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Abstract
This study investigated the volatile profile of the red wines from different Spanish Protected Designations of Origin (PDO), 
sited very closely in the Castilla y León region, and from different categories (young and aged) to found the compounds that 
allowed differentiate them. Fifty-three volatile compounds were identified and quantified using the headspace solid-phase 
micro-extraction technique and gas chromatography–mass spectrometry analysis (HS-SPME-GC/MS). The best differentia-
tion was observed between those from Ribera del Duero (RD) and those from Bierzo (BI). RD wines, which are elaborated 
mainly with Tempranillo grape variety, were characterized by having the higher content of those compounds responsible of 
positive fruity, floral, and oak wood aromas which could increase their sensory complexity. BI wines, elaborated with Mencia 
grape variety were characterized by having higher content of oxidation volatile compounds. According to their category, 
and as it was expected, young and short aged wines (oak wines) were richer in fruity aroma compounds and some cheese 
off flavours, and crianza and reserve wines richer positive oak wood aromas. Crianza and reserve wines were also richer in 
some fruity (branched ethyl esters) and floral aromas (terpenes) than young wines, improving their aroma profile.

Keywords Volatile compounds · HS-SPME-GC/MS · Red wine categories · Protected designation of origin · Odor active 
values

Introduction

Spain is one of the most important wine producers in the 
world with 33.5 millions of hectoliters [1]. Its wines, and 
mainly those within a Protected Designation of Origin 
(PDO), are highly considered around the world due to their 
quality that usually guides to the consumers when buy a 
wine. Wine’s category (young or aged) is another criterion 
that consumers usually considers when buying a wine. Cas-
tilla y León is one of the most important Spanish winemak-
ing regions sited in the North of Spain, being Ribera del 
Duero, Toro, Bierzo and Cigales PDOs with the highest 
volumen of hectoliters of young and aged wines produced 
this region [1].

The wine’s aromatic characteristics are one of the most 
important sensory attributes taken into account to evaluate 
its quality, having identified more than 1000 volatile com-
pounds. The volatile profile of wines depends on several 
factors such as grape variety, geographical region produc-
tion, climate, vintage, viticultural practices, winemaking 
techniques, aging and storage conditions [2–4]. The vola-
tile compounds that come from grapes can be found in their 
free or glycosylated form (aromatic precursors non-volatile 
compounds), but only those that are in free form have odor-
iferous power (primary aromas). Due to the hydrolytic pro-
cesses occurred in the wine, the bound between the volatile 
compound and sugar moiety can break and release the free 
volatile compound form into the wine. On the other hand, 
during fermentation processes, yeasts, enzymes and lactic 
bacteria can hydrolyze the glycosidic bonds of the aromatic 
precursors and allow releasing the aromatic compound 
into the wine (secondary aromas). In addition, some aro-
matic compounds can be formed from aminoacids during 
the fermentation process. Finally, wines aged in oak wood 
barrels and/or alternatives have aromatic compounds that 
come from wood, which increase their aromatic complexity 
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(tertiary aromas) [5]. The analysis of volatile compounds 
in wines can be carried out using different techniques such 
as distillation, solvent extraction or solid-phase extraction 
(SPE) [6–8]. However, in recent years, the volatile extrac-
tion technique of head space-solid-phase micro-extraction 
(HS-SPME) has been used commonly due to the advantages 
presented such as it is less expensive, faster and requires 
little manipulation of the samples compared with other 
techniques. Volatile compounds are generally classified in 
esters, fatty acids, aldehydes, ketones, terpenes, alcohols, 
lactones, volatile phenols, etc., with a range concentration 
that can vary from mg/L to µg/L or even ng/L [9–13]. Most 
of these compounds contribute positively to enhance the 
aromatic profile of wines, but others can contribute nega-
tively depending on their concentration and odor threshold 
perception. In this way, the sensory impact of the volatile 
compounds present in the wines depends on their odor 
active value (OAV), because only those compounds with 
an OAV > 1 have been perceived by the human nose, and 
could have a real impact in the olfactory perception [3, 
14–17]. Previous works have been carried out in white and 
rosé wines from the point of view of volatile and phenolic 
composition [18] and in red wines using different physico-
chemical parameters and phenolic compounds [19]. How-
ever, a study of the aromatic composition of these red wines 
and its possible sensory impact in the wines in function of 
the region and aging time is of interest. Therefore, the aim 
of this study was to carry out the volatile characterization 
of commercial red wines from different Spanish PDOs sited 
very closely geographically in the Castilla y León region 
in the North of Spain. In addition, the volatile compounds 
with a potential effect on the sensory profile were selected 
to differentiate wines from PDOs or category.

