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Abstract: Under an additional symmetry condition, we prove that the spectrum of a
second order self-adjoint elliptic differential operator with periodic coefficientsis purely
absolutely continuous.

1. Introduction

Let
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be an elliptic second order differential operator in R”. We assume that g ,; (x) = g, (%),
p,l=1,...,n,dlthefunctions g, (x), a;(x), and V (x) are smooth, real-valued, and
2m-periodic in all variables. The differential expression (1.1) defines a self-adjoint op-
erator in L2(R™). It isbelieved that its spectrum is aways purely absol utely continuous.
However, thistheorem has not been proven yet. In this paper, we prove that the spectrum
of L isabsolutely continuous under an additional symmetry assumptionon L.

Beforeweformulate our theorem, let usrecall some previousresults. In hiscelebrated
paper, L. E. Thomas [Th] proved absolute continuity of the spectrum for a periodic
Schrodinger operator. M. Sh. Birman and T. A. Suslina proved the theorem for a two-
dimensional magnetic Schrédinger operator [BS], and A. Sobolev [S] proved it for a
magnetic Schrédinger operator in higher dimensions. A. Morame proved in [M] the
absence of singular spectrum for a two-dimensional periodic Schrédinger operator in
the case of a non-constant metric (see aso [KL].) There have been a number of recent
publications on the subject; weare not going to review them here. If n > 2, al previously
known results deal essentially with the situations where the leading coefficients g, (x)
are constant.
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Our additional assumption will bethat the operator L isinvariant under the symmetry
x1 — —x1. We will use the following notations. The indices that take values from 1
to n will be denoted by Roman letters; the indices that take values from 2 to n will be
denoted by Greek letters. If x = (x1, x2, ... x,) thenx’ = (xp, ..., x,),0x = (x1, x').
In terms of the coefficients of L, our symmetry assumption means that

g11(—x1,x") = g1a(x1, x'),  gap(—x1,x") = gap(x1, x"),
ag(—x1,x") = ag(x1, x),  V(—x1,x") = V(xg, x"),

g1a(—x1,x") = —g1a(x1, %), a1(—x1,x") = —a1(x1, x°). (1.2

Theorem. Assumethat theoperator L givenby (1.1) iselliptic, that thefunctions g ,; (x),
a;(x),and V (x) are smooth, real-valued, 2 -periodic in all variables, and that they sat-
isfy (1.2). Thenthe spectrumof theoperator L in L?(R") ispurely absol utely continuous.

Let usrecall somefactsfrom Floquet’'stheory (e.g., see[Ku].) Letk = (k1, ... ,k,) €
R". Oneintroduces a family of operators

" 9 _ .
L= - (E +lkp>gp1(x)<3—xl +lk1)

p,l=1
: ) < ()(i 'k> (i 'k> ()) Vi(x) 1.3
+i;a1x ax1+11~|—3x1+11a1x + Vi(x). .

Asaset, the L2 spectrum of the operator L isthe union of periodic spectra of operators
L(k) over dl k € R". (Actually, one cantake k < [0, 1)".) It follows from atheorem of
Thomas[Th, Ku] that the spectrum of L isnot purely absolutely continuousif, for some
value of A, the equation

(L(k) = MNu=0 (1.4)

has a non-trivial periodic solution for any choice of £k € C". Let us emphasize that here
the quasi-momentum k is allowed to be complex-valued. We will assume that thisisthe
case, and our assumption will eventually lead us to a contradiction. Because L(k) — A
is an operator of the type (1.1), with V (x) replaced by V (x) — A, we can assume that
A = 0. So, our assumptionis

ker(L(k)) #0, ke C". (1.4)

Here, L (k) isconsidered an operator acting on periodic functions.
In Sect. 2 we exhibit our main construction, and in Sect. 3 we prove the theorem.

2. TheMain Construction

First, we restrict ourselves to quasi-momentak = (k1, 0, ... , 0). With some abuse of
notations, we will use k for k3. Then, the problem of finding periodic solutions of the
equation L(k)u = 0 is equivalent to the problem of finding solutions of the equation
Lu = Othat are periodic in x’-variables, and that satisfy the quasi-periodicity condition

u(x1+ 2m, x') = e H*u(xq, x). (2.2)
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Let C = [—x, ] x T" L beacylinder; here T"tisan (n — 1)-dimensional torus. We
denote; = exp(2rik) # 0. Thenthe above problemisequivalent to the boundary value
problem
; / / du l du l
Lu=0 inC, u(rx)=c¢u(-mnx"), —@x)=¢—(mx"). (22
0x1 0x1

LetI'y = {+n}xT" 1 bethetop and thebottom of thecylinder C. Thesymmetry as-
sumptions (1.2) imply that g1, (£, x’) = 0, sothe x; directionisnormal to both thetop
and the bottom of thecylinder. Itisconvenienttotake d, = 9/9v = +g11(£m, x')d/dx1
as a standard outward normal vector to 'y at (7, x’). With this convention, one has
the standard Green formula

(Lua U)C - (u7 LU)C - (av”a U)l" + (M, auv)l“» (23)

whereI’ = ' . UT'_,and (-, -) istheusual L2 scalar product. Noticethat a; (£, x’) = 0
(see (1.2)), so there are no boundary terms that come from first order termsin (1.1).

