On the Spectrum of a Class of Second Order Periodic Elliptic Differential Operators

L. Friedlander

Department of Mathematics, University of Arizona, Tucson, AZ 85721, USA

Received: 19 December 2001 / Accepted: 10 January 2002 Published online: 24 July 2002 – © Springer-Verlag 2002

Abstract: Under an additional symmetry condition, we prove that the spectrum of a second order self-adjoint elliptic differential operator with periodic coefficients is purely absolutely continuous.

1. Introduction

Let

$$
L = -\sum_{p,l=1}^{n} \frac{\partial}{\partial x_p} g_{pl}(x) \frac{\partial}{\partial x_l} + \frac{1}{i} \sum_{l=1}^{n} \left(a_l(x) \frac{\partial}{\partial x_l} + \frac{\partial}{\partial x_l} a_l(x) \right) + V(x) \tag{1.1}
$$

be an elliptic second order differential operator in \mathbf{R}^n . We assume that $g_{pl}(x) = g_{lp}(x)$, $p, l = 1, \ldots, n$, all the functions $g_{pl}(x), a_l(x)$, and $V(x)$ are smooth, real-valued, and 2π -periodic in all variables. The differential expression (1.1) defines a self-adjoint operator in $L^2(\mathbf{R}^n)$. It is believed that its spectrum is always purely absolutely continuous. However, this theorem has not been proven yet. In this paper, we prove that the spectrum of L is absolutely continuous under an additional symmetry assumption on L.

Before we formulate our theorem, let us recall some previous results. In his celebrated paper, L. E. Thomas [Th] proved absolute continuity of the spectrum for a periodic Schrödinger operator. M. Sh. Birman and T. A. Suslina proved the theorem for a twodimensional magnetic Schrödinger operator [BS], and A. Sobolev [S] proved it for a magnetic Schrödinger operator in higher dimensions. A. Morame proved in [M] the absence of singular spectrum for a two-dimensional periodic Schrödinger operator in the case of a non-constant metric (see also [KL].) There have been a number of recent publications on the subject; we are not going to review them here. If $n > 2$, all previously known results deal essentially with the situations where the leading coefficients $g_{pl}(x)$ are constant.

Our additional assumption will be that the operator L is invariant under the symmetry $x_1 \mapsto -x_1$. We will use the following notations. The indices that take values from 1 to *n* will be denoted by Roman letters; the indices that take values from 2 to *n* will be denoted by Greek letters. If $x = (x_1, x_2, \dots, x_n)$ then $x' = (x_2, \dots, x_n)$, so $x = (x_1, x')$. In terms of the coefficients of L , our symmetry assumption means that

$$
g_{11}(-x_1, x') = g_{11}(x_1, x'), \quad g_{\alpha\beta}(-x_1, x') = g_{\alpha\beta}(x_1, x'),
$$

\n
$$
a_{\alpha}(-x_1, x') = a_{\alpha}(x_1, x'), \quad V(-x_1, x') = V(x_1, x'),
$$

\n
$$
g_{1\alpha}(-x_1, x') = -g_{1\alpha}(x_1, x'), \quad a_1(-x_1, x') = -a_1(x_1, x').
$$
\n(1.2)

Theorem. Assume that the operator L given by (1.1) is elliptic, that the functions $g_{pl}(x)$, $a_l(x)$, and $V(x)$ are smooth, real-valued, 2π -periodic in all variables, and that they sat*isfy (1.2). Then the spectrum of the operator* L in $L^2(\mathbf{R}^n)$ *is purely absolutely continuous.*

Let us recall some facts from Floquet's theory (e.g., see [Ku].) Let $k = (k_1, \ldots, k_n) \in$ \mathbb{R}^n . One introduces a family of operators

$$
L(k) = -\sum_{p,l=1}^{n} \left(\frac{\partial}{\partial x_p} + ik_p \right) g_{pl}(x) \left(\frac{\partial}{\partial x_l} + ik_l \right)
$$

