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Abstract
Fortification of foods with phenolic compounds is becoming increasingly popular due to their beneficial physiological 
effects. The biological activities reported include antioxidant, anticancer, antidiabetic, anti-inflammatory, or neuroprotective 
effects. However, the analysis of polyphenols in functional food matrices is a difficult task because of the complexity of the 
matrix. The main challenge is that polyphenols can interact with other food components, such as carbohydrates, proteins, or 
lipids. The chemical reactions that occur during the baking technologies in the bakery and biscuit industry may also affect 
the results of measurements. The analysis of polyphenols found in fortified foods can be done by several techniques, such 
as liquid chromatography (HPLC and UPLC), gas chromatography (GC), or spectrophotometry (TPC, DPPH, FRAP assay 
etc.). This paper aims to review the available information on analytical methods to fortified foodstuffs while as presenting 
the advantages and limitations of each technique.
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Introduction

In the last decades consumer demands for different food 
products have changed. Nowadays foods are not intended 
to only satisfy the hunger for humans but also to prevent 
nutrition-related diseases or improve the physical and men-
tal wellbeing of consumers [1]. In recent years, functional 
foods have gained popularity because these products can 
help reduce the risk of disease. It is estimated by “Market 
Research” [2] that the global market of the functional food 
industry will reach $167 billion in 2025. The concept of 
functional food was first used in Japan in the 1980s. This 
notion eventually became widespread throughout the world. 
Although these foods have not yet been defined by legisla-
tion in Europe, most agree that functional foods are healthy 
foods or food components that have a potentially positive 
effect on health beyond basic nutrition [3].

Polyphenols are secondary metabolites in various plant 
materials that have many beneficial effects on the human 
body and health [4]. The phenolic compounds have primarily 

antioxidant and anti-inflammatory effects; in addition, the 
results of recent research have shown that they can have a 
preventive or therapeutic effect on cardiovascular diseases, 
neurodegenerative disorders, obesity or cancer [5]. For this 
reason, a number of studies have been published where vari-
ous foods were fortified with polyphenol-rich plant extract 
[6–10]. However, the health implications of bioactive poly-
phenols are determined by their bioavailability to a great 
extent, which is influenced by many factors, including phe-
nolic structure, chemical interactions, food processing, and 
matrix. The development of fortified food is valueless if the 
active ingredients are not stable in the food matrix or if they 
are not absorbed throughout the digestive system. In this 
context, encapsulation processes play an instrumental role 
in protecting the bioactive components in the food matrix as 
well as favor their absorption in the gastrointestinal tract [11, 
12]. Consumers expect that the products they use in every-
day life are safe and high quality. Therefore, the development 
and application of analytical methods in the field of plant-
fortified functional food analysis are crucial. However, stud-
ies in this direction are considerably complex because herbal 
preparations contain numerous active ingredients. Moreo-
ver, polyphenols may interact with the food matrix compo-
nents [13, 14]. Spectrophotometric methodologies such as 
2,2-diphenyl-1-picrylhydrazyl radical scavenging- (DPPH), 
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Folin-Ciocalteu-, or ferric reducing antioxidant power 
(FRAP) assay are widely used for fortified food analysis. 
[15–17]. In comparison with chromatography-based tech-
nologies, these methods are less sensitive and specific. Cur-
rently, high-pressure liquid chromatography (HPLC) with 
diode array (DAD) or mass spectrometry (MS) detection 
is the most widely used analytical approach for polyphenol 
analysis in fortified food matrices [18, 19].

This report includes a discussion of how plant extracts 
appear in fortified functional foods, the effects of the extracts 
on different foods, the effect of these products on human 
health, and finally, it describes the analytical methods used 
for the quantification and determination of phenolic com-
pounds from fortified foodstuffs.

Application of plant extracts in food

Over the last decade, foods fortified with herbal extracts rich 
in phenolic substances have become widespread (Table 1).

