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Abstract
The possible effects of hot water treatments (HWT) on the main quality parameters and bioactive compounds of two sweet 
cherry cultivars were examined over two years. Cherries were dipped in hot water (48 °C, 2 min), stored 3 weeks at 1 °C 
(CS) and for 2 additional days at 20 °C for simulated shelf-life (SL). Except for a slight decrease in firmness generally 
observed in treated samples (5–6%), no difference was observed between HWT and control fruits, neither for the main 
quality parameters nor the bioactive compounds during CS and/or SL. On average, the percentage of rotten fruit was more 
than 50% lower in HWT samples compared to the controls. These results show that the HWT conditions examined in this 
study effectively reduce the incidence of sweet cherry decay without impairing, after CS and/or SL, most of the main qual-
ity parameters or the content of the main bioactive nutrients. Because HWT are residue-free, easy to apply and effective in 
reducing post-harvest losses while preserving the organoleptic and nutritional quality of cherries, HWT are a good strategy 
for both cherry professionals and consumers.
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Introduction

With a global production increase of about 50% between 
2001 and 2021, 1.8 and 2.7 million tons, respectively [1], 
sweet cherry (Prunus avium L.) is a very popular fruit 
worldwide with a high market value. Highly appreciated 
by consumers for its attractive color and sweetness, sweet 
cherry is also known to be a good source of health ben-
eficial compounds, such as vitamins and phenolics [2–5]. 
In particular, sweet cherries have been reported to exhibit 
potential cancer chemopreventive properties, or to reduce 
the risk of developing diabetes and Alzheimer’s disease 
[6–8]. In recent years, consumers have become increasingly 
aware of the impact of food on health, and many of them are 
willing to pay higher prices for fresher, tastier, and healthier 

products [9]. As a non-climacteric fruit, sweet cherry must 
be picked when fully ripe to guarantee good quality [10], 
but due to its short postharvest shelf-life, cold storage is 
commonly used to extend its market window. Nevertheless, 
as the storage time increases fruit quality generally signifi-
cantly decreases (water loss, softening, …) and postharvest 
rots, mainly caused by fungal pathogens (Monilinia spp., 
Botrytis cinerea, Penicillium expansum, …) often occur 
[11, 12]. Although these fungal pathogens can be controlled 
using synthetic fungicides, there is a growing demand from 
consumers and regulatory authorities to decrease, or even 
prohibit, their use [13]. Pre-storage hot water treatments 
(HWT) have previously been reported to be effective and 
natural alternatives to synthetic chemical treatments against 
postharvest rots in many fruits including cherries [14–17].

Nevertheless, information on the influence of HWT on 
nutritional and bioactive compounds is scarce, and apart 
from some work [18–22], little is known about their poten-
tial impacts on polyphenolic compounds. Therefore, the 
objective of this study was to determine over two years the 
effects of HWT on the levels of vitamin C and polyphenols 
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in two sweet cherry cultivars after 3 weeks of cold storage 
at 1 °C and after an additional shelf-life period of 2 d at 
20 °C. Because firmness, sweetness and acidity are deci-
sive characteristics for consumer acceptance of sweet cher-
ries [23], fruit firmness, soluble solids content, titratable 
acidity as well as levels of individual sugars and organic 
acids were determined. The efficiency of HWT on fruit rot 
was also evaluated.

Materials and methods

Chemicals and reagents

All chemicals and reagents were as previously described 
[24] unless otherwise indicated.