+
$$
\frac{1}{i} \sum_{l=1}^{n} \left(a_l(x) \left(\frac{\partial}{\partial x_l} + ik_l \right) + \left(\frac{\partial}{\partial x_l} + ik_l \right) a_l(x) \right) + V(x).
$$
(1.3)

As a set, the L^2 spectrum of the operator L is the union of periodic spectra of operators *L*(*k*) over all *k* ∈ **R**ⁿ. (Actually, one can take *k* ∈ [0, 1)ⁿ.) It follows from a theorem of Thomas [Th, Ku] that the spectrum of L is not purely absolutely continuous if, for some value of $λ$, the equation

$$
(L(k) - \lambda)u = 0 \tag{1.4}
$$

has a non-trivial periodic solution for any choice of $k \in \mathbb{C}^n$. Let us emphasize that here the *quasi-momentum* k is allowed to be complex-valued. We will assume that this is the case, and our assumption will eventually lead us to a contradiction. Because $L(k) - \lambda$ is an operator of the type (1.1), with $V(x)$ replaced by $V(x) - \lambda$, we can assume that $\lambda = 0$. So, our assumption is

$$
ker(L(k)) \neq 0, \quad k \in \mathbb{C}^n. \tag{1.4}
$$

Here, $L(k)$ is considered an operator acting on periodic functions.

In Sect. 2 we exhibit our main construction, and in Sect. 3 we prove the theorem.

2. The Main Construction

First, we restrict ourselves to quasi-momenta $k = (k_1, 0, \ldots, 0)$. With some abuse of notations, we will use k for k_1 . Then, the problem of finding periodic solutions of the equation $L(k)u = 0$ is equivalent to the problem of finding solutions of the equation $\overline{Lu} = 0$ that are periodic in x'-variables, and that satisfy the quasi-periodicity condition

Let $C = [-\pi, \pi] \times \mathbf{T}^{n-1}$ be a cylinder; here \mathbf{T}^{n-1} is an $(n-1)$ -dimensional torus. We denote $\zeta = \exp(2\pi i k) \neq 0$. Then the above problem is equivalent to the boundary value problem

$$
Lu = 0 \quad \text{in } C, \quad u(\pi, x') = \zeta u(-\pi, x'), \quad \frac{\partial u}{\partial x_1}(\pi, x') = \zeta \frac{\partial u}{\partial x_1}(-\pi, x'). \tag{2.2}
$$

Let $\Gamma_+ = {\pm \pi} \times {\bf T}^{n-1}$ be the top and the bottom of the cylinder C. The symmetry assumptions (1.2) imply that $g_{1\alpha}(\pm \pi, x') = 0$, so the x_1 direction is normal to both the top and the bottom of the cylinder. It is convenient to take $\partial_v = \partial/\partial v = \pm g_{11}(\pm \pi, x')\partial/\partial x_1$ as a standard outward normal vector to Γ_{\pm} at $(\pm \pi, x')$. With this convention, one has the standard Green formula

$$
(Lu, v)_C = (u, Lv)_C - (\partial_v u, v)_\Gamma + (u, \partial_v v)_\Gamma, \tag{2.3}
$$

where $\Gamma = \Gamma_+ \cup \Gamma_-,$ and (\cdot, \cdot) is the usual L^2 scalar product. Notice that $a_1(\pm \pi, x') = 0$ (see (1.2)), so there are no boundary terms that come from first order terms in (1.1) .