Materials and methods

Wine samples

One hundred and thirty-five commercial red wines from 
different PDOs and categories were studied (Table 1). The 
wines from Ribera del Duero (RD) and Toro (TO) were 
elaborated with at least 75% of Tempranillo grape variety, 
and the wines from Cigales (CI) with at least 50% of this 
variety. The wines from Bierzo (BI) were elaborated with at 
least the 85% of Mencía grape variety. The wines from each 
PDO were classified in four categories: (1) “young”: wines 
without aging in oak barrel; (2) “oak”: wines with at least 
three months of aging in oak barrel; (3) “crianza”: wines 
with a minimum aging period of 24 months, with at least 
12 of these months in oak barrels; (4) “reserve”: wines with 
a minimum aging period of 36 months, with at least 12 of 
these months in oak barrels. The remaining aging time for 

“crianza” and “reserve” wines must be done in the bottle. 
The wines from the different regions are governed by the 
same regulations, therefore, the minimum total aging of time 
and the minimum period that the wine must remain in the 
oak barrel is the same for all the PDOs studied.

Reagents and standards

The volatile compound standards were purchased from 
Fluka (Buchs, Switzerland), Sigma-Aldrich (Steinheim, 
Germany), and Lancaster (Strasbourg, France). Helium BIP 
(99.9997%) was purchased by Carburos Metálicos S.A. (Val-
ladolid, Spain). The remaining reagents were supplied by 
Panreac (Madrid, Spain).

Headspace solid‑phase micro‑extraction 
(HS‑SPME) and GC/MS conditions

The extraction, identification and quantification of the vola-
tile compounds was carried out following the methodology 
described in Del Barrio-Galán et al., 2021 [18].

The identification of the volatile compounds was carried 
out using the mass spectra of the calibration standards, reten-
tion times, and the NIST library. The quantification was car-
ried out by calibration curves, using the chemical standards 
of each compound to be determined in the concentration 
range of application of the method, and adding a known 
concentration of six internal standards (IS). Table 2 sum-
marizes the quantification ions and the IS chosen for each 
compound, the volatile compounds identified and quanti-
fied in the red wines studied, as well as the odor threshold 
and odor descriptor for each compound. These compounds 
were grouped as ethyl esters and alcohol acetates (10), fatty 
acids (7), alcohols (5), terpenes (3), lactones (3), aldehydes 
(7) (with positive and negative sensory notes), furanic com-
pounds (3), volatile phenols (11) (with positive and negative 
sensory notes) and sulphur compounds (2). Most of these 
compounds are commonly found in red wines and come 
from the different grape varieties used, the fermentation 
processes (alcoholic and malolactic) and winemaking tech-
niques applied.

Table 1  Number of wines analyzed in each category for each PDO

Ribera del 
Duero

Bierzo Toro Cigales Total

Young 14 7 7 4 32
Oak 21 5 7 4 37
Crianza 21 7 4 4 36
Reserve 20 2 4 4 30
Total 76 21 22 16 135
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Table 2  Odor threshold, aromatic descriptors, quantification ions and internal standards used (IS) of each compound

Odor threshold 
(µg/L)a

Aromatic  descriptora Quantification ion 
(m/s)

ISb

Ethyl esters and acetates
 Ethyl butyrate 20 Fruity 88 1
 Ethyl-2-methylbutyrate 18 Fruity. strawberry. anise 57 1
 Ethyl isovalerate 3 Apple. sweet 88 1
 Ethyl hexanoate 5 Fruity. green apple. strawberry. anise 88 2
 Ethyl octanoate 2 Sweet. fruity. pear. pinneapple 127 2
 Ethyl decanoate 200 Fruity. grape 88 2
 Propyl acetate Not found Not found 61 1
 Isobutyl acetate 1600 Fruity. apple. banana 43 1
 Isoamyl acetate 30 Banana. fruity. sweet 70 3
 Hexyl acetate 670 Apple. cherry. pear. floral 56 1
 β-phenylethyl acetate 250 Floral. rose. honey 104 3