Materials

In 2020 and 2021, two sweet cherry (Prunus avium L.) 
cultivars, Balrine and Regina, were manually harvested at 
commercial ripening stage in the experimental orchard of 
the Interprofessional Technical Center for Fruit and Veg-
etables (CTIFL) of Balandran (Gard, France), and then 
transferred to the laboratory within two hours. For each 
year and cultivar, about 6–8 kg of homogeneous fruits 
in color and size and without any visual defects were 
selected. Fruits were then randomly packed into commer-
cial punnets of 250 g. Three punnets of 25 fruits were 
then randomly selected and directly analyzed at harvest as 
described below. Remaining punnets were then randomly 
divided into two groups: one group was the untreated con-
trol, whereas the other was dipped into hot water at 48 °C 
for 2 min (HWT). These conditions were chosen based on 
results obtained in preliminary experiments carried out 
at the CTIFL (data not shown). Punnets were left for 2 h 
at room temperature until the water had evaporated, and 
then punnets of control and HWT fruits were stored for 3 
weeks at 1 °C (90% RH). At the end of cold storage (CS), 
an additional shelf-life period of 2 d at 20 °C (SL) was 
applied. Three punnets of control and HWT fruits were 
analyzed at the end of CS, and at the end of SL. Each pun-
net was considered as a biological replicate.

Fruit decay evaluation

Fruit rot was visually evaluated at the end of CS and SL. 
Fruit that showed any sign of surface mycelia development 
were considered as decayed. Rot ratio was expressed as a 
percentage of infected sweet cherry fruits.

Firmness

Firmness was performed on both sides of each fruit from 
each replicate using an electronic Durofel (licensed by 
CTIFL-Copa Technologie, Saint Etienne du Grès, France) 
fitted with a 0.25 mm tip. The measurements, ranging from 
0 (no resistance) to 100 (maximum resistance), are expressed 
in  ID25. Fruits were then hand-pitted, cut into small cubes 
(< 1  cm3) and frozen under liquid nitrogen. The cubes were 
then immediately reduced to powder using an IKA A11 ana-
lytical mill for 30 s (IKA, Staufen, Germany) with liquid 
nitrogen, and total vitamin C was immediately determined 
as described below (see “Vitamin C” section). The frozen 
powders were then stored at − 80 °C until analysis.

Soluble solids content (SSC) and titratable acidity 
(TA)

About 20 g of frozen powder (− 80 °C) were then thawed for 
30 min at room temperature and then centrifuged (14,000g, 
5 min, 4 °C) (Sigma 4K15, Sigma Laborzentrifugen GmbH, 
Osterode am Harz, Germany). SSC was determined from 
the supernatant with an Atago PR-32 digital refractometer 
(Atago Co., Ltd., Tokyo, Japan). TA was determined by 
diluting 5 mL of supernatant with 30 mL of deionized water, 
and titrating to pH 8.1 with 0.1 N NaOH using an automatic 
titrator with autosampler (Titroline 7000, Schott SI Analyt-
ics, Mainz, Germany).

Individual sugars and organic acids

The levels of sugars and organic acids were simultaneously 
determined by HPLC as previously described [24]. Briefly, 
1 mL of supernatant previously obtained, diluted 20-fold 
with deionized water, was filtered (RC 0.2 µm Phenex; Phe-
nomenex, Le Pecq, France) and directly injected into the 
HPLC system. Identifications were performed by comparing 
retention times  (tR) with those of standards and by spiking 
samples with pure compounds.

Vitamin C

Total vitamin C was determined by HPLC as previously 
described [24]. Briefly, 1 g of frozen powder added to 10 mL 
of metaphospheric acid (MPA) (2%) was homogenized for 
60 s at 20,000 rpm with an Ultra-Turrax (IKA T25-Digital). 
After centrifugation (Sigma 4K15, 14,000g, 5 min, 4 °C), the 
supernatant was filtered (RC 0.2 µm Phenex; Phenomenex). 
Total vitamin C was determined by HPLC after 3 h of reduc-
tion under agitation at room temperature of 500 µL of super-
natant added to 500 µL of tris-(2-carboxy-ethyl)-phosphine 
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TCEP (0.01 mol/L) in MPA (2%). Chromatographic con-
ditions were as previously described. Identifications were 
performed by comparing retention times  (tR) with that of 
the standard of ascorbic acid and by spiking samples with 
a pure compound.

