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Abstract
In this study, citrus fruits were graded according to the freshness favored by consumers, prediction models for different grades 
were built, and the differential metabolites between fresh and stale citrus were found and their thresholds were determined. 
At first, citrus fruits were evaluated and graded according to four evaluation levels of “fresh”, “relatively fresh”, “relatively 
stale” and “stale”. And then, fuzzy mathematics (FM) algorithm was used to calculate the comprehensive evaluation score of 
freshness for each citrus. Subsequently, electronic tongue was used to detect these citrus, and prediction models of freshness 
were established based on principal component analysis (PCA) and discriminant factor analysis (DFA). The results showed 
that the PCA was effective in discriminating the citrus samples. Unknown samples were used to validate the DFA models 
and the correct rates of the four groups were 100% and 98.3% for satsuma mandarin and navel orange. A metabolomics 
approach based on gas chromatography–mass spectrometry was preformed to screen differential metabolites of sugars and 
organic acids between fresh and stale citrus. Sucrose, glucose, and fructose as co-differential metabolites of satsuma man-
darin and navel orange were quantified. The threshold of sucrose for satsuma mandarin was 36.57 mg/g, and the thresholds 
of glucose and fructose were 10.35 mg/g and 10.72 mg/g for navel oranges, respectively. This work provides a quick and 
accurate screening method for fresh citrus that consumers prefer based on either electronic tongue or the thresholds of some 
specific sugars, which is especially important for citrus production and marketing.
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Introduction

Citrus, with a high nutritive and economic value, is one of 
the most widely grown fruit crops in the world. The con-
sumption and global marketing of fresh citrus has been 
growing for 10 years and will go on [1]. Freshness is a qual-
ity criterion of great importance for consumers to choose 
fruits [2]. The fresher the fruit, the higher the price. For 
decades, determination of the freshness of citrus fruits was 
a challenge for producers, researchers, and food safety agen-
cies [3, 4]. Traditional freshness test is based on fruit firm-
ness, total soluble solids (TSS) content, titratable acidity 
(TA) and other methods, which are unsatisfactory in accu-
racy [3, 5]. Recently, Ahlawat et al. proposed a new method 
to detect freshness of vegetables and fruits. They identified 
a gene associated with aging in broccoli and proposed it as a 
quick detection for freshness [6]. But this freshness is not the 
same as consumers think of freshness. Traditional freshness 
is judged by ripeness and storage time, but sometimes citrus, 
which are judged to be stale by their storage time, are fresh 
when you eat it. Therefore, it is important to figure out what 
kind of citrus consumers think is fresh and tasty.

The freshness that consumers prefer needs to be evalu-
ated by consumers themselves. However, different people 
have different criteria for freshness, and human’s sensation 
is vague and dubious, which is difficult to be described, not 
to mention quantification. Consumers are not professional 
assessors and consumer preference evaluation needs a large 
number of consumers to participate. Therefore, a simple 
description method is appropriate for consumer preference 
evaluation, and the results need to be dealt with good ana-
lytical methods.

Fuzzy mathematics (FM) is a mathematical method to 
deal with fuzzy concepts and is able to scientifically and 
accurately evaluate concepts that is hard to be quantified 
exactly [7, 8]. FM has been widely applied in the sensory 
evaluation of food [9], such as liquor [8], tea [10], fruits 
[11], vegetables [12], oil [13], and meat products [14]. For 
example, color, aroma, taste, and style were set as four fac-
tors affecting the sensory quality of Luzhou flavor liquor 
[8]. Each factor had four evaluation grades (excellent grade, 
grade 1, grade 2, grade 3) and was assigned a corresponding 
weight. The sensory evaluators assigned a corresponding 
grade to each factor of the liquor. The quality scores of five 
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different kinds of Luzhou flavor liquor were then calculated 
using the algorithm of FM. The higher the score, the bet-
ter the quality. The results indicated that the comprehensive 
evaluation system was scientifically sound and reasonably 
constructed. Up to now, no study is reported for freshness 
evaluation with FM.

