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Abstract
To address issues relating to the advantages of varieties of sorghum in construction, breeding, and brewing of the seed reposi-
tory, a visible–near-infrared hyperspectral imaging (VNIR-HSI) non-destructive technique was proposed to detect different 
varieties of sorghum. The VNIR-HSI system was used to collect spectrum images for 27 types of varieties of sorghum, and 
the spectral data were pre-processed using Savitzky–Golay (S–G) smoothing filters, the standard normal variate (SNV), and 
multiplicative scatter correction (MSC). Competitive adaptive reweighted sampling (CARS) was used for dimensionality 
reduction. Based on full-spectrum and characteristic spectral data, classification models were developed using a random 
forest (RF) algorithm. The tested results indicated that precisions of calibration and prediction sets of the RF model estab-
lished based on the full-spectrum reach 94.58% and 64.44%, respectively. The CARS algorithm was adopted to extract 20 
characteristic wavelengths from sorghum spectra. The precisions of the calibration and prediction sets for the CARS-RF 
model reach 95.00% and 84.07%, respectively. Using the confusion matrix to calculate Cohen's kappa values, the calibration 
and prediction Cohen's kappa values for the full sample were 0.9212 and 0.9231 respectively, indicating that the evaluation 
results are almost identical to the correctness results. The applied model can achieve favorable effects when detecting each 
cultivar of sorghum. The results show that the modeling method integrating VNIR-HSI technique with CARS-RF can pro-
vide a rapid non-destructive testing method for detection of varieties of sorghum, and offer an idea for detecting cultivars 
of coarse cereal crops.
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Introduction

Sorghum is an ancient cereal crop, characterized by strong 
disease resistance, wide adaptability, tolerance to barren-
ness, aridity, saline, and alkali stresses, and tolerance to 
water-soluble fertilizer. It can also be planted in arid hills 
and barren mountainous areas where staple crops requiring 
high level of water-soluble fertilizer are inappropriate to be 
planted [1]. Sorghum planting can increase the efficiency 
of the grain-production process, provide diverse types of 

grain, and promote the development of livestock farming 
[2, 3]. Moreover, Sorghum can be used as an industrial raw 
material applied in products, such as starch, alcohol, vita-
mins, and biomass. In particular, it is broadly applied in 
the brewing industry and has significance to broader socio-
economic development [3–8]. However, the differences 
between varieties of sorghum are significant so accurate 
identification of the varieties is conducive to determination 
of the characteristics of different varieties of sorghum. This 
helps sorghum planters to choose the varieties suitable for 
their planting conditions and demands to set more effective 
planting management strategies [4]. Meanwhile, it can also 
ensure diversity and integrity of varieties in the seed reposi-
tory and guarantee the effective utilization and development 
of germplasm resources. During breeding, identification of 
the varieties can help breeding operators to make a rational 
selection of the parents and avoid hybridization and mixing 
of different varieties. This can improve breeding efficiency 
and the rate of success, also facilitating the determination of 
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the genetic purity of hybrid offspring for hybrid and related 
varieties [4–6]. In doing so, breeding hybrid failure can be 
avoided. Identification of the varieties is of significance to 
improvement of varieties, new cultivar breeding, and their 
popularization. By means of detection of the varieties, 
the contents of starch and tannin in sorghum grain can be 
obtained. The research provides supports for brewing enter-
prises, also helping to justify the present research into the 
identification of varieties of sorghum.