As shown in Table 1, plant extracts are typically used 
in food fortification in the form of freeze-dried. However, 
phenolic compounds uses are substantially limited due to 
their instability during food processing and storage or in the 
gastrointestinal tract. The behavior of phenolic compounds 
in the human body can be affected by the structure and com-
position of the food matrix and the class of polyphenol. In 
liquid matrices, the polyphenols are more readily bioaccessi-
ble whereas, if the matrix is solid, the polyphenols contained 
must first be extracted to be bioaccessible and potentially 
bioavailable. In the case of the human body, the extraction 
is carried out by the gastrointestinal tract where both the 
mechanical action during mastication and the chemical 
action during the digestive phase contribute to the extraction 
of phenolics from solid matrices. The extraction of poly-
phenols from solid matrices is influenced by various factors 
such as temperature, pH, the type of solvent used, and so on. 
These variables can also affect the extraction efficiency of 
different polyphenols in the gastrointestinal tract [33]. For 
example, studying the bioaccessibility of olive polyphenols 
(verbascoside, hydroxytyrosol, and oleuropein) in fortified 
taralli, Cedola et al. [26] realized that the combined effect 
of enzymatic activity and pH changes helps degrade part of 
the bioactive compounds in the gastric and intestinal phase. 
Polyphenols have been shown that can reduce the diges-
tive rate of starch, thus modulating the glycemic response 
to carbohydrates [34]. Consequently, extracts from plants 
have recently been incorporated in cereal-based products 
to help alleviate type 2 diabetes mellitus [35]. However, 
some studies suggest that polyphenols have lower effects on 
starch digestion in the case of fortified food. For example, 
Kan et al. [36] observed lower starch digestion inhibition 
when bread was fortified with berry extracts when compared 

to the co-ingestion of berry polyphenols with bread dur-
ing in vitro assay. Coe and Ryan [37] applied an in vitro 
dose–response analysis to determine the optimal dose of a 
baobab fruit extract and green tea extract for reducing rap-
idly digestible starch in white bread. Although bread forti-
fied with tea extract (0.4%) and baobab fruit extract (1.9%) 
did not reduce the satiety or glycemic response, white bread 
with added baobab fruit extract increased insulin economy 
by reducing the amount of insulin needed for given blood 
glucose. In some cases, lipids can also have a positive effect 
on the bioavailability of polyphenols, as they are able to 
"capture” and protect them from degradation in the gastro-
intestinal tract or the formation of insoluble complexes [38]. 
In a previous study, Ortega et al. [39] reported that higher fat 
content might have a positive effect on the stability of cocoa 
polyphenols, possibly due to the improved micellarization 
during digestion. Nowadays, dairy products are one of the 
most ideal carrier matrices for the delivery of bioactive plant 
ingredients to the human body. For example, yogurt is an 
excellent delivery vehicle for phenolic compounds of plant 
extracts because the low pH (~ 4.1–4.5) of yogurt contributes 
to the stability of phenolic compounds during storage [40], 
while the presence of proteins maintains the integrity of phe-
nolic compounds during digestion, increasing their bioacces-
sibility [41]. Other dairy products, such as cheese or milk 
can also serve as a suitable matrix for the controlled release 
of phenolic compounds. Lamothe et al. [42] showed that 
the green tea extract addition to cheese and milk promoted 
polyphenol-protein complex formation, which significantly 
improved polyphenol stability in a simulated gastrointestinal 
environment and enhanced the antioxidant activity.

