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Abstract: Under an additional symmetry condition, we prove that the spectrum of a
second order self-adjoint elliptic differential operator with periodic coefficients is purely
absolutely continuous.

1. Introduction
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∂
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)
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be an elliptic second order differential operator in Rn. We assume that gpl(x) = glp(x),
p, l = 1, . . . , n, all the functions gpl(x), al(x), and V (x) are smooth, real-valued, and
2π -periodic in all variables. The differential expression (1.1) defines a self-adjoint op-
erator in L2(Rn). It is believed that its spectrum is always purely absolutely continuous.
However, this theorem has not been proven yet. In this paper, we prove that the spectrum
of L is absolutely continuous under an additional symmetry assumption on L.

Before we formulate our theorem, let us recall some previous results. In his celebrated
paper, L. E. Thomas [Th] proved absolute continuity of the spectrum for a periodic
Schrödinger operator. M. Sh. Birman and T. A. Suslina proved the theorem for a two-
dimensional magnetic Schrödinger operator [BS], and A. Sobolev [S] proved it for a
magnetic Schrödinger operator in higher dimensions. A. Morame proved in [M] the
absence of singular spectrum for a two-dimensional periodic Schrödinger operator in
the case of a non-constant metric (see also [KL].) There have been a number of recent
publications on the subject; we are not going to review them here. If n > 2, all previously
known results deal essentially with the situations where the leading coefficients gpl(x)
are constant.
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Our additional assumption will be that the operatorL is invariant under the symmetry
x1 �→ −x1. We will use the following notations. The indices that take values from 1
to n will be denoted by Roman letters; the indices that take values from 2 to n will be
denoted by Greek letters. If x = (x1, x2, . . . xn) then x′ = (x2, . . . , xn), so x = (x1, x

′).
In terms of the coefficients of L, our symmetry assumption means that

g11(−x1, x
′) = g11(x1, x

′), gαβ(−x1, x
′) = gαβ(x1, x

′),
aα(−x1, x

′) = aα(x1, x
′), V (−x1, x

′) = V (x1, x
′),

g1α(−x1, x
′) = −g1α(x1, x

′), a1(−x1, x
′) = −a1(x1, x

′). (1.2)

Theorem. Assume that the operatorL given by (1.1) is elliptic, that the functions gpl(x),
al(x), and V (x) are smooth, real-valued, 2π -periodic in all variables, and that they sat-
isfy (1.2). Then the spectrum of the operatorL inL2(Rn) is purely absolutely continuous.

Let us recall some facts from Floquet’s theory (e.g., see [Ku].) Let k = (k1, . . . , kn) ∈
Rn. One introduces a family of operators
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al(x)

)
+ V (x). (1.3)

As a set, the L2 spectrum of the operator L is the union of periodic spectra of operators
L(k) over all k ∈ Rn. (Actually, one can take k ∈ [0, 1)n.) It follows from a theorem of
Thomas [Th, Ku] that the spectrum of L is not purely absolutely continuous if, for some
value of λ, the equation

(L(k)− λ)u = 0 (1.4)

has a non-trivial periodic solution for any choice of k ∈ Cn. Let us emphasize that here
the quasi-momentum k is allowed to be complex-valued. We will assume that this is the
case, and our assumption will eventually lead us to a contradiction. Because L(k) − λ

is an operator of the type (1.1), with V (x) replaced by V (x) − λ, we can assume that
λ = 0. So, our assumption is

ker(L(k)) 	= 0, k ∈ Cn. (1.4)

Here, L(k) is considered an operator acting on periodic functions.
In Sect. 2 we exhibit our main construction, and in Sect. 3 we prove the theorem.