Different sorghum varieties have different growth charac-
teristics and agronomic traits. Traditional methods of detec-
tion of varieties, such as morphological and physiological 
methods, fail to identify precisely the varieties due to small 
differences among the varieties of various families and gen-
era. Chemical analysis methods such as phenol staining, 
and DNA-based molecular technique require grinding of 
the grains, rendering the process inefficient, while prevent-
ing rapid non-destructive assay [9]. As the hyperspectral 
imaging technique is a rapid, non-destructive identification 
technique, it integrates merits, such as machine vision and 
spectral analysis. It has been applied in detection and identi-
fication of varieties for crops, such as wheat, corn, and millet 
[10]. Different sorghum varieties have unique reflectance 
characteristics in the hyperspectral bands, and by analyz-
ing this spectral data, differences between varieties can be 
identified. Compared to traditional observation and measure-
ment methods, hyperspectral imaging technology has higher 
spectral resolution and accuracy, providing more accurate 
variety identification results. At the same time, labor and 
time costs are reduced. Due to a huge amount of spectral 
data and redundancy generated when using the hyperspec-
tral technique, feature extraction algorithms were used to 
conduct dimensionality reduction on the spectra data and 
chemical significance of selecting variables becomes easier 
to elucidate [11, 12]. Song et al. performed principal com-
ponent analysis to extract 25 characteristic wavelengths of 
wheat spectral and used a support vector machine (SVM) to 
construct classification models, with an accuracy of 97.54% 
[13]. Zhu et al. utilized a deep convolutional neural network 
to identify wheat grains [14]. Yang et al. used a successive 
projection algorithm to extract 19 characteristic wavelengths 
from the hyperspectral data of waxy corn seed varieties and 
used an SVM to establish cultivar classification models with 
an accuracy of 98.2% [15]. Kabir et al. used visible–near-
infrared spectroscopy on 16 varieties of millet and integrated 
principal component analysis (PCA) dimensionality reduc-
tion with the k-nearest-neighbor (KNN) algorithm, linear 
discriminant analysis, logistic regression, random forest 
(RF), and SVM algorithms, respectively to build cultivar 
classification methods [16]. The results indicated that RF 
and SVM were the most effective. At present, research into 
rapid identification of varieties of sorghum using VNIR-HSI 
technique is sparse, thus, the research is undertaken with the 

aim of obtaining an efficient non-destructive testing method 
for distinguishing between varieties of sorghum.

In these experiments, taking 27 varieties of sorghum as 
research objects, Innovation includes the following three 
points:

(1) Visible and near-infrared spectroscopy were used to 
acquire the sample information.

(2) Competitive adaptive reweighted sampling (CARS) 
was then integrated with RF to obtain a model for the 
identification of varieties of sorghum.

(3) Indices, such as identification precision and Cohen’s 
kappa value, were adopted to test the performance of 
the proposed method which was applied across the 
entire sample and each single cultivar therein.

In doing so, a rapid, non-destructive method of identifica-
tion of varieties of sorghum was developed (Fig. 1).

Materials and methods

Experimental samples

A total of 3240 samples of 27 varieties of sorghum (120 
samples for each cultivar) cultivated from the Sorghum 
Research Institute of Shanxi Agricultural University were 
selected. The sorghum seeds selected that were plump and 
highly regular in shape were classified, then sealed for stor-
age in a jar. The type of the varieties of sorghum is repre-
sented by V1–V27, as shown in Fig. 2, among which, the 
varieties (V1, V3, V9, V13, V15, V16, and V24) are gluti-
nous varieties of sorghum, having a white color. The other 
varieties of sorghum appear red in color. Other physical 
properties of the sorghum seeds are similar. In this experi-
ment, non-glutinous and glutinous sorghum seeds were ran-
domly arranged to increase the adaptability of the model.

Hyperspectral imaging system

The VNIR-HSI (Headwall Photonics, USA) scanning plat-
form was used to finish the image acquisition of sample vari-
eties of sorghum. This system consists of a canning platform, 
a micro near-infrared hyperspectral imager with an aperture 
of 1.4 and focal length of 25 mm, light source, a controller, 
and computer. Its spectral range is 380–1000 nm at a spec-
tral resolution of 0.727 nm, with a total of 856 wave bands. 
The image acquisition parameters are as follows: the object 
distance is 370 mm, the pushing distance is 100 mm, and the 
platform was driven at a speed of 2.938 mm  s−1, in doing so, 
clear, undistorted images can be captured.

To reduce interference caused by systemic light 
sources and the dark current, a black-and-white correction 
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was applied to the hyperspectral images based on the 
equation R =

R0
−Rb

Rw
−Rb

 , among which R refers to the cor-
rected hyperspectral images; R0 denotes the original 
hyperspectral images; Rw represents the white background 
image of a standard white correction board with a reflec-
tivity approaching 99.9%; Rb represents the dark black 
background image with a reflectivity of 0% taken after 
closing the lens cover.

The samples of varieties of sorghum were placed into 
a sample dish with a diameter of 40 mm and depth of 
15 mm, leveled smooth, and compacted. Afterward, they 
were placed on the movable scanning platform to allow 
collection of hyperspectral images. Image acquisition on 
the samples of each cultivar was conducted 120 times, 
producing a total of 3240 hyperspectral images.