Polyphenols in free form may also have negative effects 
on the taste of different food due to their strong astrin-
gency effect [6]. Moreover, freeze-dried plant extracts with 
larger particles (> 25 micron) often cause a sandy mouth-
feel [43]. To avoid these drawbacks, delivery systems have 
been developed, and among them, encapsulation plays a 
predominant role. Encapsulation is a process to entrap 
phenolic active ingredients within a wall material. The 
wall materials used for encapsulates must be food-grade, 
biodegradable, and stable in the food system during pro-
cessing, storage, and consumption. Among the used wall 
materials, polysaccharide- and protein-based polymers are 
widely used for encapsulation. According to the obtained 
particle size, capsules are called micro- or nanocapsule. 
Microparticles are generally in the 1–123 µm size range, 
while the size of nanoparticles ranges approximately from 
1 to 200 nm. Commonly applied encapsulation techniques 
for the purpose of encapsulating phenolic extracts are as 
follows: anti-solvent precipitation, electrospraying, spray-
drying, and atomization/coagulation (Table 2).
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Sampling, clean‑up, and extraction 
techniques

Correct sample preparation is an important step for the 
success of analytical processes. Although the interactions 
between polyphenols and macronutrient of foods generally 
have a positive effect on the bioaccessibility of phenolics 
[38, 42], they can cause a multitude of problems in the 
analysis, including the generation of emulsions, sample 
turbidity, ion suppression in MS detection, blockage, or 
irreversible damage/adsorption onto stationary phases of 
HPLC, etc. [47, 48].

Functional foods fortified with plant extracts can be 
classified into three broad categories according to their 
rheological properties: liquid (milk), semi-solid (yogurt, 
mayonnaise), and solid (chocolate, cake, cheese, etc.) 
samples. In general, solid samples require more complex 
and time-consuming treatments than liquids or semi-solid 
samples. These steps mainly depend on the food matrix, 
the plant extracts, most specifically the chemical proper-
ties of active ingredients, and the type of used analytical 
techniques. The main challenge for analysts is to maximize 
recovery of the analytes and minimize the interferences by 
use of appropriate extraction and clean-up treatments [49]. 
The general scheme of pretreatment and extraction meth-
ods of polyphenols from fortified foods is shown in Fig. 1.

Solid samples are usually subjected to particle size 
reduction either by grating [50], crushing [51], or grinding 
[52]. It is well known that surface area increases with the 
decrease in particle size. The main advantage of this step 
is increasing the interaction with solvent and mass trans-
fer of phenolics. For dairy products, while some authors 
measure liquid and semi-liquid samples immediately after 
centrifugation and filtration [28], others use lyophilization 
as a sample preparation step and then use the powdered sam-
ple for further clean-up stage [53] or extraction [12]. To 
eliminate the water content, fortified cereal-based and meat 
products, such as pasta [27], bread [25], cookies [54], or 
sausage [9], are also often lyophilized. This step is mainly 
necessary for high-fat content samples before lipid removal 
because many organic solvents cannot easily penetrate food 
containing much water, and therefore degreasing would be 
inefficient. Solvent extraction (SE) using a vortex mixer is 
one of the most commonly used and easiest methods for 
removing the lipid phase from food matrixes. This method 
generally includes initial extraction with n-hexane (usually 
three times), centrifugation and/or filtration, discarding of 
fat-containing supernatants, and removal of residual organic 
solvent from the defatted sample by air-drying for 24 h [55]. 
Its main drawbacks are the time and effort required to carry 
out the extraction and the large volumes of applied organic 
solvents [56]. Furthermore, hexane as a lipophilic solvent 
could extract lipophilic phenolic compounds alongside 

Fig. 1   General scheme of poly-
phenol extraction experiments 
from fortified foods
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targeted lipids [57]. Martini et al. [58] recently reported a 
non-solvent method. The process is based on centrifugation 
and allows the cocoa butter to precipitate in 10 min from the 
chocolate extract.