2. The Main Construction

First, we restrict ourselves to quasi-momenta k = (k1, 0, . . . , 0). With some abuse of
notations, we will use k for k1. Then, the problem of finding periodic solutions of the
equation L(k)u = 0 is equivalent to the problem of finding solutions of the equation
Lu = 0 that are periodic in x′-variables, and that satisfy the quasi-periodicity condition

u(x1 + 2π, x′) = e2πiku(x1, x
′). (2.1)
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Let C = [−π, π ] × Tn−1 be a cylinder; here Tn−1 is an (n− 1)-dimensional torus. We
denote ζ = exp(2πik) 	= 0. Then the above problem is equivalent to the boundary value
problem

Lu = 0 in C, u(π, x′) = ζu(−π, x′), ∂u

∂x1
(π, x′) = ζ

∂u

∂x1
(−π, x′). (2.2)

Let�± = {±π}×Tn−1 be the top and the bottom of the cylinderC. The symmetry as-
sumptions (1.2) imply that g1α(±π, x′) = 0, so the x1 direction is normal to both the top
and the bottom of the cylinder. It is convenient to take ∂ν = ∂/∂ν = ±g11(±π, x′)∂/∂x1
as a standard outward normal vector to �± at (±π, x′). With this convention, one has
the standard Green formula

(Lu, v)C = (u, Lv)C − (∂νu, v)� + (u, ∂νv)�, (2.3)

where� = �+∪�−, and (·, ·) is the usualL2 scalar product. Notice that a1(±π, x′) = 0
(see (1.2)), so there are no boundary terms that come from first order terms in (1.1).

We will make the reduction of problem (2.2) to the boundary. To make this reduction,
we introduce the Dirichlet-to-Neumann operators. Let ker(LD) be the space of solutions
of the Dirichlet problem for the equation Lu = 0 in C. This space is finite dimensional.
We introduce a space

L = {φ(x′) ∈ L2(Tn−1) : φ(x′) = ∂νu(−π, x′) for some u ∈ ker(LD)}. (2.4)

Notice that, in this definition, one can replace −π by π because the operator L is
invariant under the reflection x1 �→ −x1. It is a standard fact from the elliptic theory
that the boundary value problem

Lu = 0 in C, u(−π, x′) = ψ(x′), u(π, x′) = 0 (2.5)

is solvable if and only ifψ ⊥ L. If problem (2.5) is solvable then its solution is not unique,
but one can find the unique solution that satisfies an additional constraint ∂νu(−π, x′) ⊥
L. Such a solution will be denoted by Pψ . (P stands for “Poisson operator.”) For a
function u(x) in C, we define j±u to be its normal derivatives on �±. Finally we define
the Dirichlet-to-Neumann operators

N0ψ = j−Pψ, N1ψ = j+Pψ, ψ ∈ L⊥. (2.6)

In words, one takes the solution u(x) of (2.5) that satisfies the additional condition
∂νu(−π, x′) ⊥ L; then N0ψ = ∂νu(−π, x′) and N1ψ = ∂νu(π, x

′). Clearly, N0 maps
L⊥ into L⊥. Because the operator L is invariant under the symmetry x1 �→ −x1, one
can interchange �+ and �−. It means that if u(x) is the solution of Lu = 0 such that
u(−π, x′) = 0, u(π, x′) = ψ , and ∂νu(π, x

′) ∈ L⊥ then ∂νu(π, x
′) = N0ψ and

∂νu(−π, x′) = N1ψ . This is actually the main reason why the symmetry assumption is
helpful.

It is known that N0 is an elliptic pseudo-differential operator of order 1, its principal
symbol is positive; so the number of its non-positive eigenvalues is finite. The fact that
it is defined not on the whole Sobolev space H 1(Tn−1) but only on its subspace of
finite codimension is not essential. The operatorN1 is a smoothing operator because the
Schwarz kernel of the Poisson operator P is smooth outside of �−.

To make the reduction of problem (2.2) to the boundary, we set u(−π, x′) = ψ(x′),
and solve the equation Lu = 0, together with the first boundary condition in (2.2); then
the second boundary condition will give us an equation for ψ(x). We start from the
following proposition.
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Proposition 1. Let ζ 	= ±1. Then the problem

Lf = 0 in C, f (−π, x′) = ψ(x′), f (π, x′) = ζψ(x′) (2.7)

is solvable if and only if ψ(x′) ∈ L⊥.

