty ando (hy) = 0. Moreoverh,, is explicitly given by

he =D YAQ Ag + 1 — Har — Ty), (22

-1, _ _s-1 1 1 7 7
whereD~*a = —§ (mﬂ) . With these eIEment@ the flbreWISE, local

v-Euler derivationsy, = va, +Leg, + %ad(ho,) commute with the Fedosov derivatibn

Proof. Using the homotopy formulaa = DD~1a + D~1Da that is valid for elements
a € W® A with positive anti-symmetric degreeon 1 ® Ay +r — Hyr — T, We get

1@ Ay +7 —Hor — Ty =DD YL@ Ay + 7 — Hor — Ty)

from the preceding lemma. Since we want the last expression to equal Dh, one gets
he = D7YAQ Aq + 1 — Hor — Ty) + T(@e) With arbitrary, locally defined formal
functions g, € C°(U,)[[v]]. Fromthedemand o (h,) = Oweget o (t(¢y)) = ¢ = 0
since D1 raises the symmetric degree and the formula for &, is proven. The fact that
&, commutes with D now follows from Eq. (20). 0O

Using thefibrewise, local v-Euler derivations £, weconstructed we areintheposition
to define local v-Euler derivations with respect to the Fedosov star product .

Definition 2. Leth, € W(U,) be given as in Eq. (22). Denoting By : WQ A (Uy) —
W® A(U,) the fibrewise locab-Euler derivations, = va, + Lg, + %ad(ha) we
define the mappinds, : C®°U)[[v]] = C®Uy)[[v]] by

Eof =0 (&T(f)) (23
for f € C®WUIIV].
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With this definition we get the main result of this section.

Theorem 1. The mappind:, as defined in Eq. (23) is a local derivation with respect to
the Fedosov star produst MoreoverE, = vd, + Lg, + Dy, WwhereD, = > 72 v' Dy ;
is a formal series of differential operators ovigy.

Proof. The fact that E,, isalocal derivation with respect to x is obvious from the fact
that £, isalocal derivation with respect to o and the property of £, mapping elementsin
W (Uy) N ker (D) to elementsin W(U,) N ker(D) which was achieved by constructing
Eq suchthat [D, £,] = 0. The assertion about the shape of E,, follows from the fact that
o commutes with vd, and Lg, yielding Eq f = vd, f + Lg, f + Lo (ad(ha)T(f)). The
fact that the last terminvolving &, and t definesaformal series of differential operators
is obvious from the properties of the Fedosov-Taylor series. The only thing one has to
observe is that this formal series starts at order one in the formal parameter. But this
follows from the fact that /4, only contains terms of total degree greater or equal to
three, which is a consequence of D1 raising the symmetric degree, not decreasing the
v-degreeand 1 ® A, +r — Hqr — T, Only containing terms of total degree greater or
equal totwo. O

4. Computation of Deligne’s Characteristic Class

With the aid of the local v-Euler derivations we constructed in the preceding section we
areinthe position to compute Deligne’sintrinsic derivation-related classd () and hence
the characteristic class c(x) for every Fedosov star product = as defined in Sect. 2. To
thisend we haveto find formal functionsd,g € C* U, NUp)[[v]] such that onid, Nidg
wehaveE, —Eg = %ad*(da,g). From the definition of the v-Euler derivations E,, and
the deformed Cartan formula (cf. Appendix A) we have the following:

Lemma 6. For g € C*° U, NUp)[[v]] we have

(Ea —Ep) (9) (24)
1 1

= ;a (ad (ha —hg+ fop +dfep ® 1+ EDdfaﬁ ®1— ia(Xfaﬂ)r> r(g)) ,

where fo3 € C* (U, NUp) satisfiesif,g = 6, — 6g and the local one-formé, satisfy

db, = —w.

Proof. We have (Eq — Eg)(g) = o ((Le,—¢; + 2ad(he — hp)) T(g)) by definition of
E«. Now on U, N Ug we have —d6, = w = —dbg and hence by the Poincaré lemma
we can find locally defined functions f,g such that df.s = 6, — 0. Now by definition
of the local vector fields &, we get d(— fup) = ig,—gz0 implyingthat &, — & = Xy,
is the Hamiltonian vector field of the function — f,5. Thus we can apply the deformed
Cartan formula (40) proven in Proposition 5 and immediately obtain the statement of
thelemmasince Dz (g) = 0and iy (X—,,)t(g) =0. O