Wewill makethe reduction of problem (2.2) to the boundary. To makethisreduction,
weintroduce the Dirichlet-to-Neumann operators. Let ker (L p) bethe space of solutions
of the Dirichlet problem for the equation Lu = 0in C. This spaceisfinite dimensional.
We introduce a space

L={p(x) e L2T" Y : ¢(x') =du(—m,x') forsomeu € ker(Lp)}. (2.4)

Notice that, in this definition, one can replace —x by = because the operator L is
invariant under the reflection x1 — —x1. It is a standard fact from the elliptic theory
that the boundary value problem

Lu=0 inC, u(-mx)=vy&), u(r,x)=0 (2.5)

issolvableif andonlyif ¢ L L.If problem (2.5) issolvablethenitssolutionisnot unique,
but one can find the unique sol ution that satisfies an additional constraint 8, u(—m, x") L
L. Such a solution will be denoted by Pv. (P stands for “Poisson operator.”) For a
function u(x) in C, we define jLu to beitsnormal derivativeson I' .. Finally we define
the Dirichlet-to-Neumann operators

Noy = j_Py, Ny = j Py, ¥ elt (2.6)

In words, one takes the solution u(x) of (2.5) that satisfies the additional condition
du(—m, x") L L;then Noyr = d,u(—m, x’) and N1y = d,u(m, x’). Clearly, Ng maps
L+ into £+. Because the operator L is invariant under the symmetry x1 — —x1, one
can interchange 'y and I'_. It means that if u(x) is the solution of Lu = 0 such that
u(—=m,x")y = 0, u(m,x’) = ¢, and du(r, x’) € L1 then d,u(w,x’) = Noy and
dyu(—m, x") = N1yr. Thisisactually the main reason why the symmetry assumptionis
helpful.

Itisknown that Ng isan elliptic pseudo-differential operator of order 1, its principal
symbol is positive; so the number of its non-positive eigenvaluesisfinite. The fact that
it is defined not on the whole Sobolev space H1(T"~1) but only on its subspace of
finite codimension is not essential. The operator N1 isasmoothing operator because the
Schwarz kernel of the Poisson operator P is smooth outside of I'_.

To make the reduction of problem (2.2) to the boundary, we set u(—m, x’) = ¥ (x'),
and solve the equation Lu = 0, together with the first boundary condition in (2.2); then
the second boundary condition will give us an equation for ¥ (x). We start from the
following proposition.



52 L. Friedlander

Proposition 1. Let ¢ # +1. Then the problem
Lf=0 inC, f(-mx)=v&), fx)=cyx) (2.7)
issolvableif and only if ¥ (x") € L.

Proof. Let

u(m, x)

£= {(8”“(_””/)) D ux) € ker(LD)}.

Recall that L p is the operator in C given by the differential expression (1.1), with the
Dirichlet boundary conditions. The problem (2.7) is solvableif and only if

(;fp) Lz 2.9)

The operator L isinvariant under the reflection x1 — —x1, so the kernel of L p splits
into the direct sum of even solutions and odd solutions of Lu = 0,

ker(Lp) = (ker(Lp)® @ (ker(Lp))°%d.

This splitting gives rise to the splitting £ = (£)& + (£)°9d. penote by £&©dd the
space of first components from £&(©0d Then £ — £& 4 £0dd Notice that

ev odd
;e _ {(ze\/) L oY ¢ Cev} and £0dd _ {(_q;odd) . 0dd Eodd}.

Now (2.8) holds if and only if (1 + ¢)(v, ¢®) = 0 for every ¢ e £ and
(1 — ), 299y = 0 for every $°Ud ¢ £0dd. Oyr assumption ¢ # =+1, together
with £ = £& ¢ £0dd impliesthat thisisequivaenttoy L £. O

Let ¢ # 41, 0. For v € £+, the general solution of problem (2.7) is
F(x) = (PY)(x1, x') + {(PY)(—x1, x') + v(x), v eker(Lp).

Here, once again, we used the invariance of L under the reflection x1 — —x1. Thelast
boundary condition from (2.2) is equivalent to

%(n,x/) + ;“%(—n,x/) =0.
av av

In terms of the Dirichlet-to-Neumann operators, the last equality can be rewritten as

3 3
2eNoy + (1+ ¢2N1y + a—Z(n, X+ éa—:(—n, X)=0. 2.9)

In particular,
2¢ Noy + (14 %) N1y € L. (2.10)

Proposition 2. Let ¢ # +1, 0. The problem (2.2), with u(—x, x’) = ¥ (x’) is solvable
if and only if v € £+, and (2.10) holds.
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Proof. The“only if” part has already been proven. Let us do the “if” part. Assume that
(2.10) holds. Denote

—¢p(x') = 20 No¥ + (14 £?) N1y € L.

