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Abstract. We predict an exotic Z+ baryon (having spin 1/2,
isospin 0 and strangeness +1) with a relatively low mass of
about 1530 MeV and total width of less than 15 MeV . It
seems that this region ofmasses has avoided thorough searches
in the past.

PACS: 11.30.Rd, 12.39.Dc, 12.39.Mk, 13.75.Gx

1 All light baryons are rotational excitations

The most striking success of the old Skyrme idea [1] that
nucleons can be viewed as solitons of the pion (or chiral) field,
is the classification of light baryons it suggests. Indeed, the
minimal generalization of spherical symmetry to incorporate
three isospin components of the pion field is the so-called
hedgehog form,

πa(x) =
xa

r
P (r), (1)

where P (r) is the spherically-symmetric profile of the soliton.
It implies that a space rotation of the field is equivalent to that
in isospace. Hence, the quantization of the soliton rotation is
similar to that of a spherical top: the rotational states have
isospin T equal to spin J , and their excitation energies are

Erot =
J(J + 1)

2I
, (2)

where I is the soliton moment of inertia. The rotational states
are, therefore, (2J + 1)2-fold degenerate (in spin and isospin).
For J = 1/2 we have the four nucleon states; for J = 3/2 we
have the sixteenΔ-isobar states. By saying that N andΔ are
different rotational states of the same object (the “classical nu-
cleon”) one gets certain relations between their characteristics
which are all satisfied up to a few percent in nature [2].
Quantum Chromodynamics has shed some light into why

the chiral soliton picture is correct: we know now that the
spontaneous chiral symmetry breaking in QCD is, probably,
the most important feature of strong interactions, determining

to a great extent their dynamics (see, e.g. [3]), while the large
Nc (= numbers of colours) argumentation by Witten [4] ex-
plains why the pion field inside the nucleon can be considered
as a classical one, i.e. as a “soliton”.
The generalization to hyperons [4, 5] makes the success of

the chiral soliton idea even more impressive. The rotation can
be now performed in the ordinary and in the flavour SU (3)
space. Its quantization shows [5, 6, 7, 8, 9] that the lowest
baryon state is the octet with spin 1/2 and the next is the de-
cuplet with spin 3/2 – exactly what we meet in reality. Again,
there are numerous relations between characteristics of mem-
bers of octet and decuplet which follow purely from symmetry
considerations. Perhaps themost spectacular is theGuadagnini
formula [5] which relates splittings inside the decuplet with
those in the octet: it is satisfied to the accuracy better than one
percent, see below.

What are the next rotational excitations? If one restricts
oneself to only two flavours, the next state should be a (5/2,
5/2) resonance; in the three-flavour case the third rotational
excitation is an anti-decuplet with spin 1/2 1. Why do not we
have any clear signal of the exotic (5/2, 5/2) resonance? The
reason is that the angular momentum J = 5/2 is numerically
comparable toNc = 3. Rotations with J ∼ Nc cannot be con-
sidered as slow: the centrifugal forces deform considerably
the spherically-symmetric profile of the soliton field [12, 13];
simultaneously at J ∼ Nc the radiations of pions by the ro-
tating body makes the total width of the state comparable to
its mass [12, 14]. In order to survive strong pion radiation
the rotating chiral solitons with J ≥ Nc have to stretch into
cigar-like objects; such states lie on linear Regge trajectories
[12].

The situation, however, might be somewhat different in
the three-flavour case. First, the rotation is, roughly speaking,
distributed among more axes in flavour space, hence individ-
ual angular velocities are not neccessarily as large as when
we consider the two-flavour case with J = 5/2. Actually, the
SU (2) baryons with J = 5/2 belong to a very high multiplet
from the SU (3) point of view. Second, the radiation by the

1 Probably the existence of the anti-decuplet as the next SU (3) rotational
excitation has been first pointed out by the authors at the ITEPWinter School
(February, 1984), see [6]. Other early references for the anti-decuplet include
[8, 10, 11].
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Fig. 1. The suggested anti-decuplet of baryons. The corners of this (T3, Y )
diagram are exotic. We show their quark content together with their (octet
baryon+octet meson) content, as well as the predicted masses

soliton includes nowK and η mesons which are substantially
heavier than pions, and hence such radiation is to some ex-
tent suppressed. Therefore, the anti-decuplet baryons may not
neccessarily have widths comparable to masses. And this is
what we, indeed, find below.

We conclude thus that an expectaction of a relatively light
and narrowanti-decuplet of baryons is theoreticallymotivated.
Moreover, we are in a position to numerically estimate the
masses and widths of the members of the anti-decuplet, and
to point out possible experiments to observe them.

Let us mention that one can altogether abandon the soliton
logic: the exotic anti-decuplet can be alternatively considered
in a primitive way as states made of three quarks plus a quark-
antiquark pair, or else, as a bound state of octet baryons with
octet mesons. For example, the most interesting member of
the anti-decuplet, viz. the exotic Z+ baryon can be considered
as a K+n or K0p bound state 2. Unfortunately, the predic-
tions become then to a great extent model-dependent. It is a
big advantage of the chiral soliton picture that all concrete
numbers (for masses and widths) do not rely upon a specific
dynamical realization but follow from symmetry considera-
tions. Actually, only one number would be useful to get from
dynamics, namely a specific SU (3) moment of inertia I2 (see
below), and concrete dynamical models give concrete values
for this quantity. In this paper, however,weprefer to extract this
quantity from experiment – by identifying the known nucleon

resonance N
(
1710, 1

2

+
)
with the member of the suggested

anti-decuplet 3. We, then, are able to fix completely all the
other members of the anti-decuplet together with their widths
and branching ratios.

To end up this introduction we draw the SU (3) diagramm
for the suggested anti-decuplet in the (T3, Y ) axes, indicating
its naive quark content as well as the (octet baryon + octet
meson) content, see Fig. 1. In addition to the lightest Z+ there

2 It is known that the KN phase shift in the T = 0, J = (1/2)+ state
corresponds to attraction [15]

3 A possibility for such an identification has been mentioned in [16] but
other members of the anti-decuplet have not been addressed there

is an exotic quadruplet of S = −2 baryons (we call them
Ξ3/2). However, the exotic Ξ

−− and Ξ+ hyperons appear to
be very heavy and to have large widths, and can therefore
hardly be detected. Therefore, apart from peculiar branching

ratios predicted for the N
(
1710, 1

2

+
)
and the Σ

(
1880, 1

2

+
)

resonances, the crucial prediction is the existence of a rela-
tively light and narrow Z+ baryon.