In most cases, especially for dairy products, another main 
step in sample preparation is the precipitation of contami-
nant protein because the interaction between polyphenols 
and proteins can affects the release of phenolics from the 
matrix during the extraction step [49]. Proteins in foods are 
usually removed using isoelectric precipitation by a mineral 
acid such as hydrochloric acid and sulfuric acid at its iso-
electric point during the pretreatment of samples. Despite 
this, Zhang et al. [59] in their study indicated that a saturated 
solution of lead acetate and 5% potassium oxalate is more 
suitable for protein removal from fortified milk than isoelec-
tric precipitation. Acid precipitation combined with alka-
line treatment was used for purslane-fortified Greek-style 
yogurt by El-Sayed et al. [17]. For this, yogurt samples were 
homogenized with distilled water, and the pH was readjusted 
by the addition of 2.5 mL HCl to 4. After centrifugation, the 
pH of the supernatants was adjusted to pH 7.0 using NaOH 
and re-centrifuged for the further precipitation of proteins.

For fortified foodstuffs, there can be no specific extrac-
tion rules. The main considerations that the analyst must 
be considered for the extraction, are the nature of the food 
and the nature of the ingredients used for fortification [60]. 
The techniques range from conventional solvent extraction 
(maceration with shaking/stirring) [7, 25, 40] to modern 
methods like ultrasound-assisted extraction [19, 61, 62] and 
microwave-assisted extraction [63]. In recent years, these 
methods have been discussed by many authors in several 
excellent review articles [64–67]. Therefore, this part of the 
review focuses on a brief presentation of the extraction con-
ditions used to extract phenolic compounds from various 
fortified food matrices (Table 3).

In some cases, solid-phase extraction (SPE) has also been 
reported as a method for purifying phenolic compounds 
from fortified liquid samples before instrumental detection. 
For instance, SPE on a column of modified silica (C18) 
allowed the recovery of phenolics by elution with methanol 

[69] or N, N-Dimethylformamide [59] from fortified milk 
beverage.

Analytical methods

Spectrophotometric methodologies

The indirect measurement of phytochemicals has been 
applied for decades. The used spectrophotometric tech-
niques are based on electron/proton transfer reactions and 
usually are linked to the antioxidant capacity. Depending 
on what kind of reaction involved, the assays can be classi-
fied into two groups: electron transfer (e.g. DPPH, ABTS, 
FRAP, TPC) and hydrogen atom transfer-based methods 
(e.g. ORAC). It is important to note that no single method 
is enough to determine the antioxidant property since dif-
ferent assays can give widely different results. Differences 
between methods can be ascribed to reaction media. Cer-
tain phenolic compounds may not be soluble in reaction 
media cannot express radical scavenging activities. For 
example, some assays measure only the hydrophilic anti-
oxidants (e.g., Folin, FRAP, or ABTS), while others (e.g., 
DPPH) detect only those soluble in alcoholic solvents [70]. 
In addition, it should be noted that non-phenolic compo-
nents found in the food matrix may also cause interference 
during antioxidant analysis. The Folin-Ciocalteu assay is 
the most widely used procedure for quantification of total 
phenolics in plant extract supplemented food. This assay 
is a colorimetric method based on electron transfer reac-
tions between the Folin-Ciocalteu reagent and phenolic 
compounds. However, the method is not specific for total 
phenolic content determinations, as the Folin-Ciocalteu rea-
gent can react with food compounds (especially if they are 
present in large amounts), such as vitamins, amino acids, 
proteins, carbohydrates, organic acids, and so on, thereby 
skewing the results. For example, sugars in high-sugar foods 
(e.g., chocolate) can cause interference if present in high 
concentrations. Barišić et al. [71], in their study, compared 
the classical and the modified Folin-Ciocalteu assay (acidic 

Table 3   A brief summary of the experimental conditions for conventional and nonconventional extraction techniques for fortified food material

Extraction methods Maceration with shaking Ultrasound-assisted extraction Microwave-assisted extraction

Matrix Yogurt, cheese, cupcake, bread White chocolate, soy milk, durum 
wheat spaghetti, biscuit

Dark chocolate

Common solvents used Methanol, water, aqueous ethanol/
methanol, or acidified methanol