We decompose ¢ asasum ¢ +¢°4d_ (Seethe proof of Proposition 1.) Let v&/(©dd pe
theeven (odd) sol ution of the Dirichlet problemfor Lv = Osuchthat 3, v®©dd (7 )
— ¢®(Odd) (1) Then, (2.9) is satisfied for the function

Ua/(x) vOdd(x)
1+¢ 1-¢

We conclude that assumption (1.5) impliesthat the inclusion (2.10) has a non-trivial
solution v € £ for every ¢ # =1, 0. In the next section we will show that this can not

happen.

v(x) =

3. Proof of the Theorem

Let Q be the orthogonal projection onto the space £, and let z = (¢2 + 1)/2¢. Then
(2.10) can be rewritten as

Noy + zN1 =0, v € L1, (3.1)

where Ny = Q N1. Theassumption (1.5) impliesthat Eq. (3.1) hasanon-trivial solution
fpr every 7 # 1. First, we establish some simple properties of the operators No and
Nj.

Proposition 3. (i) Operators No and N aresdf-adjointin £+ ¢ L2(T" ).
(ii) ker(N1) = {0}.

Proof. Letyr1, Y2 € £+, and et uj(x1, x') = Pyj(x"), j = 1, 2. One applies Green's
formula (2.3) to u1 and u» to get

(Novra, ¥2) = (Ovuz, up)r_ = (u1, dvu)r_ = (Y1, Novr2).

This means that the operator N is symmetric, and, if one takes H1(T"~1) N £+ asits
domain, then it becomes self-adjoint.
Let v(x) € ker(Lp) be such afunction that

3y (ua(—x1, x') +v(x)) € £+ whenxi = —7.

Let w(x) = up(—x1, x’) + v(x). The invariance of L under the reflection x1 — —x1
implies Lw = 0. In addition,

dw(—m,x) = Nz, w(m, x') = ya(x').
We apply Green’sformula (2.3) to u1 and w to get
(N1yr1, ¥2) = (yur, w)r, = (u1, dw)r_ = (Y1, N12).

This equation shows that the operator N1 is self-adjoint. (The operator N1 is bounded,
so one does not have to worry about its domain.)



54 L. Friedlander

Finally, suppose that N1y = O. Let u(x) = Py. Onehas Lu = 0, u(—m, x') =
Y(x"), u(m,x’) = 0, and d,u(w,x’) € L. Let v(x) € ker(Lp), and 3,v(m, x') =
dyu(m, x"). Then the function w = u — v is asolution of the equation Lw = 0, and,
on I'y, both w and its normal derivative vanish. Therefore, w(x) = 0, and ¥ (x") =
u(—m,x)=v(-m,x)=0. O

It follows from the theory of analytic families of operators (e.g., see [Ka]) that
dimker(No + zN1) = const for al complex numbers z, outside a discrete set E C C.
Our assumption that (3.1) has a non-trivial solution for all z # 41 implies that this
constant is positive. Moreover, the Riesz projections onto ker(Ng + zN1) depend on
z analytically in C \ E. In particular, one can construct a family of functions v (z),
z € R\ E,suchthat ||[¥(2)| = 1, ¥(z) solves (3.1), and ¥ (z) is continuousin z. We
restrict z to the real axis as amatter of convenience. Let us show that

(N1¥(z1), ¥(z2)) =0 (32

forany z1,z2 € R\ E. If z1 # z2 then

0 = ((No + 21N ¥ (21), ¥(22)) = (¥ (z1), (No + 22NV (22))
+ (21 — 22)(N1¥ (21), ¥ (22)) = (21 — 22) (N1 (22), ¥ (22)),

and (3.2) follows immediately. If zo = z1 then we take the limit zo — z1 in (3.2).
Equation (3.2) implies

(Noyr(z1), ¥(22)) =0, z1,22 € R\ E. (33

Let M bethelinear span of al functions v (z), z € R\ E. It followsfrom (3.3) that
(Noyr, ) = Ofor every v € M. Let usrecal that Ng is a self-adjoint, bounded from
below operator with discrete spectrum. Therefore, dim M < co. Now, letz; e R\ E
be a sequence such that z; — oo, and let ¥; = ¥ (z;). The functions v; lieon a

finite-dimensional spherein £+, so one can assume that Y¥; — . Notethat ||y || = 1,
so ¥ # 0. One has

~ 1
J

The operator N1 is bounded, and the restriction of Ng to M~is bounded. (M is finite-
dimensional!) By taking the limit j — oo in (3.4), one gets N1y = 0. This contradicts
statement (ii) of Proposition 3. O
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