2 Rotational states

Following Witten [4] and Guadagnini [5] we assume the self-
consistent pseudoscalar fieldwhichbinds up theNc = 3quarks
in the “classical” baryon (i.e. the soliton field) to be of the form

U (x) ≡ exp (
iπA(x)λA/Fπ

)
=

⎛
⎝ exp [i(n · τ )P (r)] 0

0
0 0 1

⎞
⎠ ,

n =
x
r
, (3)

where the spherically-symmetric profile function P (r) is de-
fined by dynamics. We shall not need the concrete form of this
function in what follows. In (3) λA are the eight Gell-Mann
SU (3) matrices, and τ are the three Pauli SU (2) matrices.
In order to provide the “classical” baryon with specific

quantum numbers one has to consider a SU (3)-rotated pseu-
doscalar field,

Ũ (x, t) = R(t)U (x)R+(t) (4)

whereR(t) is a unitary SU (3) matrix depending only on time
and U (x) is the static hedgehog field given by (3). Quantizing
this rotation one gets the following rotational Hamiltonian [5],

Hrot =
1

2I1

3∑
A=1

J2A +
1

2I2

7∑
A=4

J2A, (5)

where JA are the generators of the SU (3) group; JA with
A = 1, 2, 3 are the usual angular momentum (spin) opera-
tors, and I1,2 are the two SU (3) moments of inertia, which are
model-dependent. Most important is the additional quantiza-
tion prescription,

J8 = −NcB

2
√
3
= −

√
3

2
, Y ′ = − 2√

3
J8 = 1, (6)

where B is the baryon number, B = 1. In the Skyrme model
this quantization rule follows from the Wess-Zumino term
[4, 5]. In the more realistic chiral quark–soliton model [17] it
arises from filling in the discrete level, i.e. from the “valence”
quarks [18]. It is known to lead to the selection rule [5, 6, 7,
8, 9]: not all possible spin and SU (3) multiplets are allowed
as rotational excitations of the SU (2) hedgehog. Equation (6)
means that only those SU (3) multiplets are allowed which
contain particles with hypercharge Y = 1; if the number of
particles with Y = 1 is denoted as 2J + 1, the spin of the
allowed SU (3) multiplet is equal to J .
Therefore, the lowest allowed SU (3) multiplets are:

– octet with spin 1/2 (since there are two baryons in the octet
with Y = 1, the N )

– decuplet with spin 3/2 (since there are four baryons in the
decuplet with Y = 1, the Δ)
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– anti-decuplet with spin 1/2 (since there are two baryons in
the anti-decuplet with Y = 1, the N∗)

The next are 27-plets with spin 1/2 and 3/2 but we do not
consider them here. The appropriate rotational wave functions
describing members of these multiplets are given in Appendix
A.
For the representation (p, q) of the SU (3) group one has

8∑
A=1

J2A =
1

3
[p2 + q2 + pq + 3(p + q)], (7)

therefore the eigenvalues of the rotational Hamiltonian (5) are

Erot
(p,q) =

1

6I2
[p2 + q2 + pq + 3(p + q)]

+

(
1

2I1
− 1

2I2

)
J(J + 1)− (NcB)

2

24I2
. (8)

We have the following three lowest rotational excitations:

(p, q) = (1, 1), J = 1/2 (octet) (9)

(p, q) = (3, 0), J = 3/2 (decuplet) (10)

(p, q) = (0, 3), J = 1/2 (anti-decuplet) . (11)

The splittings between the centers of these multiplets are de-
termined by the moments of inertia, I1,2:

Δ10−8 = Erot
(3,0) − Erot

(1,1) =
3

2I1
, (12)

Δ10−8 = Erot
(0,3) − Erot

(1,1) =
3

2I2
, (13)

Δ10−10 = Erot
(0,3) − Erot

(3,0) =
3

2I2
− 3

2I1
. (14)

We see that, were the moment of inertia I2 > I1, the anti-
decuplet would be even lighter than the standard decuplet.
Though we do not know of any strict theorem prohibiting this
inequality, all dynamical models we know of give I1 > I2, so
that the anti-decuplet appears to be heavier.

3 Splittings in the SU (3) multiplets

We now take into account the non-vanishing strange quark
mass. The effects of the non-zero ms are of two kind: first,
it splits the otherwise degenerate masses inside each SU (3)
multiplet; second, it leads to mixing between different SU (3)
multiplets. We shall systematically restrict ourselves to the
linear order inms. In this order the phenomenologically suc-
cessful Gell-Mann–Okubo and Guadagnini formulae are au-
tomatically satisfied.
Theoretically, the corrections to baryon masses due to

ms �= 0 are of two types: i) leading order, O(msNc) and
ii) subleading order,O(msN

0
c ). These corrections perturb the

rotational Hamiltonian (5) (for derivation see [18]) by

ΔHm = αD(8)
88 + βY +

γ√
3

3∑
i=1

D(8)
8i Ji , (15)

where D(8)
... (R) are the Wigner SU (3) finite-rotation matrices

depending on the orientation matrix of a baryon, see the Ap-
pendices. The coefficients α, β, γ are proportional to the mass

Table 1.Mass splittings within multiplets,ΔmB = 〈B|ΔHm|B〉

octet T Y ΔmB

N 1/2 1 (3/10)α + β − (1/20)γ
Λ 0 0 (1/10)α + (3/20)γ
Σ 1 0 −(1/10)α− (3/20)γ
Ξ 1/2 −1 −(1/5)α− β + (1/5)γ

decuplet

Δ 3/2 1 (1/8)α + β − (5/16)γ
Σ∗ 1 0 0
Ξ∗ 1/2 −1 −(1/8)α− β + (5/16)γ
Ω 0 −2 −(1/4)α− 2β + (5/8)γ

antidecuplet

Z+ 0 2 (1/4)α + 2β − (1/8)γ
N
10

1/2 1 (1/8)α + β − (1/16)γ
Σ
10

1 0 0

Ξ3/2 3/2 −1 −(1/8)α− β + (1/16)γ

of the s quark and are expressed through a combination of
the soliton moments of inertia, I1,2 andK1,2, and the nucleon
sigma term, Σ [18]:

