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Abstract: In this paper we explicitly construct local ν-Euler derivations Eα = ν∂ν +
Lξα + Dα , where the ξα are local, conformally symplectic vector fields and the Dα

are formal series of locally defined differential operators, for Fedosov star products on
a symplectic manifold (M,ω) by means of which we are able to compute Deligne’s
characteristic class of these star products. We show that this class is given by 1

ν
[ω] +

1
ν
[
], where 
 ∈ νZ2

dR(M)[[ν]] is a formal series of closed two-forms on M the
cohomology class of which coincides with the one introduced by Fedosov to classify
his star products. Moreover, we consider star products that have additional algebraic
structures and compute the effect of these structures on the corresponding characteristic
classes of these star products. Specifying the constituents of Fedosov’s construction we
obtain star products with these special properties. Finally, we investigate equivalence
transformations between such special star products and prove existence of equivalence
transformations being compatible with the considered algebraic structures.

1. Introduction

Since the very beginning of deformation quantization in the pioneering articles [2]
by Bayen, Flato, Frønsdal, Lichnerowicz and Sternheimer there has been not only an
immense interest in answering the question of existence of star products � (i.e. formal,
associative deformations of the classical Poisson algebra of complex-valued functions
C∞(M) on a symplectic or, more generally, Poisson manifold M , such that in the first
order of the formal parameter ν the commutator of the star product yields the Poisson
bracket) positively, but also in finding a classification of the star product algebras up to
isomorphy of algebras. Therefore the proofs of existence given by DeWilde and Lecomte
[11,12], Fedosov [13,14] in the symplectic case and recently by Kontsevich [20] in the
general case of a Poisson manifold always contained results on classification. Moreover,
there have been several other results on classification up to equivalence by Nest and
Tsygan [22,23], Bertelson, Cahen and Gutt [3], Weinstein and Xu [24]. Their common
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result is that every star product on a symplectic manifold is equivalent to a Fedosov
star product. A comparison between the results of DeWilde, Lecomte and Fedosov is
due to Halbout and can be found in [17]. In the case of deformation quantizations with
separation of variables on Kähler manifolds Karabegov proved existence and gave a
classification using a formal deformation of the Kähler form in [18,19].

In his article [10] Deligne has introduced the notions of intrinsic derivation-related
and characteristic classin order to compare the different constructions and classifica-
tions of DeWilde, Lecomte and Fedosov. In his paper Deligne uses the language of
algebraic geometry to approach deformation theory and proves (cf. [10, Prop. 3.6.])
that the relative classc(∗)− c(∗′) of two Fedosov star products being the difference of
the characteristic classes of two Fedosov star products ∗, ∗′ equals 1

ν
(F (∗) − F(∗′)),

where F(∗) denotes the cohomology class of the Weyl-curvature Fedosov introduced to
classify his star products, that naturally arises when one constructs a star product using
Fedosov’s method.

Recently, Gutt and Rawnsley [15] gave an alternative approach to Deligne’s various
classes that avoids using methods of algebraic geometry. They also show how the classi-
fication of DeWilde and Lecomte fits into this framework (cf. [15, Sect. 7]). Using their
methods we succeed in slightly generalizing Deligne’s result in proving that Deligne’s
characteristic class equals 1

ν
times the cohomology class of the Weyl-curvature. We

should like to emphasise that our proof is purely algebraic and does not use any results
on sheaf cohomology except for the de Rham isomorphism relating the second Čech
cohomology with the second de Rham cohomology.

The interest in the relation between the characteristic class and the Fedosov class
is also motivated by the occurrence of the latter in formulas for canonical traces resp.
trace densities obtained by Halbout in [16] whose results are based on investigations
of invariants in the cyclic cohomology of M made by Connes, Flato and Sternheimer
[9]. Moreover, he has shown that the cocycle of Connes, Flato, Sternheimer which is an
invariant for closed star products on a symplectic manifold can be expressed by Â(TM)

and the Fedosov class.
The paper is organized as follows:After a brief summary of Fedosov’s construction of

star products on symplectic manifolds we close Sect. 2 by a short review of the definitions
of Deligne’s various classes. Section 3 constitutes the main part of our work, where
we give an explicit construction of local ν-Euler derivations for an arbitrary Fedosov
star product. After these preparations it is an easy task computing Deligne’s derivation-
related and characteristic class in Sect. 4. As an application of the properties of Deligne’s
characteristic class and its relation to Fedosov’s Weyl-curvature we study star products
of special type in Sect. 5 that satisfy special algebraic identities with respect to complex
conjugation and the mapping ν 
→ −ν changing the sign of the formal parameter
and compute the influence on the corresponding characteristic classes. Moreover, we
can show that there are always Fedosov star products satisfying these special algebraic
identities the characteristic class of which coincides with a suitably given element of
[ω]
ν

+H 2
dR(M)[[ν]]. Considering equivalent star products satisfying the same algebraic

identities with respect to the mappings mentioned above we can show that there are
always equivalence transformations between these star products commuting with these
mappings. In Appendix A we give a short proof of the deformed Cartan formula that is of
great value for our considerations in Sect. 4, but seems to be folklore.A furtherAppendix
B is added for completeness giving the computation of the term of the characteristic class
that cannot be determined from the algebraic considerations in Sect. 4.
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2. Fedosov Star Products and Deligne’s Characteristic Class

In this section we shall briefly recall Fedosov’s construction of a star product for a given
symplectic manifold (M,ω). The notation is mainly the same as in Fedosov’s book [14]
and in [13]. In addition we collect the definitions as they were introduced in [10] of
Deligne’s intrinsic derivation-related classand Deligne’s characteristic classand the
relations between them. For proofs and a detailed discussion of these topics the reader
is referred to the exposition [15].