We will make the reduction of problem (2.2) to the boundary. To make this reduction, we introduce the Dirichlet-to-Neumann operators. Let $\ker(L_D)$ be the space of solutions of the Dirichlet problem for the equation $Lu = 0$ in C. This space is finite dimensional. We introduce a space

$$
\mathcal{L} = \{ \phi(x') \in L^2(\mathbf{T}^{n-1}) : \phi(x') = \partial_v u(-\pi, x') \text{ for some } u \in \text{ker}(L_D) \}. \tag{2.4}
$$

Notice that, in this definition, one can replace $-\pi$ by π because the operator L is invariant under the reflection $x_1 \mapsto -x_1$. It is a standard fact from the elliptic theory that the boundary value problem

$$
Lu = 0
$$
 in C, $u(-\pi, x') = \psi(x')$, $u(\pi, x') = 0$ (2.5)

is solvable if and only if $\psi \perp \mathcal{L}$. If problem (2.5) is solvable then its solution is not unique, but one can find the unique solution that satisfies an additional constraint $\partial_{\nu}u(-\pi, x') \perp$ L. Such a solution will be denoted by $P \psi$. (P stands for "Poisson operator.") For a function $u(x)$ in C, we define $j_{\pm}u$ to be its normal derivatives on Γ_{\pm} . Finally we define the Dirichlet-to-Neumann operators

$$
N_0\psi = j_- P \psi, \quad N_1\psi = j_+ P \psi, \quad \psi \in \mathcal{L}^\perp. \tag{2.6}
$$

In words, one takes the solution $u(x)$ of (2.5) that satisfies the additional condition $\partial_{\nu}u(-\pi, x') \perp \mathcal{L}$; then $N_0\psi = \partial_{\nu}u(-\pi, x')$ and $N_1\psi = \partial_{\nu}u(\pi, x')$. Clearly, N_0 maps \mathcal{L}^{\perp} into \mathcal{L}^{\perp} . Because the operator L is invariant under the symmetry $x_1 \mapsto -x_1$, one can interchange Γ_+ and Γ_- . It means that if $u(x)$ is the solution of $Lu = 0$ such that $u(-\pi, x') = 0$, $u(\pi, x') = \psi$, and $\partial_{\nu}u(\pi, x') \in \mathcal{L}^{\perp}$ then $\partial_{\nu}u(\pi, x') = N_0\psi$ and $\partial_{\nu}u(-\pi, x') = N_1\psi$. This is actually the main reason why the symmetry assumption is helpful.

It is known that N_0 is an elliptic pseudo-differential operator of order 1, its principal symbol is positive; so the number of its non-positive eigenvalues is finite. The fact that it is defined not on the whole Sobolev space $H^1(\mathbf{T}^{n-1})$ but only on its subspace of finite codimension is not essential. The operator N_1 is a smoothing operator because the Schwarz kernel of the Poisson operator P is smooth outside of Γ_{-} .

To make the reduction of problem (2.2) to the boundary, we set $u(-\pi, x') = \psi(x')$, and solve the equation $Lu = 0$, together with the first boundary condition in (2.2); then the second boundary condition will give us an equation for $\psi(x)$. We start from the following proposition.

Proposition 1. Let $\zeta \neq \pm 1$. Then the problem

$$
Lf = 0
$$
 in C, $f(-\pi, x') = \psi(x')$, $f(\pi, x') = \zeta \psi(x')$ (2.7)

is solvable if and only if $\psi(x') \in \mathcal{L}^{\perp}$.

Proof. Let

$$
\tilde{\mathcal{L}} = \left\{ \begin{pmatrix} \partial_{\nu} u(-\pi, x') \\ \partial_{\nu} u(\pi, x') \end{pmatrix} : u(x) \in \ker(L_D) \right\}.
$$

Recall that L_D is the operator in C given by the differential expression (1.1), with the Dirichlet boundary conditions. The problem (2.7) is solvable if and only if

$$
\begin{pmatrix} \psi \\ \zeta \psi \end{pmatrix} \perp \tilde{\mathcal{L}}. \tag{2.8}
$$