α = − 2
3

ms

mu +md
Σ +ms

K2

I2
, (16)

β = −ms
K2

I2
, (17)

γ =
2

3
ms

(
K1

I1
− K2

I2

)
, (18)

Σ =
mu +md

2
〈N |ūu + d̄d|N〉 . (19)

Toget the physical splittings from (15) one has to sandwich
it between the physical rotational states:

ΔmB = 〈B|ΔHm|B〉. (20)

The mass splittings inside multiplets in terms of the coeffi-
cientsα, β, γ are listed inTable 1 4.Wecall the twomembers of
the anti-decuplet with exotic quantum numbers T = 0, S = 1
and T = 3/2, S = −2 as Z+ and Ξ3/2, respectively.
One observes that all splittings inside the octet and the

decuplet are expressed through only two combinations ofα, β
and γ. This is the reasonwhy, in the soliton picture, in addition
to the standard Gell-Mann–Okubo relations,

2(mN +mΞ ) = 3mΛ +mΣ , (21)

mΔ −mΣ∗ = mΣ∗ −mΞ∗ = mΞ∗ −mΩ− , (22)

there arises a relation between the splittings inside the octet
and the decuplet, the Guadagnini formula [5],

8(mΞ∗ +mN ) + 3mΣ = 11mΛ + 8mΣ∗ , (23)

which is satisfied with better than one-percent accuracy! The
best fit to the splittings in the octet and the decuplet gives the
following numerical values for the two combinations of the
coefficients α, β and γ:

4 We take the opportunity to thank M. Praszalowicz and P. Pobylitsa who
have participated in calculating this table back in 1988
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α +
3

2
γ = −380MeV,

1

8
α + β − 5

16
γ = −150MeV. (24)

To learn the splittings in the anti-decuplet one needs to
know the third combination ofα, β andγ, which is not directly
deducible from the octet and decuplet splittings. The only
statement which can be immediatelly made from looking into
Table 1 is that the spectrum in the anti-decuplet is equidistant,
as in the normal decuplet. The third combination can be fixed,
however, from the knowledge of the nucleon sigma term [19]
and of the current quark mass ratio [20]:

ms

mu +md
≈ 12.5, Σ ≈ 45MeV. (25)

These numbers gives for the sum:

α + β = − 2ms

3(mu +md)
Σ ≈ −375MeV. (26)

Combining this knowledge with (24) we get finally all three
coefficients:

α ≈ −218MeV, β ≈ −156MeV, γ ≈ −107MeV. (27)

The equidistant splittings inside the anti-decuplet are thus ex-
pected to be equal to

Δm10 = −α

8
− β +

γ

16
≈ 180MeV , (28)

the lightest baryon being the exotic Z+ resonance.
To end up this section we note that the non-zero strange

quark mass leads also to the mixing of octet and anti-decuplet
states with otherwise identical quantum numbers. In the linear
order inms these mixings are derived in Appendix A and can
be all expressed through one constant whichwe call c10, where

c10 = − 1

3
√
5

(
α +

1

2
γ

)
I2 . (29)

The true hyperon states become superpositions of the octet
and anti-decuplet states:

Mainly octet baryons

|N〉 = |N, 8〉 + c10|N, 10〉, (30)

|Λ〉 = |Λ, 8〉, (31)

|Σ〉 = |Σ, 8〉 + c10|Σ, 10〉, (32)

|Ξ〉 = |Ξ, 8〉; (33)

Mainly anti-decuplet baryons

|Z+〉 = |Z+, 10〉, (34)

|N10〉 = |N, 10〉 − c10|N, 8〉, (35)

|Σ10〉 = |Σ, 10〉 − c10|Σ, 8〉, (36)

|Ξ3/2〉 = |Ξ3/2, 10〉, (37)

In the linear order in ms the mixing does not effect the
mass splittings inside the multiplets, discussed above.
Apart from α and γ, which we know now, the mixing co-

efficient c10 is proportional to the second moment of inertia
I2 which defines the shift of the anti-decuplet center (i.e. the

Σ10 baryon) from the octet center, see (13).We do not know of
any symmetry considerations relating this shift to that between
the centers of the octet and the decuplet. The dynamical (i.e.
model) predictions for the moment of inertia I2 are rather dis-
perse: they range from0.43 fm in the Skyrmemodel [10, 11] to
0.55 fm in the chiral quark–solitonmodel [18]. Taken literally,
the last value of I2 would lead to a very light anti-decuplet,
and in particular to a Z+ lying below the KN threshold and
thus stable against strong interactions. However, it should be
mentioned that the moments of inertia have ∼ ms correc-
tions which are not computed yet. On physical grounds one
can argue that the ms corrections should be negative, since
the account for non-zero quark mass makes the baryons more
“tight”.

In any case, we prefer to fix this fundamental quantity
from identifying one of the members of the anti-decuplet,
namely the one with the nucleon quantum numbers,N10, with

the rather well established nucleon resonance N
(
1710, 1

2

+
)
.

Given that N10 is ≈ 180MeV lighter than the center of the
anti-decuplet, we find

I2 ≈ 0.4 fm ≈ (500MeV )−1, (38)

and hence the octet–anti-decuplet mixing amplitude is

c10 ≈ 0.084 , (39)

being not a negligible quantity.

