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Abstract
Hordeum vulgare L. is a highly valuable cereal crop worldwide. However, its yield is decreasing due to increasing abiotic 
stresses. The prolonged action of oxidants creates an imbalance in the functioning of antioxidant systems. One important 
way to stabilize the redox homeostasis of plants is through the use of microbial preparations that enhance the synthesis 
of antioxidant compounds. At inoculation of seeds of the barley varieties (Burkhant, Virazh, and Copeland) with the 
nanocomposite complex bacterial preparation Azogran in plants, the levels of the most identified phenolic acids and 
flavonoids in the free and bound fractions were increased. Whereas in plants whose seeds were stressed with hydrogen 
peroxide  (H2O2) and inoculated with Azogran, phenolic compounds (Ph-OH) with a high ability to inactivate the harmful 
effects of  H2O2 dominated. In particular, in the plants of the Burkhant barley variety, the concentration-free chlorogenic 
(by 33.1%), syringic, benzoic, p-coumaric acids, rutin and bound chlorogenic, benzoic and trans-ferulic acids increased. In 
the plants of the Virazh barley variety, the levels of free caffeic, syringic acids, quercetin and bound 4-hydroxyphenylacetic 
(4-HPA), trans-ferulic, sinapic, trans-cinnamic acids, quercetin, and kaempferol increased. In plants of the Copeland barley 
variety, only the content of 4-HPA and trans-ferulic (by 79.9%) acids in the free fraction and syringic acid in the bound 
fraction was raised. Thus, despite the unequal response of different varieties of barley to the action of the bacterial preparation 
Azogran, the synthesis of those Ph-OH, which are an effective buffer against peroxide stress, increased in their plants.

Keywords Bacterial preparation Azogran · Barley · Flavonoids · High-performance liquid chromatography · Peroxide 
stress · Phenolic acids

Introduction

One of the important tasks of modern crop production is to 
increase the resistance of valuable agricultural crops to the 
influence of abiotic stress factors (soil drought, frost, salin-
ity, heavy metals, UV radiation, herbicides, and flooding) 
and biotic stress factors (phytopathogens, phytoviruses) [1, 

2]. The increase in their intensity leads to an increase in the 
level of reactive oxygen species (ROS), which are aggressive 
stress agents. Exceeding the generation of oxidants over the 
cell’s ability to eliminate them leads to hyperoxidation—
oxidative stress [3]. Oxidative stress determines the state 
in which the “prooxidant-antioxidant” balance is disturbed 
in the cell, which leads to hydroxylation of nucleic acids, 
protein denaturation, lipid peroxidation, and apoptosis [4].

Among the members of the Poaceae family, barley (Hor-
deum vulgare L.) is one of the most economically important 
grain crops [5], since this cereal is grown in countries whose 
climatic conditions differ dramatically [6].

In recent years, the increase of anomalies in the environ-
ment leads to the accumulation of oxidants in the organism 
of plants. The high damaging capacity of ROS, the initia-
tors of phytostress, poses a threat to important biomole-
cules (DNA, proteins, enzymes, lipids, etc.) of plant cells. 
The redox-homeostasis of phytoobjects is supported by a 
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complex of antioxidants (AN). The balanced operation of 
high- and low-molecular protectors during different phases 
of oxidative stress plays an important role in maintaining the 
viability of plants. However, prolonged exposure to oxidants 
disrupts redox cycles [7].

Thus, the functioning of the plant organism’s defense 
system largely depends on the concentration of oxidants. 
First, high levels of ROS damage protective enzymes 
(catalase, peroxidase, superoxide dismutase), which 
leads to a decrease in their activity. Second, the action of 
stress agents depletes the pool of low-molecular-weight 
antioxidants. As a result, these disturbances in the normal 
work of AN lead to the death of plant cells [8].

One of the stabilization ways of redox homeostasis in 
the plant organism is their mutually beneficial relationships 
with rhizosphere microorganisms [9]. Such microbes include 
representatives of the genera Bacillus, Pseudomonas, 
Azospirillum, Azotobacter, Klebsiella, Enterobacter, 
Alcaligenes, Arthrobacter, Burkholderia, Serratia, and 
others [10, 11]. Plant growth-promoting rhizobacteria 
(PGPR) are of interest in the creation of biological 
plant protection agents, as they are characterized by the 
formation of long-term protection of the macroorganism 
against various stress factors [12]. PGPR contribute to the 
development of stress tolerance in phytoobjects through 
various mechanisms [13]. One of which is the activation of 
the synthesis of various antioxidant compounds in the plant 
organism [14].

Among them, compounds of phenolic nature (Ph-OH), 
in particular phenolcarboxylic acids and flavonoids, are of 
particular interest. These secondary metabolites play an 
important role in plant metabolism. However, their main 
mechanisms are related to direct and indirect antioxidant 
action. That is, Ph-OH acts as electron donors for oxidants, 
inactivate free radicals, and chelate metal ions that initiate 
ROS formation reactions [15]. And they can also indirectly 
activate antioxidant enzymes and inhibit enzymes that 
induce pro-oxidant effects [16].