Methanol, aqueous methanol, or 
acidified acetone/ethanol

Aqueous methanol

Temperature (°C) Ambient or can be heated Ambient or can be heated 60
Time required (min) 45–300 15–60 5
Sample: solvent ratio (g/mL) from 1:1 to 1:40 from 1:4 to 1:20 1:20
Reference [7, 28, 40, 68] [10, 19, 52, 61] [63]
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conditions without the adding of Na2CO3) for total phenolic 
analysis in dark- and milk chocolates. The authors pointed 
out that sugars cannot interact with the Folin-Ciocalteu 
reagent under acidic conditions. They also highlighted that 
up to 40% higher total polyphenol concentrations can be 
measured using the standard method. Belščak-Cvitanović 
et al. [6] reported in their study a total phenolic content of 
approximately 2.5–3.0 mg GAE/g and 8.0–13 mg GAE/g 
for milk- and dark chocolate, respectively. In another study, 
Jahangir et al. [31] measured 9.86 mg GAE/g of total phe-
nolic value for dark chocolate. In both studies, the standard 
Folin-Ciocalteu assay was used under non-acidic conditions 
and the results obtained were consistent with the values 
measured by Barišić et al. [71], which ranged from 1.70 to 
3.63 mg GAE/g for milk and 7.54–12.71 mg GAE/g for dark 
chocolate, confirming the fact that these results are often 
overestimated due to sugar interference. Similar observa-
tions were also made for yogurts. However, the Folin-Cio-
calteu reactivity of yogurts is derived from the degradation 
of milk protein, which may result in the release of phenolic 
amino acids and non-phenolic compounds such as sugars 
and proteins, which can interfere with the analysis [28]. For 
example, Kim et al. [40] observed an increasing tendency in 
total phenol content during storage (7 days) of yogurt in both 
the presence and absence of lotus leaf, which was explained 
by proteolysis of milk protein, which released amino acids 
with phenolic side chains. Besides, the authors noted that 
the metabolism of microbes could also have produced new 
phenolic acids, which could contribute to the increased total 
polyphenol values. In contrast, Cho et al. [72] reported a 
temporary decrease in the total phenolic value of plain and 
olive leaf supplemented yogurt due to the decomposition of 
polymeric phenolic compounds in the presence of lactic acid 
bacteria during refrigerated storage (15 days).

In the case of bread, it has been shown that the chemi-
cal reactions that occur during the baking process may also 
affect the results of measurements. Baiano et al. [73], in 
their study showed a different phenolic distribution between 
the crust and crumb of bread enriched with vegetable waste 
extracts, which was explained by the baking process and 
the type of phenolic compounds. On one hand, it is well 
known that the stability of phenolic compounds differs [74], 
and on the other hand, that higher temperatures (> 110 °C) 
enhance the Maillard reaction [75]. Since the temperature 
of the crumb never exceeds 100 °C while the crust can reach 
also higher temperatures than 205 °C, it can be assumed 
that in the work of Baiano et al. [73], the heating altered the 
phenolics to different extents and in different ways in the 
inner and outer part of the loaf.

Another most frequently employed spectrophotometry 
method is the DPPH (2,2-diphenyl-1-picrylhydrazyl) radi-
cal scavenging assay. It is an accepted method for screen-
ing the antioxidant activity of plant extracts and based on 