It is impossible to organize frequently large-scale con-
sumer experiments to judge the freshness of citrus. It is more 
practical to use a simple and fast instrument to discriminate 
citrus samples graded by sensory evaluation and then build 
a prediction model for unknown samples, which is espe-
cially necessary for producers and enterprises. Traditional 
instrumental detection technology includes chromatographic 
techniques and spectrum technology, but they are either 
time-consuming, complicated to operate, or expensive. 
Electronic nose (E-nose) and electronic tongue (E-tongue) 
have the advantages of fast analysis speed, simple opera-
tion, no reagent consumption, and high sensitivity, which 
are more suitable for application in industry. Most impor-
tantly, the software of E-nose and E-tongue could establish 
a discriminant factor analysis (DFA) model by a particular 
algorithm for the sensor signals [15, 16] so as to classify 
the citrus with different freshness. By mapping the sensor 
signal values of unknown samples to the established model, 
the freshness of unknown samples can be predicted quickly. 
As rapid analytical technology, a wide range of applications 
could be found by applying E-nose and E-tongue for clas-
sification (or identification) and prediction of food, such as 
tea with different quality [17], meats of different ingredients 
[18], citrus in different storage conditions [19], wines from 
different geographical sources [20], and tilapia fillets with 
different freshness [21]. To the best of our knowledge, no 
research has been done on rapid detection of citrus freshness 
to meet consumer preferences.

A rapid prediction model can help us judge the freshness 
of a citrus sample, however, the compounds that distinguish 
different freshness are not clear. The freshness of citrus fruits 
is often related to physical changes (color, size, shape, and 
specific gravity) and chemical changes (pH, acidity, TSS, 
the ratio of TSS to acidity, and naringin content) [22]. How-
ever, most of these indices produce unsatisfactory results 
because they are determined by a combination of chemicals, 
in which individual components fluctuate wildly during fruit 
development and ripening [23]. The metabolomics approach 
is a very powerful tool to identify and associate chemical 
changes with the quality characteristics of products [24–26]. 
If those compounds can be found and the thresholds between 
fresh and stale citrus can be specified, freshness testing will 
become easier and more interesting.

In this research, the freshness of peeled citrus fruits was 
studied to avoid the interference from the peel. The fresh-
ness of citrus fruits of two cultivars was firstly evaluated by 
consumers using FM, and then the algorithm of FM was 

used to convert the fuzzy description of freshness into accu-
rate value. In this case, each citrus had a freshness score, 
rather than simply being divided into groups based on fresh-
ness. The citrus samples with different freshness obtained 
by consumer evaluation were used to establish prediction 
models based on E-nose and E-tongue. Simultaneously, 
metabolomics method based on gas chromatography-mass 
spectrometry (GC–MS) was used to find the differential 
metabolites of citrus fruits between fresh and stale groups, 
and the discriminant critical values were obtained.

Materials and methods

Main chemical and reagents

All chemicals were of analytical reagent grade unless oth-
erwise stated, and water was obtained from a Milli-Q puri-
fication system (Millipore Sigma, Burlington, MA, USA). 
Phenolphthalein, sodium hydroxide, potassium acid phtha-
late, L (+) ascorbic acid, ethanedioic acid dihydrate, and 
pyridine were purchased from Sinopharm Chemical Reagent 
Co., Ltd. (Beijing, China). 2, 6-dichloroindophenol sodium 
salt (97%) was purchased from Shanghai YuanYe Biotech-
nology Co., Ltd. (Shanghai, China). Sucrose, glucose and 
fructose standards, HPLC-grade methanol, adonitol (99%), 
O-methylhydroxylamine (98%+), BSTFA + TMCS (99:1, 
v/v) were purchased from Shanghai Macklin Biological 
Technology Co., Ltd. (Shanghai, China).