Data extraction and pre‑processing

Data extraction

Hyperspectral images contain both the spectral and image 
information from sorghum samples. Each pixel point on 
the image corresponds to a curve on the diffuse reflec-
tance spectrum. ENVI 5.0 [17] was adopted to extract 
the spectral data of the region of interest (ROI) for each 
hyperspectral image: the reflectivity of each pixel point 
was calculated, and its arithmetic mean was taken as basic 
data for subsequent processing.

Fig. 1  Analysis process flow chart

Fig. 2  Sample diagram
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Data pre‑processing

The data pertaining to the influences of noise and light 
scattering of the instrument in the data acquisition 
process were obtained. This work successively used 
Savitzky–Golay (S–G) [17, 18] smoothing filters, the 
standard normal variate (SNV) [19, 20], and multiplica-
tive scatter correction (MSC) [21, 22] to pre-process the 
spectral data. This can further eliminate random errors, 
remove the influence of light scattering to improve the 
signal-to-noise ratio (SNR), enhance the correlation 
between the light spectrum and data, effectively elimi-
nating instrument noise from the spectral data. On this 
basis, the performance of the established model can be 
improved. Considering the stability and general adaptabil-
ity of the constructed model, the total number of samples 
in the modeling part is 3240, and the calibration set and 
the prediction set are randomly divided according to a 2:1 
ratio using Matlab to generate random numbers, where the 
calibration set contains 2160 samples and the prediction 
set contains 1080 samples.

Extraction of characteristic wavelengths

The hyperspectral can effectively provide quantification 
data. However, a host of variables leads to significant redun-
dancy, reducing the model load and prediction capability. To 
improve the precision of the predictive model, this experi-
ment adopted CARS for dimensionality reduction, further 
improving interpretability of the variables.

The CARS algorithm is used to select the optimal combi-
nation of the effective variables in the spectra by mimicking 
Darwin’s “survival of the fittest” principle [23–29]. For the 
spectral variables of dimensions m × p, CARS adopted the 
effective variables based on the following steps:

1. Based on Monte Carlo sampling (MCS), 80% of the 
samples were randomly selected from the correction set 
to construct the PLS model. The regression coefficient 
|Ki| (i = 1, 2, …, p) of the ith wavelength can be obtained;

2. Exponentially decreasing function (EDF) was adopted 
to eliminate smaller wavelength points of |Ki|. The reten-
tion rate of the variable rj = ae−bj (j = 1, 2, …, N): where 
j denotes the jth MCS; N represents the total number of 
MCS operations. The parameters (a and b) are constants. 
According to r1 = 1 and rN = 2/p, they can be calculated 
thus

(1)a = (p∕2)1∕(N−1)

(2)b = ln (p∕2)∕(N − 1)

3. Based on an adaptive reweighted sampling (ARS) tech-
nique, the variable was further screened. According to 
Darwin’s principle of the survival of the fittest, 
wi =

��Ki
��∕

p∑

i=1

��Ki
�
� (i = 1, 2, …, p) was adopted for vari-

able selection;
4. The aforementioned steps are repeated until the number 

of MCS reach its pre-set value N;
5. Using tenfold cross-validation, the root mean square 

error of cross-validation  (RMSECV) can be used as the 
evaluation standard. Then, the value of the variable 
subset can be obtained by comparing difference of each 
MSC. The variable subset corresponding to the minimal 
 RMSECV value is seen as the optimal variable.

The classification model and evaluation criteria

The classification model

The RF algorithm, which is widely applied in issues relating 
to data regression and classification, is an intelligent combi-
national classification algorithm [30–33]. A self-sampling 
method (bootstrap) is used to repeatedly and randomly select 
n samples from the original calibration set N to generate new 
calibration sample decision trees by placement. Repeating 
the aforementioned steps can help generate m decision trees 
to form an RF. The classified results of new data are deter-
mined according to the scores of the polling of classifica-
tion trees. The classification capability of single tree may 
be small. However, after many decision trees are generated, 
after generating statistics pertaining to the classified results 
for each tree in each tested sample, the most possible type 
of classification can be ascertained.