In the crop sector of Ukraine, Mongolia, and Canada, 
barley is one of the dominant cereal crops. The most 
promising varieties in these countries include Virazh 
(Ukraine), Burkhant (Mongolia), and Copeland (Canada). 
They are widely used in production and consumption, and 
therefore have a high research value.

Accordingly, the main goal of the presented work 
was to compare the differences that were founded in the 
composition and content of free and bound phenolic 
compounds in different barley varieties, the seeds of 
which were exposed to the action of hydrogen peroxide 
and post-treatment with the nanocomposite complex 
bacterial preparation Azogran. This study is important in 
understanding the role of complex microbial preparations 
in modern agricultural biotechnologies.

Materials and methods

Research objects

Bacterial strains

• Bacillus subtilis IMV B-7023 was isolated from 
black soil (Cherkasy region, Ukraine). The strain is 
supported at the Depositary of the Zabolotny Institute 
of Microbiology and Virology, NAS of Ukraine. This 
strain is a component of the nanocomposite complex 
bacterial preparation Azogran for crop production [17].

• Azotobacter vinelandii IMV B-7076 was isolated 
from the rhizosphere of sugar beet in the Department 
of Microbiological processes on solid surfaces, 
Zabolotny Institute of Microbiology and Virology, 
NAS of Ukraine. This strain is a component of the 
nanocomposite complex bacterial preparation Azogran 
for crop production [18].

– Nanostructured mineral bentonite is a variety of 
minerals of the montmorillonite group. We used 
bentonite from the Dashukovsky deposit (Cherkasy 
region). The size of bentonite nanoparticles was 
28.92–99.21 nm;

– Grain seeds of spring barley: Virazh (Ukraine), 
Burkhant (Mongolia), Copeland (Canada) varieties;

– Nanocomposite complex bacterial preparation 
Azogran. The bacter ia that make up the 
biological product are active producers of amino 
acids, enzymes, organic acids, antibiotics, 
phytohormones, vitamins, phenolic compounds, 
and other biologically active components [19].

The cultivation conditions of bacteria

B. subtilis IMV B-7023 was cultivated in modified glucose-
mineral liquid nutrient medium [20], g  L−1:  (NH4)2SO4—0.5; 
 MgSO4 ×  7H2O—0.3; NaCl—0.3; KCl—0.3;  CaCO3—5.0; 
 MnSO 4 ×  7H 2O—0.001;   FeSO 4 ×  7H 2O—0.001; 
glucose—10.0; sodium glycerophosphate—2.0; distilled 
water—1.0 L; pH 7.0–7.2.

The number of viable cells (colony-forming units 
(CFU)) was determined by the method of seeding a 
suspension of bacteria on a potato agar medium from 
serial tenfold dilutions. The composition of potato agar 
medium [21], g  L−1: peeled potatoes—200.0;  CaCO3—0.2; 
 MgSO4 ×  7H2O—0.2; agar–agar—15.0; tap water—1 L; 
pH 6.8–7.2.

A. vinelandii IMV B-7076 was cultivated in liquid 
Burke’s medium [22], g   L−1:  K2HPO4 ×  3H2O—0.64; 
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 KH2PO4—0.16; NaCl—0.2;  MgSO4 ×  7H2O—0.2; 
 C a S O 4  ×   2 H 2 O — 0 . 0 5 ;   F e 2 ( S O 4 ) 3 — 0 . 0 0 5 ; 
 FeSO4 ×  7H2O—0.003;  Na2MoO4 ×  2H2O—0.001; 
sucrose—20.0; distilled water—1.0 L; pH 7.0–7.2.

The number of viable cells (colony-forming units (CFU)) 
was determined by the method of seeding a suspension of 
bacteria on an Ashby’s solid nutrient medium [22], g  L−1: 
sucrose—20.0;  K2HPO4 ×  3H2O—0.2;  MgSO4 ×  7H2O—0.2; 
NaCl—0.2;  K2SO4—0.1;  CaCO3—5.0; distilled water—1.0 
L. In this medium was added the 1 mL of microelement 
solution (according to Fedorov) of the following com-
position:  H3BO3—5.0;  (NH4)  2MoO4 ×  2H2O—5.0; 
 Z n S O 4 ×   7 H 2O — 0 . 2 ;  K J — 0 . 5 ;  Na B r — 0 . 5 4 ; 
 Al2(SO4)3 ×  18H2O—0.3; distilled water—1.0 L; pH 7.2–7.3.

Cultivation of the studied bacterial strains in liquid nutri-
ent media was carried out on rotary shakers (n = 240 rpm) 
in Erlenmeyer flasks with a volume of 750 mL (100 mL of 
medium) or in microbiological test tubes into which 20 mL 
of the medium was added. A daily culture of bacteria was 
used as an inoculum. The number of viable cells was deter-
mined by seeding bacterial suspensions from serial tenfold 
dilutions onto agar media. After cultivating the inoculations 
at a temperature of + 28 ± 1 °C, the colonies (colony-forming 
units, CFU) were counted on the surface of the agar medium 
in the dilution where their number ranged from 30 to 300.