the electron donation of antioxidants to neutralize DPPH 
radical. However, the application of this assay is limited 
by certain drawbacks, similar to the Folin-Ciocalteu assay. 
Feng et al. [76], in their study, mentioned that yogurt itself 
has certain antioxidant effects as a result of a lot of amino 
acids and small molecular peptides with antioxidant activ-
ity produced during its fermentation. Fadavi and Beglaryan 
[14] reported that the whey proteins containing active groups 
can reduce the antioxidant activity of peppermint-enriched 
UF-Feta cheese. Besides, it was also shown that with an 
increase in rennet values, antioxidant activity decreases due 
to the interaction of intermediate size peptides of cheese 
with polyphenols of peppermint. A similar observation was 
reported in the ferric reducing antioxidant power (FRAP) 
assay. For example, El-Sayed et al. [17] described a reduced 
antioxidant activity of purslane-fortified Greek-Style yogurt 
during cold storage due to milk protein–polyphenol interac-
tions. Another major limitation of the DPPH assay is the 
overlapped spectra of compounds that absorb in the same 
wavelength range as DPPH. For example, Raikos et al. [77] 
attributed the decreased antioxidant activities of salal berry-
fortified yogurt beverages to the loss of fruit anthocyanin 
content. In another study, Shori et al. [28] found a weak 
correlation between total phenolic content and DPPH radi-
cal scavenging activity of spearmint-fortified bread, thereby 
pointed out that other constituents, such as proteins and 
amino acids, may also have affected the scavenging activity. 
Furthermore, Bhat et al [78]  observed that DPPH scaveng-
ing activities of bakery products are also influenced by the 
Maillard reaction products (e.g. mellanoidins).

High performance liquid chromatography

In comparison to spectrophotometric methodology, high-
performance liquid chromatography (HPLC) allows more 
accurate determination for polyphenols. HPLC (or, more 
recently ultra-high-performance liquid chromatography; 
UHPLC) with UV–Vis spectroscopy and/or mass spec-
trometry (MS) is one of the most common approaches for 
quantitative analysis of phenolic compounds in fortified food 
samples. Generally, the MS system is coupled with low-reso-
lution mass analyzers (LRMS), especially triple quadrupole 
(TQ) mass spectrometers. For example, 8 polyphenol com-
pounds were quantified by UHPLC-TQ MS/MS in sausages 
fortified with grape seed extract [13]. Oh et al. [79] quanti-
fied 10 polyphenols in yogurt fortified with Morus alba leaf 
extract using TQ. In another study [80], 13 polyphenols were 
quantified by LC-TQ MS/MS in milk fortified with pome-
granate peel extract. High-resolution mass spectrometry 
(HRMS) has become increasingly prominent in recent years 
for the determination of polyphenols in food. In comparison 
to LRMS techniques, the HRMS becomes highly advanta-
geous when working with complex matrices, which main 
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contain many isobaric interferences. The main advantage 
of HRMS in polyphenol analysis is that the highly accurate 
measurement (< 5 ppm) allows the possibility of unambigu-
ously determining the elemental composition of known and 
new constituents. Due to the highly diverse structure of 
phenolic compounds and the complexity of food matrices, 
this sensitivity is almost indispensable when targeting poly-
phenols in fortified matrices [81–83]. Q-TOF instruments 
coupled with electrospray ionization are the most com-
monly employed for the analysis of polyphenols in foods. 
The Q-TOF is a hybrid quadrupole flight mass spectrometer 
in which the third quadrupole is replaced by a time-of-flight 
tube [84]. Quite recently, Muhammad et al. [19] quantified 8 
phenolic compounds in cinnamon-fortified white chocolate 
using the Q-TOF–MS system. In another recent study [58], 
this approach allowed tentative identification of 153 and 125 
individual phenolic compounds in green tea and turmeric 
fortified dark chocolate respectively. There is no doubt that 
with the advances in chromatography technologies in the 
past decade, HPLC or UHPLC coupled with low or high-
resolution mass analyzers have enabled rapid and more 
accurate separation of phenolics with significantly reduced 
time and cost. Despite this, diode-array detectors (DAD) 
coupled with HPLC are the most frequently used systems for 
quantitative and qualitative analysis. Although HPLC–DAD 
is cheap and robust, it has several disadvantages, such as i) 
compound identification is only feasible by retention time 
and UV-spectra, ii) low detection and quantification limits 
in complex matrices iii) complicated to choose the correct 
standard. A summary of the researches reported over the 
last five years (2017–2021) using HPLC techniques for the 
analysis of phenolic compounds in various fortified foods is 
presented in Table 4.