Fatty acids
 Isobutyric acid 200,000 Cheese. fatty 88 3
 Butyric acid 173 Spicy. sour. cheese. butterlike 60 3
 Isovaleric acid 33.4 Rancid 60 3
 Hexanoic acid 3000 Cheese. fatty 60 3
 Octanoic acid 500 Fatty acid. rancid. cheese 60 3
 Decanoic acid 1000 Fatty. rancid 73 3
 Dodecanoic acid 1000 Dry. metallic 129 3

Alcohols
 1-hexanol 8000 Green. grass 56 1
 Trans-3-hexenol 400 Green. floral 41 1
 Cis-3-hexenol 400 Green 67 1
 Benzyl alcohol 200,000 Citrusy. sweet 85 4

2-Phenylethanol 14,000 Rose, flowery 91 4
Terpenes
 Linalool 25 Flower. lavander. grape-like. citric 121 4
 α-Terpineol 1000 Floral. sweet 59 3
 Citronellol 100 Sweet. citrus-like 69 3

Lactones
 Trans-whiskey lactone 32 Wood. sweet fruit. coconut 99 4
 Cis-whiskey lactone 74 Wood. coconut 99 4
 γ-nonalactone 30 Coconut. peach 85 2

Aldehydes
 Isobutyraldehyde 6 Dried fruit. wet old wood, papery, sweet fusel 72 5
 2-methylbutanal 16 Dried fruit. wet old wood. papery. sweet fusel 58 5
 3-methylbutanal 4.6 Dried fruit. wet old wood. papery. sweet fusel 58 5
 Trans-3-octenal 3 closed room, pungent 70 5
 Vanillin 60 Vanilla 151 4
 Methyl vanillate 3000 Vanilla 151 4
 Ethyl vanillate 990 Vanilla 151 4
 Acetovanillone 1000 Vanilla 166 4

Furanic compounds
 Furfural 14,100 Bread. almonds. nuts. caramel 96 5
 5-Methyl furfural 20,000 Toasted almond 110 5
 Furfuryl alcohol 2000 Cocoa, smoky, nut, burnt 98 6

Phenols
 Guaiacol 9.5 Smoke. sweet. medicine 121 6
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Odor active values (OAVs)

OAV was calculated for stablish, quantitatively, the contri-
bution of each volatile compound to the aroma of the wines 
studied. This value was calculated using the following equa-
tion consulted in the scientific literature: OAV = concentra-
tion (µg/L) / odor threshold (µg/L) [3, 17].

Statistical analyses

One-way analysis of variance (ANOVA), followed by the 
Tukey’s test (post hoc comparison test that allowed to deter-
mine statistically significant differences between the means 
with a confidence level of 95% (p < 0.05)), and principal 
component analysis (PCA) was carried out to the standard-
ized data using the Statgraphics Centurion XVIII version 
statistical package.

Results and discussion

Characterization of the wines from different PDO

Table 3 shows the concentration and the odor active value 
(OAV) of each compound according to the PDO and cat-
egory criteria. Quantitatively, alcohols, fatty acids, furanic 
derivatives, ethyl esters and alcohol acetates were the major-
ity groups.

Statistically significant differences were found in the con-
tent of the wines from different PDOs (Table 3). Thus, the 
wines from RD and TO had the highest content of ethyl 

esters and alcohol acetates, mainly due to the differences 
found in isoamyl acetate, ethyl octanoate, ethyl hexanoate 
and ethyl decanoate, which were the most abundant com-
pounds in this group. These volatile compounds are respon-
sible of fruity aromas of wines [20–22], and are character-
ized by apple, strawberry, green apple, and banana fruity 
aromas. Considering the OAVs, octanoate and hexanoate 
ethyl esters, and isoamyl acetate were the compounds with 
the highest values having a real impact in the sensory pro-
file of the wines. These results were in accordance with 
those obtained by other authors [3, 16, 23] who indicated 
the importance of these compounds in the sensory profile 
of red wines.