The design of peroxide stress

Plants of three barley cultivars were grown under green-
house conditions (the temperatures around 18 °C during 
day and 14 °C at night, a photoperiod of 12 h and 50–70% 
humidity). The seed material previously was subjected to 
different treatment options:

• Seeds were soaked in sterile distilled water  (H2O) during 
1 h;

• Seeds were bacterized with 3 ml of nanocomposite com-
plex bacterial preparation Azogran for 1 h (Nano-CP);

• Seeds were treated with 33% hydrogen peroxide for 
30 min.  (H2O2);

• Seeds were exposed to 33% hydrogen peroxide (30 min.) 
and bacterized with 3 ml of nanocomposite complex bac-
terial preparation Azogran for 1 h  (H2O2 + Nano-CP).

The seeds of each barley variety were sowed in 4 replica-
tions, 50 seeds per row.

Extraction of free and bound phenolic compounds 
from different varieties of barley

Plants were selected in phase of stem elongation and dried 
at room temperature (22 °C) without access to direct light 

to constant weight. The samples were ground to a powder-
like state by a SaturnST-CM1031 electric coffee grinder 
(220–240 V, 50 Hz, China). A sample (1 g) was took from 
each variant and divided into two parts of 0.5 g each:

– First part (extraction of the free phenolic compounds): a 
sample (0.5 g) of each of the samples of barley plants was 
placed in round-bottom flasks under reflux and extracted 
twice with methanol  (CH3OH) (50 mL per sample) at a 
water bath (67.4 °C) during 2 h. The total volume of the 
extract (100 mL) was filtered through No. 1 filter paper in 
the Buchner funnel. The resulting filtrate was evaporated 
to dryness on an IR-1M2 rotary evaporator (Production 
Association Khimlaborpribor, USSR). The dry residue 
was redissolved in 2 mL of methanol and analyzed by 
HPLC;

– Second part (extraction of the hydrolysis fraction of 
phenolic compounds): a weighed portion (0.5  g) of 
each of the samples of barley plants was introduced into 
round-bottom flasks under reflux and was subjected to 
acid hydrolysis by adding 30 mL of a mixture of 2 M 
HCl:CH3OH (1:1). The presence of methanol prevents 
the destruction of some phenolic acids [23].

Hydrolysis was carried out at 90 °C for 2 h. The hydro-
lysates were filtered through No. 1 filter paper in the Buch-
ner funnel. The extraction was repeated three times by ethyl 
acetate  (CH3COOC2H5) (30 mL per sample) during 30 min. 
The extracts were evaporated to dryness on an IR-1M2 
rotary evaporator (Production Association Khimlaborpribor, 
USSR). The dry residue was redissolved in 2 mL of metha-
nol and analyzed by HPLC. The content of bound phenolic 
compounds was determined from the difference between 
the amount of total and free polyphenols in the hydrolysis 
fraction.

HPLC analysis of phenolic acids

High-performance liquid chromatography (HPLC) (Agilent 
1200, USA) was used to assess the composition of phenolic 
acids extracted from the barley samples. Methanol  (CH3OH) 
(A) and 0.1% formic acid (H-COOH) in water (B) were 
used as the mobile phase. The settings for the elution 
gradient were as follows: 0  min—A (25%): B (75%); 
25 min—A (75%): B (25%); 27 min—A (100%): B (0%); 
35 min—A (100%): B (0%). Separation was carried out 
on a Zorbax SB-Aq column (4.6 mm × 150 mm, 3.5 µm) 
(Agilent Technologies, USA), flow rate was 0.5 mL/min, 
thermostat temperature was 30 °C, injection volume was 4 
µL. Detection was carried out using a diode array detector 
with signal registration at 250 nm and 275 nm and fixation 
of absorption spectra in the range of 210–700 nm [24]. 
Identification and quantitative analyses were carried out 
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using standard solutions of phenolic compounds: gallic 
acid, 4-hydroxyphenylacetic acid (4-HPAA), chlorogenic 
acid, caffeic acid, syringic acid, p-coumaric acid, trans-
ferulic acid, sinapic acid, trans-cinnamic acid. The values 
are expressed as µg  g−1 DW (dry weight).

HPLC analysis of flavonoids

High-performance liquid chromatography (HPLC) (Agilent 
1200, USA) was used to assess the composition of flavo-
noids extracted from the barley samples. Acetonitrile (A) 
and 0.1% formic acid in water (B) were used as the mobile 
phase. The settings for the elution gradient were as follows: 
0 min—A (30%): B (70%); 20 min—A (70%): B (30%); 
22 min—A (100%): B (0%); 30 min—A (100%): B (0%). 
Separation was carried out on a Zorbax SB-C18 column 
(4.6 mm × 150 mm, 3.5 µm) (Agilent Technologies, USA), 
flow rate was 0.25 mL/min, thermostat temperature was 
30 °C, injection volume was 4 µL. Detection was carried 
out using a diode array detector with signal registration at 
280 nm and 365 nm and fixation of absorption spectra in 
the range of 210–700 nm [25–27]. Identification and quan-
titative analyses were carried out using standard solutions 
of flavonoids: rutin, quercetin-3-b-glucoside, naringin, neo-
hesperidin, quercetin, naringenin, kaempferol, luteolin, api-
genin. The values are expressed as µg  g−1 DW.