The operator L is invariant under the reflection $x_1 \mapsto -x_1$, so the kernel of L_D splits into the direct sum of even solutions and odd solutions of $Lu = 0$,

$$
\ker(L_D) = (\ker(L_D))^{ev} \oplus (\ker(L_D))^{odd}.
$$

This splitting gives rise to the splitting $\tilde{\mathcal{L}} = (\tilde{\mathcal{L}})^{ev} + (\tilde{\mathcal{L}})^{odd}$. Denote by $\mathcal{L}^{ev(odd)}$ the space of first components from $\tilde{\mathcal{L}}^{ev(odd)}$. Then $\mathcal{L} = \mathcal{L}^{ev} + \mathcal{L}^{odd}$. Notice that

$$
\tilde{\mathcal{L}}^{ev} = \left\{ \begin{pmatrix} \phi^{ev} \\ \phi^{ev} \end{pmatrix} : \ \phi^{ev} \in \mathcal{L}^{ev} \right\} \quad \text{and} \quad \tilde{\mathcal{L}}^{odd} = \left\{ \begin{pmatrix} \phi^{odd} \\ -\phi^{odd} \end{pmatrix} : \ \phi^{odd} \in \mathcal{L}^{odd} \right\}.
$$

Now (2.8) holds if and only if $(1 + \zeta)(\psi, \phi^{\text{ev}}) = 0$ for every $\phi^{\text{ev}} \in \mathcal{L}^{\text{ev}}$ and $(1 - \zeta)(\psi, \phi^{odd}) = 0$ for every $\phi^{odd} \in \mathcal{L}^{odd}$. Our assumption $\zeta \neq \pm 1$, together with $\mathcal{L} = \mathcal{L}^{ev} + \mathcal{L}^{odd}$, implies that this is equivalent to $\psi \perp \mathcal{L}$. \Box

Let $\zeta \neq \pm 1$, 0. For $\psi \in \mathcal{L}^{\perp}$, the general solution of problem (2.7) is

$$
f(x) = (P\psi)(x_1, x') + \zeta(P\psi)(-x_1, x') + v(x), \quad v \in \text{ker}(L_D).
$$

Here, once again, we used the invariance of L under the reflection $x_1 \mapsto -x_1$. The last boundary condition from (2.2) is equivalent to

$$
\frac{\partial f}{\partial v}(\pi, x') + \zeta \frac{\partial f}{\partial v}(-\pi, x') = 0.
$$

In terms of the Dirichlet-to-Neumann operators, the last equality can be rewritten as

$$
2\zeta N_0 \psi + (1 + \zeta^2) N_1 \psi + \frac{\partial v}{\partial \nu} (\pi, x') + \zeta \frac{\partial v}{\partial \nu} (-\pi, x') = 0.
$$
 (2.9)

In particular,

$$
2\zeta N_0 \psi + (1 + \zeta^2) N_1 \psi \in \mathcal{L}.\tag{2.10}
$$

Proposition 2. Let $\zeta \neq \pm 1, 0$. The problem (2.2), with $u(-\pi, x') = \psi(x')$ is solvable *if and only if* $\psi \in \mathcal{L}^{\perp}$ *, and (2.10) holds.*

Proof. The "only if" part has already been proven. Let us do the "if" part. Assume that (2.10) holds. Denote

$$
-\phi(x') = 2\zeta N_0 \psi + (1 + \zeta^2)N_1 \psi \in \mathcal{L}.
$$

We decompose ϕ as a sum $\phi^{ev}+\phi^{odd}$. (See the proof of Proposition 1.) Let $v^{ev(odd)}$ be the even (odd) solution of the Dirichlet problem for $Lv=0$ such that $\partial_\nu v^{{\rm PV}({\rm odd})}(-\pi, x')$ $=\phi^{\text{ev}(odd)}(x')$. Then, (2.9) is satisfied for the function

$$
v(x) = \frac{v^{\text{ev}}(x)}{1 + \zeta} + \frac{v^{\text{odd}}(x)}{1 - \zeta}.
$$

We conclude that assumption (1.5) implies that the inclusion (2.10) has a non-trivial solution $\psi \in \mathcal{L}^{\perp}$ for every $\zeta \neq \pm 1, 0$. In the next section we will show that this can not happen.