No significant differences were found in the total content 
of fatty acids, and only punctual differences were found in 
the concentration of isobutyric and isovaleric acids. Sensori-
ally, only isovaleric acid had OAVs > 1, which could supply 
unpleasant rancid notes to the wines [3]. In this way, the 
wines from BI could had higher rancid notes than those from 
RD and CI.

Significant differences were also found in the content of 
total C6 alcohols, being the wines from CI which presented 
the highest content, mainly due to the differences found in 
1-hexanol and cis-3-hexenol. These compounds were charac-
terized by supply cut grass and herbaceous notes to the wines 
[15–18, 20–22]. However, in the studied wines, the OAV 
was lower than 1 and they do not affect the sensory profile. 
2-phenylethanol was the most important alcohol and was 
the only one which presented an OAV > 1. Similar results 
were obtained by Jiang et al. [3] in a similar study, which 
observed that this compound had an important effect on the 

Table 2  (continued)

Odor threshold 
(µg/L)a

Aromatic  descriptora Quantification ion 
(m/s)

ISb

 4-methylguaiacol 65 Burnt. ash. smoke 138 4
 Eugenol 6 Clove. cinnamon 164 4
 Trans-isoeugenol 6 Spices 164 6
 Syringol 350 Smoke 154 6
 4-methylsyringol 168 4
 4-allylsyringol 1200 Spices. smoke 194 4
 4-ethylguaicol 33 Medicine. wood. clove. smoky 137 4
 4-ethylphenol 440 Phenolic. medicine. horsey 107 4
 4-vinylguaiacol 40 Spices. clove. curry 150 4
 4-vinylphenol 180 Medicine, phenolic, paint 120 6

Sulphur compounds
 Methyl thioacetate 50 (beer) Sulfurous, cheesy. rotten eggs/cooked vegetables 90 1
 Methional 250 (beer) Onion, mashed potatoes, cooked potato 104 5

a References of odor threshold and aromatic descriptors: [3, 11, 15–17, 20, 30, 32, 33, 35, 36]
b 1: methyl-2-methylbutyrate (17.7 mg/L); 2: methyl octanoate (45 mg/L); 3: heptanoic acid (185 mg/L); 4: 13C-benzyl alcohol (20 mg/L); 5: 
hexanal (16.3 mg/L); 6: 3,4-dimethylphenol (20 mg/L)
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sensory profile of the wines because had higher OAV value. 
This compound has been characterized by supply rose-like 
floral notes to the wines [3, 13, 15, 23–25]. Considering 
these studies, our results showed that the wines from RD 
and TO could present higher floral notes than those from BI.

Terpenes are volatile compounds largely described by 
their positive effect on the varietal aroma profile of the 
wines, contributing with floral notes [15–18, 20–26]. The 
wines from RD and CI showed higher content than the wines 
from BI due to the differences found in the content of linal-
ool, which in addition, showed an OAV > 1. For this reason, 
it can be said that the wines from RD and CI could charac-
terize by having higher floral notes than the wines from BI.

In the case of the lactones, the most important were the 
whiskey lactones (trans and cis), which come from oak 
wood, observing that their content were higher in RD wines 
than in BI wines. Similar result was found in the content 
of γ-nonalactone with the exception of the wines from TO, 
which showed similar values than RD wines. These com-
pounds are extracted during the aging of wines in barrels 
and mainly depend on the toasted level of the wood [27]. 
Sensorially, whiskey lactones can supply wood and coco-
nut nuances and γ-nonalactone peach nuances [16]. In this 
study, only whiskey lactones presented OAVs > 1, and could 
have an influence in the sensory profile of the wines from 
RD (higher) and BI (lower). Significant differences were 
also found in the content of other compounds which come 
from oak wood such as furanic derivatives, mainly due to the 
differences found in the content of furfuryl alcohol that is 
formed from furfural by enzymatic processes during aging in 
barrel [28]. Thus, the wines from RD showed higher content 
of this compound than the rest of the wines, with the excep-
tion of those from BI. This compound presented an OAV > 1 
and can supply burnt aromas that differentiated the wines 
from RD to those from TO and CI.