As shown in Table 4, in almost all cases, reverse-phase 
(RP) C18 columns are used for the separation of phenolic 
compounds in fortified food samples. Aside from this, exam-
ples using other stationary phases such as C8 or even high 
strength silica (HSS) T3 can also be found in the literature. 
Typical columns in most of the reported HPLC analysis 
are 150–250 mm in length, internal diameters of 4.6 mm, 
and are usually filled with 3–5 μm porous silica particles. 
The UPLC systems use shorter (100–150 mm) and nar-
rower (1–2.1 mm) columns packed with small size particles 
(≤ 1.8 µm), which can allow faster analysis. Generally, dur-
ing the separation of phenolics by RP-HPLC acidified water 
(with low concentrations of formic acid or acetic acid) and 
acetonitrile or occasionally methanol as organic solvents (in 
some cases also acidified with formic acid or acetic acid) are 
employed as mobile phases. The wavelength selected for 
determining phenolic compounds is an important criterion 
and generally ranges between 254 and 520 nm.

Complex food matrices may cause interferences that can 
lead to incorrect determinations and even false positive or 

negative results. Thus, every HPLC methodology should be 
validated to evaluate the ability of the method to provide 
reliable quantitative results. Zhang et al. [59] validated a 
method for the determination of four flavone C-glucosides 
(homoorientin, orientin, vitexin, and isovitexin) in bamboo 
leaves-fortified milk by RP-HPLC–DAD wherein several 
performance characteristics such as linearity, repeatability, 
recovery, LOD, and LOQ were evaluated. A linear calibra-
tion curve was obtained with r2 > 0.9995. The stability of 
the method was examined by estimating the precision in 
terms of repeatability and was found to be acceptable with 
values of ≤ 3.2% for all compounds. Recoveries were in the 
range 81–92%. The LOD and LOQ values were less than 
0.03 and 0.09 µg/mL, respectively. Moreover, there were no 
impurities or co-elution observed (match factor ≥ 98%). A 
method was developed and validated for the simultaneous 
quantification of flavan-3-ols, glycosylated flavonols, and 
benzoic acid derivatives in sausages fortified with grape seed 
extracts by Ribas-Agustí et al. [13]. The method was per-
formed with a LOD ranging from 1 to 60 mg/100 g depend-
ing on the phenolic compounds. In this study, the recovery 
of procyanidins and epigallocatechin gallate ranged from 
61 to 69%, which can be explained by the fact that these 
compounds may interact with the proteins of sausages. With 
other phenolic compounds, the recoveries changed between 
75 and 96%. Wang and Zhou [89] described an HPLC–PDA 
method to determine the catechins in bread fortified with 
green tea extracts. The calibration curves for epicatechin, 
epigallocatechin, epicatechin gallate, epigallocatechin gal-
late, catechin gallate, and gallocatechin gallate were linear 
between 1 and 50 ppm, respectively. The determination coef-
ficients were ≥ 0.999; the recovery rate varied from 92 to 
94%. The authors also showed that the retention levels of 
green tea catechins in freshly baked bread were ca. 83% and 
91%. Overall, one piece of bread (53 g) contained 150 mg 
of green tea extract/100 g of flour provided 28 mg of tea 
catechins, which was 35% of those infused from one green 
tea bag (2 g). The losses were be explained by the isomeriza-
tion/epimerization and degradation of tea catechins during 
the various bread-making stages including mixing, thawing, 
proofing, and baking.