Statistical analysis

Microsoft Excel (Microsoft Corporation, USA) was used 
to analyze the data on the average of the three replicates 
(± SE) obtained from the three independent experiments. 
Differences were compared with the statistical significance 
at a P level less than 0.05 (P < 0.05) [28]. Tukey’s test was 
used to determine significant (P < 0.05) differences between 
the samples.

Results and discussion

Composition and content of the free phenolic acids 
of different barley varieties

Modern agricultural biotechnologies are closely related to 
microbial biopreparations for crop production, in particular 
those of complex action. They are one of the important com-
ponents of ecological agriculture [29, 30]. The mechanism 
of formation of plants stress tolerance with the help of bio-
logical preparations is closely related to the metabolites of 
bacteria included in their composition. A number of these 
compounds are considered as triggers that start a cascade of 
plant-specific biosynthetic processes that increase resistance 
to the damaging effects of oxidants [31, 32]. One of these 

processes can be the activation of the production of phenolic 
compounds in the organism of phytoobjects [14].

We established significant differences in the qualitative 
and quantitative composition of phenolic compounds in the 
plants of the studied varieties of barley, the seeds of which 
were subjected to hydrogen peroxide  (H2O2) treatment and 
post-treatment with Azogran.

The 4-hydroxyphenylacetic, chlorogenic, caffeic, syrin-
gic, benzoic, p-coumaric, trans-ferulic, sinapic and trans-
cinnamic acids were identified in the variant with the treat-
ment of seeds of different varieties of barley with distilled 
sterile water  (dH2O). Their highest content was observed 
in the free fraction of phenolic compounds obtained from 
Copeland variety barley plants—1488 µg  g−1 DW (Fig. 1, 
Table 1). No significant differences in the quantitative com-
position were found in the extracts obtained from plants of 
two other varieties of barley (Table 1).

Whereas, the content of phenolic acids in the free fraction 
obtained from Virazh variety barley plants increased sig-
nificantly when seeds were treated with the nanocomposite 
complex bacterial preparation Azogran. Accordingly, the 
concentration of sinapic acid increased by 97.9%, trans-cin-
namic acid by 106.9%, syringic acid by 116.4%, caffeic acid 
by 117.9%, benzoic acid by 123.9%, 4-HPAA by 124.6%, 
chlorogenic acid by 158.8%, p-coumaric acid by 230.2%, 
compared to the sample where the seeds were treated with 
sterile distilled water (Table 1).

As for the other varieties, only in the Copeland variety 
plants, the content of sinapic acid was increased by 1.6%, 
syringic acid by 8.8%, caffeic acid by 13.9%, and trans-fer-
ulic acid by 104.2%, compared to the variant where barley 
seeds were treated with  dH2O (Table 1). The concentration 
of phenolic acids in Burkhant variety plants practically did 
not differ from this sample where seeds were treated with 
 dH2O. No changes in the qualitative composition of these 
compounds in the plants of the studied barley varieties were 
recorded (Table 1).

The results obtained on the effect of PGPR on the levels 
of phenolic acids in plants were consistent with a number of 
other studies. In particular, the content of these compounds 
in the Piper betle L. after inoculation with Serratia marc-
escens NBRI1213 bacteria [33] and in the Tagetes minuta 
after inoculation with Pseudomonas fluorescens WCS417r 
and Azospirillum brasilense [34] was increased. Singh et al. 
[35] reported that mono- or complex inoculation of chick-
pea seeds with Ps. fluorescens Pf4 and Ps. aeruginosa Pag 
strains activated the synthesis of gallic, ferulic, and chloro-
genic acids in plants.

Under the influence of an aggressive stress agent  (H2O2) 
on barley seeds, the total content of phenolic acids in the 
free fraction obtained from Copeland variety and Bur-
khant variety plants decreased by 15.4% and 78.9%, com-
pared to the variant where the seeds were treated with 
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sterile distilled water. In particular, in the Burkhant variety 
plants, the concentration of chlorogenic acid decreased 
by 138.71 µg  g−1 DW, caffeic acid by 175.52 µg  g−1 DW, 
benzoic acid by 139.00 µg  g−1 DW, trans-ferulic acid by 
41.34 µg  g−1 DW, and sinapic acid by 132.74 µg  g−1 DW, 
respectively. And in the Copeland variety plants, the level 
of chlorogenic acid decreased by 39.04 µg  g−1 DW, caffeic 
acid by 45.50 µg  g−1 DW, benzoic acid by 116.54 µg  g−1 
DW, and sinapic acid by 57.80 µg  g−1 DW, respectively. 
It was also found that syringic acid was not identified in 
methanol extracts obtained from plants of these barley 
varieties (Fig. 2, Table 1).

Elguera et al. [36] found that at growing of Lepidium 
sativum in the presence of cadmium chloride [Cd(II)], the 
content of chlorogenic, ferulic, and caffeic acids in the 
free fraction of phenolic acids obtained from plant leaves 
decreased. Increased levels of ROS can lead to disruption 
of the secondary-metabolite biosynthesis (in particular phe-
nolic compounds) whose structural skeleton consists of car-
bon atoms [37].

However, the treatment of seeds of the barley Virazh vari-
ety with hydrogen peroxide increased the level of phenolic 
acids (free fraction) by two times in plants compared to the 
variant  (dH2O) (Table 1). Stress tolerance and biological 
activity of cereal crops significantly depend on their variety 
[38–40].