Now we are to show that the term occurring in the argument of ad in Eq. (24) can be
extended by adding alocally defined formal function a,s € C*° (U, NUp)[[v]] (clearly
satisfying ad(aqg) = 0) such that the whole argument is the Fedosov—Taylor series
T(fap — 0 (ia(X 1,5)r) +aqp) Of thelocal formal functiondyg := fup — 0 (ia(X f,5)7r) +
aqp- |If we succeed to find such alocal function, Eq. (24) yieldsE, — Eg = %ad*(da,g)
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enabling usto give an expression for Deligne'sintrinsic derivation-related class d (x) of
*. We thus have to show that a,g can be chosen such that

1
D <ha —hp+ dap + fop +dfop ® L+ 5Ddfop ® 1= ia(xfaﬁ)r) =0. (25

Lemma 7. With the notations from above we have

1
D <ha - hﬂ + faﬁ + dfaﬁ ®1+ EDdfaﬁ ®1- ia(Xfaﬂ)r)
=1® ((ig, 2 + Ag) — (ig, Q2 + Ap)), (26)
whereA,, is given as in Lemma 5.

Proof. From the construction of the elements , € W(U,) we gave in the preceding
section (cf. Proposition 1) weget D (hy — hp) = 1® (Aq — Ap) — To + Tp — L, g, 7.
Another straightforward calculation yields D (fup + dfus ® 1+ 3Ddfous ® 1) =
—Lad(r) (dfup ® 1+ 3Ddfyp ® 1) + 3V (Ddfus ® 1). Using the deformed Cartan
formula once again combined with Eg. (3) and the definition of D we get

D(—i(X 1,,)r)

1

= _(Dla (Xfaﬁ)r + ia (Xfaﬁ)Dr) =+ ia (Xfaﬁ) <_8r + Vr — ;ad(r)r)

1 1 '
= Lgy—gp7 + ;ad —dfup ®1— EDdfaﬂ ®1+ia(Xg,r|r

1
+ia(6a —&p) (R+1®Q+;ror)

1 1 ' '

= ,Céaféﬂr + ;éd <—dfoc5 ®1- EDdfaﬂ & l) r+ig6e —6)R+1® léafsﬁg’

since Liy(€q — &p)(r or) = —Lad(ia (X 1,5 )r)r. All these results together with Eq. (18)
and dfy,s = 6, — 6 prove the statement of thelemma. O

After these preparations we are able to formulate the following proposition.

Proposition 2. There are locally defined formal functiodgs € C°U, N Up)[[V]]
such thatE, — Eg = %ad*(da,g). Moreover, these formal functions satisfy,s =
dfap —d(o(ia(Xf,,)r)) +dagg = 0y —0p +d (0 (ia(§a)r)) —d(o(ia(Ep)r)) — ((Ag +
ig, 2) — (Ag +ig, 2)). Thus they define Zcocycle and the image of the corresponding

Cech class under the de Rham isomorphism, which is just Deligne’s intrinsic derivation-
related class, is given ¥ (x) = —[w] — [2 — v3,2].

Proof. From Lemma 7 we get that a.,s has to satisfy the equation da,s =
— ((Ag +ig,Q) — (A + iz, Q2)) so that (25) is fulfilled. From the definition of A, we
get that the right-hand side of this equation is closed since d(Aq + ig, 2) = 2 — 19, 2.
Therefore the existence of a,g € C™ (U, N Up)[[v]] as desired is guaranteed by the
Poincaré lemma. Now we have o (hy — hg + dap + fup + dfup @ 1+ 3Ddfop @ 1 —
ia(X f,5)1) = fap—0(ia(X 1,5)r)+aqp andEq. (25) isfulfilledimplying (E, —Ep)(g) =
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50 @@ (fap + 0 (ia(Ea)r) — 0 (ia(Ep)r) + aup))T(8)) = Jai(dup)g by Lemma6.
The assertion about the corresponding de Rham class is obvious from the properties of
fap and aqg We have aready proven, namely d (6, + d(o (ia (7)) — (Ag +ig, Q) =
—(w+ 2 —v0,22). O

From this proposition and from the computation of C, “in Appendix B we obtain
our final result.