Aldehydes were divided in vanillin derivatives (vanil-
lin, methyl vanillate, ethyl vanillate and acetovanillone) and 
oxidation aldehydes (isobutyraldehyde, 2-methylbutanal, 
3-methylbutanal). The wines from RD presented the high-
est total content of vanillin derivatives, mainly due to the 
differences found in methyl vanillate, ethyl vanillate and ace-
tovanillone. None of these compounds showed an OAV > 1, 
but they could have a synergic effect with other compounds 
and increase vanillin notes in wines aroma or enhancing the 
aroma of another compound [29, 30].

The aldehydes produced during oxidation process can 
contribute with negative sensory attributes such as dried 
fruit, moldy, closed room and wet old room [31]. The wines 
from BI were characterized by having higher content of 
isobutyraldehyde and 2-methylbutanal than those from 
RD and CI. However, only isobutyraldehyde could have a 
real negative impact in the aroma perception of the wines 
(OAV > 1).

Volatile phenols were divided in those that supply posi-
tive aromas (guaiacol, 4-methylguaiacol, eugenol, trans-
isoeugenol, syringol, 4-methylsyringol and 4-allylsyringol) 
and negative sensory notes (4-ethylguaicol, 4-ethylphenol, 
4-vinylguaiacol, 4-vinylphenol). Only significant differ-
ences were found in the total content of positive volatile 
phenols, having the wines from RD higher content than 
those from BI, due to the differences found in the content of 
trans-isoeugenol, syringol, 4-methylsyringol, 4-allylsyrin-
gol. However, only trans-isoeugenol showed an OAV > 1, 
which could contribute to the sensory profile of RD wines 
with spice notes [32].

Additionally, significant differences were found in the 
content of two sulphur compounds (methyl thioacetate and 
methional). The wines from RD had the highest content of 
methional, while the wines from BI and TO had higher con-
tent of methyl thioacetate than those from CI. These com-
pounds provide unpleasant odors to cooked and/or rotten 
vegetables, and cooked potatoes, respectively [33]. However, 
these compounds do not affect negatively to the aroma per-
ception of the wines studied (OAV < 1).

Characterization of the wines from different 
categories

Significant differences were also found in the content and 
OAVs of several volatile compounds studied according to 
the wine’s category (Table 3). In general, the young and oak 
wines were characterized by higher total content of ethyl 
esters and alcohol acetates than the crianza and reserve 
wines. These differences were mainly due to the content 
of octanoate and decanoate ethyl esters, isoamyl, hexyl and 
β-phenylethyl acetates. However, only ethyl octanoate, ethyl 
decanoate and isoamyl acetate had an OAV > 1, providing 
the highest fruity nuances in the younger wines. On contrary, 
the crianza and reserve wines had highest content of other 
volatile compounds responsible of fruity aromas, such as 
ethyl-2-methylbutyrate and ethyl isovalerate (branched ethyl 
esters). In the case of fatty acids, it was observed that the 
young and oak wines presented higher total content than the 
crianza and reserve wines. According to the OAVs of octa-
noic and butyric acids, the young and oak wines could have 
higher rancid and cheese negatives notes than the crinza and 
reserve wines. Within the group of alcohols, only significant 
differences were found in the content of 2-phenylethanol, 
observing that the oak wines showed higher content than the 
crianza and reserve wines, that could express high flowery 
aromas (OAV > 1), and as was mentioned in other studies 
which evaluated the volatile profile of different wines [3, 
13, 15, 23–25].