Polyphenols

The levels of polyphenols were determined by UPLC-MS as 
previously described [24]. Briefly, four grams of frozen pow-
der added with 20 mL of a mixture of MeOH/H2O/formic 
acid (60/38/2 v/v/v) and 100 µL of methyl 4-hydroxybenzo-
ate (3515 mg/L in MeOH/formic acid; 95/5 v/v) (internal 
standard) were homogenized for 60 s at 20,000 rpm with 
an Ultra-Turrax (IKA T25-Digital) and centrifuged (Sigma 
4K15, 10,000g, 5 min, 4 °C). 10 mL of supernatant was 
concentrated to dryness under a stream of nitrogen using an 
XcelVap automated evaporation system (Horizon technol-
ogy, New Hampshire, USA). The residue was dissolved in 
1 mL of mixture of MeOH/formic acid (95/5 v/v), filtered 
on Phenex RC 0.2 µm (Phenomenex) and then injected in 
UPLC-MS. The UPLC-MS analyses were performed on an 
ACQUITY UPLC system equipped with a photo-diode array 
(PDA) detector (Waters, Milford, MA, USA) coupled to a 
mass single-quadrupole detector (QDa, Waters), which is 
a compact detector with an electrospray ionization (ESI) 
interface. Empower 3 software was used for data acquisition 
and instrument control. Separation was carried out at 35 °C 
using a Waters Acquity HSS T3 column (100 mm × 2.1 mm 
i.d., 1.8 μm) protected by a precolumn filter (Waters). A 
binary solvent system was used at a 0.4 mL/min flow rate 
with solvent A (water/formic acid; 98.5:1.5 v/v) and solvent 
B (methanol). The elution gradient was as follows: 0–1 min, 
isocratic 0% B; 1–18 min, linear 0–74.5% B; 18–22 min, 
isocratic 95% B; 22–27 min, isocratic 0% B. The volume 
of injection was 1 μL. With the PDA detector, the flavonols 
were detected at 255 nm, flavanols at 280 nm, hydroxy-
cinnamic acids at 320 nm, and anthocyanins at 505 nm. 
Compound identification was achieved by comparing the 
retention times  (tR) and their UV–Vis spectra from 240 to 
600 nm with those of standards, and by spiking samples with 
pure compounds whenever possible. The QDa detector was 
operated in negative and positive ion modes for polyphe-
nol and anthocyanin characterization. ESI capillary voltage 
and cone voltage were set at 0.8 kV and 15V, respectively. 
Probe temperature was set at 600 °C. A full mass spectrum 
between m/z 100 and 1200 was acquired at a sampling rate 
of 8.0 points/sec. Flavonols were quantified by comparisons 
with an external standard of quercetin-3-glucoside, flavan-
3-ols as (+)-catechin, hydroxycinnamic acid derivatives as 
5-caffeyolquinic acid, and anthocyanins as cyanidin-3-glu-
coside. Levels of phenolic compounds were expressed as 
milligrams per 100 g of FW.

Statistical analysis

Data are given as mean ± standard deviation (n = 3). Signifi-
cant differences between the five treatments (Harvest, Con-
trol CS, HWT CS, Control SL, and HWT SL) were evalu-
ated year by year for each cultivar through one-way analysis 
of variance (ANOVA). Homogeneity of variance was tested 
using Levene’s median test. Welch-ANOVA was applied 
when data were not homoscedastic. Multiple comparisons 
of means were carried out using Duncan's test (p < 0.05). 
Data were also analyzed by three-way ANOVA using a com-
pletely randomized design (2 years × 2 cultivars × 5 treat-
ments × 3 replicates). The effect size of the different factors 
and their interaction was evaluated using omega squared 
value (ω2) calculated as follow: ω2 =  (SSFactor −  dfFactorxM
SError)/(SSTotal +  MSError), where  SSFactor = sum of squares 
of each factor,  dfFactor = degrees of freedom of each factor, 
 MSError = mean square error and  SSTotal = sum of squares 
total [25]. The obtained value, multiplied by 100, thus rep-
resents the variance in the population as explained by each 
factor. As compared to eta squared and partial eta squared, 
ω2 was preferred because this estimation resulted in less bias 
when dealing with small samples. Statistical analyses of data 
were performed using XLSTAT 2019.1.1 (Addinsoft, Paris, 
France).