Theorem 2.Deligne’s characteristic class(x) of a (slightly generalized) Fedosov star
productx as constructed in Sect. 2 is given by

1 1 1
clx) = “lo] + Q] = —F (%), (27)

whereF (x) denotes Fedosov’s characteristic class of the star product

Proof. Fromthedifferential equationd, c(x) = v—lzd(*) that rel atesthe derivation-rel ated
class to the characteristic class and from the preceding proposition we get c¢(x) =
L] + e + 132, 1i[Q;]. By the result of Proposition 6 we get ¢(x)° = [Q1],
proving thetheorem. 0O

As an immediate corollary which originally is due to Fedosov (cf. [14, Cor. 5.5.4])
we find:

Corollary 1. Two Fedosov star productsand «’ for (M, ) constructed from the data
(V,2,s)and(V’, &, s’) as in Sect. 2 are equivalent if and onl\f§8] = [Q'].

5. Star Products of Special Type, Their Characteristic Classes
and Equivalence Transformations

In this section we consider star products that have additional algebraic properties and
computetheir characteristic classes showing that these properties giveriseto restrictions
on this class. Moreover, we can show that for every characteristic class satisfying the
necessary conditionfor astar product of thisclassto havethe desired algebraic properties
there are always Fedosov star products with suitably chosen data 2, s having these
properties. Although the following results might be known they do nevertheless not
seem to have appeared in the literature except for the special case 2 = Oands = 0
consideredin[7, Lemma3.3]. InthissectionC: W® A — W® A shall always denote
the complex conjugation, where we define Cv := —v in view of our convention for the
formal parameter being considered as purely imaginary. By P: W® A — WQ® A with
P := (—1)%9 we denote the so-called v-parity operator. Using these maps fulfilling
C? = P? = id we can define special types of star products:

Definition 3. (i) For a given star produck for (M, w) we define the star produckgyp,
*c, *p for (M, —w) by

S *opp 8 =8 * [, (28)

frcg=C(Ch)*(Cy), (29)

Fapg=P(PH*(P)=fryg=Y (-1)Ci(f.g9).  (30)

i=0
where f, g € C*(M)[[v]] and the bidifferential operator€’; describe the star
productx by f x g = > V' Ci(f, g).
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(if) A star productx is said to have the-parity property ifP is an anti-automorphism
of x, i.e.

frpg= fropg Vf.geCTW)V]I. (31)

(iii) A star productx is said to have &-structure incorporated by complex conjugation
if Cis an anti-automorphism 6f, i.e.

frcg=fropg Y[ geCTMIM]I. (32

(iv) A star productx is called of Weyl type if it has the-parity property and has a
*-structure incorporated by complex conjugation.

Using these definitions we find:

Lemma 8. (i) The characteristic classes®fpp, *c, xp are related to the characteristic
classc(x) of x by the following equations:

C(*opp) = —c(x), (33)
c(xc) = Ce(x), (34)
c(xp)(V) = c(x—) (V) = c(¥)(—v) = P(c(x)(v)). (35)

(if) The characteristic class of a star producthat has thev-parity property satisfies
Pc(x) = —c(x), (36)

and hence:(x) = @ + 32 v e(x)2*Lie.c(x)? = [0] forall € N.
(iii) The characteristic class of a star producthat hasC as*-structure satisfies

Cc(x) = —c(»), 37

and hence ()2 = —Cc(%)Z andc(x)211 = Ce(x)Z*1forall I € N.
(iv) The characteristic class of a star producthat is of Weyl type satisfies

Pc(x) = —c(x) and Cc(x) = —c(*), (38)
and hence:(x)? = [0] andc(*)Z 11 = Cc(x)Z* 1 forall I € N.

Proof. The proof of part (i) relies on the observation that local v-Euler derivations E,,
of » yield such derivationsfor qpp, *c and p given by E,, CE,C and PE, P. With these
derivations one easily finds d (xopp) = —d(*), d(*c) = —Cd(x) and d(xp) = —Pd(»).
From the definition of the characteristic class relating the derivation-related class d
with ¢ and the obvious observations that c(xgpp)® = —c(*)°, ¢(xc)® = Ce(*)° and
c(*p)? = ¢(»)? one gets the asserted statements. The assertions (ii), (iii) and (iv) are
obvious from part (i) and Definition 3 (ii), (iii) and (iv). 0O
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The statement (ii) of the lemmais the deep reason for the fact that when building a
star product recursively by constructing bidifferential operators C; DeWilde, Lecomtein
[11] only have the choice of aclosed two-formin casei isodd asthe v-parity property is
included in their definition of astar product. The preceding lemma states that in general
there are equivalence classes of star products corresponding to the characteristic classes
c(x) that contain no representatives (i.e. star products = with this characteristic class)
satisfying the conditions (31) resp. (32), namely those whose characteristic classes do
not satisfy Egs. (36) resp. (37). Vice versathe following proposition statesthat for every
classc € @ + HdZR(M)[[v]] enjoying the properties Cc = —c resp. Pc = —c one
can find even Fedosov star products having the characteristic class ¢ and satisfying the
conditions (32) resp. (31).