The content of terpenes was significantly higher in cri-
anza and reserve wines than in young and oak wines, due 
to the high content of linalool, which had an OAV > 1. In 
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this way, it could be said that the wines with the longest 
aging time could have higher floral notes than the young 
ones. However, terpenes are compounds which are consid-
ered that come from grapes and can be released into the 
wine in their free and/or glycosylated form, and improved 
the varietal aroma character of the wines [15–18, 20–26]. In 
this way, the higher linalool content of the wines with the 
longest aging time could be explained due to the fact that 
during the aging period, the glycosidic bonds of precursor 
compounds were broken (by acid and enzymatic hydrolysis) 
and their free form was released to the wine, increasing its 
final concentration [13]. This result was unexpected since 
other studies [34, 35] have found that these compounds 
tend to decrease during aging due to adsorption phenomena 
of these compounds on the wood. As it was expected, the 
content of whiskey lactones was significantly higher in the 
wines with oak wood aging than in young wines. The OAVs 
of these compounds were higher than 1, so they could have 
an impact in the sensory profile of aged wines, supplying 
coconut and wood nuances [34]. As was mentioned previ-
ously, their content depends significantly of the aging time 
and toasted degree of barrels [35]. Thus, it was observed that 
the content of trans-whiskey lactone was equal in all aged 

wines, and was higher than young wines. On the other hand, 
the crianza and reserve wines showed the highest content of 
cis-whiskey lactone, followed by the oak wines.

Similar results were also found in the total content of 
vanillin derivatives, observing that the aged wines indepen-
dently of the aging time presented higher content than the 
young wines. Although these compounds presented an OAV 
lower than 1), they could have a synergic effect with other 
compounds, as it was previously commented.

As it was also expected, the content of furanic deriva-
tive compounds was significantly higher in the crianza and 
reserve wines than in the young and oak wines, mainly due 
to the differences found in furfuryl alcohol, that could sup-
ply cocoa, smoky, nut, burnt nuances to the wines [17]. The 
furanic aldehydes are formed during the oak wood toasting, 
due to thermal degradation of the polysaccharides by the 
Maillard reaction, while the furfuryl alcohol is formed by 
enzymatic reduction of furfural during aging [34, 36].

The crianza and reserve wines also presented the high-
est content of positive volatile phenols, followed by the oak 
and young wines, mainly attributed to the differences found 
in eugenol, trans-isoeugenol, syringol, 4-allylsyringol and 
guaiacol. From a sensory point of view, according to the 
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Fig. 1  Principal component analysis (PCA) of the red wines from different PDOs defined by the first two principal components (PCs)
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OAVs, only eugenol and trans-isoeugenol could had an 
impact in the sensory profile, providing spicy aromas.

In the case of negative volatile phenols, the wines with 
the longest aging time showed higher content of 4-ethyl-
phenol than the young wines, but according to its OAV, it 
does not had an impact in the sensory profile. This result 
found for 4-ethylphenol was in agreement with a recent 
study carried out by Sousa et al., 2020 [37], which observed 
that the older wines analyzed had greater content of this 
compound and other that supply unpleasant nuances such 
as 4-vinylphenol and 4-ethylguaiacol. The total content of 
oxidation aldehydes was higher in the crianza wines than 
in the young wines. These compounds are related with the 
oxidation processes of the wines, and it is very common to 
find then in aged wines [31]. In this case, isobutyraldehyde 
and 3-methylbutanal have an OAV > 1, being these values 
highest in the aged wines.

No statistically significant differences were found in the 
total content of sulphur compounds, and they do not affect 

the sensory profile of the wines, because their OAVs were 
lower than 1.

Multivariate statistical analyses

Multifactorial analysis of variance (MANOVA) have 
been also included in Table 3 showing the analysis of the 
interaction of the two factors studied in this work (PDO 
and category) with the aim to see differences between the 
category wines of the different DOs. Statistically signifi-
cant effect was detected in ethyl-2-methylbutyrate, ethyl 
isovalerate, ethyl octanoate, ethyl decanoate; all fatty 
acids with the exception of isovaleric acid; 1-hexanol, 
trans-3-hexenol, cis-3-hexenol; linalool, α-terpineol, cit-
ronellol; γ-nonalactone; isobutyraldehyde, 3-methylbuta-
nal; methyl vanillate; eugenol and trans-isoeugenol when 
the interaction of origin and category was considered. In 
general, the statistically significant differences found in 
these compounds coincide with those found in the one-
way ANOVA. Two different principal component analysis 
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(PCA) was carried out using only the variables with statis-
tically significant differences in ANOVA and MANOVA 
to clarify the results obtained and to identify possible 
patterns related to the wine differentiation. The first PCA 
(Fig. 1) included the variables which were statistically sig-
nificant in the ANOVA for PDO factor; the second PCA 
(Fig. 2) was represented with those significant variable 
in the ANOVA for category factor. Figure 1 shows the 
plot of the first two principal components (PCs), which 
explained the 41% of the total variance according to the 
PDO criterion. The PC 2 allowed a relative separation of 
the wines from RD (located on the top of the plot) to the 
rest of the wines (located on the bottom of the plot). The 
best separation was found between the wines from RD 
and BI, which are elaborated with different grape varieties 
(Tempranillo and Mencía, respectively). The other wines 
elaborated with Tempranillo grape variety (TO and CI) 
were not clearly separated from the Mencía wines. The 