A mixture of stock solution containing sucrose (20 mg/
mL), glucose (10 mg/mL), and fructose (10 mg/mL) was 
prepared by dissolving the above-mentioned analytical 
standards in a mixture of methanol and pure water (7:3). 
Mixed standard working solutions were prepared by serial 
dilution of the stock solution with methanol. The stock solu-
tion was stored at  −18 °C, while all of the working solutions 
were stored at 4 °C.

Preparation of samples

Citrus fruits of two cultivars were analyzed, namely satsuma 
mandarin (C. unshiu Marc.) and Newhall navel orange (C. 
sinensis Osbeck ‘Newhall’). They were hand harvested from 
a local orchard located in Yichang, Hubei, China (N 30°07′, 
E 111°28′) on September 23, 2021 and December 16, 2021, 
respectively. After harvest, 50 samples of each cultivar were 
stored in a cold room (4–8 ℃) and the rest were spread out in 
a room at room temperature (~ 20 ℃). And then, each batch 
of 50 oranges was transferred from the room to the cold stor-
age every 3 days for satsuma mandarin, and every 10 days 
for navel orange. The storage time was 2 months for satsuma 
mandarin and 3 months for navel orange. After storage, all 
citrus were numbered and sent to a sensory laboratory in 
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Huazhong Agricultural University. Each orange was peeled 
and divided into two halves. One half was used for sensory 
evaluation immediately, and the other half was used for 
instrumental analysis. The samples for E-nose and E-tongue 
were stored at 4 ℃, and experiments were done in 2 days. 
The samples for GC–MS were frozen with liquid nitrogen 
and stored at − 80 ℃.

Establishment of sensory evaluation model based 
on FM

The details were shown in Supplementary Information.

Determination of TSS and TA

TSS and TA were determined according to standard methods 
[27, 28].

E‑nose setup and signals acquiring

A FOX 4000 Odor Fingerprint Analyzer (Alpha MOS, Tou-
louse, French) used in this research was equipped with a 
metal oxide semiconductor (MOS) sensor array which was 
composed of 18 different MOS sensors. The names and main 
performances of the sensor array to some specific volatile 
compounds are presented in Table S4 (Supplementary Infor-
mation). The flesh of 3 g was placed in a 20-mL head-space 
bottle as a sample. All samples were placed into E-nose tray 
for automatic sampling. E-nose parameters: incubation time 
600 s, incubation temperature 40 ℃, flushing time 120 s, 
agitation speed 500 rpm, agitation on 5 s, agitation off 2 s.

E‑tongue setup and signals acquiring

An ASTREE II Gustatory Fingerprint Analyzer (Alpha 
MOS, Toulouse, French) was employed to characterize the 
taste of citrus samples. The instrument was mainly com-
posed of seven liquid cross-sensitive electrodes, an Ag/AgCl 
reference electrode and a data acquisition system. These 
seven sensitive electrodes were coated with specific mate-
rials that could respond to five different tastes, i.e., bitter-
ness, savory, saltiness, sourness and sweetness. The detailed 
information for E-tongue sensors is shown in Table S4 
(Supplementary Information). Five citrus slices of the same 
freshness were mixed and homogenized. The juice (20 mL) 
was diluted to 100 mL with pure water and transferred to a 
120-mL beaker for analysis. E-tongue parameters ar as fol-
lows: delay 0 s, acquisition duration 120 s, acquisition period 
1.0 s, stirring rate 1 r/s. Additionally, all the samples were 
detected at 20 ± 1 °C.

Statistical analysis

Multivariate statistics was employed to discriminate and pre-
dict the freshness of citrus samples by performing principal 
component analysis (PCA) and discriminant factorial analy-
sis (DFA) model using Alpha Soft software. Both PCA and 
DFA models were constructed using the most discriminat-
ing peaks (those that showed discrimination power ≥ 95%) 
selected as important compounds that contributed to the 
discrimination of citrus samples.