Let (M,ω) be a smooth symplectic manifold and define

W⊗�(M) := (
X∞
s=0C

(
�∞ (∨s

T ∗M ⊗ ∧
T ∗M

))) [[ν]]. (1)

If there is no possibility for confusion we simply write W⊗� and denote by W⊗�k

the elements of anti-symmetric degree k and set W := W⊗�0. For two elements
a, b ∈ W⊗� one defines their pointwise product denoted by µ(a ⊗ b) = ab by the
symmetric ∨-product in the first factor and the anti-symmetric ∧-product in the second
factor. Then the degree-maps degs and dega with respect to the symmetric and anti-
symmetric degree are derivations of this product and (W⊗�,µ) is super-commutative
with respect to the anti-symmetric degree. For a vector field X we define the symmet-
ric substitution (insertion) is(X) and the anti-symmetric substitution ia(X) which are
super-derivations of symmetric degree −1 resp. 0 and anti-symmetric degree 0 resp.
−1. Following Fedosov we define δ := (1 ⊗ dxi)is(∂i) and δ∗ := (dxi ⊗ 1)ia(∂i),
where x1, . . . , xn are local coordinates for M and ∂i = ∂xi denotes the corresponding
coordinate vector fields. For a ∈ W⊗� with degsa = ka and degaa = la we define
δ−1a := 1

k+l
δ∗a if k + l �= 0 and δ−1a := 0 if k + l = 0. Clearly δ2 = δ∗2 = 0. More-

over, we denote by σ : W⊗� → C∞(M)[[ν]] the projection onto the part of symmetric
and anti-symmetric degree 0. Then one has the following ‘Hodge-decomposition’ for
any a ∈ W⊗� (see e.g. [13, Eq. (2.8)]): a = δδ−1a+ δ−1δa+σ(a). Now we consider
the fibrewise associative deformation ◦ of the pointwise product having the form

a ◦ b = µ ◦ exp
(ν

2
�ij is(∂i) ⊗ is(∂j )

)
(a ⊗ b), (2)

where�ij denotes the components of the Poisson tensor corresponding to the symplectic
form ω. Moreover, we define dega-graded super-commutators with respect to ◦ and set
ad(a)b := [a, b]. Now degs is no longer a derivation of the deformed product ◦ but
Deg := degs + 2degν is still a derivation and hence the algebra (W⊗�, ◦) is formally
Deg-graded, where degν := ν∂ν . We shall refer to this degree as total degree.

According to Fedosov’s construction of a star product we consider a torsion free,
symplectic connection ∇ on TM that extends in the usual way to a connection ∇ on
T ∗M and symmetric resp. anti-symmetric products thereof. Using this connection we
define the map ∇ : W⊗� → W⊗� by ∇ := (1⊗dxi)∇∂i . Then due to the property of
the connection being symplectic ∇ turns out to be a super-derivation of anti-symmetric
degree 1 and symmetric and total degree 0 of the fibrewise product ◦. Moreover [δ,∇] =
0 since the connection is torsion free and ∇2 turns out to be an inner super-derivation
∇2 = − 1

ν
ad(R), where R := 1

4ωitR
t
jkldx

i ∨ dxj ⊗ dxk ∧ dxl ∈ W⊗�2 involves the
curvature of the connection. Moreover, one has δR = 0 = ∇R as consequences of the
Bianchi identities.

Now remember the following facts which are just restatements of Fedosov’s original
theorems in [13, Thm. 3.2, 3.3] resp. [14, Thm. 5.3.3]:
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For all 
 = ∑∞
i=1 ν

i
i ∈ νZ2
dR(M)[[ν]] and all s ∈ W of total degree ≥ 3 with

σ(s) = 0 there exists a unique element r ∈ W⊗�1 of total degree ≥ 2 such that

δr = R + ∇r − 1

ν
r ◦ r + 1 ⊗ 
 and δ−1r = s. (3)

Moreover r satisfies the formula

r = δs + δ−1
(
R + 1 ⊗ 
 + ∇r − 1

ν
r ◦ r

)
(4)

from which r can be determined recursively. In this case the Fedosov derivation

D := −δ + ∇ − 1

ν
ad(r) (5)

is a super-derivation of anti-symmetric degree 1 and has square zero: D2 = 0.
Then for any f ∈ C∞(M)[[ν]] there exists a unique element τ(f ) ∈ ker(D) ∩ W

such that σ(τ(f )) = f and τ : C∞(M)[[ν]] → ker(D) ∩ W is C[[ν]]-linear and
referred to as the Fedosov-Taylor series corresponding to D. In addition τ(f ) can be
obtained recursively for f ∈ C∞(M) from

τ(f ) = f + δ−1
(

∇τ(f ) − 1

ν
ad(r)τ (f )

)
. (6)

Since D as constructed above is a ◦-super-derivation ker(D)∩W is a ◦-sub-algebra and
a new associative product ∗ for C∞(M)[[ν]] is defined by pull-back of ◦ via τ , which
turns out to be a star product.

Observe that in (3) we allowed for an arbitrary element s ∈ W with σ(s) = 0
that contains no terms of total degree lower than 3, as normalization condition for r , i.e.
δ−1r = s instead of the usually used equation δ−1r = 0. In the sequel we shall especially
show that this more general normalization condition does not affect the equivalence class
of the resulting star product. In the following we shall refer to the associative product ∗
defined above as the Fedosov star product. Moreover, we shall denote byF(∗) Fedosov’s
characteristic class of the star product ∗ as discussed in [14, Sect. 5.3] which is given by
F(∗) = [ω] + [
].

Next we collect some basic concepts of characteristic classes for star products as
they can be found in [10,15]. Deligne’s characteristic class c(�) of a star product has
been introduced in [10] and classifies in a functorial way the equivalence classes of star
products on a symplectic manifold (M,ω). It lies in the affine space [ω]

ν
+H 2

dR(M)[[ν]]
and can be calculated by methods of Čech cohomology. Let us provide some details of
the calculation as far as they are needed for our purposes. At this instance we should
mention that our conventions, that are as in [1], differ from those used in [15] by a sign
in the Poisson bracket causing the positive sign in front of [ω]

ν
in c(�).

If � is a star product on the symplectic manifold (M,ω) there exists a good open
cover {Uα}α∈I of M (i.e. all finite intersections of the Uα are contractible) together
with a family {Eα}α∈I of local ν-Euler derivationsof (C∞(Uα)[[ν]],�) i.e. a family of
derivations Eα of � over Uα having the form

Eα = ν∂ν + Lξα + Dα, (7)
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where ξα is conformally symplectic (Lξαω
∣∣Uα

= ω|Uα
) and Dα = ∑∞

i=1 ν
iDα,i is a

formal series of differential operators over Uα . The existence of such ν-Euler derivations
has already been shown in [15] using cohomological methods, whereas in the case of
a Fedosov star product we are going to give a very direct, purely algebraic proof of
this fact in the next section since for our purposes we need a quite concrete formula
for the differential operators Dα . As every ν-linear derivation over a contractible, open
set U is of the form 1

ν
ad�(d) with d ∈ C∞(U)[[ν]] there exist formal functions dαβ ∈

C∞(Uα ∩ Uβ)[[ν]] fulfilling

Eα − Eβ = 1

ν
ad�(dαβ) (8)

over Uα ∩ Uβ . This fact can also be seen directly from the results of the following two
sections. Now, whenever Uα ∩ Uβ ∩ Uγ �= ∅ the sums dαβγ = dβγ − dαγ + dαβ lie
in C[[ν]] and define a 2-cocycle whose Čech class [dαβγ ] ∈ H 2(M,C)[[ν]] does not
depend on the choices made and the corresponding class d(�) ∈ H 2

dR(M)[[ν]] is called
Deligne’s intrinsic derivation-related class.