We thus arrive to the followingmasses of the anti-decuplet:

mZ+ ≈ 1530MeV,

mN
10
≈ 1710MeV (input),

mΣ
10
≈ 1890MeV,

mΞ3/2
≈ 2070MeV. (40)

4 Baryon decays

In the non-relativistic limit for the initial and final baryons
the baryon-baryon-meson coupling can be written in terms of
rotational coordinates R of the baryon as [2]

−i
3G0
2mB

· 1
2
Tr(R†λmRλi) · pi, (41)

where λm is the Gell-Mann matrix for the emitted meson of
flavourm, and pi is the 3-momentum of the meson. To make
(41) more symmetric we use for mB in the denominator the
half-sum of the initial (B1) and final (B2) baryon masses.
Sandwiching (41) between the rotational wave functions of
initial and final baryons, given by (A.1,A.2), we obtain the
B1 → B2 +M transitions amplitude squared (averaged over
the initial and summed over the final spin and isospin states)
in terms of the SU (3) isoscalar factors. The general formula is
given in Appendix B. Using it we get for the particular modes
of the 10→ 8 + 8 decays:
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Decays of the decuplet

Γ (Δ → Nπ) =
3G20

2π(MΔ +MN )2
|p|3MN

MΔ
· 1
5

= 110MeV vs. 110MeV (exp.), (42)

Γ (Σ∗ → Λπ) =
3G20

2π(MΣ∗ +MΛ)2
|p|3 MΛ

MΣ∗
· 1
10

= 35MeV vs. 35MeV (exp.), (43)

Γ (Σ∗ → Σπ) =
3G20

2π(MΣ∗ +MΣ)2
|p|3 MΣ

MΣ∗
· 1
15

= 5.3MeV vs. 4.8MeV (exp.), (44)

Γ (Ξ∗ → Ξπ) =
3G20

2π(MΞ∗ +MΞ )2
|p|3 MΞ

MΞ∗
· 1
10

= 8.6MeV vs. 10MeV (exp.), (45)

where |p| =
√
(M 2

1 − (M2 +m)2) · (M 2
1 − (M2 −m)2)/2M1

is the momentum of the meson of massm. To get the concrete
numberswe have used the value of the dimensionless coupling
constant in (41) G0 ≈ 19.
We remind the reader that the usual SU (3) symmetry

would require two coupling constants (F and D) to deter-
mine the above widths, and of course the SU (3) symmetry by
itself tells nothing about the relation between decay constants
for different multiplets. The chiral soliton models, while pre-
serving the usual SU (3) symmetry, in addition give relations
between various couplings, since they all correspond to differ-
ent rotation states of the same object. In particular, the chiral
soliton models predict the F/D ratio to be [21]

F

D
=
5

9
= 0.555... vs. 0.56± 0.02 (exper.), (46)

and the gπNN constant to be

gπNN =
7

10
G0 ≈ 13.3 vs. ≈ 13.6 (exper.). (47)

Again, we see that the notion of ‘baryons as rotational
excitations’ works quite satisfactory. Therefore, one would
expect that the same coupling constant G0 should be used
for predicting the partial decay rates of the next rotational
excitation, the anti-decuplet.

We remark, however, that in the particular case of the
pseudoscalar couplings we expect rather large 1/Nc correc-
tions which need not be universal for all multiplets. The point
is, the baryon-pseudoscalar couplings are related, thanks to
Goldberger–Treiman, to the baryon axial constants, gA.Mean-
while, it is well known that the real-world (Nc = 3) value
of the nucleon axial constant gA differs from its large-Nc

limit roughly by a factor [22] (Nc + 2)/Nc = 5/3, which
is quite significant. This value comes from an estimate in a
non-relativistic quark model and is not necessarily exactly
true, however it gives an idea of the size of the 1/Nc cor-
rections to the pseudoscalar couplings. Therefore, in order to
perform a reliable estimate of the anti-decupletwidthswe have
to take into account, in addition to the leading-order (41), the
1/Nc corrections to that formula. The relevant 1/Nc correc-
tions have been treated in ref. [23] for the SU (2) case and in
ref. [24] for the SU (3) octet and decuplet cases; below we
extend these works to the anti-decuplet couplings.

In the next-to-leading order one has to add to (41) new
operators depending on the angular momentum Ja. These op-
erators have the form [24]:

i
3G1
2mB

· diab · 1
2
Tr(R†λmRλa)Jb · pi +

+ i
3G2

2mB

√
3
· 1
2
Tr(R†λmRλ8)Ji · pi, (48)

where dabc is theSU (3) symmetric tensor, a, b = 4, 5, 6, 7, and
Ja are the generators of the infinitesimal SU (3) rotations. The
newcoupling constantsG1,2 are suppressedby1/Nc relative to
the leading-order coupling constantG0, although numerically
they can be sizable.
Sandwiching eqs. (41,48) between the rotational wave

functions of initial and final baryons and taking into account
the anti-decuplet–octet mixing represented by the coefficient
c10 (see see (39)), we obtain the following general formula
for partial widths of members of the decuplet and of the anti-
decuplet:

Γ (B1 → B2M ) =
3G2r

2π(M1 +M2)2
|p|3M2

M1
·

· (C1 + 1√
5
C2 · c10), (49)

The effective coupling constantGr depending on themultiplet
and the isoscalar factorsC1 andC2 for various decays are listed
in Table 2. The pion nucleon coupling constant gπNN and the
F/D ratio can be also expressed in terms of the couplings
G0,1,2:

gπNN =
7

10
· (G0 + 1

2
G1 +

1

14
G2), (50)

F

D
=
5

9
· G0 +

1
2
G1 +

1
2
G2

G0 +
1
2
G1 − 1

6
G2

. (51)

Substituting in the last equation the experimental value of
F/D = 0.56± 0.02 we find the value of the ratio:

G2

G0 +
1
2
G1

= 0.01± 0.05, (52)

which turns to be very small and will be neglected. The small-
ness of G2 is not surprising as it can be related to the singlet
axial constant of the nucleon,

G2 =
2MN

3Fπ
g(0)A , (53)