Discrimination was achieved by comparing the distances 
and pattern discrimination indices between sample groups 
on a PCA score plot, whereas freshness was predicted by 
projecting test samples onto the DFA model and recognized 
by the training samples.

Significance analysis was performed using IBM SPSS 
26.0, at a 5% significance level. Graphs were made using 
Origin 2021.

Metabolomics analysis

Derivatization‑GC–MS

Derivatization was carried out according to published guide-
lines [29]. All of the samples belonging to one cultivar were 
divided into fresh and stale groups according to previous 
sensory evaluation in order to find out differential metabo-
lites between the two groups. Six samples were randomly 
selected from each group for analysis. QC samples were 
inserted during the experiment.

GC–MS analysis was carried out using an Agilent 7000 D 
GC–MS instrument (Agilent Technologies, Santa Clara, CA, 
USA) operating in electron impact ionization (EI) mode at 
70 eV. The GC separation was performed using a fused silica 
HP-5MS (30 m × 250 µm × 0.25 µm) column. The GC oven 
temperature was starting at 100 ℃ for 1 min, programmed 
to 184 ℃ at 3 ℃/min, then programmed to 190 ℃ at 0.5 ℃/
min and held for 1 min and finally programmed to 280 ℃ 
at 15 ℃/min.

Data pre‑processing

The original data of GC–MS were processed by MZmine 
2.53 software for baseline correction, mass detection, chro-
matograms detection, smoothen, deconvolution, alignment, 
normalization, et al. [30, 31]. Multivariate statistical analysis 
was conducted on the result matrix obtained after MZmine 
processing.

Multivariate statistical analysis

Statistical analysis was conducted online by Metaboana-
lyst [32]. For three column data (mass, retention time, and 
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intensities), the program further grouped peaks based on 
their retention time. Mass tolerance was 0.25 (m/z), and 
retention time was 5 s. The default method replaced all the 
missing values with a small value (the half of the mini-
mum positive values in the original data) assuming to be 
the detection limit. All data were normalized according to 
normalization by sum, cube root transformation, and Pareto 
scaling. PCA was used to verify sample differentiation and 
instrument stability. Differential metabolites between fresh 
and stale citrus were found by the orthogonal partial least 
square discriminant analysis (OPLS-DA). The quality of the 
constructed PCA was assessed by R2X and Q2, and the qual-
ity of the constructed OPLS-DA model was assessed by R2X, 
R2Y and Q2. The metabolites with VIP value greater than 1 
were selected as candidate differential metabolites by OPLS-
DA model. The relative contents of candidate differential 
metabolites were subjected to t test, and only metabolites 
with a P < 0.05 were defined as differential metabolites.

Determination of the threshold for differential metabolites

Quantitative standard curves were established by internal 
standard curve method for quantitative analysis of differen-
tial metabolites. A total of 30 citrus samples with different 
fuzzy comprehensive evaluation scores were detected. Three 
parallel assays were performed for each sample. Detailed 
methods can be seen in Supplementary Information. The 
content can be calculated by drawing fitting curves with the 
comprehensive evaluation score of freshness as the X-axis 
and the content of differential metabolites as the Y-axis. The 
ordinate value of the point with a comprehensive evalua-
tion score of 2.5 was the threshold value of differential 
metabolites.

Results and discussion

Determination of the weight of factors

According to the analytic hierarchy process, a total of 18 
matrices passed pairwise comparison consistency test 
(CR < 0.1), and the weights of appearance, touch, smell 
**and taste were calculated to be 0.103, 0.105, 0.212 and 
0.580, respectively. The concrete results were shown in 
Table S5 (Supplementary Information).