Gas chromatography

Few studies have used gas chromatography for the analysis 
of polyphenols in fortified foods, because these compounds 
are not volatile. Therefore, before the injection onto GC, a 
derivatization step is required to ensure good vaporization 
of the sample and obtain volatile and thermostable deriva-
tives [90]. Derivatization of phenolic compounds in fortified 
foods can be performed at 70 °C in 20–30 min. Trialkylsi-
lylation is the preferred derivatization method to increase 
the volatility of phenolic compounds. Although there exists 
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a great variety of commercially available silylating reagent, 
the most common in the literature surveyed regarding phe-
nolic compounds has been bis(trimethylsilyl)trifluoroacet-
amide (BSTFA). Using an appropriate polar solvent such 
as pyridine can also favor the dissolution of the analyzed 
material in the derivatizing reagent. The reported works 
(only two studies) were using FID [91] and MS [92] detec-
tion for the analysis of fortified yogurts and edible oils, 
respectively. Fused silica capillary columns with lengths of 
30 m and inner dimensions of 0.25 mm were used in both 
reported studies. The used column coating material was 5% 
phenyl-95% dimethyl-polysiloxane (HP-5 and ZB-5). The 
temperature program is generally based on gradients, using 
initial temperatures ranging from 70 °C to 80 °C, and final 
temperatures between 300 °C and 320 °C, achieved in dif-
ferent steps and with rate increases ranging from 4 to 20 °C/
min. The authors have injected 1 µl derivatized sample vol-
ume into the columns at a split (1:20 ratio) or splitless mode. 
Helium is used as the carrier gas at a flow-rate of between 
0.6 and 2.4 ml/min.

Karaaslan et al. [91] have identified nine individual bio-
active phenolic compounds in callus yogurt by GC-FID. 
According to the data, approximately 72% of the poly-
phenols present in the yogurt were identified, and the total 
amount of characterized and quantified phenolic compounds 
from callus extract-fortified yogurt was 55.8 mg/L. Although 
these data indicate that the used method was acceptable for 
the phenolic analysis in fortified yogurt samples, the authors 
suggest a stronger separation system such as GC–MS/MS or 
LC–MS for better detection of phenolic compounds found in 
foods. In another study, Salta et al. [92] quantified 17 phe-
nolic compounds in enriched vegetable oils (olive oil, sun-
flower oil, palm oil, and a vegetable shortening) by GC–MS 
analysis. After the olive leaf extract enrichment, oleuropein 
was predominated in all cases. Moreover, supplementa-
tion of olive oil with the extract resulted in a concentration 
increase of tyrosol, hydroxytyrosol, maslinic acid, caffeic 
acid, quercetin, protocatechuic acid, and vanillethanediol. 
Besides, the authors reported good linearity in the range of 
quantitation limit and up to 20-fold concentration for each 
phenolic compound.

Conclusion and future perspectives

As food fortification with plant extracts is becoming more 
popular around the world, there will be an increasing need 
to monitor the quality and safety of these products. How-
ever, the analysis of polyphenols is relatively difficult 
because of the complexity of food matrices. In this study, 
we pointed out that, besides the interactions between poly-
phenols and food ingredients, new compounds that formed 
during the technological process may affect the results of Ta
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measurements. From the literature, it is clear that the utiliza-
tion of encapsulated polyphenols could effectively improve 
the performance of functional foods.

Although most studies on the analytical characteriza-
tion of plant-fortified foods use classical pretreatment and 
extraction techniques for sample preparation, recent sample 
preparation trends follow an even more straightforward and 
economic analysis. During the past decade, several new ana-
lytical approaches have been appeared and used for the poly-
phenol analysis from different non-fortified food. An exam-
ple is the Quick, Easy, Cheap, Effective, Rugged and Safe 
(QuEChERS) technique, which was successful adopted for 
the determination of phenolic compounds from non-fortified 
solid [93] and semi-solid [94] as well as liquid [95] samples.

Based on the available literature, it could be stated that 
the use of spectroscopic techniques is limited by the lack 
of their specificity. All in all, rapid, accurate, and sensitive 
chromatographic techniques are becoming increasingly 
important for polyphenol analysis. Taking into account the 
complexity of fortified foodstuffs, the use of LRMS and 
HRMS techniques will certainly increase in the future. At 
the same time, it should be considered that these instruments 
are very expensive and not available in many laboratories.
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