loadings of the variables of PC2 marked in bold (Table 4) 
were those that allowed the wine differentiation by PDO, 
in the case of Fig. 1. The variables with positive loading 
values and closer to 1 were that most contributed to the 
separation of the RD wines. Thus, the ethyl esters and 
alcohol acetates (mainly ethyl hexanoate, ethyl octanoate, 

Table 4  Loading values of the variables used in PCA according to the 
wines PDO

The loadings of the variables of PC2 marked in bold were those 
that allowed the wine differentiation by PDO.Loadings with val-
ues <  ± 0.3 are not showed

PC 1 PC 2

Ethyl hexanoate 0.811
Ethyl octanoate − 0.522 0.716
Ethyl decanoate − 0.619 0.536
Isobutyl acetate 0.329
Isoamyl acetate − 0.537 0.550
β-phenethyl acetate − 0.554 0.334
Isobutyric acid − 0.348 − 0.318
Isovaleric acid − 0.446
1-hexanol
Cis-3-hexenol 0.368
2-phenylethanol − 0.341
Linalool 0.621
Trans-whiskey lactone 0.787
Cis-whiskey lactone 0.780
γ-nonalactone 0.730
Isobutyraldehyde − 0.697
2-methylbutanal − 0.645
Methyl vanillate 0.564
Ethyl vanillate 0.570
Acetovanillone 0.464 0.360
Furfuryl alcohol 0.543
Trans-isoeugenol 0.742
Syringol 0.567 0.334
4-methylsyringol 0.823
4-allylsyringol 0.794 0.309
Methyl thioacetate − 0.454
Methional 0.522 0.391

Table 5  Loading values of the variables used in PCA according to the 
wines category

The loadings of the variables of PC1 marked in bold were those that 
allowed the wine differentiation by category
Loadings with values <  ± 0.3 are not showed

PC 1 PC 2

Ethyl-2-methylbutyrate 0.666 − 0.348
Ethyl isovalerate 0.678 − 0.264
Ethyl octanoate − 0.637 0.543
Ethyl decanoate − 0.712 0.454
Isoamyl acetate − 0.605 0.465
Hexyl acetate − 0.586 0.440
β-phenethyl acetate − 0.570 0.340
Isobutyric acid
Butyric acid − 0.365
Hexanoic acid − 0.507 0.493
Octanoic acid − 0.708
Decanoic acid − 0.629
Dodecanoic acid − 0.566 0.346
Phenylethyl alcohol
Linalool 0.561
α-terpineol 0.585
Citronellol − 0.314
Trans-whiskey lactone 0.750
Cis-whiskey lactone 0.764
Isobutyraldehyde 0.353 − 0.359
2-methylbutanal 0.317 − 0.319
3-methylbutanal
Vanillin 0.437
Ethyl vanillate 0.499
Acetovanillone 0.416 0.702
Furfural 0.515
5-methylfurfural 0.446
Furfuryl alcohol 0.427
Guaiacol 0.770
4-methylguaiacol 0.530 0.660
Eugenol 0.365
4-ethylphenol 0.398 0.452
Trans-isoeugenol 0.715 0.395
Syringol 0.545 0.722
4-methyl-syringol 0.710 0.328
4-allyl-syringol 0.671 0.372
Methyl thioacetate − 0.374
Methional 0.407 0.346
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ethyl decanoate and isoamyl acetate), and several com-
pounds released from oak wood (γ-nonalactone and methyl 
vanillate) were the compounds that most contributed to 
RD wine differentiation, probably due to the higher num-
ber of samples with aging analyzed of this PDO. On the 
other hand, those compounds with negative loadings close 
to − 1 value were, principally, correlated with the separa-
tion of the wines from BI (Table 4). These compounds 
were isobutyraldehyde and 2-methylbutanal (oxidation 
aldehydes). Therefore, the wines from RD were charac-
terized by fruity aromas, while the wines from BI were 
characterized by oxidation compounds.