Results and discussion

Fruit decay and firmness

Three-way ANOVA results (Fig. 1A) showed that the per-
centage of rotten fruit was highly affected (p < 0.001) by 
the postharvest treatment and the cultivar. According to the 
omega-squared value (ω2), which explains the contribution 
of each factor to the observed variability, the postharvest 
treatment was the most significant factor (ω2 = 66%), fol-
lowed by cultivar (ω2 = 6%). Year (p < 0.05) and the inter-
action cultivar × treatment (p < 0.01) also affected the per-
centage of rotten fruit, but the ω2 values were below 5%. 
No significant interaction year × cultivar or treatment, or 
year × cultivar × treatment was observed. As shown in 
Fig. 1A, HWT notably reduced the percentage of rotten fruit 
as compared to untreated samples, particularly after the two 
additional days of shelf-life at 20 °C. Over the two years and 
for the two cultivars, the percentage of rotten fruit in HWT 
samples (8%) was on average more than half that in the con-
trols (18%). Lastly, as indicated Fig. 1B, flesh firmness was 
mainly affected (p < 0.001) by the year (ω2 = 56%), followed 
by the postharvest treatment (ω2 = 15%) and the interaction 
year × cultivar (ω2 = 15%). The interaction year × treatment 
(p < 0.01) also affected the firmness but the ω2 values was 
below 5%. Flesh firmness was not influenced by cultivar. 
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No significant interaction cultivar × treatment or culti-
var × year × treatment was observed. As observed, at the end 
of CS, flesh firmness of fruit was generally similar between 
samples, except for Regina in 2021, where the flesh firm-
ness of HWT fruit was about 3% lower than in controls. As 
previously reported [26], firmness of heated fruits were after 
SL less firm (5–6%) compared to control ones, excepted for 
Balrine in 2021 where no difference was observed.

Soluble solids content (SSC) and titratable acidity 
(TA)

As observed in Table 1, SSC ranged from 16.4 to 19.9°Brix 
in the different sweet cherry samples and TA from 8.5 to 
13.5 meq/100g. Three-way ANOVA results showed that 
SSC was mainly affected (p < 0.001) by the year (ω2 = 42%), 

the cultivar (ω2 = 24%) and the interaction year × cultivar 
(ω2 = 18%). As shown, neither the treatment factor nor its 
interaction with year and/or cultivar significantly affected 
SSC. In contrast, TA was mainly affected (p < 0.001) by 
the postharvest treatment (ω2 = 45%), followed by the year 
(ω2 = 24%), the interaction year × cultivar (ω2 = 17%) and the 
cultivar (ω2 = 5%). No interaction treatment with year and/
or cultivar was observed for TA. For both years and both 
cultivars (Table 1), SSC remained constant in control fruits 
during the 21 d of cold storage at 1 °C (CS) and/or after 
the two additional days of shelf-life at 20 °C (SL), whereas 
TA decreased significantly by about 16–23% during CS and 
then remained constant during SL. These results agree with 
those previously reported in other sweet cherry cultivars, 
and confirm that SSC is generally not affected by cold stor-
age whereas a loss of acidity is observed [27–29]. As shown 

Fig. 1  Percentage of rotten 
fruits (A) and firmness (B) in 
control and HWT sweet cher-
ries after 21 d of cold storage 
at 1 °C (CS) and additional 2 
d of shelf-life at 20 °C (SL) 
in 2020 and 2021. Values are 
the mean ± standard deviation 
(n = 3). For a given year and 
cultivar, values with different 
letters are significantly different 
(p < 0.05, Duncan’s test). For 
three-way ANOVA results, 
only ω2 > 5% are indicated in 
parenthesis. ns (not significant); 
* (p < 0.05); ** (p < 0.01); *** 
(p < 0.001)
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in Table 1, no significant difference was observed between 
HWT and control fruits for the SSC and TA values, either 
after CS and/or 2 d of SL.