Table 2. Clebsch-Gordan coefficients entering (49) for the decays of the
decuplet and of the lightest members of the anti-decuplet

decay Gr C1 C2

Δ → Nπ G0 +
1
2
G1

1
5

0

Σ∗ → Λπ G0 +
1
2
G1

1
10

0

Σ∗ → Σπ G0 +
1
2
G1

1
15

0

Ξ∗ → Ξπ G0 +
1
2
G1

1
10

0

N
10

→ Nπ G0 −G1 − 1
2
G2

1
20

− 23
40

N
10

→ Nη G0 −G1 − 1
2
G2

1
20

− 1
40

N
10

→ Δπ G0 +
1
2
G1 0 4

5
c
10

N
10

→ ΛK G0 −G1 − 1
2
G2

1
20

2
5

N
10

→ ΣK G0 −G1 − 1
2
G2

1
20

3
20

Z+ → NK G0 −G1 − 1
2
G2

1
5

1
4
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the latter known to be small. We see here another remarkable
prediction of the ‘baryon as soliton’ idea: the smallness of the

singlet axial constant g(0)A is directly related to the smallness
of the deviation of the F/D ratio from 5/9.
From Table 2 we see that the decuplet-octet couplings are

proportional to (G0 + G1/2) and hence (if one neglects the
apparently small G2) it can be related to the pion-nucleon
coupling gπNN . This observation means that the widths of the
decuplet calculated in the leading 1/Nc order in the beginning
of this section are actually not affected by the rotational 1/Nc

corrections: in the next-to-leading order the relation of the
decuplet widths to the gπNN constant is not changed. One has
just to replace the G0 of (42–47) by G0 + G1/2. Therefore,
from the decuplet decay width one finds (cf. (47))

G10 = G0 +
1

2
G1 ≈ 19,

gπNN ≈ 7

10

(
G0 +

1

2
G1

)
≈ 13.3 . (54)

However, the situation is different for the anti-decuplet: as
seen from Table 2, its effective couplings are proportional to
(G0−G1) (again we neglect the smallG2), not to (G0 +

1
2
G1).

Therefore, with the 1/Nc corrections taken into account, the
anti-decuplet–octet coupling is not expressed solely through
gπNN : to calculate the anti-decuplet decay widths one has to
know the ratio G1/G0 as well. Unfortunately, it can not be
fixed in a model-independent way – one has to resort to some
model. In the chiral quark-soliton model [17] the ratioG1/G0
is in range from 0.4 to 0.6 [23, 24] 5. A similar calculation of
theG2 coupling in the samemodel shows that it is substantially
smaller than G0 [24], in accordance with the experiment, see
(52). In the estimates belowwe use the lower value of the ratio,
G1/G0 ≈ 0.4, corresponding to the value of the anti-decuplet
decay constant,

G10 ≈ G0 −G1 ≈ 0.5 ·G10 ≈ 9.5 . (55)

It should be mentioned that the non-relativistic quark
model (which, to some extent, can be used as a guiding line)
predicts G1/G0 = 4/5 and G2/G0 = 2/5, which is in a quali-
tative agreement with a more realistic calculation in the quark
soliton model. Amusingly, though, these ratios produce ex-
actly zero G10. At the moment we are unable to point out
the deep reason for such a cancellation; in any case the non-
relativistic quark model cannot be considered as realistic as it
gives also a too large value of the F/D ratio and of the sin-
glet axial constant. However, it may indicate that (55) over-
estimatesG10, and that thewidths of the anti-decuplet are even
more narrow than we estimate below.
We now present the decay rates of themembers of the anti-

decuplet using (49,55) with the Clebsch–Gordan coefficients
from Table 2 which also takes into account the octet–anti-
decuplet mixing discussed in Sect. 3.

T = 0, S = 1 state (the exotic Z+ baryon)

Γ (Z+ → NK) =
3G2

10

2π(MN +MZ)2
|p|3MN

MZ
· 1
5

(
1 +

√
5

4
c10

)
= 15MeV, (56)

5 M.P. is grateful to H.-C. Kim and T. Watabe for a detailed discussion of
this issue

Since there are no other strong decay modes, the total width
of the Z+ coincides with the above number.

T = 1
2
, S = 0 state (the N resonance)

Γ (N10 → Nπ) =
3G2

10

2π(MN +M10)
2
|p|3MN

M10

· 1
20

(
1− 23

2
√
5
c10

)
= 5MeV, (57)

Γ (N10 → Nη) =
3G2

10

2π(MN +M10)
2
|p|3MN

M10

· 1
20

(
1− 1

2
√
5
c10

)
= 11MeV, (58)

Γ (N10 → Δπ) =
3G2

10

2π(MΔ +M10)
2
|p|3MΔ

M10

· 4
5
c2
10
= 5MeV, (59)

Γ (N10 → ΛK) =
3G2

10

2π(MΛ +M10)
2
|p|3MΛ

M10

· 1
20

(
1 +

8√
5
c10

)
= 5MeV, (60)

Γ (N10 → ΣK) =
3G2

10

2π(MΣ +M10)
2
|p|3MΣ

M10

· 1
20

(
1 +

3√
5
c10

)
= 0.5MeV, (61)

These partial widths sum up into 27.5 MeV. However, the
quantum numbers of N (1710) allow decays into, say, Nππ
stateswhich are not fully accounted for above.Allowing a 50%
branching ratio for the non-accounted decays, we estimate the
full width as Γtot(N10) ≈ 27.5MeV · 1.5 ≈ 41MeV , where
from the branching ratios can be deduced, see Table 3.

T = 1, S = −1 state (the Σ resonance)

Γ (Σ10 → NK̄) =
3G2

10

2π(MN +MΣ
10
)2
|p|3 MN

MΣ
10

· 1
30

(
1− 9√

5
c10

)
= 6MeV, (62)

Table 3. Predictions for decay modes of N
10
identified with N

(
1710, 1

2

+)
,

confronted with the data from [25]

N
10

prediction data

M
10
, MeV 1710 (input) 1710

Γtot(N10) , MeV ∼ 40 50 to 250

Br(Nπ) ∼ 0.13 0.10 to 0.20
Br(Nη) ∼ 0.28 0.16± 0.10

Br(Δπ) P-wave ∼ 0.13 –
Br(ΛK) ∼ 0.13 –
Br(ΣK) ∼ 0.01 –√

Br(Nπ)Br(Nη) ∼ 0.19 0.30± 0.08√
Br(Nπ)Br(ΛK) ∼ 0.13 0.12 to 0.18√
Br(Nπ)Br(Δπ) ∼ 0.12 0.16 to 0.22
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Γ (Σ10 → Σπ) =
3G2

10

2π(MΣ +MΣ
10
)2
|p|3 MΣ

MΣ
10

· 1
30

(
1−

√
5c10

)
= 10MeV, (63)

Γ (Σ10 → Ση) =
3G2

10

2π(MΣ +MΣ
10
)2
|p|3 MΣ

MΣ
10

· 1
20

(
1 +

6√
5
c10

)
= 9MeV, (64)