Calculation of fuzzy comprehensive evaluation 
scores

There were 422 and 150 evaluation matrixes for satsuma 
mandarin and navel orange, respectively. The comprehensive 
evaluation of each citrus was successfully converted into 
a freshness score ranging from 1 to 4. The score of citrus 

of 1–1.75 was stale, 1.75–2.5 was relatively stale, 2.5–3.25 
was relatively fresh and 3.25–4 was fresh. In the four grades 
across low-to-high, the number of satsuma mandarin was 
111, 212, 70, **and 29, and the number of navel orange was 
37, 40, 48, and 25, respectively.

Analysis of TSS and TA

TSS and TA reflect the sweetness and acidity of citrus, 
respectively. Usually, they are the most important indica-
tors for consumers to judge the freshness of citrus. As shown 
in Table S6 (Supplementary Information), there were sig-
nificant differences (P < 0.05) in TA and TSS between fresh 
and stale groups for both of satsuma mandarin and navel 
oranges, but no significant differences between the middle 
two groups. The results indicated that TSS and TA could not 
accurately distinguish the freshness evaluated by consumers, 
but different fresh citrus differed in acidity and sweetness.

Taste discrimination

The radar diagrams based on the responses of E-tongue 
sensors are shown in Fig. S1 (Supplementary Information). 
Except the responses of SCS (amargoso) sensors, there were 
sensible differences in the responses obtained by other sen-
sors. For satsuma mandarin, the responses of each sensor 
increased with the decrease of freshness, but there was no 
obvious tendency for navel orange. Anyhow, E-tongue could 
distinguish citrus with different freshness.

Discrimination of taste profiles of citrus samples was 
presented on the PCA score plot constructed using seven 
selected peaks (discrimination power ≥ 95%) as inputs. Dis-
crimination power explains the contribution of each peak in 
differentiating the samples. All of the samples were divided 
into training part and testing part. For E-tongue, 41 of sat-
suma mandarin samples and 80 of navel orange samples 
were applied for training. In Fig. 1, all responses of seven 
sensors (outputs) were used for PCA. When the taste char-
acteristics of citrus samples were discriminated using PCA, 
separation of samples along two principal components (PC 
1 and PC 2) based on freshness was evident. The first two 
principal components of both models could explain more 
than 96% of the total information. This result is consistent 
with the sensory evaluation, where the weight of taste given 
by the consumers was 0.58. It showed that consumers judged 
citrus freshness quality largely by the sour and sweet sensa-
tion brought to the mouth rather than the smell brought to 
the nose [2]. Therefore, there was enough discrepancy in 
taste for E-tongue to make an effective distinction with the 
unsupervised learning method.

After discrimination, DFA models (Fig. 2) consisting of 
samples from each freshness groups were constructed to pre-
dict the freshness of the test samples. In the DFA models 



804 European Food Research and Technology (2023) 249:799–810

1 3

based on E-tongue, the distance between groups of fresh and 
stale was large, while the distance between the remaining 
two groups was relatively small, which was also in line with 
the result of radar map. The first two discriminant factors 
of the two models explain 99.28% and 98.94% of the total 
variation, respectively.

28 of satsuma mandarin samples and 60 of navel orange 
samples were used for testing. Figure 3 shows the recog-
nition of test samples by their corresponding freshness 
groups when they were projected onto the two models. As 
expected, the two DFA models showed high accuracy (100% 
and 98.3%). There was only one error that occurred in two 

Fig. 1  PCA score plot constructed by E-tongue using the most discriminating peaks for discrimination of citrus samples from different freshness 
groups

Fig. 2  DFA models for prediction of the freshness of citrus samples by E-tongue
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adjacent groups with blurred boundaries. It was difficult for 
sensory evaluation to distinguish citrus at the junction of 
freshness and staleness, which was an important reason to 
apply FM to sensory evaluation. Zhang et al. [33] found 
that sweetness was the quality that consumers cared about 
the most. However, the results of the traditional test (such 
as TSS and TA) were not highly differentiated between dif-
ferent groups. More sensitive methods are required, and the 
results of the prediction proved the feasibility of E-tongue.