Sugars and organic acids

In this study, the quantified sugars were glucose, fructose, 
sorbitol and sucrose, on average 46%, 37%, 16% and 1% 
respectively of the total sugars, that ranged between 14.9 and 
19.2 g/100g FW in the different samples (Table 1). Three-
way ANOVA results showed that total sugars were highly 
affected by the year (ω2 = 60%), the cultivar (ω2 = 15%), and 
the interaction year × cultivar (ω2 = 11%). Similar trends 
were observed for glucose and fructose, while sorbitol and 
sucrose were mainly affected by the year (ω2 = 69–74%). 
With levels ranging from 0.9 to 1.2 g/100g FW (Table 1), 
malic acid was, as previously reported in other sweet cherry 
cultivars [5, 30], the main organic acid detected in Balrine 
and Regina cherries. Citric and shikimic acids were also 
detected in this study, but at trace levels, and therefore not 
quantified. Three-way ANOVA results showed malic acid, 
was mainly affected (p < 0.001) by the postharvest treatment 
(ω2 = 46%), followed by the year (ω2 = 31%), the interaction 
year × cultivar (ω2 = 12%) and the cultivar (ω2 = 2%). No 
interaction treatment with year and/or cultivar was observed. 
For both years and both cultivars (Table 1), the levels of the 
three main sugars remained constant in control fruit during 
CS and/or after SL, whereas those of malic acid decreased 
significantly by about 12–18% during CS and then remained 
constant during SL. Consistent with results of SSC and TA, 
these results are also in agreement with those previously 
reported in other sweet cherry cultivars [31, 32].

As shown in Table  1, no significant difference was 
observed between HWT and control fruits for the levels of 
glucose, fructose, sorbitol and malic acid, either after CS 
and/or SL.

Vitamin C

In this study, vitamin C contents in the different sweet 
cherry samples ranged between 6.5 and 15.8 mg/100g FW 
(Table 1). Three-way ANOVA results showed vitamin C 
was mainly affected (p < 0.001) by the postharvest treatment 
(ω2 = 58%), followed by the cultivar (ω2 = 21%), and the year 
(ω2 = 10%). No interaction year × cultivar or year × treatment 
was observed. Significant interaction cultivar × treatment 
(p < 0.001) and year × cultivar × treatment (p < 0.05) were 
observed but the ω2 values were lower than 5%. For both 
years and both cultivars, levels of vitamin C in control fruits 
significantly decreased from between 16 and 33% after CS, 
and then decreased again from between 8 and 22% after 
SL. These results are in agreement with those previously 
reported in other sweet cherry cultivars, and confirm that 

vitamin C drastically decreases during cold storage and/
or shelf-life [29, 33, 34]. As shown in Table 1, a similar 
trend was observed in HWT fruits. Whether after CS and/
or SL, levels of vitamin C in treated and untreated fruits 
were generally not statistically different, except for Balrine 
where the decrease observed in HWT fruits after CS in 2020 
was half of that observed in control fruits (12% and 24%, 
respectively).