Γ (Σ10 → Λπ) =
3G2

10

2π(MΛ +MΣ
10
)2
|p|3 MΛ

MΣ
10

· 1
20

(
1− 6√

5
c10

)
= 17MeV, (65)

Γ (Σ10 → ΞK) =
3G2

10

2π(MΞ +MΣ
10
)2
|p|3 MΞ

MΣ
10

· 1
30

(
1 +

19√
5
c10

)
= 3MeV, (66)

Γ (Σ10 → Σ∗π) =
3G2

10

2π(MΣ∗ +MΣ
10
)2
|p|3MΣ∗

MΣ
10

· 2
15

c2
10
= 2MeV. (67)

These partial widths sum up to 47MeV . Multiplying it
by a factor of 1.5 as in the previous case we estimate the full
width of the Σ10 to be Γtot(Σ10) ≈ 70MeV . See Table 4
for the calculated branching ratios and a comparison with the
data.

T = 3/2, S = −2 state (the exotic Ξ3/2 baryon)
Γ (Ξ3/2 → ΣK) = 52MeV, (68)

Γ (Ξ3/2 → Ξπ) = 42MeV, (69)

Γtot(Ξ3/2) ≈ 140MeV. (70)

Despite the smallness of the octet–anti-decuplet mixing
represented by the coefficient c10 (see (39)) it has a large
impact on the decay widths of the anti-decuplet because the
decay channels 8 → 8 + 8 and 8 → 10 + 8 are enhanced
“kinematically” by large Clebsch–Gordan coefficients. For
example, without taking into account this mixing, the decay
N10 → Δπ is forbidden, however the small mixing probabil-

ity, c2
10

∼ 0.007, is amplified by a huge “kinematical” factor
∼ 20.
Finally, we mention that the Z+NK coupling correspon-

dent to (41,48) can be written down in a relativistically-
invariant form as

Table 4. Predictions for decay modes of Σ
10
, confronted with the data from

[25]

Σ
10

prediction data

MΣ
10
, MeV 1890 ≈ 1880

Γtot(Σ10) , MeV ∼ 70 80 to 250

Br(NK̄) ∼ 0.09 0.06 to 0.3√
Br(NK̄)Br(Σπ) ∼ 0.11 ∼ 0.3√
Br(NK̄)Br(Λπ) ∼ 0.15 0.11 to 0.25

Lint = igKNZ

[
(p̄γ5Z

+)K̄0 + (n̄γ5Z
+)K−]

. (71)

Comparing its non-relativistic limit with particular projections
of (41,48) we find

gKNZ =
3√
30

2mN

mN +mZ
(G0 −G1) ≈ 4.1 . (72)

For a comparison, the ordinary Σ+NK vertex written in
the form of (71) corresponds to gKNΣ+ ≈ 5.

5 Identification of members of the anti-decuplet

We see that the predicted branching ratios and total width
of the N (1710) are in a reasonable agreement with the data,
given the large errors and inconsistencies in the data, see [25].
Our numbers should be compared also with the predictions for
theN (1710) decays following from the standard SU (6) quark
model, performed in [26]. AssumingN (1710) to be a member
of a normal octet the authors get, in particular, Γ (Nη) ≈
Γ (ΛK) ≈ 0, which seems to contradict the data even though
the errors are large. It should be mentioned, however, that a
recent analysis [27] suggests that in the ∼ 1700MeV region
there might be actually two nucleon resonances: one coupled
stronger to pions and another to the η meson.
We conclude that theN (1710) nucleon resonance is a good

candidate for the N10 member of the anti-decuplet. Let us
stress that the octet–anti-decuplet mixing is important for the
analysis. It leads to a considerable reduction of theNπ branch-
ing ratio and of the total width; simultaneously a non-zeroΔπ
branching ratio appears, in accordance with the phenomenol-
ogy of the N (1710) decays.
There is a fair candidate for the Σ10 member of the anti-

decuplet, namely the Σ(1880) from the Particle Data Group
baryon listings [25]. The resonance has only a two-star status,
and its properties are not measured properly, including the
mass ranging from 1826±20 to 1985±50MeV.Nevertheless,
we compare our predictions for the Σ10 with what is known
about the resonance, see Table 4.
What can be said is that the suggested identification does

not contradict the (poor) data on the Σ(1880) resonance.
As to Ξ3/2 which we predict at 2070MeV , there are sev-

eral candidates for the non-exotic components of this quadru-
plet in the rangeofmasses between1900 and2100MeV , how-
ever even their quantum numbers are not well established yet.
In view of the estimate that our Ξ3/2 is wider than 140MeV
it would be quite difficult to pinpoint such a state, including
its exotic components,Ξ−− andΞ+. Moreover, a presence of
such a wide state would seriously influence the determination
of the parameters of other Ξ-type resonances, were they to
appear in this mass region. We sum up our predictions for the
anti-decuplet in Table 5.
It should bementioned that themasses of the anti-decuplet

have been estimated in the Skyrme model with the results
ranging from MZ+ ≈ 1500 MeV [10] to ≈ 1700 MeV [11].
Such an uncertainty arises in the Skyrme model since one has
to make a difficult choice between having the nucleon mass
correct and the Fπ constant wrong, or vice versa. Predictions
for the exotic T = 0, S = 1 P01 state in the bag model are
grouped around 1750MeV [28, 29], that is significantly higher
than our estimate.
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Table 5. Predictions for masses and total widths of the members of the anti-
decuplet and possible candidates for these states

T Y Mass Width Possible
in MeV in MeV candidate

Z+ 0 2 1530 15 —
N
10

1/2 1 1710 (input) ∼ 40 N (1710)P11
Σ
10

1 0 1890 ∼ 70 Σ(1880)P11
Ξ3/2 3/2 −1 2070 > 140 Ξ(2030)?