Aroma discrimination

Fig. S2 shows the radar diagrams of E-nose sensors. There 
were no responses on all of the LY sensors (sensitive to 
toxic). For satsuma mandarin [Fig. S2 (a)] (Supplementary 
Information), the other responses showed a rising trend with 
the decrease in freshness, but only the stale group had clear 
differences with other groups. That is probably due to con-
sumers’ insensitivity and neglect of smell when judging the 
freshness of citrus pulp. The response values of navel orange 
[Fig. S2 (b)] (Supplementary Information) went down first 
and then increased with the decline in freshness, and the dif-
ferences between groups were more noticeable than satsuma 
mandarin. This may be attributed to the more prominent 
aroma of navel orange compared with satsuma mandarin [2].

There were 28 satsuma mandarin samples and 78 navel 
orange samples used for training, and 20 satsuma mandarin 
samples and 60 navel orange samples used for testing. As 
can be seen from Fig. S3 (Supplementary Information), sam-
ples were not well separated into groups representing their 

freshness. As previously analyzed, the low weight given by 
consumers to smell led to the result that citrus with differ-
ent freshness differed very little in odorant characteristics. 
Regarding the prediction of the freshness using E-nose, the 
recognition values were very small due to similarity in the 
intensity of aroma profiles between samples used for the 
model. Thus, the models were not valid and results were not 
included in this article.

Metabonomics analysis

Principal component analysis

Sugars and organic acids may be important metabolites for 
distinguishing freshness based on the previous analysis, 
and the principal task of this study was to discriminate 
sugars and organic acids between two groups. After data 
pre-processing, 959 features (m/z_RT pairs) were detected. 
PCA was used to uncover the internal structure of multiple 
variables through several principal components. The rela-
tively tight clustering of QC samples in Fig. S4 (Supple-
mentary Information) indicated that they had similar meta-
bolic profiles and the analysis was stable and repeatable. 
All of the tested samples were divided into two distinct 
groups, suggesting that each group had a relatively distinct 
freshness profile. For satsuma mandarin, the first principal 
component (PC 1) could explain 50.6% of the features of 
the original dataset, and the second principal component 
(PC 2) could explain 18.8% of the features. As the fresh-
ness decreased, the gap in PC 1 obviously increased. For 

Fig. 3  Projection of test samples onto the DFA models and recognition using the training samples by E-tongue
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Fig. 4  OPLS-DA of metabolite 
features detected in citrus. a–b 
Score plots of all metabolite 
features. c–d Model overview 
of the OPLS-DA models. e–f 
Loadings V-plot showing the 
variable importance in a model, 
combining the VIP > 1 and the 
P < 0.05 loading profiles. g–h 
Volcano plots showing the dif-
ferential saccharides and acids 
expression levels between fresh 
and stale samples
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navel orange, PC 1 and PC 2 could explain 17.4% and 10% 
of the features of the original dataset, respectively. On the 
contrary, the gap in PC 2 increased significantly as the 
freshness decreased.

Orthogonal partial least square discriminant analysis

OPLS-DA is a multivariate statistical analysis method with 
supervised pattern recognition, which can effectively elim-
inate the influence irrelevant to the study and screen the 
differential metabolites. OPLS-DA was used to pairwise 
analyze the fresh and stale groups and draw the score plot. 
In the models, R2X and R2Y represent the interpretation rate 
of the built model on X and Y matrix, respectively, and Q2 
represents the prediction ability of the model. The OPLS-
DA score plots in Fig. 4a–b showed that significant seg-
regation occurred in the different comparison groups. The 
models showed one orthogonal component, with R2Y = 0.999 
(total variation in Y explained by the model) and Q2 = 0.515 

(goodness of prediction) from the satsuma mandarin dataset, 
R2Y = 1 and Q2 = 0.518 from the navel orange dataset, indi-
cating that the built models were appropriate.