Proposition 3. (i) Forall ¢ € @ + HdZR(M)[[v]] with Pc = —c there are Fedosov
star productsx for (M, w) with

c(x)=c and P((Pf)*(Pg) =g=x*f forall f,ge C®WM)[V]].

(i) Forallce % + HdzR(M)[[v]] with Cc = —c there are Fedosov star productgor
(M, w) with

cx)=c and C(Cf)*(Cg)=g=xf forall f,g e C®(M)[[v]].

(i) Forall ¢ € % +HdZR(M)[[v]] with Pc = —¢ = Cc there are Fedosov star products
* for (M, w) with

c(x) =c and P((Pf)=*(Pg)) =g=f=C(Cf)*(Cg))
forall f, g € C®(M)[[v]].

Proof. For the proof we first observe that the fibrewise product o satisfies
C((Ca) o (Cb)) = P((Pa) o (Pb)) = (—=1)Mboaforal a,b € W® A withdeg,a = ka
and deg,b = Ib. Now let ¢ € 2 + HZ. (M)[[v]] bewritten as ¢ = 121 4 3% vicl,
For the proof of (i) we choose closed two-forms ©2; such that Q41 = 0 (to achieve
[Q211] = @ = [0]) and [Qa42] = @+ for al [ e N yielding PQ = Q. Moreover,
we choose s = Y 25s5® € W with o(s) = 0and Ps = 5. Under these precondi-
tions one easily proves that Pr satisfies Egs. (3) implying Pr = r by uniqueness of
the solution of (3). With such an element » € W® A the Fedosov derivation D obvi-
ously commutes with Pimplying that Pz (f) = t(Pf) foral f € C*°(M)[[v]] since P
obviously commutes with o. Using this equation and the definition of x together with
P((Pa) o (Pb)) = (—1)*b o a and observing that deg, 7 (f) = O one gets the asserted
property of x under the mapping P. From Theorem 2 we get c(x) = @ + %[Q] = c. For
(ii) one proceeds quiteanal ogously. Theonly differenceliesin other suitable choicesof
and s, i.e. we choose closed two-forms €2; such that CQo4 2 = Qo142, [Qo142] = 2+
and CQy11 = —Qo41, [Q241] = cdfordll eN implying CQ2 = Q. Moreover, we
choose s € W such that Cs = s. Asin the proof of (i) one gets that Cr = r yielding
the desired behaviour of the corresponding star product + under the mapping C asin the
proof of part (i). Thefact that ¢(x) = ¢ again follows from Theorem 2 and the choice of
Q. For the proof of part (iii) onejust has to bring into line the choices made for (i) with
the ones made for (ii), i.e. choose s with Cs = s = Ps and closed two-forms ©; with
CQo42 = Qa2 and Q41 = 0 such that [Qz42] = ¢? T and [Q241] = @ = [0]
for al I € N. Then the argument asin (i) and (ii) yields the stated result. O
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Remark 2The interest in such special star products from the viewpoint of physicsis
based on the interpretation of the star product algebra (C°°(M)[[v]], x) asthe algebra
of observables of the quantized system corresponding to the classical system described
by the symplectic manifold M, and hence the existence of a*-structure incorporated by
complex conjugation (the *-structure of the algebra of classical observables) is strongly
recommended. Moreover, theWeyl-Moyal product on 7*RR”" giving acorrect description
of the quantization of observables that are polynomials in the coordinates is of Weyl
type, motivating the general interest in such star products (cf. [5, 6] for further details).
Inadditionthereisthe possibility of constructing *-representationsfor star productswith
C as *-structure under the precondition of having defined aformally positive functional
on asuitabletwosided ideal in C°°(M)[[v]] that is stable under C by aformal analogue
of the GNS construction (cf. [8] for details).

To conclude this section we shall discuss the question of existence of special equiv-
alence transformations between equivalent star products satisfying Egs. (31) and (32).
The following proposition states that for two equivalent star products enjoying these
additional algebraic propertiesthere are always equival ence transformations being com-
patible with the mappings C and P.

Proposition 4. Let (C*°(M)[[v]],*1) and (C*(M)[[v]],x2) denote equivalent star
product algebras.