At post-treatment with Azogran for seeds of the tested 
cereal varieties, the concentration of phenolic acids (free 
fraction) increased only in plants of barley Burkhant variety 
by 27.24 µg  g−1 DW, compared to stressed plants of the same 
variety. Especially the level of sinapic acid increased by 
34.1%. This phenolic compound is a powerful antioxidant. 
Its antiradical activity (ARA) is significantly higher than that 
of ferulic acid [41, 42]. Chiappero et al. [43] found that inoc-
ulated with Ps. fluorescens WCS417 r and B. amylolique-
faciens GB03 drought-stressed Mentha piperita plants acti-
vated the synthesis of phenolic compounds. Post-treatment 
of stressed seeds of two other barley varieties with biological 
preparation Azogran did not have a pronounced stimulat-
ing effect on the content of phenolic carboxylic acids of the 
free fraction in their plants. Thus, for barley Virazh variety, 
an increase in caffeic acid by 5.7% was observed, and in 
plants of Copeland variety, the content of 4-HPAA increased 
by 15.0% and trans-ferulic acid by 79.9%, compared to the 
stressed variant (Table 1). These phenolic compounds effec-
tively inactivate such stress agents as hydrogen peroxide and 
hydroxyl radical [44, 45]. Their high antioxidant activity 
depends on the presence of hydroxyl and methoxy groups in 
the chemical structure [46]. All phenolic carboxylic acids, 
including syringic acid (SA), were identified in the qualita-
tive composition (Table 1). The antioxidant potentials of SA 
and caffeic acid are very similar [47]. And the high ARA 

Fig. 1  HPLC analysis of phenolic acids in the free fraction that was obtained from Copeland variety barley plants after seed treatment with ster-
ile distilled water
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of this phenolic compound is due to the presence of two 
methoxy groups attached to the aromatic ring at positions 
3 and 5 [48, 49]. Thus, post-treatment with the nanocom-
posite complex bacterial preparation Azogran of hydrogen 
peroxide-stressed seeds of different barley varieties activated 
the synthesis of phenolic acids with powerful antioxidant 
and antiradical properties in plants.

Composition and content of the bound phenolic 
acids of different barley varieties

The qualitative and quantitative content of phenolic acids in 
the hydrolysis fraction obtained from plants of different bar-
ley varieties differed significantly from their presence in the 
free fraction and depended on the variant of seed treatment.

It was found that the hydrolyzed fraction of phenolic com-
pounds obtained from plants of the Burkhant barley variety, 
whose seeds were soaked in sterile distilled water, contains 
syringic, benzoic, p-coumaric, trans-ferulic, sinapic, and 
trans-cinnamic acids (Table 2). In addition to these phenolic 
acids, 4-HPAA and caffeic acids were found in the plants of 
Virazh barley variety, but syringic acid was absent. The quan-
titative content of each of the phenolic acids in the bound 
fraction was the highest compared to the other two varieties 
(Fig. 3B, Table 2). In the hydrolyzed fraction of phenolic 
acids from plants of Copeland barley variety, all phenolic 
acids were present, except for gallic acid (Fig. 3C, Table 2).

At inoculation of seeds of the Burkhant barley variety 
with the nanocomposite complex bacterial preparation 
Azogran, in the bound fraction of phenolic acids obtained 
from plants, a high level of caffeic acid (3,4-dihydroxycin-
namic acid) was found—89.88 µg  g−1 DW (Table 2). This 
compound is an ortho-dihydroxyphenol with a powerful 
antioxidant potential and can inactivate the highly aggres-
sive hydroxyl radical [50]. The product of the methylation 
reaction of caffeic acid is ferulic acid, which, together with 
p-coumaric acid, initiates the synthesis of lignin [51, 52]. 
This natural polymer provides plant resistance to various 
abiotic stressors [53].

In the bound fraction obtained from plants of Virazh 
barley variety, after inoculation seeds with Azogran, high 
content of caffeic acid (239.82 µg  g−1 DW) and benzoic acid 
(264.40 µg  g−1 DW) was detected (Table 2).

The treatment of seeds with 33%  H2O2 negatively affected 
both on qualitative and on quantitative composition of phe-
nolic acids in the bound fraction obtained from plants of 
the three tested barley varieties. In particular, in plants of 
Burkhant barley variety, the concentration of benzoic acid 
decreased by 145.40 µg  g−1 DW, p-coumaric acid by 3.14 µg 
 g−1 DW, trans-ferulic acid by 55.90 µg  g−1 DW, sinapic acid 
by 6.60 µg  g−1 DW, and trans-cinnamic acid by 9.88 µg  g−1 
DW, compared to plants of the same variety grown from 
seeds soaked in sterile distilled water (Table 2).Ta
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In plants of the Virazh barley variety, only the content 
of sinapic acid decreased by 55.60 µg  g−1 DW compared to 
the sample which seeds were soaked in the sterile distilled 
water (Table 2).