Our considerations have essentially been based on the
identification of the non-exotic member of the anti-decuplet
with the rather well established nucleon resonance,

N
(
1710, 1

2

+
)
. On general grounds, we cannot exclude the

possibility that the anti-decuplet as a whole lies higher. For
example, the exotic Z+ might, in principle, have a mass of
more than 1750 MeV (lower masses are probably excluded
by the old phase-shift analyses – see [15]). There have been
claims in the past for observing such states (see [30] for a
review). In this case, however, there would be difficulties in
finding an appropriate candidate for the N10 member of the
anti-decuplet. The only possibility suggested by the Particle

Data baryon listings is the N
(
2100, 1

2

+
)
resonance. In this

case the moment of inertia I2 determining the shift of the anti-
decuplet center in respect to the decuplet center would be very
small (about ∼ 0.3 fm). Such a small moment of inertia can
hardly be obtained in any dynamical realization of the idea of
baryons as solitons, which seems to be so successful every-
where else. Therefore, we believe that we present a good case
for a relatively light and narrow exotic baryon: it probably has
not been observed in the past just for these reasons.

6 Conclusions

The chiral soliton models of baryons, which correctly empha-
size the important role of the spontaneous chiral symmetry
breaking in the dynamics of strong interactions, are extremely
successful in explaining relations between octet and decuplet
baryons since in these models they all appear as various rota-
tional excitations of the same object.
The two lowest rotational states of chiral solitons are ex-

actly the octet with spin 1
2
and the decuplet with spin 3

2
, and

it is natural to ask oneself what is the next rotational state.
The answer is [6, 8, 10, 11]: it is the anti-decuplet with spin
1
2
, and most of its properties can be predicted from symmetry
considerations only, without entering into dynamics which is
model-dependent. The only unknown parameter (a specific
SU (3) moment of inertia) can be fixed by identifying the
nucleon-like member of the anti-decuplet with the observed

N
(
1710, 1

2

+
)
resonance. Its decay modes, as well as masses

and decay modes of the other members of the anti-decuplet
can be then fixed unambigiously. The calculated decay modes
of the N (1710) are found to be in a reasonable agreement
with the existing data though the data are not good enough to
make a decisive conclusion. At least it seems that the standard
non-relativistic SU (6) description of this state as a member of
an octet, is in trouble with the data: the anti-decuplet idea fits
better.

In a sense, history repeats itself: there are candidates for
all members of the anti-decuplet, except for its vertex – like in
the early 60’swhen all members of the now venerable decuplet
were known except theΩ− hyperon. In our case it is the exotic
Z+ baryon, which decays into K+ n and K0 p. Claims for
observing such states have beenmade in the past (see [30] for a
review) but they are all substantially higher than our prediction
mZ ≈ 1530MeV , with the width lower than ΓZ ≈ 15MeV .
The most direct way to detect the exotic Z+ resonance

would be in the K0 p or K+ n scattering. Unfortunately, the
mass range in question is too low for kaon beams and probably
too high for the φ factory of kaons.
Another possibility to reveal the exotic Z+ is in the colli-

sions of non-strange particles. In comparison with direct pro-
duction inKN collision, such reactions are more complicated
as they involvemany particles in the final states of which some
are neutral and some are charged, therefore a combined detec-
tor is needed. As to the missing-mass-type experiments they
seem to be vulnerable because of severe background condi-
tions and the narrowness of the Z+. Let us list several pos-
sibilities of the Z+ production in reactions with non-strange
particles.

– Nucleon–nucleon collisions
pn → ΛZ+ → ΛK+n or ΛK0p, plab > 2.60 GeV/c
pp → Σ+Z+ → Σ+K+n or Σ+K0p, plab > 2.8 GeV/c

– Photon-nucleon collisions
γp → K̄0Z+ → K̄0K+n or K̄0K0p, plab > 1.7 GeV/c
γn → K−Z+ → K−K+n or K−K0p, plab >
1.7 GeV/c

– Pion-nucleon collisions
π−p → K−Z+ → K−K+n or K−K0p plab >
1.7 GeV/c
π+n → K̄0Z+ → K̄0K+n or K̄0K0p, plab > 1.7 GeV/c.

One of the most promising ways to check the existence of
the Z+ baryon would be in the photon collisions with energies
> 2GeV , since the photon already carries a portion of strange
quarks 6. Another possibility is to analyze the LASS data from
the 11 GeVK+p collisions 7. In any case, a search for a light
and narrow exotic Z+ baryon seems to be a challenging task.
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Appendix A

The rotational wave functions of baryons are eigenfunctions
of the collective hamiltonian

H = Hrot +ΔHm,

where the SU (3)-symmetric Hrot is given by (5) and the
SU (3)-breaking part,ΔHm, is given by (15). The eigenfunc-
tions of the unperturbed hamiltonianHrot are proportional to
the Wigner finite-rotation matrices [31]:

6 One of us (D.D.) is grateful to E. Paul for a conversation on this point
7 We thank J. Bjorken and J. Napolitano for this suggestion
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|B〉 = |B, r〉 =
√
dim r(−1)J3−1/2D(r̄)

Y,T,T3;1,J,−J3
, (A.1)

where r is an irreducible representation of the SU (3) group,
r = 8, 10, 10, etc., B denotes a set of quantum numbers:
Y, T, T3 (hypercharge, isospin and its projection) and J, J3
(spin and its projection).

In the linear approximation in ms rotational wave func-
tions are superpositions of different representations:

|B〉 = |B, r〉 +
∑
r′ �=r

〈B, r′|ΔHm|B, r〉
Er(0)

B − Er′(0)
B

|B, r′〉. (A.2)

Here the unperturbed energiesEr(0)
B are given by (8). Neglect-

ing admixtures of the 27- and 35-plets and using the general
(A.2) we obtain the wave functions (30-37).