(i) In casex1 andx2 haveC incorporated as'-structure, thenC*°(M)[[v]],*1) and
(C*®(M)[[v]], x2) are equivalent a%-algebras (respC-equivalent), i.e. there is an
equivalence transformatiof between them satisfyigSC = S.

(i) In case x1 and x> have the v-parity property then(C*°(M)[[v]],*1) and
(C*®(M)[[v]],*2) are P-equivalent, i.e. there is an equivalence transformaton
between them satisfyiRSP = S.

(iii) In casex1 and x> are of Weyl type theC>° (M)[[v]],*1) and (C®°(M)[[v]],*2)
are Weyl-equivalent, i.e. there is an equivalence transformafidretween them
satisfyingCSC = S andPSP = S.

Proof. For the proof of part (i) we consider some equivalencetransformation 7~ between
%1 and o satisfying T (f x1 g) = (T f) x2 (Tg) foradl f, g € C*°(M)[[v]]. Obviously
C7C is adso an equivalence transformation between x1 and x> and hence there is an
automorphism A of x1 such that CTC = T .A. Conjugating this eguation with C and
using C*> = id we obtain 7 = CTCCAC = T.ACAC yielding ACAC = id. Since
any automorphism of x1 starting with id has the shape A = exp(vD), where D is a
derivation of x; we get id = exp(vD) exp(—vCDC) implying CDC = D. For ¢t € R
we consider the automorphisms A’ := exp(rvD) of %1 satisfying CA'C = (A")~! =
A7 Now S; := T.A" obvioudly is an equivalence between x1 and xo for all + € R
and we have CS,C = CTCA™ = TAY™ = S1_,. Therefore S := Sy satisfies
S(f*18) = (Sf) *2 (Sg) and CSC = S proving part (i) of the proposition. For the
proof of part (ii) one proceeds completely analogously replacing C by P in the above
argumentation. For the proof of part (iii) we consider some equivalence transformation
T between 1 and x> and use the results of part (i) and part (ii) to obtain two further
equivalence transformations S; = 7. Ai/ 2 and S =T. Aé/ 2 satisfying CS1C = S; and
PS,P = S,, where A; and Az are automorphisms of =1 given by C7TC = 7 .A; and
PTP = T A. In genera S falsto satisfy PS1P = S1 aswell as S, fails to commute
with C, but by an analogous procedure as for the proofs of the statements (i) and (i)
81 and S» can be modified such that the resulting equival ence transformations have the
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desired properties. Since P commutes with C we have CP7TPC = PCT CP implying
the crucial equation A1CA,C = A2P.A1P by the definitions of A1 and .A2. Now we
compute CS>C = Sp A, Y 2A1CA;/ 2c = SoFo, where Fp := A, Y ZAch%/ 2Cisan
automorphism of 1 starting with id and hence 7> = exp(vD>) with a derivation D>
of x1. Asin (i) one gets 7,CF,C = id and R, := Sg]fg/z with ]—'21/2 = exp(5D2) is
an equivalence transformation between %1 and , satisfying CR2C = Rp. It remains
to show that R, satisfies PRoP = R». To this end we compute PF>P using A1C =
.AzPA;LPCAZ_l,

PFLP = PAY?PAIPCA, Y2CP = A, Y2 4,CAY°C = Fo.

Thus we find PR,P = PSzPP}"zl/ZP = 82]-";7/2 = R, proving part (iii). One can

also modify S; to obtain another equivalence transformation R1 = 81]-'11/ 2 havi ng the
desired properties where F; := AIl/ 2AZPAi/ ’p againisan automorphism of x;. 0O
Remark 3.The assertion about the existence of equivalence transformations between
equivalent star products with a *-structure incorporated by C that commute with C has
an important consequence for the GN'S representations one can construct for these star
product algebras, namely that such an equivalence transformation induces a unitary
map between the GNS Hilbert spaces obtained by the GNS construction relating the
corresponding GNS representations (cf. [6, Prop. 5.1]).

A. The Deformed Cartan Formula

The aim of this section isto prove the deformed Cartan formulathat was very useful for
our computationsin Sect. 4. Thisformulaand the proof of it which we shall give already
appeared in [4, Lemma 4.6.]. A similar result has also been derived in [21, Prop. 4.3.]
where the vector field with respect to which the Lie derivative is computed is assumed
to be affine with respect to the symplectic connection V.