Definition 1 (cf. [15, Def. 6.3]).Deligne’s characteristic classc(�)of a star product�on
(M,ω) is the elementc(�) = [ω]

ν
+∑∞

i=0 ν
ic(�)i of the affine space[ω]

ν
+H 2

dR(M)[[ν]]
defined by

c(�)0 = −2C−
2
,
, ∂νc(�) = 1

ν2 d(�). (9)

HerebyC−
2
,

is the image under the projection onto the second part in the decomposition
H 2

Chev,nc(C
∞(M), C∞(M)) = C ⊕H 2

dR(M) of the second Chevalley cohomology (null
on constants, on(C∞(M), { , }) with respect to the adjoint representation) of the anti-
symmetric partC−

2 (f, g) = 1
2 (C2(f, g) − C2(g, f )) of the bidifferential operatorC2

in the expansion of�which is a2-cocycle with respect to this cohomology by the Jacobi-
identity for star commutators.

Remark 1.Notice that for Fedosov star products ∗ we haveC1(f, g) = 1
2 {f, g} implying

(cf. [15, Rem. 6.1]) that C−
2 (f, g) = ρ2(Xf ,Xg) for a closed two-form ρ2 on M ,

where Xf denotes the Hamiltonian vector field with respect to ω that corresponds to

f ∈ C∞(M), and hence C−
2
, = [ρ2].

3. Explicit Construction of Local ν-Euler Derivations

To simplify the notation we use the convention that whenever an equation contains
indices α, β, γ this means that it is valid on the intersection of the members of the good
open cover whose indices occur in it. As a first step in the construction of local ν-Euler
derivations we have to find local, conformally symplectic vector fields ξα . Since dω = 0
we can find one-forms θα on each Uα such thatω = −dθα by the Poincaré lemma. Using
these local one-forms we can define local vector fields ξα by iξαω = −θα that obviously
satisfy Lξαω = ω. Using these vector fields we find the following lemma:

Lemma 1. LetHα : W⊗�(Uα) → W⊗�(Uα) be defined by

Hα := ν∂ν + Lξα , (10)
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thenHα is a local (super-)derivation with respect to the fibrewise product◦ of anti-
symmetric and total degree0, i.e.

Hα(a ◦ b) = Hαa ◦ b + a ◦ Hαb (11)

for all a, b ∈ W⊗�(Uα). Moreover, we have[Lξα , δ] = [Lξα , δ
∗] = 0 and [Hα, δ] =

[Hα, δ
∗] = 0.

Proof. The proof is a straightforward computation using that ν∂ν as well as Lξα are
derivations of the undeformed product µ and the equation Lξα� = −� which follows
from Lξαω = ω. The commutation relations are obvious from the very definitions. ��

At first sight it might be desirable to construct local derivations with respect to ∗ by
restricting Hα to C∞(Uα)[[ν]]. In fact this can be done in some special cases where the
connection ∇ is compatible with the Lie derivative with respect to the vector fields ξα .
An important example for this situation are homogeneous star products on cotangent
bundles that have been discussed in [5,6]. But this cannot be done in general since the
failure of the connection to be compatible with the above Lie derivatives causes that the
Fedosov derivation D does not commute with Hα and hence Hα does not map elements
of ker(D) to elements of ker(D). So we try to extend Hα to a ◦-(super-)derivation of
anti-symmetric degree 0 that commutes with D. To this end we make the ansatz

Eα = Hα + 1

ν
ad(hα) = ν∂ν + Lξα + 1

ν
ad(hα) (12)

with hα ∈ W(Uα) such that σ(hα) = 0 and compute [D, Eα].
Lemma 2. LetEα be defined as above, then we have

[D, Eα] = 1

ν
ad(Dhα) + [∇,Lξα ] + 1

ν
ad(Hαr − r). (13)

Proof. The proof of this formula relies on the fact that D is a super-derivation of anti-
symmetric degree 1 with respect to◦ and thatHα is a (super-)derivation of anti-symmetric
degree 0 with respect to ◦. Moreover, we used [δ,Hα] = 0 and [∇,Hα] = [∇,Lξα ].��

Now we consider the mapping [∇,Lξα ] more closely. The formulas we collect in
the following two lemmas are essential for the whole construction of local ν-Euler
derivations.

Lemma 3. For the locally defined vector fieldsξα the mapping[∇,Lξα ] enjoys the
following properties:

(i) In local coordinates one has

[∇,Lξα ] = (dxj ⊗ dxi)is((Lξα∇)∂i ∂j ) = (dxj ⊗ dxi)is(Sα(∂i, ∂j )), (14)

where the local tensor fieldSα ∈ �∞(T ∗Uα ⊗ T ∗Uα ⊗ T Uα) is defined by

Sα(∂i, ∂j ) = (Lξα∇)∂i ∂j := Lξα∇∂i ∂j − ∇∂iLξα ∂j − ∇Lξα ∂i
∂j

= R(ξα, ∂i)∂j + ∇(2)
(∂i ,∂j )

ξα. (15)
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(ii) Sα as defined above is symmetric, i.e.Sα ∈ �∞(
∨2

T ∗Uα ⊗ T Uα).
(iii) For all X, Y,Z ∈ �∞(T Uα) we haveω(Z, Sα(X, Y )) = −ω(Sα(X,Z), Y ).

Proof. The proof of the local expression for [∇,Lξα ] is a straightforward computation.
The last equality in (15) follows from the torsion freeness of the connection ∇. The fact
that Sα is symmetric is a consequence from the first Bianchi identity for the connection
∇. (iii) follows from a direct computation essentially using ∇ω = 0 and Lξαω = ω. ��

Now the local tensor fields Sα as defined above naturally give rise to elements Tα of
W⊗�(Uα) of symmetric degree 2 and anti-symmetric degree 1 by

Tα(Z, Y ;X) := ω(Z, Sα(X, Y )). (16)

In local coordinates this reads Tα = 1
2ωijSα

j
kldx

i ∨ dxl ⊗ dxk , where Sα
j
kl =

dxj (Sα(∂k, ∂l)) denotes the components of Sα in local coordinates.