The steps can be described as follows:

1. N is used to express the number of training examples 
(samples) and M denotes the number of features;

2. The number of features m is input for determining the 
decision results of the last node at the decision tree, 
among which, m should be less than M;

3. Using a method of random sampling with replacement in 
the Nth training examples (samples), N sampling opera-
tions can be conducted to form a training set, namely, 
(bootstrap) and then unselected examples (samples) are 
used for prediction to estimate the error of the method;

4. For each node, m features are randomly selected and 
each node at the decision tree is determined based on 
these features. According to m features, the optimal 
method of division can be calculated. The purpose of 
randomly selecting the training set includes: if random 
sampling is not made, the training sets for each of differ-
ent trees are same. Hence, the classified results of finally 
trained trees are identical. The objectives of sampling 
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with replacement involve the following: if sampling with 
replacement is not used, the training sample for each 
different tree differs, showing no intersection. That is to 
say, the trained results from each tree are largely differ-
ent;

5. Finally, RF is voted using multiple trees to determine the 
type of the samples.

Evaluation criteria

The RF method was used to build a prediction and clas-
sification model of varieties of sorghum. Then the perfor-
mance of the model was estimated using the classification 
accuracy. The accuracy can be calculated thus

where ACC refers to the accuracy; TP refers to true positive; 
TN refers to true negative; FP refers to false positive; FN 
refers to false negative.

Meanwhile, in order to visualize the effect of the algo-
rithm, the confusion matrix (CM) of the sorghum variety 
classification results was constructed and Cohen’s kappa 
value was calculated using the formula:

(3)ACC =
TP + TN

TP + FP + FN + TN
× 100

where K: Cohen’s kappa; Po: proportion of observation-
consistent units; Pe: proportion of chance consistent units. 
Cohen’s kappa is calculated as − 1 to 1, but usually the kappa 
falls between 0 and 1, which can be divided into five groups 
to indicate different levels of agreement: 0.0–0.20 very low 
agreement (low), 0.21–0.40 fair agreement, 0.41–0.60 mod-
erate agreement (moderate), 0.61–0.80 high agreement (sub-
stantial), and 0.81–1 almost perfect.

Results and discussion

Spectral characteristics

Figure 3 describes the original spectral curve of 3240 sam-
ples selected in this experiment and pre-processed spectral 
curve. Comparison of Fig. 3a and d shows that the influences 
of light scattering and noise on the spectra after pre-pro-
cessing with S–G, SNV, and MSC methods are eliminated 
as soon as possible to improve SNR, which is conducive 
to improving the subsequent classification accuracy of the 
model.

Figure 4 depicts the average spectra of 27 varieties of 
sorghum. Within the wavelength range of 380–1000 nm, the 

(4)K =
P
o
− P

e

1 − P
e

Fig. 3  Raw spectra and pretreat-
ment of the samples. a Raw 
spectra. b Spectral pre-pro-
cessing by S–G. c Spectral pre-
processing by S–G and SNV. d 
Spectral pre-processing by S–G 
SNV and MSC
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general trends of the sorghum spectral curves are similar. 
Wave peak and trough show relatively little change. Mean-
while, some curves intersect and overlap. Figure 4 displays 
the pre-processing of the average spectra for 27 varieties of 
sorghum. After pre-processing, the curve intersection and 

overlapping can be reduced, the noise is reduced, allowing 
clearer distinction between different samples. Among these, 
the spectral curves of the varieties (V1, V3, V9, V13, V15, 
V16, and V24) at wavelengths ranging from 400 to 850 nm 
are shown above the rest of the varieties. This information 
can be used to differentiate red sorghum from white sor-
ghum: a trough appears at around 670 nm in the spectral 
curve, possibly caused by a bathochrome effect, while the 
spectral curve at wavelengths greater than 850 nm presents 
a declining trend. This is possibly related to the stretch-
ing vibration of molecular bonds for  O2, O–H bonds, and 
hydroxyl functional groups [28]. These differences provide 
an effective discrimination basis for varieties of sorghum 
when using spectral identification.

Characteristic extraction

The aim of CARS is to eliminate irrelevant variables and 
reduce collinearity among variables. Figure 5 describes with 
the increase in the number of MCS, changes in the num-
ber of sample variables in the subsets of sorghum samples, 
 RMSECV, and regression coefficient are shown in the subsets 
of sorghum samples. As the number of MCS is increased, 
the variables selected from the effect of EDF present an 