Analysis of differential metabolites

Pairwise comparisons were conducted among the fresh and 
stale samples to determine the metabolites that caused the 
observed differences. In OPLS-DA models (Fig.  4a–b), 
fresh samples clearly separated from stale samples, sug-
gesting major distinctions in the metabolic profiles between 
the groups.

Differential metabolites screening among all saccharides 
and organic acids was further performed based on the fold-
change (FC ≥ 2 or ≤ 0.5), variables identified as important 
in the projection scores (VIP > 1), and the P value of t test 
(P < 0.05). The screening results are presented as volcano 
plots (Fig. 4g–h) and scatter plots (Fig. 4e–f). Eight identi-
fied markers with high VIP scores, high FC, and significance 

Fig. 5  Box-plots of significant differential metabolites of satsuma mandarin (a–d) and navel orange (e–h)
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levels (P < 0.05) by OPLS-DA are summarized in the box-
plots in Fig. 5. The mass peak intensities of sucrose, fruc-
tose, glucose and mannose (Fig. 5a–d) were significantly 
different between the fresh and stale groups of satsuma man-
darin, while the mass peak intensities of sucrose, fructose, 
glucose and galactose (Fig. 5e–h) were significantly differ-
ent for navel orange. The results showed that the differen-
tial metabolites between fresh and stale citrus were sugars, 
indicating that consumers tended to distinguish citrus with 
different freshness according to their sweetness, which also 
explained that E-tongue could better distinguish different 
levels of freshness of citrus. It was also consistent with the 
result of TSS.

Quantitative analysis of main differential metabolites

Sucrose, glucose and fructose, which were the common 
differential metabolites of satsuma mandarin and navel 
orange, were selected for quantitative analysis. Accord-
ing to the comprehensive evaluation scores of FM, citrus 
with different scores were selected and analyzed.

For satsuma mandarin, an obvious correlation was only 
found between the freshness and the content of sucrose. As 
seen in Table S7 (Supplementary Information), the content 
of sucrose increased with the decrease of freshness. For 
navel orange, a clear trend was seen between the freshness 
and the contents of fructose and glucose. Their contents 
increased with the decrease of freshness. The optimal 
models were selected for data fitting, and the fitting curves 
were shown in Fig. 6. According to the fitting curve of 
sucrose, 36.57 mg/g was the critical value between fresh 
and stale satsuma mandarin. If sucrose content is higher 
than this value, it is stale; on the contrary, if the content 
is lower than this value, it is fresh. Similarly, 10.35 mg/g 
and 10.72 mg/g were the thresholds between fresh and 
stale navel oranges for glucose and fructose, respectively. 
This is a preliminary study, and the above results need to 
be verified by more samples.

Conclusions

In this study, consumer sensory evaluation combined 
with FM was applied for the evaluation of citrus fresh-
ness. In the sensory evaluation, the weight that consum-
ers assigned to taste was 0.58, which indicated that taste 
was the most important factor for consumers to judge the 
freshness of citrus. It was consistent with the results of 
TSS and TA. E-tongue could distinguish more clearly and 
accurately citrus between fresh, relatively fresh, relatively 
stale, and stale groups. Sweetness was the most important 
factor for consumers to judge citrus freshness. Sucrose, 

Fig. 6  Fitting curves for differential metabolites of satsuma mandarin 
and navel orange
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glucose,** and fructose were identified as the common 
differential metabolites of satsuma mandarin and navel 
orange between fresh and stale groups. But in the quan-
titative analysis, obvious trends were only found in the 
contents of sucrose in satsuma mandarin, and fructose and 
glucose in navel orange. The critical value of sucrose for 
satsuma mandarin was calculated to be 36.57 mg/g, and 
the thresholds of glucose and fructose were 10.35 mg/g 
and 10.72 mg/g for navel oranges, respectively. However, 
more samples are needed for verification our conclusions.
This is the first study to evaluate and differentiate the 
freshness of citrus favored by consumers. The method has 
the advantages of low cost, easy operation, fast analysis 
speed, and strong applicability.
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