Lemma 4. The local tensor fieldTα as defined in (16) satisfies the following equations:

(i)

1

ν
ad(Tα) = [∇,Lξα ], (17)

(ii)

Tα = ia(ξα)R + ∇
(

1

2
Dθα ⊗ 1

)
, (18)

where the operator of symmetric covariant derivationD is defined byD := dxi ∨
∇∂i .

(iii)

δTα = 0 and ∇Tα = LξαR − R. (19)

Proof. The first assertion easily follows from the properties of Sα given in Lemma 3 by a
direct computation. Part (ii) can be easily proven by direct computation using (15) and the
definitions ofR and Tα . The equations given in (iii) follow from the super-Jacobi-identity
applied to the equations [Hα, [δ,∇]] = 0 and [Hα,

1
2 [∇,∇]] = −[Hα,

1
ν

ad(R)]. For
the second equation one has to observe that R does not depend on ν and again that Hα is
a derivation with respect to ◦. Moreover, we used the fact that the only central elements
of the Fedosov algebra W⊗� with respect to ◦ with symmetric degree 1 resp. 2 are
zero. ��

Collecting our results we have shown that

[D, Eα] = 1

ν
ad(Dhα + Tα + Hαr − r). (20)

Our next aim is to prove that hα can be chosen such that Dhα +Tα +Hαr− r = 1⊗Aα ,
where Aα is a formal series of locally defined one-forms that have to be chosen suitably,
since then [D, Eα] = 0. The necessary condition for this equation to be solvable is
D(1 ⊗ Aα − Tα − Hαr + r) = 0 since D2 = 0. But this is also sufficient since
the D-cohomology on elements a with positive anti-symmetric degree is trivial since
one has the following homotopy formula DD−1a + D−1Da = a, where D−1a :=
−δ−1

(
1

id−[δ−1,∇− 1
ν

ad(r)]a
)

(cf. [14, Thm. 5.2.5]).
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Lemma 5. Choosing local potentials4iα for the closed two-forms
i onUα, and defin-
ing

Aα := (id − Hα)4α = (id − Hα)

∞∑
i=1

νi4iα, (21)

the equationD(1 ⊗ Aα − Tα − Hαr + r) = 0 is fulfilled.

Proof. Using Eq. (3), [Hα, δ] = 0 and Eq. (11) as well as Lemma 4 (i), (iii) one computes

D (Hαr − r) = 1 ⊗ (
 − Hα
) + R − LξαR + [∇,Lξα ]r
= 1 ⊗ (id − Hα)
 − ∇Tα + 1

ν
ad(Tα)r.

On the other hand we get from δTα = 0 and dAα = d(id − Hα)4α = (id − Hα)
 that

D (1 ⊗ Aα − Tα) = 1 ⊗ (id − Hα)
 − ∇Tα + 1

ν
ad(r)Tα,

proving the lemma. ��
This lemma enables us to prove the following important proposition.

Proposition 1. There are uniquely determined elementshα ∈ W(Uα) such thatDhα =
1 ⊗ Aα + r − Hαr − Tα andσ(hα) = 0. Moreoverhα is explicitly given by

hα = D−1 (1 ⊗ Aα + r − Hαr − Tα) , (22)

whereD−1a = −δ−1
(

1
id−[δ−1,∇− 1

ν
ad(r)]a

)
. With these elementshα the fibrewise, local

ν-Euler derivationsEα = ν∂ν+Lξα + 1
ν

ad(hα) commute with the Fedosov derivationD.

Proof. Using the homotopy formula a = DD−1a + D−1Da that is valid for elements
a ∈ W⊗� with positive anti-symmetric degree on 1 ⊗ Aα + r − Hαr − Tα we get

1 ⊗ Aα + r − Hαr − Tα = DD−1(1 ⊗ Aα + r − Hαr − Tα)

from the preceding lemma. Since we want the last expression to equal Dhα one gets
hα = D−1(1 ⊗ Aα + r − Hαr − Tα) + τ(ϕα) with arbitrary, locally defined formal
functions ϕα ∈ C∞(Uα)[[ν]]. From the demand σ(hα) = 0 we get σ(τ(ϕα)) = ϕα = 0
since D−1 raises the symmetric degree and the formula for hα is proven. The fact that
Eα commutes with D now follows from Eq. (20). ��

Using the fibrewise, local ν-Euler derivations Eα we constructed we are in the position
to define local ν-Euler derivations with respect to the Fedosov star product ∗.

Definition 2. Lethα ∈ W(Uα) be given as in Eq. (22). Denoting byEα : W⊗�(Uα) →
W⊗�(Uα) the fibrewise localν-Euler derivationsEα = ν∂ν + Lξα + 1

ν
ad(hα) we

define the mappingsEα : C∞(Uα)[[ν]] → C∞(Uα)[[ν]] by

Eαf := σ (Eατ(f )) (23)

for f ∈ C∞(Uα)[[ν]].



Deligne’s Characteristic Class of Fedosov Star Products 279

With this definition we get the main result of this section.

Theorem 1.The mappingEα as defined in Eq. (23) is a local derivation with respect to
the Fedosov star product∗. MoreoverEα = ν∂ν +Lξα +Dα, whereDα = ∑∞

i=1 ν
iDα,i

is a formal series of differential operators overUα.

Proof. The fact that Eα is a local derivation with respect to ∗ is obvious from the fact
that Eα is a local derivation with respect to ◦ and the property of Eα mapping elements in
W(Uα) ∩ ker(D) to elements in W(Uα) ∩ ker(D) which was achieved by constructing
Eα such that [D, Eα] = 0. The assertion about the shape of Eα follows from the fact that
σ commutes with ν∂ν and Lξα yielding Eαf = ν∂νf + Lξαf + 1

ν
σ (ad(hα)τ (f )). The

fact that the last term involving hα and τ defines a formal series of differential operators
is obvious from the properties of the Fedosov-Taylor series. The only thing one has to
observe is that this formal series starts at order one in the formal parameter. But this
follows from the fact that hα only contains terms of total degree greater or equal to
three, which is a consequence of D−1 raising the symmetric degree, not decreasing the
ν-degree and 1 ⊗ Aα + r − Hαr − Tα only containing terms of total degree greater or
equal to two. ��

4. Computation of Deligne’s Characteristic Class

With the aid of the local ν-Euler derivations we constructed in the preceding section we
are in the position to compute Deligne’s intrinsic derivation-related class d(∗) and hence
the characteristic class c(∗) for every Fedosov star product ∗ as defined in Sect. 2. To
this end we have to find formal functions dαβ ∈ C∞(Uα ∩Uβ)[[ν]] such that on Uα ∩Uβ

we have Eα − Eβ = 1
ν

ad∗(dαβ). From the definition of the ν-Euler derivations Eα and
the deformed Cartan formula (cf. Appendix A) we have the following:

Lemma 6. For g ∈ C∞(Uα ∩ Uβ)[[ν]] we have(
Eα − Eβ

)
(g) (24)

= 1

ν
σ

(
ad

(
hα − hβ + fαβ + dfαβ ⊗ 1 + 1

2
Ddfαβ ⊗ 1 − ia(Xfαβ )r

)
τ(g)

)
,

wherefαβ ∈ C∞(Uα ∩ Uβ) satisfiesdfαβ = θα − θβ and the local one-formsθα satisfy
dθα = −ω.