3. Proof of the Theorem

Let Q be the orthogonal projection onto the space \mathcal{L}^{\perp} , and let $z = (\zeta^2 + 1)/2\zeta$. Then (2.10) can be rewritten as

$$
N_0\psi + z\tilde{N}_1\psi = 0, \quad \psi \in \mathcal{L}^\perp,
$$
\n(3.1)

where $\tilde{N}_1 = QN_1$. The assumption (1.5) implies that Eq. (3.1) has a non-trivial solution for every $z \neq \pm 1$. First, we establish some simple properties of the operators N_0 and \tilde{N}_1 .

Proposition 3. (i) *Operators* N_0 *and* \tilde{N}_1 *are self-adjoint in* $\mathcal{L}^{\perp} \subset L^2(\mathbf{T}^{n-1})$ *.* (ii) ker(\tilde{N}_1) = {0}.

Proof. Let $\psi_1, \psi_2 \in L^{\perp}$, and let $u_j(x_1, x') = P \psi_j(x')$, $j = 1, 2$. One applies Green's formula (2.3) to u_1 and u_2 to get

$$
(N_0\psi_1, \psi_2) = (\partial_\nu u_1, u_2)_{\Gamma_-} = (u_1, \partial_\nu u_2)_{\Gamma_-} = (\psi_1, N_0\psi_2).
$$

This means that the operator N₀ is symmetric, and, if one takes $H^1(\mathbf{T}^{n-1}) \cap \mathcal{L}^{\perp}$ as its domain, then it becomes self-adjoint.

Let $v(x) \in \text{ker}(L_D)$ be such a function that

$$
\partial_{\nu}(u_2(-x_1, x') + \nu(x)) \in \mathcal{L}^{\perp} \quad \text{when } x_1 = -\pi.
$$

Let $w(x) = u_2(-x_1, x') + v(x)$. The invariance of L under the reflection $x_1 \mapsto -x_1$ implies $Lw = 0$. In addition,

$$
\partial_\nu w(-\pi, x') = \tilde{N}_1 \psi_2, \quad w(\pi, x') = \psi_2(x').
$$

We apply Green's formula (2.3) to u_1 and w to get

$$
(\tilde{N}_1 \psi_1, \psi_2) = (\partial_v u_1, w)_{\Gamma_+} = (u_1, \partial_v w)_{\Gamma_-} = (\psi_1, \tilde{N}_1 \psi_2).
$$

This equation shows that the operator \tilde{N}_1 is self-adjoint. (The operator \tilde{N}_1 is bounded, so one does not have to worry about its domain.)

Finally, suppose that $\tilde{N}_1 \psi = 0$. Let $u(x) = P \psi$. One has $Lu = 0$, $u(-\pi, x') =$ $\psi(x', u(\pi, x')) = 0$, and $\partial_{\nu}u(\pi, x') \in \mathcal{L}$. Let $v(x) \in \ker(L_D)$, and $\partial_{\nu}v(\pi, x') =$ $\partial_{\nu}u(\pi, x')$. Then the function $w = u - v$ is a solution of the equation $Lw = 0$, and, on Γ_+ , both w and its normal derivative vanish. Therefore, $w(x) = 0$, and $\psi(x') =$ $u(-\pi, x') = v(-\pi, x') = 0.$ \Box