Fig. 4  Average spectra of 27 samples

Fig. 5  Key extraction results of 
the CARS algorithm. a Changes 
in the number of waveband vari-
ables. b Variation of RMSEcv. 
c Path of variable regression 
coefficients. Five-pointed star 
denotes the optimal point where 
root mean square error of cross-
validation  (RMSECV) values 
achieve the lowest
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exponential decrease and then gradually tend to stabilize; 
the value of  RMSECV first decreases, then increases, indicat-
ing an absence of correlation between the variables initially 
eliminated during the variable screening process and compo-
nents to be tested. Thereafter, the variables irrelevant to the 
components to be tested are added to the variable subsets; 
effective wavelengths are retained at the labeled position, at 
this time, the value of  RMSECV is minimal. The screened 
variables are the optimal variable combination, as shown in 
the figure, when the number of sampling operations is 62, 
 RMSECV is 5.6174 (its minimum value). At this time, there 
are no redundant wavelengths to be screened. The subset 
contains 20 variables, the corresponding wavelengths are 
425, 426, 429, 430, 588, 589, 591, 592, 661, 662, 668, 669, 
672, 673, 686, 880, 881, 885, 911, and 915 nm.

Result of classification

Identification precision

Full-spectral data for 27 types of varieties of sorghum and 
20 characteristic spectral data were respectively used to 
establish RF-based classification models. When using the 
full-spectrum data, the number of trees (ntree) is 1000, and 
the number of features (mtry) randomly sampled is 29. The 
experimental results demonstrate that the accuracy of the 
calibration set is 94.58% while the accuracy of the predic-
tion set is 64.44%; when using characteristic spectral data, 
the number of trees generated (ntree) is 1000 and the num-
ber of randomly sampled features (mtry) is 4. Among them, 
ntree and mtry are two important parameters of random for-
ests. ntree is the number of base classifiers included, with a 
default of 500; mtry is the number of variables included in 
each decision tree, with a default of logN. By optimizing the 
parameters, the error is minimized when mtry is taken to be 
29 for full-spectrum data modeling, mtry is minimized when 
mtry is taken to be 4 for eigenspectral data modeling, and the 
error is stable when ntree is taken to be 1000.

Experimental results indicate that the accuracy of the cor-
rection set is 95.00% while the accuracy of the prediction 
set is 84.07%. The overall accuracy of the testing sets for the 
classification models built using CARS -RF can be signifi-
cantly increased, as shown in Fig. 6.

Cohen’s kappa value

In this paper, the confusion matrix is established for the 
classification results of the classification model established 
based on the feature spectral data, and its Cohen’s kappa 
value is calculated, and the calibration and prediction 
Cohen’s kappa values of all samples are 0.9212 and 0.9231, 
respectively, as shown in Fig. 7.

Discussion

Using CARS algorithm, 20 characteristic wavelengths 
were screened from 27 types of varieties of sorghum. The 
characteristic wavelength is compressed to 2.4% of the 
total number of full-wave bands. The spectral data are 
saved in the matrix with array dimensions of 3240 × 20, 
thereby reducing the computational time. The character-
istic wavelengths are between 420–430 nm, 580–600 nm, 
660–690 nm, and 880–920 nm. The characteristic wave-
lengths occur at 420–430  nm, corresponding to the 
blue–violet region, which corresponds to the adsorp-
tion peak of compounds such as flavonoids contained in 
sorghum seeds [34, 35], while the wavelength range of 
580–600 nm corresponds to the green light region, cor-
responding to the adsorption peak of pigments including 
chlorophyll contained in sorghum seeds [36–38]. The 
wavelength range of 660–690 nm corresponds to the red 
light region, which mainly involve excitation and fluores-
cence of chlorophyll contained in sorghum seeds; while 
at wavelengths of around 880–920 nm, due to the effects 
of stretching vibrations for C=C, C=O, and C=N, the 
changes in optical properties of substances including pro-
tein, starch, cellulose, and moisture content contained in 
sorghum at this wavelength range contribute to the phe-
nomenon [39, 40].

According to the classification results, it can be found 
that when modeling using full-spectrum data, the accura-
cies of the calibration and prediction sets are 94.58% and 
64.44%, respectively. When using the characteristic spectral 
data, the accuracy of the calibration set is 95.00% and the 
accuracy of the prediction set is 84.07%. The total accuracy 
of the prediction set for the classification model established 
based on CARS-RF is increased by 19.63%. This is because 
irrelevant variables are eliminated during the extraction of 
characteristic variables while retaining related characteristic 
wavelengths pertaining to organic matter contained in sor-
ghum as soon as possible.