Proof. We have (Eα − Eβ)(g) = σ
((Lξα−ξβ + 1

ν
ad(hα − hβ)

)
τ(g)

)
by definition of

Eα . Now on Uα ∩ Uβ we have −dθα = ω = −dθβ and hence by the Poincaré lemma
we can find locally defined functions fαβ such that dfαβ = θα − θβ . Now by definition
of the local vector fields ξα we get d(−fαβ) = iξα−ξβω implying that ξα − ξβ = X−fαβ

is the Hamiltonian vector field of the function −fαβ . Thus we can apply the deformed
Cartan formula (40) proven in Proposition 5 and immediately obtain the statement of
the lemma since Dτ(g) = 0 and ia(X−fαβ )τ (g) = 0. ��

Now we are to show that the term occurring in the argument of ad in Eq. (24) can be
extended by adding a locally defined formal function aαβ ∈ C∞(Uα ∩ Uβ)[[ν]] (clearly
satisfying ad(aαβ) = 0) such that the whole argument is the Fedosov–Taylor series
τ(fαβ −σ(ia(Xfαβ )r)+aαβ) of the local formal function dαβ := fαβ −σ(ia(Xfαβ )r)+
aαβ . If we succeed to find such a local function, Eq. (24) yields Eα − Eβ = 1

ν
ad∗(dαβ)
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enabling us to give an expression for Deligne’s intrinsic derivation-related class d(∗) of
∗. We thus have to show that aαβ can be chosen such that

D
(
hα − hβ + aαβ + fαβ + dfαβ ⊗ 1 + 1

2
Ddfαβ ⊗ 1 − ia(Xfαβ )r

)
= 0. (25)

Lemma 7.With the notations from above we have

D
(
hα − hβ + fαβ + dfαβ ⊗ 1 + 1

2
Ddfαβ ⊗ 1 − ia(Xfαβ )r

)
= 1 ⊗ ((iξα
 + Aα) − (iξβ
 + Aβ)), (26)

whereAα is given as in Lemma 5.

Proof. From the construction of the elements hα ∈ W(Uα) we gave in the preceding
section (cf. Proposition 1) we get D (

hα − hβ
) = 1 ⊗ (Aα −Aβ)−Tα +Tβ −Lξα−ξβ r .

Another straightforward calculation yields D (
fαβ + dfαβ ⊗ 1 + 1

2Ddfαβ ⊗ 1
) =

− 1
ν

ad(r)
(
dfαβ ⊗ 1 + 1

2Ddfαβ ⊗ 1
) + 1

2∇ (
Ddfαβ ⊗ 1

)
. Using the deformed Cartan

formula once again combined with Eq. (3) and the definition of D we get

D(−ia(Xfαβ )r)

= −(Dia(Xfαβ )r + ia(Xfαβ )Dr) + ia(Xfαβ )

(
−δr + ∇r − 1

ν
ad(r)r

)

= Lξα−ξβ r + 1

ν
ad

(
−dfαβ ⊗ 1 − 1

2
Ddfαβ ⊗ 1 + ia(Xfαβ )r

)
r

+ ia(ξα − ξβ)

(
R + 1 ⊗ 
 + 1

ν
r ◦ r

)

= Lξα−ξβ r + 1

ν
ad

(
−dfαβ ⊗ 1 − 1

2
Ddfαβ ⊗ 1

)
r + ia(ξα − ξβ)R + 1 ⊗ iξα−ξβ
,

since 1
ν
ia(ξα − ξβ)(r ◦ r) = − 1

ν
ad(ia(Xfαβ )r)r . All these results together with Eq. (18)

and dfαβ = θα − θβ prove the statement of the lemma. ��
After these preparations we are able to formulate the following proposition.

Proposition 2. There are locally defined formal functionsdαβ ∈ C∞(Uα ∩ Uβ)[[ν]]
such thatEα − Eβ = 1

ν
ad∗(dαβ). Moreover, these formal functions satisfyddαβ =

dfαβ − d(σ (ia(Xfαβ )r))+ daαβ = θα − θβ + d(σ (ia(ξα)r))− d(σ (ia(ξβ)r))− ((Aα +
iξα
)− (Aβ + iξβ
)). Thus they define a2-cocycle and the image of the corresponding
Čech class under the de Rham isomorphism, which is just Deligne’s intrinsic derivation-
related class, is given byd(∗) = −[ω] − [
 − ν∂ν
].
Proof. From Lemma 7 we get that aαβ has to satisfy the equation daαβ =
− (

(Aα + iξα
) − (Aβ + iξβ
)
)

so that (25) is fulfilled. From the definition of Aα we
get that the right-hand side of this equation is closed since d(Aα + iξα
) = 
− ν∂ν
.
Therefore the existence of aαβ ∈ C∞(Uα ∩ Uβ)[[ν]] as desired is guaranteed by the
Poincaré lemma. Now we have σ(hα − hβ + aαβ + fαβ + dfαβ ⊗ 1 + 1

2Ddfαβ ⊗ 1 −
ia(Xfαβ )r) = fαβ−σ(ia(Xfαβ )r)+aαβ and Eq. (25) is fulfilled implying (Eα−Eβ)(g) =
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1
ν
σ (ad(τ (fαβ + σ(ia(ξα)r) − σ(ia(ξβ)r) + aαβ))τ (g)) = 1

ν
ad∗(dαβ)g by Lemma 6.

The assertion about the corresponding de Rham class is obvious from the properties of
fαβ and aαβ we have already proven, namely d(θα + d(σ (ia(ξα)r))− (Aα + iξα
)) =
−(ω + 
 − ν∂ν
). ��

From this proposition and from the computation of C−
2
,

in Appendix B we obtain
our final result.

Theorem 2.Deligne’s characteristic classc(∗) of a (slightly generalized) Fedosov star
product∗ as constructed in Sect. 2 is given by

c(∗) = 1

ν
[ω] + 1

ν
[
] = 1

ν
F (∗), (27)

whereF(∗) denotes Fedosov’s characteristic class of the star product∗.