Polyphenols

In this study, six hydroxycinnamic acid derivatives 
(HA1–HA6), four flavan-3-ols (FA1–FA4), three antho-
cyanins (AN1–AN3) and three flavonols (FO1–FO3) were 
identified and quantified using UPLC-PDA-QDa (Table 2). 
To our knowledge, this is the first time that a detailed quanti-
tative analysis of individual phenolic compounds is reported 
in the Balrine sweet cherry cultivar. As previously reported 
in other cultivars [2, 35–37], hydroxycinnamic acids were 
predominant (32–50% of the total polyphenol content), fol-
lowed by anthocyanins (21–42%), flavan-3-ols (20–29%), 
and flavonols (3–4%) (Table 3). Among hydroxycinnamic 
acids, neochlorogenic acid (HA1; 17.0–27.4mg/100g FW), 
3-p-coumaroylquinic acid (HA2; 10.5–17.9mg/100g FW), 
and chlorogenic acid (HA3; 3.2–5.3 mg/100g FW) were 
predominant and together accounted for 93–96% of total 
hydroxycinnamic acids. Three-way ANOVA results indi-
cated that the levels of the three main hydroxycinnamic 
acids were significantly (p < 0.001) affected by year and 
cultivar. According to ω2 value, the year explained 65–73% 
of the total variability of neo and chlorogenic acid, while 
the cultivar explained 65% of the total variance of 3-p-cou-
maroylquinic acid. As indicated in Table 3, the levels of 
the three main hydroxycinnamic acids were not affected by 
the treatment factor. No interaction was observed for neo-
chlorogenic acid. A significant year × cultivar interaction 
(p < 0.001) was observed for 3-p-coumaroylquinic acid and 
chlorogenic acid but the ω2 values were below 5%. Remain-
ing interactions, year × treatment for 3-p-coumaroylquinic 
acid (p < 0.05) or cultivar × treatment for chlorogenic acid 
(p < 0.05), were also below 5%.

Previous studies reported that cold storage has vari-
able effects on phenolic acids in sweet cherries, depend-
ing mainly on cultivar and storage conditions [38]. While a 
decrease of neochlorogenic acid and 3-p-coumaroylquinic 
acid was observed after a month at 4 °C in the sweet cher-
ries of Bing cultivar [39], their levels were found to remain 
relatively constant in the cultivars Van and Burlat after 30 d 
of storage but were found to decrease in the cultivars Saco 
and Summit during the same period of time [2]. Similarly, 
while the levels of these two compounds were not affected 
in the Lambert Compact cultivar after 12 d of storage at 
2–4 °C [40], their levels sharply increased in the Sweetheart 
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cultivar after 27 d at 0 °C [41]. In our study, for both years 
and both cultivars (Table 3), no significant change was 
observed in control fruits for the levels of the three main 
hydroxycinnamic acids after CS and/or after SL. Similar 
results were observed in HWT fruits. No significant differ-
ence was observed between HWT and control fruits for the 
levels of the three main hydroxycinnamic acids, either after 
CS and/or SL.

Cyanidin-3-rutinoside (AN2; 16.9–51.7 mg/100g FW) 
was the major anthocyanin detected in this study and 
accounted for 88–94% of total anthocyanins (Table  3). 
Three-way ANOVA results showed cyanidin-3-rutinoside 
was mainly affected (p < 0.001) by the cultivar (ω2 = 77%) 
and the postharvest treatment (ω2 = 10%). Cyanidin-3-ru-
tinoside was also affected (p < 0.001) by the year and the 
interaction year × cultivar but the ω2 values were below 5%. 
No significant interaction between treatment with year and/
or cultivar was observed. As shown in Table 3, for both years 
and both cultivars, levels of cyanidin-3-rutinoside signifi-
cantly increased in control fruits by about 3–18% during CS, 
and then increased again by about 19–31% after subsequent 
SL. These results agree with those previously reported in 
other cherry cultivars [2, 40, 42, 43]. The accumulation of 
anthocyanins during storage and/or subsequent SL is attrib-
uted to normal sweet cherry ripening, as has been found in 
other fruits [24, 44, 45]. A similar trend was observed in 
HWT fruits, and, whether after CS and/or SL, no significant 

difference was observed between treated and untreated 
samples.

With ω2 values ranging from 54 to 67%, three-way 
ANOVA results showed that the cultivar was the most rel-
evant factor (p < 0.001) in explaining the variability of the 
four flavan-3-ols detected in this study (Table 3). Except 
for (+)-catechin (FA2), the year factor also significantly 
(p < 0.001) accounted for a proportion of variance for three 
of the four flavan-3-ols, ranging from 25% for procyanidin 
dimer B2 (FA3) to 34% for procyanidin dimer B1 (FA1). 
As indicated, levels of flavan-3-ols were not affected by the 
treatment factor. A significant (p < 0.01) year × cultivar inter-
action was observed for (+)-catechin but the ω2 value was 
less than 5%. Remaining interactions, year × cultivar for pro-
cyanidin dimer B1 (p < 0.05) and (−)-epicatechin (p < 0.05), 
cultivar × treatment for procyanidin dimer B2 (p < 0.05) and 
(−)-epicatechin (p < 0.05) were all less than 5%.