When the CARS-RF model was used for classifica-
tion prediction of each of 21 types of varieties of sorghum 
(V1–V11, V15, and V20–V27), the accuracies of the cor-
rection set are above 92.50%, and the accuracies of the pre-
diction set are higher than 90.00%. The accuracies of some 
varieties reach 100%, while the accuracies of the prediction 
set for two varieties of sorghum V12–V13 ranged between 
81.25 and 90% and the accuracies of the prediction set are 
beyond the range of 80.00–85%; while the accuracies of 
the correction set for four types of varieties of sorghum 
V16–V19 are in the range of 73.75–80.00%; the accura-
cies of the prediction set ranged between 70.00 and 75.00%. 
Owing to physical properties of four types of varieties of 
sorghum V16–V19 are similar, some deviations occur in the 
polling process of RF.
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As can be seen from Table 1, using Cohen’s kappa 
value to evaluate the accuracy of the single-species 
model, the Cohen’s kappa values of the calibration and 
prediction sets of V1–V15, V19–V27 were all in the range 
of 0.81–1.0, it shows that the evaluation results are almost 
identical to the accuracy results. The Cohen’s kappa val-
ues for V16–V18 calibration and prediction sets ranged 
from 0.61 to 0.8, indicating a high level of consistency. 

The calibration and prediction Cohen’s kappa values for 
the full sample were 0.9212 and 0.9231 respectively, 
ranging from 0.81 to 1.0, also falling into the category of 
almost perfect agreement.

In summary, the CARS-RF was used for modeling of 
varieties of sorghum. Its identification accuracy meets the 
classification requirements of the varieties, presenting a 
certain application value.

Fig. 6  Results of classifica-
tion for the calibration and 
prediction in single and overall 
sample. a Calibration results 
of RF model based on full and 
key wavelengths. b Prediction 
results of RF model based on 
full and key wavelengths
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Conclusion

This experiment took 27 types of varieties of sorghum 
as research objects to identify sorghum seeds using the 
method integrating the hyperspectral non-destructive 
detection technique with machine learning. The hyper-
spectral imaging system was used for acquisition of vari-
eties of sorghum across the average spectral range of 
380–1000 nm. Using CARS algorithm, irrelevant variables 
can be eliminated but effectively retain the characteristic 
wavelength related to organic matter contained in sorghum 
the further to realize spectral dimensionality reduction. 
Meanwhile, RF was used to establish a model capable of 
identifying varieties of sorghum. The accuracy of a part 

of the correction set in the model for the varieties V1–V27 
is 95.00%. The accuracy of the prediction set is 84.07%. 
Using the Confusion matrix to calculate Cohen’s kappa 
values, the calibration and prediction Cohen’s kappa val-
ues for the full sample were 0.9212 and 0.9231 respec-
tively, indicating that the evaluation results are almost 
identical to the correctness results. The results indicated 
that non-glutinous and glutinous varieties of sorghum with 
similar physical properties can be distinguished using the 
CARS-RF model.

Sorghum variety identification with CARS-RF, not only 
can accurate, rapid and non-destructive identification of 
sorghum varieties be achieved, but it can also provide a 
way of thinking for varietal identification of other crops, as 

Fig. 7  Results of Cohen’s kappa 
value for the calibration and 
prediction in single and overall 
sample

Table 1  Recognition accuracy and Cohen’s kappa value for the prediction set

Variety V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

Identification precision 0.9750 0.9000 0.9750 0.9500 0.9500 0.9000 1.0000 1.0000 1.0000 1.0000
Cohen's kappa value 0.9872 0.9078 0.9872 0.9363 0.9481 0.9331 0.9505 0.9740 0.9875 0.9740

Variety V11 V12 V13 V14 V15 V16 V17 V18 V19 V20

Identification precision 1.0000 0.8500 0.8000 0.9250 0.9250 0.7000 0.7500 0.7250 0.7000 1.0000
Cohen's kappa value 0.9621 0.8119 0.8256 0.8338 0.9215 0.6699 0.7464 0.7664 0.9381 1.0000

Variety V21 V22 V23 V24 V25 V26 V27 VT

Identification precision 1.0000 1.0000 0.9750 1.0000 1.0000 1.0000 1.0000 0.8407
Cohen’s kappa value 1.0000 1.0000 0.9872 1.0000 1.0000 1.0000 1.0000 0.9231
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well as helping with seed management, variety protection 
and germplasm resource management.
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