Proposition 5. For all vector fieldsX € I'*°(T M) the Lie derivativeLy : WQA —
W® A can be expressed in the following manner:

Lx = Dig(X) +ia(X)D + i5s(X) + (dx' ® Dis(Va, X) + %ad(ia(X)rl (39)

In caseX = X is the Hamiltonian vector field of a functioh e C*°(M), i.e.ixfa) =
df this formula takes the following form:

Lx, = DiaX) +isX)D = o ([ +df © 1+ 3Ddf ©1- 10X ). (@0)

whereD = dx' v V,, denotes the operator of symmetric covariant derivation.

Proof. The proof of formula (39) is obtained by collecting the following formulas, the
proofs of which are al straightforward computations just using the definitions of the
involved mappings and applying them to factorized sectionsa = A ® « € WQA:

8ia(X) +ia(X)8 = is(X), (41)
1 1
" @(r)iq(X) + i, (X)ad(r)) = ;ad(ia(X)r), (42)
(Vig(X) +ia(X)V)(A® ) = VxA®a + A ® Lya. (43)
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For a symmetric one-form A it is easy to seethat VA = LxA — dx' v is(Vy, X)A.
Together with the observation that the operators on both sides of this equation are deriva-
tions with respect to the v-product, this and (43) imply

Vig(X) +i,(X)V = Lx — (dx' ® D)ig(Vy, X). (44)

Combining (41), (42) and (44) we get the first statement of the proposition. For the
second statement one just has to observe that ad( ) = 0 and that

is(Xy) = —%ad(df ®1)  (dx' ®Dis(VyXys) = —%ad (%Ddf ® 1> . (45)

which is again a straightforward computation in local coordinates using the explicit
shape of the deformed product o. Using these equations combined with (39) finishesthe
proof of (40). O

B. Computation of CZ‘ﬁ

This section just gives a sketch of the computations that are necessary to determine the
anti-symmetric part of the bidifferential operator C» that occurs in the expression of
the Fedosov star product f % g = fg + vC1(f, g) + v?Ca(f, g) + ... of two functions
f, g € C®(M).

Proposition 6. The anti-symmetric pad, of the bidifferential operatoC; is given by

C3 (1.9 = 5 (Caf.9) — Cale, 1) =~ (21 +d52) (X7 Xp) = p2(Xs. Xo),

(46)
where f, g € C*°(M) and X ; resp. X, denote the corresponding Hamiltonian vector
fields with respect ta and sf’) € I'*®(T*M) denotes the one-form occurring in the

first order ofv in s® = (sé3) + vsf’)) ®1, Wheresé3) e I°(\/3 T*M), that comes up
from the normalization conditiof1r = s (cf. Eq. (3)). Thus we have

c(#)® = —2C;" = —2[pp] = [S]. (47)

Proof. Using the shape of the fibrewise product o we obtain f x g — g % f = vo (A"
is(0,)T(f)is(35)7(g)) + O (v3). To compute the terms of order |ess than or equal to two
in v wethusonly havetoknow 7 (f) and t(g) except for terms of symmetric degree and
v-degree greater than one. Henceit isenough tolook at 7 (£)©, ..., 7(f)®, sincefor
7(f)® with k > 4 either the symmetric degree or the v-degree of the occurring terms
aregreater than one. Looking at the recursion formula (6) we thus seethat the only terms
of r that areneeded aregiven by r@ = §s@ andr® = §5@ + 5 L (R +vQ1+ Vr@ —
1,@ o r@) whichisobtained from (4) by writing down the terms of total degree 2 resp.
3. Writing ~ for equations holding modulo terms of symmetric degree resp. v-degree
greater than one, one gets by lengthy but obvious computation that

1(HO =,
(HP =df o1,

1
t(H? = SDdf ®1—is(X)sf ©1~0,

1
(NP ~ s (X )r®) ~ —v <is(xf)s§4) +5ix, (Ql + dsf))) 1
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where we have written s = (sf') + vs§4)) ® 1 with s,E4) e T (\/* T*M). Inserting

theseresultsinto f x g — g * f asgiven abovethetermsinvolving sé‘” € I‘“"’(\/2 T*M)
cancel because of their symmetry and one gets

frg—gxf=vif.g)—viQu+ds?)(Xs. Xo) + 003
proving the proposition. 0O

One should observe that this is the only instance of our proof of Theorem 2 where
the modified normalization condition on r enters our considerations, whereas the other
terms of ¢(x) could be computed without making use of it.
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