For a given year and cultivar (Table 3), no significant dif-
ference was observed for the levels of the four flavan-3-ols 
between the control and HWT samples, whether after CS 
and/or SL.

Among the three flavonols detected in this study, querce-
tin 3-O-rutinoside (FO2) was predominant (62–71% of 
total flavonols) (Table  3). Three-way ANOVA results 
showed that quercetin 3-O-rutinoside and quercetin tri-
glycoside (FO1) were mainly affected (p < 0.001) by 
the cultivar (ω2 = 62–81%). The year factor significantly 

Table 2  Retention time,  UVvis 
and MS data of polyphenols in 
sweet cherry samples

a MS data in negative mode except for anthocyanins in positive mode
b Identified according to a commercial standard

Code Compound Rt (min) UVmax (nm) MSa (m/z)

Hydroxycinnamic acids
HA1 Neochlorogenic  acidb 5.9 325 353
HA2 3-p-Coumaroylquinic acid 6.8 310 337
HA3 Chlorogenic  acidb 7.5 325 353
HA4 4-Caffeoylquinic  acidb 7.9 325 353
HA5 4-p-Coumaroylquinic acid 8.8 311 337
HA6 di-Caffeoylquinic acid 11.3 327 515
Flavan-3-ols
FA1 Procyanidin dimer  B1b 6.2 278 577
FA2 (+)-Catechinb 6.8 278 289
FA3 Procyanidin dimer  B2b 7.4 278 577
FA4 (−)-Epicatechinb 8.4 278 289
Anthocyanins
AN1 Cyanidin 3-O-glucosideb 9.2 280, 515 449
AN2 Cyanidin 3-O-rutinosideb 9.6 280, 593 595
AN3 Peonidin 3-O-rutinoside 10.5 280, 520 609
Flavonols
FO1 Quercetin triglycoside 10.3 265, 347 771
FO2 Quercetin 3-O-rutinosideb 11.7 255, 355 609
FO3 Kaempferol 3-O-rutinoside 12.8 265, 348 593
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influenced (p < 0.001) the variability of quercetin trigly-
coside (ω2 = 14%) and to a lesser extent (p < 0.05) that of 
kaempferol 3-O-rutinoside (FO3; ω2 = 8%) and quercetin 
3-O-rutinoside (ω2 < 5%). The treatment factor only affected 
quercetin 3-O-rutinoside (p < 0.001, ω2 = 10%). A significant 
interaction year × cultivar was also observed for kaempferol 
3-O-rutinoside (p < 0.01; ω2 = 9%) and quercetin trigly-
coside (p < 0.05; ω2 < 5%). As shown in Table 3, for both 
years and both cultivars, levels of quercetin triglycoside and 
kaempferol 3-O-rutinoside remained constant in control and 
HWT fruits, whether after CS and/or SL. As regards querce-
tin 3-O-rutinoside, despite some significant differences, no 
clear trend could be observed.

Conclusion

In conclusion, our results showed that the HWT conditions 
examined in this study (48 °C, 2 min) significantly reduced 
the percentage of rotten fruit after storage and/or shelf-life, 
without having any adverse effects, either on the level of 
bioactive compounds (vitamin C, polyphenols), or on the 
main cherry quality parameters (SSC, TA, sugars, organic 
acids). This study not only confirms that hot water treatment 
is an effective method against post-harvest rot in cherries, 
but also that it's a good strategy both for sweet cherry pro-
fessionals and for consumers. For the former, because it's a 
simple method to apply to significantly reduce post-harvest 
losses, and for the latter, because it's a natural method that 
preserves the organoleptic and nutritional quality of cherries 
without using synthetic chemicals.
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