Proof. From the differential equation ∂νc(∗) = 1
ν2 d(∗) that relates the derivation-related

class to the characteristic class and from the preceding proposition we get c(∗) =
1
ν
[ω] + c(∗)0 + 1

ν

∑∞
i=2 ν

i[
i]. By the result of Proposition 6 we get c(∗)0 = [
1],
proving the theorem. ��

As an immediate corollary which originally is due to Fedosov (cf. [14, Cor. 5.5.4])
we find:

Corollary 1. Two Fedosov star products∗ and∗′ for (M,ω) constructed from the data
(∇, 
, s) and(∇′, 
′, s′) as in Sect. 2 are equivalent if and only if[
] = [
′].

5. Star Products of Special Type, Their Characteristic Classes
and Equivalence Transformations

In this section we consider star products that have additional algebraic properties and
compute their characteristic classes showing that these properties give rise to restrictions
on this class. Moreover, we can show that for every characteristic class satisfying the
necessary condition for a star product of this class to have the desired algebraic properties
there are always Fedosov star products with suitably chosen data 
, s having these
properties. Although the following results might be known they do nevertheless not
seem to have appeared in the literature except for the special case 
 = 0 and s = 0
considered in [7, Lemma 3.3]. In this section C : W⊗� → W⊗� shall always denote
the complex conjugation, where we define Cν := −ν in view of our convention for the
formal parameter being considered as purely imaginary. By P : W⊗� → W⊗� with
P := (−1)degν we denote the so-called ν-parity operator. Using these maps fulfilling
C2 = P2 = id we can define special types of star products:

Definition 3. (i) For a given star product� for (M,ω)we define the star products�opp,
�C, �P for (M,−ω) by

f �opp g := g � f, (28)

f �C g := C ((Cf ) � (Cg)) , (29)

f �P g := P ((Pf ) � (Pg)) = f �−ν g =
∞∑
i=0

(−ν)iCi(f, g), (30)

wheref, g ∈ C∞(M)[[ν]] and the bidifferential operatorsCi describe the star
product� byf � g = ∑∞

i=0 ν
iCi(f, g).
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(ii) A star product� is said to have theν-parity property ifP is an anti-automorphism
of �, i.e.

f �P g = f �opp g ∀f, g ∈ C∞(M)[[ν]]. (31)

(iii) A star product� is said to have a∗-structure incorporated by complex conjugation
if C is an anti-automorphism of�, i.e.

f �C g = f �opp g ∀f, g ∈ C∞(M)[[ν]]. (32)

(iv) A star product� is called of Weyl type if it has theν-parity property and has a
∗-structure incorporated by complex conjugation.

Using these definitions we find:

Lemma 8. (i) The characteristic classes of�opp, �C, �P are related to the characteristic
classc(�) of � by the following equations:

c(�opp) = −c(�), (33)

c(�C) = Cc(�), (34)

c(�P)(ν) = c(�−ν)(ν) = c(�)(−ν) = P (c(�)(ν)) . (35)

(ii) The characteristic class of a star product� that has theν-parity property satisfies

Pc(�) = −c(�), (36)

and hencec(�) = [ω]
ν

+ ∑∞
l=0 ν

2l+1c(�)2l+1, i.e.c(�)2l = [0] for all l ∈ N.
(iii) The characteristic class of a star product� that hasC as∗-structure satisfies

Cc(�) = −c(�), (37)

and hencec(�)2l = −Cc(�)2l andc(�)2l+1 = Cc(�)2l+1 for all l ∈ N.
(iv) The characteristic class of a star product� that is of Weyl type satisfies

Pc(�) = −c(�) and Cc(�) = −c(�), (38)

and hencec(�)2l = [0] andc(�)2l+1 = Cc(�)2l+1 for all l ∈ N.

Proof. The proof of part (i) relies on the observation that local ν-Euler derivations Eα

of � yield such derivations for �opp, �C and �P given by Eα , CEαC and PEαP. With these
derivations one easily finds d(�opp) = −d(�), d(�C) = −Cd(�) and d(�P) = −Pd(�).
From the definition of the characteristic class relating the derivation-related class d

with c and the obvious observations that c(�opp)
0 = −c(�)0, c(�C)

0 = Cc(�)0 and
c(�P)

0 = c(�)0 one gets the asserted statements. The assertions (ii), (iii) and (iv) are
obvious from part (i) and Definition 3 (ii), (iii) and (iv). ��
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The statement (ii) of the lemma is the deep reason for the fact that when building a
star product recursively by constructing bidifferential operatorsCi DeWilde, Lecomte in
[11] only have the choice of a closed two-form in case i is odd as the ν-parity property is
included in their definition of a star product. The preceding lemma states that in general
there are equivalence classes of star products corresponding to the characteristic classes
c(�) that contain no representatives (i.e. star products � with this characteristic class)
satisfying the conditions (31) resp. (32), namely those whose characteristic classes do
not satisfy Eqs. (36) resp. (37). Vice versa the following proposition states that for every
class c ∈ [ω]

ν
+ H 2

dR(M)[[ν]] enjoying the properties Cc = −c resp. Pc = −c one
can find even Fedosov star products having the characteristic class c and satisfying the
conditions (32) resp. (31).

Proposition 3. (i) For all c ∈ [ω]
ν

+ H 2
dR(M)[[ν]] with Pc = −c there are Fedosov

star products∗ for (M,ω) with

c(∗) = c and P ((Pf ) ∗ (Pg)) = g ∗ f for all f, g ∈ C∞(M)[[ν]].

(ii) For all c ∈ [ω]
ν

+H 2
dR(M)[[ν]] with Cc = −c there are Fedosov star products∗ for

(M,ω) with

c(∗) = c and C ((Cf ) ∗ (Cg)) = g ∗ f for all f, g ∈ C∞(M)[[ν]].

(iii) For all c ∈ [ω]
ν

+H 2
dR(M)[[ν]] with Pc = −c = Cc there are Fedosov star products

∗ for (M,ω) with

c(∗) = c and P ((Pf ) ∗ (Pg)) = g ∗ f = C ((Cf ) ∗ (Cg))
for all f, g ∈ C∞(M)[[ν]].

Proof. For the proof we first observe that the fibrewise product ◦ satisfies
C((Ca) ◦ (Cb)) = P((Pa) ◦ (Pb)) = (−1)klb ◦ a for all a, b ∈ W⊗� with degaa = ka

and degab = lb. Now let c ∈ [ω]
ν

+ H 2
dR(M)[[ν]] be written as c = [ω]

ν
+ ∑∞

i=0 ν
ici .