Appendix B

In this Appendix we derive general formulae for the decay
rate of a baryon B1 with flavour quantum numbers (Y TT3) =
(Y1T1t1) and spin (JJ3) = (J1j1), into a baryonB2 with quan-
tum numbers (Y2T2t2) and (J2j2), plus an octet pseudoscalar
meson with (Y TT3) = (YmTmtm). In order to obtain the am-
plitude one has to sandwich the meson-soliton coupling

−i
3G0
2MB

· 1
2
Tr(R†λmRλi) · pi, (B.1)

where λm is the Gell-Mann matrix of the correspondent me-
son, R is the matrix describing the orientation of the soliton,
and pi is the 3-momentum of the meson, between rotational
wave functions describing the baryons B2 and B1. To incor-
porate a general situation we assume that their rotational wave
functions are mixtures of certain SU (3) muiltiplets r and q, so
that one can write the wave functions as linear combinations
of the Wigner D-functions:

ΨBi
(R) = (−1)ji−1/2{

√
dim riD

(r̄i)
Yi,Ti,ti;1,Ji,−ji

+Ai

√
dim qiD

(q̄i)
Yi,Ti,ti;1,Ji,−ji

}. (B.2)

We assume the admixtures A1,2 to be small (∼ ms), and ne-
glect systematically the A2i terms.
Using the fact that

1

2
Tr(R†λmRλi) = D(8)

m,i(R), (B.3)

and the general formula,

∫
dRDr∗

νν′ (R)Dr1
ν1ν′

1
(R)Dr2

ν2ν′
2
(R)

=
1

dim(r)

∑
μ′

δrr′

(
r1 r2 r

′
ν1 ν2 ν

) (
r1 r2 r′
ν′1 ν

′
2 ν

′,

)
, (B.4)

where the sum goes over all occurrences of the representation
r in the product of representations r1 and r2, one gets for the
decay amplitude B1 → B2 +M the following expression in
terms of the SU (3) Clebsch–Gordan coefficients :

M(B1 → B2M ) =
3g

M2 +M1
pi

{√
r2
r1

∑
r′
1

(
r2 8 r′1

Y2T2t2 YmTmtm Y1T1t1

)(
r2 8 r′1
1J2j2 01i 1J1j1

)
+

A1

√
r2
q1

∑
q′
1

(
r2 8 q′1

Y2T2t2 YmTmtm Y1T1t1

)(
r2 8 q′1
1J2j2 01i 1J1j1

)
+

A2

√
q2
r1

∑
r′
1

(
q2 8 r′1

Y2T2t2 YmTmtm Y1T1t1

)(
q2 8 r′1
1J2j2 01i 1J1j1

)}
.

Before we square this amplitude let us factorize out the de-
pendence on the SU (2) quantum numbers (referring both to
spin and isospin) using the relation between theSU (3) and the
SU (2) Clebsch–Gordan coefficients [31] (the proportionality
coefficient is called the isoscalar factor):(

r1 r2 r3
Y1T1t1 Y2T2t2 Y3T3t3

)

= CT3t3
T1t1;T2t2

(
r1 r2

Y1T1 Y2T2

∣∣∣∣ r3
Y3T3

)
. (B.5)

Making use of the above relation one gets for the amplitude
squared:

|M|2 = 9G20
(M2 +M1)2

pipj |CT1t1
T2,t2;Tm,tm

|2CJ1j1
J2,j2;1i

CJ1j1
J2,j2;1j

×
{
r2
r1

∣∣∣∣
∑
r′
1

(
r2 8

Y2T2 YmTm

∣∣∣∣ r′1
Y1T1

) (
r2 8
1J2 01

∣∣∣∣ r′1
1J1

)∣∣∣∣
2

+

2A1
r2√
q1r1

∑
r′
1

(
r2 8

Y2T2 YmTm

∣∣∣∣ r′1
Y1T1

) (
r2 8
1J2 01

∣∣∣∣ r′1
1J1

)

×
∑
q′
1

(
r2 8

Y2T2 YmTm

∣∣∣∣ q′1
Y1T1

) (
r2 8
1J2 01

∣∣∣∣ q′1
1J1

)
+ (B.6)

2A2

√
r2q2

r1

∑
r′
1

(
r2 8

Y2T2 YmTm

∣∣∣∣ r′1
Y1T1

) (
r2 8
1J2 01

∣∣∣∣ r′1
1J1

)

×
∑
r′
1

(
q2 8

Y2T2 YmTm

∣∣∣∣ r′1
Y1T1

) (
q2 8
1J2 01

∣∣∣∣ q′1
1J1

)}
.

To get the decay width one needs to average the amplitude
squared |M|2 over the initial and to sum over the final spin
and isospin states:

M2 =
1

(2T1 + 1)(2J1 + 1)

∑
t2tmj2

∑
t1j1

|M|2. (B.7)

In (B.6) the dependence on spin and isospin projections is fac-
tored out, hence one can perform the summation over final and
initial spin and isospin states with the help of the orthogonality
relations for the SU (2) Clebsh–Gordan coefficients:∑
j2j1

CJ1j1
J2,j2;1i

CJ1j1
J2,j2;1j

=
2J1 + 1

3
δij , (B.8)

∑
t2t1tm

|CT1t1
T2,t2;Tm,tm

|2 = 2T1 + 1. (B.9)

MultiplyingM2 by the phase volume we get the final result
for the decay rate of B1 → B2 +M in terms of the SU (3)
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isoscalar factors:

Γ (B1 → B2 +M ) =
3G20

2π(M2 +M1)2
|p|3M2

M1

×
{
r2
r1

∣∣∣∣
∑
r′
1

(
r2 8

Y2T2 YmTm

∣∣∣∣ r′1
Y1T1

) (
r2 8
1J2 01

∣∣∣∣ r′1
1J1

)∣∣∣∣
2

+

2A1
r2√
q1r1

∑
r′
1

(
r2 8

Y2T2 YmTm

∣∣∣∣ r′1
Y1T1

) (
r2 8
1J2 01

∣∣∣∣ r′1
1J1

)

×
∑
q′
1

(
r2 8

Y2T2 YmTm

∣∣∣∣ q′1
Y1T1

) (
r2 8
1J2 01

∣∣∣∣ q′1
1J1

)
+ (B.10)

2A2

√
r2q2

r1

∑
r′
1

(
r2 8

Y2T2 YmTm

∣∣∣∣ r′1
Y1T1

) (
r2 8
1J2 01

∣∣∣∣ r′1
1J1

)

×
∑
r′
1

(
q2 8

Y2T2 YmTm

∣∣∣∣ r′1
Y1T1

) (
q2 8
1J2 01

∣∣∣∣ q′1
1J1

)}
.

These SU (3) isoscalar factors can be found in ref. [31].
Similar derivation canbeperformed for thenext-to-leading

pseudoscalar couplinigs eqs. (48). The results are summarized
in Table 2.
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