Proof. Let

L̃ =
{(

∂νu(−π, x′)
∂νu(π, x

′)

)
: u(x) ∈ ker(LD)

}
.

Recall that LD is the operator in C given by the differential expression (1.1), with the
Dirichlet boundary conditions. The problem (2.7) is solvable if and only if(

ψ

ζψ

)
⊥ L̃. (2.8)

The operator L is invariant under the reflection x1 �→ −x1, so the kernel of LD splits
into the direct sum of even solutions and odd solutions of Lu = 0,

ker(LD) = (ker(LD))
ev ⊕ (ker(LD))

odd.

This splitting gives rise to the splitting L̃ = (L̃)ev + (L̃)odd. Denote by Lev(odd) the
space of first components from L̃ev(odd). Then L = Lev + Lodd. Notice that

L̃ev =
{(

φev

φev

)
: φev ∈ Lev

}
and L̃odd =

{(
φodd

−φodd

)
: φodd ∈ Lodd

}
.

Now (2.8) holds if and only if (1 + ζ )(ψ, φev) = 0 for every φev ∈ Lev and
(1 − ζ )(ψ, φodd) = 0 for every φodd ∈ Lodd. Our assumption ζ 	= ±1, together
with L = Lev + Lodd, implies that this is equivalent to ψ ⊥ L. ��

Let ζ 	= ±1, 0. For ψ ∈ L⊥, the general solution of problem (2.7) is

f (x) = (Pψ)(x1, x
′)+ ζ(Pψ)(−x1, x

′)+ v(x), v ∈ ker(LD).

Here, once again, we used the invariance of L under the reflection x1 �→ −x1. The last
boundary condition from (2.2) is equivalent to

∂f

∂ν
(π, x′)+ ζ

∂f

∂ν
(−π, x′) = 0.

In terms of the Dirichlet-to-Neumann operators, the last equality can be rewritten as

2ζN0ψ + (1 + ζ 2)N1ψ + ∂v

∂ν
(π, x′)+ ζ

∂v

∂ν
(−π, x′) = 0. (2.9)

In particular,

2ζN0ψ + (1 + ζ 2)N1ψ ∈ L. (2.10)

Proposition 2. Let ζ 	= ±1, 0. The problem (2.2), with u(−π, x′) = ψ(x′) is solvable
if and only if ψ ∈ L⊥, and (2.10) holds.
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Proof. The “only if” part has already been proven. Let us do the “if” part. Assume that
(2.10) holds. Denote

−φ(x′) = 2ζN0ψ + (1 + ζ 2)N1ψ ∈ L.
We decompose φ as a sum φev +φodd. (See the proof of Proposition 1.) Let vev(odd) be
the even (odd) solution of the Dirichlet problem forLv = 0 such that ∂νvev(odd)(−π, x′)
= φev(odd)(x′). Then, (2.9) is satisfied for the function

v(x) = vev(x)

1 + ζ
+ vodd(x)

1 − ζ
. ��

We conclude that assumption (1.5) implies that the inclusion (2.10) has a non-trivial
solution ψ ∈ L⊥ for every ζ 	= ±1, 0. In the next section we will show that this can not
happen.

3. Proof of the Theorem

Let Q be the orthogonal projection onto the space L⊥, and let z = (ζ 2 + 1)/2ζ . Then
(2.10) can be rewritten as

N0ψ + zÑ1ψ = 0, ψ ∈ L⊥, (3.1)

where Ñ1 = QN1. The assumption (1.5) implies that Eq. (3.1) has a non-trivial solution
for every z 	= ±1. First, we establish some simple properties of the operators N0 and
Ñ1.