Hydrogen peroxide had the most negative effect on the 
content of phenolic acids in the bound fraction in plants 
of Copeland barley variety. Accordingly, the concentra-
tion of caffeic acid decreased by 76.18 µg  g−1 DW, benzoic 

acid by 64.70 µg  g−1 DW, p-coumaric acid by 32.08 µg  g−1 
DW, trans-ferulic acid by 13.60 µg  g−1 DW, sinapic acid by 
92.44 µg  g−1 DW, and trans-cinnamic acid by 7.78 µg  g−1 
DW, compared to the variant which seeds were soaked only 
in sterile distilled water. Also, 4-HPAA, chlorogenic, and 
syringic acids were not identified for this variety (Fig. 4, 
Table 2).

Fig. 2  HPLC analysis of phenolic acids in the free fraction that was obtained from barley plants of the Burkhant (A) and Virazh (B) varieties 
after treatment of seeds with the stress agent hydrogen peroxide
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Thus, the effect of peroxide stress on phenolic acids in 
the bound fraction of all three tested barley varieties dif-
fered significantly. However, the concentration of caffeic, 
benzoic, trans-ferulic, and sinapic acids decreased most 
sharply (Table 2).

Similar results were obtained by different groups of sci-
entists in the study of the profile of phenolic compounds 
in different plant species under abiotic stress. In scientific 
papers [54, 55], it was showed that Vitis vinifera plants 
grown under cold stress conditions had decreased levels of 
esters and glycosides of the caffeic, ferulic, and p-coumaric 
acids compared to the control. According to a study by 
Kovacik et al. [56], among the 14 identified phenolic acids 
in the leaf rosette of Matricaria chamomilla, the content of 
chlorogenic and caffeic acids decreased sharply under NaCl 
stress. The decrease in the content of phenolic acids may 
be the result of inhibition by stress agents of the activity of 
enzymes involved in their biosynthesis [57].

Post-treatment of seeds of the different barley varieties 
with nanocomposite complex bacterial preparation Azogran 
caused an increase in the content of only some phenolic 
acids in stressed plants. Accordingly, in the bound fraction 
obtained from barley plants of the Burkhant variety, the con-
centration of chlorogenic acid increased by 14.22 µg  g−1 
DW and benzoic acid by 50.76 µg  g−1 DW, compared to 
plant varieties where seeds were treated only with hydrogen 
peroxide (Table 2). Chlorogenic acid (CGA) is a phenolic 
derivative with a unique chemical structure that is a com-
bination of caffeic and quinic acids. This allows CGA to 
effectively neutralize R  in plant cells [58, 59]. Benzoic acid, 
in turn, ensures the resistance of phytoobjects to various 
abiotic and biotic stresses: drought, cold [60], phytopatho-
genic fungi [61].

In the same fraction from plants of the Virazh barley vari-
ety, the concentration of 4-HPAA increased by 32.58 µg  g−1 
DW, trans-ferulic acid by 3.36 µg  g−1 DW, and sinapic acid 
by 4.40 µg  g−1 DW compared to the variant where seeds 
are treated with a stress agent only (Table 2). 4-Hydroxy-
phenylacetic acid, in addition to being an antioxidant [62], 
effectively inhibits the development of some phytopatho-
genic microbes: Fusarium culmorum 50536, Fusarium 
solani 50666, Alternaria alternate 16765 [63]. The mecha-
nism of antioxidant action of the ferulic acid is difficult and 
is aimed at inhibiting the surge of ROS and neutralizing 
free radicals in living cells. Also, this phenolic compound 
is responsible for chelation of protonated metal ions (Cu (II) 
and Fe (II)), the initiators of the Fenton reaction [64, 65], 
the product of which is a highly reactive hydroxyl radical. 
Ferulic acid not only converts free radicals (R·) into neutral 
molecules, but also inhibits enzymes that catalyze R· genera-
tion [66]. No significant changes were found in the content 
of phenolic acids in the bound fraction obtained from plants 
of Copeland barley variety. In addition, syringic acid was Ta
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Fig. 3  HPLC analysis of phenolic acids in the hydrolyzed fraction that was obtained from plants of Virazh (B) and Copeland (C) barley varieties 
after soaking of seeds in sterile distilled water



1316 European Food Research and Technology (2024) 250:1307–1325

identified, which was absent in barley plants that developed 
from stressed seeds (Table 2). Tiwari et al. [67] reported that 
inoculation of wheat (Triticum aestivum) seeds with Bacillus 
pumilus under salt stress conditions promoted the accumula-
tion of syringic acid in plants.

Composition and content of the free flavonoids 
of different barley varieties

In plants of barley varieties, whose seeds were subjected to 
different treatments, the content of flavonoids in free and 
bound fractions was determined. As a result, significant dif-
ferences were found.

The free fraction of flavonoids extracted from plants Bur-
khant barley variety, whose seeds were treated with sterile 
distilled water, contained rutin, quercetin-3-β-glycoside, 
quercetin, and luteolin (Fig. 5A, Table 3). The pronounced 
antioxidant, anti-inflammatory, and antitumor properties of 
quercetin and luteolin are due to the high similarity of their 
chemical structure. Only the presence of a hydroxyl group 
in the quercetin molecule at position 3 distinguishes these 
two flavonoids [68].