For the proof of (i) we choose closed two-forms 
i such that 
2l+1 = 0 (to achieve
[
2l+1] = c2l = [0]) and [
2l+2] = c2l+1 for all l ∈ N yielding P
 = 
. Moreover,
we choose s = ∑∞

k=3 s
(k) ∈ W with σ(s) = 0 and Ps = s. Under these precondi-

tions one easily proves that Pr satisfies Eqs. (3) implying Pr = r by uniqueness of
the solution of (3). With such an element r ∈ W⊗�1 the Fedosov derivation D obvi-
ously commutes with P implying that Pτ(f ) = τ(Pf ) for all f ∈ C∞(M)[[ν]] since P
obviously commutes with σ . Using this equation and the definition of ∗ together with
P((Pa) ◦ (Pb)) = (−1)klb ◦ a and observing that degaτ (f ) = 0 one gets the asserted
property of ∗ under the mapping P. From Theorem 2 we get c(∗) = [ω]

ν
+ 1

ν
[
] = c. For

(ii) one proceeds quite analogously. The only difference lies in other suitable choices of

and s, i.e. we choose closed two-forms 
i such that C
2l+2 = 
2l+2, [
2l+2] = c2l+1

and C
2l+1 = −
2l+1, [
2l+1] = c2l for all l ∈ N implying C
 = 
. Moreover, we
choose s ∈ W such that Cs = s. As in the proof of (i) one gets that Cr = r yielding
the desired behaviour of the corresponding star product ∗ under the mapping C as in the
proof of part (i). The fact that c(∗) = c again follows from Theorem 2 and the choice of

. For the proof of part (iii) one just has to bring into line the choices made for (i) with
the ones made for (ii), i.e. choose s with Cs = s = Ps and closed two-forms 
i with
C
2l+2 = 
2l+2 and 
2l+1 = 0 such that [
2l+2] = c2l+1 and [
2l+1] = c2l = [0]
for all l ∈ N. Then the argument as in (i) and (ii) yields the stated result. ��
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Remark 2.The interest in such special star products from the viewpoint of physics is
based on the interpretation of the star product algebra (C∞(M)[[ν]],�) as the algebra
of observables of the quantized system corresponding to the classical system described
by the symplectic manifold M , and hence the existence of a ∗-structure incorporated by
complex conjugation (the ∗-structure of the algebra of classical observables) is strongly
recommended. Moreover, the Weyl–Moyal product on T ∗

R
n giving a correct description

of the quantization of observables that are polynomials in the coordinates is of Weyl
type, motivating the general interest in such star products (cf. [5,6] for further details).
In addition there is the possibility of constructing ∗-representations for star products with
C as ∗-structure under the precondition of having defined a formally positive functional
on a suitable twosided ideal in C∞(M)[[ν]] that is stable under C by a formal analogue
of the GNS construction (cf. [8] for details).

To conclude this section we shall discuss the question of existence of special equiv-
alence transformations between equivalent star products satisfying Eqs. (31) and (32).
The following proposition states that for two equivalent star products enjoying these
additional algebraic properties there are always equivalence transformations being com-
patible with the mappings C and P.

Proposition 4. Let (C∞(M)[[ν]],�1) and (C∞(M)[[ν]],�2) denote equivalent star
product algebras.

(i) In case�1 and�2 haveC incorporated as∗-structure, then(C∞(M)[[ν]],�1) and
(C∞(M)[[ν]],�2) are equivalent as∗-algebras (resp.C-equivalent), i.e. there is an
equivalence transformationS between them satisfyingCSC = S.

(ii) In case �1 and �2 have the ν-parity property then(C∞(M)[[ν]],�1) and
(C∞(M)[[ν]],�2) are P-equivalent, i.e. there is an equivalence transformationS
between them satisfyingPSP = S.

(iii) In case�1 and �2 are of Weyl type then(C∞(M)[[ν]],�1) and (C∞(M)[[ν]],�2)

are Weyl-equivalent, i.e. there is an equivalence transformationS between them
satisfyingCSC = S andPSP = S.

Proof. For the proof of part (i) we consider some equivalence transformation T between
�1 and �2 satisfying T (f �1 g) = (T f ) �2 (T g) for all f, g ∈ C∞(M)[[ν]]. Obviously
CT C is also an equivalence transformation between �1 and �2 and hence there is an
automorphism A of �1 such that CT C = T A. Conjugating this equation with C and
using C2 = id we obtain T = CT CCAC = T ACAC yielding ACAC = id. Since
any automorphism of �1 starting with id has the shape A = exp(νD), where D is a
derivation of �1 we get id = exp(νD) exp(−νCDC) implying CDC = D. For t ∈ R

we consider the automorphisms At := exp(tνD) of �1 satisfying CAtC = (At )−1 =
A−t . Now St := T At obviously is an equivalence between �1 and �2 for all t ∈ R

and we have CStC = CT CA−t = T A1−t = S1−t . Therefore S := S1/2 satisfies
S(f �1 g) = (Sf ) �2 (Sg) and CSC = S proving part (i) of the proposition. For the
proof of part (ii) one proceeds completely analogously replacing C by P in the above
argumentation. For the proof of part (iii) we consider some equivalence transformation
T between �1 and �2 and use the results of part (i) and part (ii) to obtain two further
equivalence transformations S1 = T A1/2

1 and S2 = T A1/2
2 satisfying CS1C = S1 and

PS2P = S2, where A1 and A2 are automorphisms of �1 given by CT C = T A1 and
PT P = T A2. In general S1 fails to satisfy PS1P = S1 as well as S2 fails to commute
with C, but by an analogous procedure as for the proofs of the statements (i) and (ii)
S1 and S2 can be modified such that the resulting equivalence transformations have the
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desired properties. Since P commutes with C we have CPT PC = PCT CP implying
the crucial equation A1CA2C = A2PA1P by the definitions of A1 and A2. Now we
compute CS2C = S2A−1/2

2 A1CA1/2
2 C = S2F2, where F2 := A−1/2

2 A1CA1/2
2 C is an

automorphism of �1 starting with id and hence F2 = exp(νD2) with a derivation D2

of �1. As in (i) one gets F2CF2C = id and R2 := S2F1/2
2 with F1/2

2 := exp( ν2 D2) is
an equivalence transformation between �1 and �2 satisfying CR2C = R2. It remains
to show that R2 satisfies PR2P = R2. To this end we compute PF2P using A1C =
A2PA1PCA−1

2 ,

PF2P = PA1/2
2 PA1PCA−1/2

2 CP = A−1/2
2 A1CA1/2

2 C = F2.

Thus we find PR2P = PS2PPF1/2
2 P = S2F1/2

2 = R2 proving part (iii). One can

also modify S1 to obtain another equivalence transformation R1 = S1F1/2
1 having the

desired properties where F1 := A−1/2
1 A2PA1/2

1 P again is an automorphism of �1. ��
Remark 3.The assertion about the existence of equivalence transformations between
equivalent star products with a ∗-structure incorporated by C that commute with C has
an important consequence for the GNS representations one can construct for these star
product algebras, namely that such an equivalence transformation induces a unitary
map between the GNS Hilbert spaces obtained by the GNS construction relating the
corresponding GNS representations (cf. [6, Prop. 5.1]).