Proposition 3. (i) Operators N0 and Ñ1 are self-adjoint in L⊥ ⊂ L2(Tn−1).
(ii) ker(Ñ1) = {0}.
Proof. Let ψ1, ψ2 ∈ L⊥, and let uj (x1, x

′) = Pψj (x
′), j = 1, 2. One applies Green’s

formula (2.3) to u1 and u2 to get

(N0ψ1, ψ2) = (∂νu1, u2)�− = (u1, ∂νu2)�− = (ψ1, N0ψ2).

This means that the operator N0 is symmetric, and, if one takes H 1(Tn−1) ∩ L⊥ as its
domain, then it becomes self-adjoint.

Let v(x) ∈ ker(LD) be such a function that

∂ν(u2(−x1, x
′)+ v(x)) ∈ L⊥ when x1 = −π.

Let w(x) = u2(−x1, x
′) + v(x). The invariance of L under the reflection x1 �→ −x1

implies Lw = 0. In addition,

∂νw(−π, x′) = Ñ1ψ2, w(π, x′) = ψ2(x
′).

We apply Green’s formula (2.3) to u1 and w to get

(Ñ1ψ1, ψ2) = (∂νu1, w)�+ = (u1, ∂νw)�− = (ψ1, Ñ1ψ2).

This equation shows that the operator Ñ1 is self-adjoint. (The operator Ñ1 is bounded,
so one does not have to worry about its domain.)
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Finally, suppose that Ñ1ψ = 0. Let u(x) = Pψ . One has Lu = 0, u(−π, x′) =
ψ(x′), u(π, x′) = 0, and ∂νu(π, x

′) ∈ L. Let v(x) ∈ ker(LD), and ∂νv(π, x
′) =

∂νu(π, x
′). Then the function w = u − v is a solution of the equation Lw = 0, and,

on �+, both w and its normal derivative vanish. Therefore, w(x) = 0, and ψ(x′) =
u(−π, x′) = v(−π, x′) = 0. ��

It follows from the theory of analytic families of operators (e.g., see [Ka]) that
dim ker(N0 + zÑ1) = const for all complex numbers z, outside a discrete set E ⊂ C.
Our assumption that (3.1) has a non-trivial solution for all z 	= ±1 implies that this
constant is positive. Moreover, the Riesz projections onto ker(N0 + zÑ1) depend on
z analytically in C \ E. In particular, one can construct a family of functions ψ(z),
z ∈ R \ E, such that ‖ψ(z)‖ = 1, ψ(z) solves (3.1), and ψ(z) is continuous in z. We
restrict z to the real axis as a matter of convenience. Let us show that

(Ñ1ψ(z1), ψ(z2)) = 0 (3.2)

for any z1, z2 ∈ R \ E. If z1 	= z2 then

0 = ((N0 + z1Ñ1)ψ(z1), ψ(z2)) = (ψ(z1), (N0 + z2Ñ1)ψ(z2))

+ (z1 − z2)(Ñ1ψ(z1), ψ(z2)) = (z1 − z2)(Ñ1ψ(z1), ψ(z2)),

and (3.2) follows immediately. If z2 = z1 then we take the limit z2 → z1 in (3.2).
Equation (3.2) implies

(N0ψ(z1), ψ(z2)) = 0, z1, z2 ∈ R \ E. (3.3)

Let M be the linear span of all functions ψ(z), z ∈ R \E. It follows from (3.3) that
(N0ψ,ψ) = 0 for every ψ ∈ M. Let us recall that N0 is a self-adjoint, bounded from
below operator with discrete spectrum. Therefore, dim M < ∞. Now, let zj ∈ R \ E
be a sequence such that zj → ∞, and let ψj = ψ(zj ). The functions ψj lie on a
finite-dimensional sphere in L⊥, so one can assume that ψj → ψ . Note that ‖ψ‖ = 1,
so ψ 	= 0. One has

Ñ1ψj = − 1

zj
N0ψj . (3.4)

The operator Ñ1 is bounded, and the restriction of N0 to M is bounded. (M is finite-
dimensional!) By taking the limit j → ∞ in (3.4), one gets Ñ1ψ = 0. This contradicts
statement (ii) of Proposition 3. ��
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