In the same fraction obtained from plants Virazh barley 
variety, in addition to the above flavonoids, neohesperidin 
was identified. The total content of these compounds was 
the highest and amounted to 30.72 µg  g−1 DW (Fig. 5B, 

Table 3). Only two flavonoids were detected in Copeland 
plants—quercetin-3-β-glycoside and quercetin (Fig. 5C, 
Table 3). The flavonoid content is an important indicator of 
the antioxidant potential of plants and also determines the 
health benefits of functional foods [69].

The treatment of seeds of different barley varieties with 
the nanocomposite complex bacterial preparation Azogran 
increased the concentration of flavonoids in the free frac-
tion obtained from plants of Burkhant and Virazh varie-
ties by 9.52 µg  g−1 DW and 11.64 µg  g−1 DW, respectively, 
compared to the previous variant. The study [70] showed 
that inoculation of the roots of two broccoli varieties with 
Paraburkholderia graminis PHS1, P. hospita mHSR1, and 
P. terricola mHS1 strains contributed to the accumulation 
of secondary metabolites, including flavonoids, in plants.

In addition, naringin was identified in Burkhant plants 
(Fig. 6, Table 3). This flavanone is a glycoside of narin-
genin and is able to effectively inactivate hydroxyl and 
superoxide radicals, thus protecting DNA from oxidative 
stress [71, 72].

Under the action of 33% hydrogen peroxide on barley 
seeds, the synthesis of flavonoids in the free fraction in bar-
ley plants of the Burkhant variety was significantly reduced. 
Among the previously detected flavonoid compounds, only 
quercetin-3-β-glycoside was identified—4.30 µg  g−1 DW. 
Glycosylated flavonoids with a catechol group at the 3′–4′ 

Fig. 4  HPLC analysis of phenolic acids in the hydrolyzed fraction that was obtained from plants Copeland barley variety after treatment of seeds 
with a stress agent—hydrogen peroxide
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Fig. 5  HPLC analysis of flavonoids in the free fraction that was obtained from barley plants of Burkhant (A), Virazh (B), and Copeland (C) vari-
eties after seed treatment with sterile distilled water
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position are characterized by a high antioxidant potential 
[73]. A number of experimental studies [74–76] have shown 
that the concentration of quercetin glycosides in different 
plant species remained high in response to various abiotic 
stresses.

While for barley variety Virazh, an increase in the 
concentration of some flavonoids in the free fraction was 
observed. In particular, the content of quercetin increased 
by 6.13 μg/g DW and luteolin by 9.15 μg/g DW, compared 
to plants of the same variety, whose seeds were treated with 
sterile distilled water (Fig. 7, Table 3). On the one hand, the 
impact of stress factors on plants can impair their ontogeny 
and productivity in general, and on the other hand, it can 
activate the metabolism of important biologically active 
compounds [40].

No significant changes in the quantitative and qualitative 
content of flavonoids in the free fraction of the barley variety 
Copeland were found.

Post-treatment of the stressed seed material of the studied 
cereal crop with the biological product Azogran had no sig-
nificant effect on the level of flavonoids in the free fraction 
in plants of all three barley varieties (Table 3).

Composition and content of the bound flavonoids 
of different barley varieties

In barley samples, the content of flavonoids in the bound 
fraction was checked and significant differences between 
varieties were found. The concentration of flavonoids in 
the bound fraction was higher than in the free fraction. It 
should be noted that in plants of different varieties of blue 
Highland barley, the content of flavonoids in the free frac-
tion significantly exceeded the content of bound flavonoids 
[77]. While, in buckwheat, wheat, rice, corn, and oats, fla-
vonoids prevailed in the bound fraction [78]. At treatment 
seeds with sterile distilled water, the total content of these 
compounds in plants of Burkhant variety was 190.52 µg 
 g−1 DW, Virazh variety was 47.76 µg  g−1 DW, and Cope-
land variety was 20.55 µg  g−1 DW. Differences were also 
found in the qualitative composition. Rutin, quercetin-3-
β-glycoside, quercetin were identified in barley plants of 
Burkhant variety; quercetin, kaempferol in Virazh variety; 
quercetin-3-β-glycoside, quercetin in Copeland variety 
(Fig. 8; Table 4). This difference is related to the genotype 
of each of the barley varieties under study. For example, Xi-
Juan with co-authors [77] found that in blue Highland bar-
ley plants, naringenin and hesperidin predominated in the 
bound fraction of flavonoids. While Kim with co-authors 
[79] showed that in colored barley, the main flavonoid was 
myricetin.

Treatment of seeds with nanocomposite complex bacte-
rial preparation was accompanied by an increase in the con-
centration of flavonoids only in plants of the Virazh variety Ta
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to 125.27 µg  g−1 DW (Table 4). Ali et al. [80] found that 
the treatment of Arabidopsis thaliana with the microbial 
preparation Soil Builder™-AF increased the induction of 
the transcriptional profile of genes of the phenylpropanoid 
pathway, which contributed to the accumulation of flavo-
noids in the leaves of plants.