Considering wine category, the two first PCs explained 
the 43% of the total variance (Fig. 2). PC 1 allowed, in 
general, to separate the young and oak wines (located on 
the left of the plot) to those with the longest aging time 
(crianza and reserve, located on the right of the plot). In 
this case, the loadings marked in bold in PC1 in Table 5 
allowed the wine differentiation according to its category, 
in the case of Fig. 2. As can be seen, several ethyl esters 
and acetates (ethyl octanoate, ethyl decanoate, isoamyl 
acetate, hexyl acetate and β-phenethyl acetate) and fatty 
acids (mainly hexanoic, octanoic, decanoic and dodeca-
noic acids) were more associated with the young and oak 
wines, due to their negative loading values more closely 
to − 1. On the other hand, the compounds with high posi-
tive loading values were more associated with the separa-
tion of the crianza and reserve wines, mainly related with 
compounds released from the oak wood such as whiskey 
lactones, vanillin derivatives, furanic derivatives and the 
majority of volatile phenols. Terpenes such as linalool and 
α-terpineol, and branched ethyl esters were also associ-
ated with the separation of the crianza and reserve wines. 
Therefore, in general, the young and oak wines were char-
acterized by the presence of compounds related to fruity 
notes, while the wines with longest aging time (the crianza 
and reserve wines) were differentiated by the branched 
ethyl esters, terpenes and oak related compounds. The 
differentiation between crianza and reserve wines was 
not possible probably, because the compounds that are 
released from the wood to the wine depend not only on the 
aging time, but also on the toasting degree, the origin and 
grain of the wood [38, 39]. As it can be seen in the plane, 
the PCA showed that there were several oak wines that 
were included in the plane area of the crianza and reserve 
wines. This fact could mainly be due to that although these 
wines must to have a minimum of 3 months of aging, there 
is a lot of variability and there were wines that can be aged 
for a longer period and with different origin, grain and 
toasting of wood.

Conclusions

The chemical characterization of the volatile fraction of the 
red wines carried out in this study allowed to find important 
quantitatively differences between the wines from different 
PDOs, which are very closely geographically, and/or catego-
ries. These quantitative differences allowed to provide new 
information on the possible aromatic potential of wines from 
these PDOs of one of the most important wine producing 
region of Spain. According to their PDO, the greatest dif-
ferences were found between the wines from RD (elaborated 
with Tempranillo as principal grape variety) and the wines 
from BI (elaborated mainly with Mencía grape variety). 
The RD wines were characterized by their higher content 
of fruity, floral and some oak wood volatile compounds 
being wines with a high sensory complexity. On contrary, 
the BI wines were characterized by their higher content of 
an oxidation volatile compound. The wines from TO were 
also characterized by the higher content of fruity volatile 
compounds and CI wines by the floral notes. According to 
their category, the young and oak wines were characterized 
by having highest contents of compounds that supply fruity 
nuances and some cheese off flavor nuances, while the cri-
anza and reserve wines were characterized by highest con-
tent of volatile compounds from oak wood, which supply 
spices, toasted, nuts and smoked nuances. Unexpectedly, the 
wines with longest aging time were also characterized by 
highest content of compounds responsible of floral nuances 
such as linalool, and other compounds responsible of fruity 
aromas such as ethyl isovalerate, increasing their aromatic 
complexity. The PCA analysis allowed to obtain a relative 
separation between the wines studied by PDO and category. 
This result could probably be conditioned by the different 
number of samples analyzed in each PDO and category. The 
results were also conditioned by the mixing of the wines 
which could be elaborated with different percentages of dif-
ferent grape varieties, in the case of PDO factor. And in the 
case of the category factor, by mixing wines aging with oak 
wood from different origins, toasted and grain.
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