A. The Deformed Cartan Formula

The aim of this section is to prove the deformed Cartan formula that was very useful for
our computations in Sect. 4. This formula and the proof of it which we shall give already
appeared in [4, Lemma 4.6.]. A similar result has also been derived in [21, Prop. 4.3.]
where the vector field with respect to which the Lie derivative is computed is assumed
to be affine with respect to the symplectic connection ∇.

Proposition 5. For all vector fieldsX ∈ �∞(TM) the Lie derivativeLX : W⊗� →
W⊗� can be expressed in the following manner:

LX = Dia(X) + ia(X)D + is(X) + (dxi ⊗ 1)is(∇∂iX) + 1

ν
ad(ia(X)r). (39)

In caseX = Xf is the Hamiltonian vector field of a functionf ∈ C∞(M), i.e. iXf
ω =

df this formula takes the following form:

LXf
= Dia(Xf ) + ia(Xf )D − 1

ν
ad

(
f + df ⊗ 1 + 1

2
Ddf ⊗ 1 − ia(Xf )r

)
, (40)

whereD = dxi ∨ ∇∂i denotes the operator of symmetric covariant derivation.

Proof. The proof of formula (39) is obtained by collecting the following formulas, the
proofs of which are all straightforward computations just using the definitions of the
involved mappings and applying them to factorized sections a = A ⊗ α ∈ W⊗�:

δia(X) + ia(X)δ = is(X), (41)
1

ν
(ad(r)ia(X) + ia(X)ad(r)) = 1

ν
ad(ia(X)r), (42)

(∇ia(X) + ia(X)∇)(A ⊗ α) = ∇XA ⊗ α + A ⊗ LXα. (43)
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For a symmetric one-form A it is easy to see that ∇XA = LXA − dxi ∨ is(∇∂iX)A.
Together with the observation that the operators on both sides of this equation are deriva-
tions with respect to the ∨-product, this and (43) imply

∇ia(X) + ia(X)∇ = LX − (dxi ⊗ 1)is(∇∂iX). (44)

Combining (41), (42) and (44) we get the first statement of the proposition. For the
second statement one just has to observe that ad(f ) = 0 and that

is(Xf ) = −1

ν
ad(df ⊗ 1) (dxi ⊗ 1)is(∇∂iXf ) = −1

ν
ad

(
1

2
Ddf ⊗ 1

)
, (45)

which is again a straightforward computation in local coordinates using the explicit
shape of the deformed product ◦. Using these equations combined with (39) finishes the
proof of (40). ��

B. Computation of C−
2

�

This section just gives a sketch of the computations that are necessary to determine the
anti-symmetric part of the bidifferential operator C2 that occurs in the expression of
the Fedosov star product f ∗ g = fg + νC1(f, g) + ν2C2(f, g) + ... of two functions
f, g ∈ C∞(M).

Proposition 6. The anti-symmetric partC−
2 of the bidifferential operatorC2 is given by

C−
2 (f, g) = 1

2
(C2(f, g) − C2(g, f )) = −1

2

(

1 + ds

(3)
1

)
(Xf ,Xg) = ρ2(Xf ,Xg),

(46)

wheref, g ∈ C∞(M) andXf resp.Xg denote the corresponding Hamiltonian vector

fields with respect toω and s(3)1 ∈ �∞(T ∗M) denotes the one-form occurring in the

first order ofν in s(3) = (s
(3)
3 + νs

(3)
1 )⊗ 1, wheres(3)3 ∈ �∞(

∨3
T ∗M), that comes up

from the normalization conditionδ−1r = s (cf. Eq. (3)). Thus we have

c(∗)0 = −2C−
2
, = −2[ρ2] = [
1]. (47)

Proof. Using the shape of the fibrewise product ◦ we obtain f ∗ g − g ∗ f = νσ(�rs

is(∂r )τ (f )is(∂s)τ (g))+O(ν3). To compute the terms of order less than or equal to two
in ν we thus only have to know τ(f ) and τ(g) except for terms of symmetric degree and
ν-degree greater than one. Hence it is enough to look at τ(f )(0), . . . , τ (f )(3), since for
τ(f )(k) with k ≥ 4 either the symmetric degree or the ν-degree of the occurring terms
are greater than one. Looking at the recursion formula (6) we thus see that the only terms
of r that are needed are given by r(2) = δs(3) and r(3) = δs(4)+δ−1(R+ν
1 +∇r(2)−
1
ν
r(2) ◦ r(2)) which is obtained from (4) by writing down the terms of total degree 2 resp.

3. Writing ≈ for equations holding modulo terms of symmetric degree resp. ν-degree
greater than one, one gets by lengthy but obvious computation that

τ(f )(0) = f,

τ(f )(1) = df ⊗ 1,

τ (f )(2) = 1

2
Ddf ⊗ 1 − is(Xf )s

(3)
3 ⊗ 1 ≈ 0,

τ (f )(3) ≈ −δ−1(is(Xf )r
(3)) ≈ −ν

(
is(Xf )s

(4)
2 + 1

2
iXf

(

1 + ds

(3)
1

))
⊗ 1,
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where we have written s(4) = (s
(4)
4 + νs

(4)
2 ) ⊗ 1 with s

(4)
k ∈ �∞(

∨k
T ∗M). Inserting

these results into f ∗g−g ∗f as given above the terms involving s(4)2 ∈ �∞(
∨2

T ∗M)

cancel because of their symmetry and one gets

f ∗ g − g ∗ f = ν{f, g} − ν2(
1 + ds
(3)
1 )(Xf ,Xg) + O(ν3)

proving the proposition. ��
One should observe that this is the only instance of our proof of Theorem 2 where

the modified normalization condition on r enters our considerations, whereas the other
terms of c(∗) could be computed without making use of it.
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