It follows from the theory of analytic families of operators (e.g., see [Ka]) that $\dim \text{ker}(N_0 + z\tilde{N}_1) = \text{const}$ for all complex numbers z, outside a discrete set $E \subset \mathbb{C}$. Our assumption that (3.1) has a non-trivial solution for all $z \neq \pm 1$ implies that this constant is positive. Moreover, the Riesz projections onto ker($N_0 + z\tilde{N}_1$) depend on z analytically in $\mathbb{C} \setminus E$. In particular, one can construct a family of functions $\psi(z)$, $z \in \mathbf{R} \setminus E$, such that $\|\psi(z)\| = 1$, $\psi(z)$ solves (3.1), and $\psi(z)$ is continuous in z. We restrict z to the real axis as a matter of convenience. Let us show that

$$
(\tilde{N}_1 \psi(z_1), \psi(z_2)) = 0 \tag{3.2}
$$

for any $z_1, z_2 \in \mathbf{R} \setminus E$. If $z_1 \neq z_2$ then

$$
0 = ((N_0 + z_1 \tilde{N}_1)\psi(z_1), \psi(z_2)) = (\psi(z_1), (N_0 + z_2 \tilde{N}_1)\psi(z_2))
$$

+ $(z_1 - z_2)(\tilde{N}_1\psi(z_1), \psi(z_2)) = (z_1 - z_2)(\tilde{N}_1\psi(z_1), \psi(z_2)),$

and (3.2) follows immediately. If $z_2 = z_1$ then we take the limit $z_2 \rightarrow z_1$ in (3.2). Equation (3.2) implies

$$
(N_0\psi(z_1),\psi(z_2))=0,\quad z_1,z_2\in\mathbf{R}\setminus E.\tag{3.3}
$$

Let M be the linear span of all functions $\psi(z)$, $z \in \mathbf{R} \setminus E$. It follows from (3.3) that $(N_0\psi, \psi) = 0$ for every $\psi \in \mathcal{M}$. Let us recall that N_0 is a self-adjoint, bounded from below operator with discrete spectrum. Therefore, dim $\mathcal{M} < \infty$. Now, let $z_i \in \mathbf{R} \setminus E$ be a sequence such that $z_i \to \infty$, and let $\psi_i = \psi(z_i)$. The functions ψ_i lie on a finite-dimensional sphere in \mathcal{L}^{\perp} , so one can assume that $\psi_i \to \psi$. Note that $\|\psi\| = 1$, so $\psi \neq 0$. One has

$$
\tilde{N}_1 \psi_j = -\frac{1}{z_j} N_0 \psi_j.
$$
\n(3.4)

The operator \tilde{N}_1 is bounded, and the restriction of N_0 to M is bounded. (M is finitedimensional!) By taking the limit $j \to \infty$ in (3.4), one gets $\tilde{N}_1 \psi = 0$. This contradicts statement (ii) of Proposition 3. \Box

References

- [BS] Birman, M.Sh., Suslina, T.A.: Two-dimensional periodic magnetic Hamiltonian is absolutely continuous (in Russian). Algebra i Analiz **9**, 32–48 (1997); translation in St. Petersburg Math. J. **9**, 21–32 (1998)
- [Ka] Kato, T.: *Perturbation theory for linear operators.* Berlin–Heidelberg–NewYork: SpringerVerlag, 1966
- [KL] Kuchment, P., Levendorskiî, S.: On the structure of spectra of periodic elliptic operators. To appear in Transactions of the AMS
- [Ku] Kuchment, P.: *Floquet Theory for Partial Differential Equations.* Basel: Birkhäuser Verlag, 1993
- [M] Morame, A.: Absence of singular spectrum for a perturbation of a two-dimensional Laplace–Beltrami operator with periodic electo–magnetic potential. J. Phys. A: Math. Gen. **31**, 7593–7601 (1998)
- [S] Sobolev, A.: Absolute continuity of the periodic magnetic Schrödinger operator. Inventiones Mathematicae **137**, 85–119 (1999)

[Th] Thomas, L.E.: Time Dependent Approach to Scattering from Impurities in a Crystal. Commun. Math. Phys. **33**, 335–343 (1973)

Communicated by P. Sarnak