The stimulating effect of Azogran on the qualitative 
and quantitative composition of flavonoids in the bound 

fraction in plants of the other two varieties was not 
detected. In particular, for Burkhant variety, a decrease in 
flavonoid content by 170.69 µg  g−1 DW was recorded com-
pared to the variant in which the seeds were treated with 
sterile distilled water (Table 4). This may be due to the 
specifics of the development of each of the studied cereal 
varieties, when their seeds were treated with the nanocom-
posite complex bacterial preparation Azogran. The effect 

Fig. 6  HPLC analysis of flavonoids in the free fraction that was obtained from Burkhant barley plants after seed treatment with nanocomposite 
complex bacterial preparation Azogran

Fig. 7  HPLC analysis of flavonoids in the free fraction obtained from Burkhant barley plants after seed treatment with the stress agent hydrogen 
peroxide
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Fig. 8  HPLC analysis of flavonoids in the hydrolysis fraction obtained from barley plants of Burkhant (A), Virazh (B), and Copeland (C) varie-
ties after treatment of their seeds with sterile distilled water
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of PGPR on phenylpropanoid pathways is associated with 
the stimulation or inhibition of plant growth at a certain 
phase of their development. That is, if rhizobacteria acti-
vate growth, then the biosynthesis of flavonoids is inhib-
ited and, conversely, with a decrease in growth, the level 
of these phenolic compounds in plants increases [81]. We 
conducted our research with barley plants in the tube stage. 
This is one of the most critical periods in the ontogeny of 
cereal spiked crops. This phase is characterized by the for-
mation of flowers in the spikelets and active growth of the 
spikelet. That is, this is the transition from the vegetative 
to the generative phase of cereal crop development [82]. In 
barley plants of Burkhant and Copeland varieties, whose 
seeds were inoculated with Azogran, this transition was 
very slow. They were still growing quite actively, which 
may have influenced the decrease in flavonoid levels.

Under the action of hydrogen peroxide on the seed of 
the Virazh variety, the content of flavonoids in the bound 
fraction decreased by 29.36 µg  g−1 DW, compared to plants 
whose seeds were treated with the nanocomposite complex 
bacterial preparation Azogran. Treatment of barley grain of 
Burkhant variety with this stress agent stimulated the synthe-
sis of naringin in plants, its concentration was 19.66 µg  g−1 
DW, while the content of other flavonoids in the bound frac-
tion decreased (Table 4). Hydrogen peroxide had a stimulat-
ing effect only on the flavonoid complex of Copeland plants. 
In addition, neohesperidin was identified. The increase in the 
flavonoid content may be due to the ability of  H2O2 to regu-
late the expression of the genes of phenylalanine ammonia 
lyase, chalcone synthase, and stilbene synthase, which are 
involved in the synthesis of plant flavonoids [83, 84].

Post-treatment of stressed barley seeds with Azogran 
had the most positive effect on the flavonoid complex of the 
bound fraction of plants of the Virazh variety. Accordingly, a 
high content of quercetin-3-β-glycoside—36.78 µg  g−1 DW 
and quercetin—42.63 µg  g−1 DW was found (Table 4). For 
the other two varieties, this effect was not observed. Ayuso-
Calles with co-authors [85] showed that in lettuce inoculated 
with Rhizobium laguerreae bacteria, which developed under 
salt stress, the content of flavonoids was slightly reduced 
compared to inoculated plants growing under normal con-
ditions. Such effects may have different causes. First, it is 
the type of microorganisms-inoculants. Zapata-Sufientes 
et al. [86], at studying the effect of Pseudomonas paralac-
tis, Sinorhizobium meliloti, and Acinetobacter radioresist-
ens on the flavonoid content of cucumbers, found that S. 
meliloti bacteria contribute to the greatest accumulation of 
these compounds in the fruits of these plants. Secondly, it 
is the plant variety. According to a study by Jeon et al. [81], 
treatment of two broccoli varieties, Malibu and Coronado, 
with the epiphytic rhizobacterium Paraburkholderia led 
to a greater accumulation of flavonoid glycosides only in 
Malibu plants. Whereas Zaferanchi et al. [87] pointed out Ta
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an insignificant concentration difference of flavonoids in 
marigold plants of Isfahan double flower and Isfahan single 
flower varieties, the seeds of which were inoculated with 
PGPR (Azotobacter sp.145PI and Azospirillum sp.AC49I). 
And third, it is the level of influence of the stressor on the 
plant, the higher it is, the greater the imbalance of redox 
homeostasis and other biochemical processes in the cells.

Conclusion

The large amplitude of variation of phenolic carboxylic acids 
and flavonoids indicates the specificity of the interaction of 
different barley varieties with the bacteria components of 
Azogran and their different responses to the effect of the 
preparation under conditions of peroxide stress. For barley 
variety Virazh, higher results were obtained in studying the 
effect of the stress agent and nanocomposite complex bac-
terial preparation Azogran on the qualitative and quantita-
tive content of phenolic compounds in its plants. Since the 
selection of this variety and its agricultural technology is 
carried out in Ukraine, it is more adapted to the climatic 
conditions and soil microbial community of this country. At 
that time, the Burkhant (Mongolia) and Copeland (Canada) 
barley varieties were first grown in Ukraine. However, the 
proposed treatment of native and post-treatment of stressed 
seeds of these barley varieties with a nanocomposite com-
plex bacterial preparation helped to activate the synthesis of 
a complex of phenolic compounds in their plants.
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