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Abstract
Virgin olive oil samples of eight varieties from four regions (North Aegean, South Aegean, Mediterranean, and South-
eastern) of Turkey were discriminated using fatty acid and sterol composition. Principle component analysis represented a 
separation of South Aegean olive oils from the rest of the sample groups, that mainly depend on Stigmasterol, β-sitosterol, 
Δ5,24-Stigmastadienol, Δ7-Avenasterol, C17:0, and C17:1 variables. Except few overlaps, North Aegean samples were also 
discriminated with Mediterranean and Southeastern samples. The varietal separation was not interpretable by itself but since 
all samples from South Aegean region were Memecik variety, regional separation has become clearer. Soft independent 
modeling of class analogy shows good separation between North and South Aegean samples with only a few exceptions. 
The number of misestimated samples was high at Mediterranean and Southeastern models on Coomans’ plots because of 
high variance within each group. Partial least squares discrimination analysis was more successful than Soft independent 
modeling of class analogy. The prediction capabilities of South Aegean and North Aegean models were better than others. 
Root mean squared error of prediction and goodness of prediction were 0.092 and 0.961 for South Aegean, 0.182, and 0.853 
for North Aegean, respectively. Unlikely to soft independent modeling of class analogy, Southeastern and Mediterranean 
samples were not rejected but remained as “uncertain” on partial least squares discrimination analysis with the help of its 
algorithm.
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Introduction

Olive oil has been an emblematic product for the producing 
countries and has gained an increasing worldwide reputa-
tion due to its sensorial and nutritional properties last few 
years. Because the growth of olive fruit is highly climate-
dependent, most of the olive and olive oil production in the 
world is carried out by countries that have a coast to the 
Mediterranean Sea. Over the past few decades, public aware-
ness of olive oil authenticity has increased because of its 
vulnerability to economically motivated adulteration and/or 
mislabeling which has great importance not only for olive oil 
producers, retailers, and consumers but also for lawmakers 

and regulators. To meet the demands and the quality expec-
tations of consumers, producers focus on highlighting the 
authentic properties of the product such as variety and geo-
graphical origin of olive oil [1]. As the value of the olive oils 
with specific features increased, olive oil become a target for 
fraudsters to gain unfair profit [2].

Verification of the geographic origin of an olive oil is a 
way to protect consumers and producers from economical 
and health frauds. Registration procedure of geographic indi-
cation of olive oil requires a good determination of targeted 
geographical area, the specialty of the olive oil such as deter-
mination of variety and production methodology, of which 
environmental factors directly affect the chemical composi-
tion of olive oil [3]. Today, a vast majority of the geographic 
indicated olive oils registered with the eAmbrosia system 
of the European Commission are monovarietal or composi-
tion of two varieties with one dominant in volume [4]. The 
price of these products is generally higher than extra virgin 
olive oils with no specific characteristics, hence fraudulent 
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activities regarding a false claim of the geographical origin 
of the product on the label is spreading and has not been 
fully avoided yet [3, 5]. Beyond financial losses, such frauds 
cause a threat to human health, such as allergic reactions, 
due to incorrectly or non-declared substances and processes 
[6].

In general, the possible environmental factors that cause 
chemical and sensorial diversity among olive oils may be 
summarized as olive variety, the region where the olive tree 
grows, climatic conditions, cultivation, harvest, and process-
ing techniques. Even olive oils produced from the same vari-
ety but in different regions generally differ from each other 
in their chemical composition [7–11]. Although several 
chromatographic techniques have been used to reveal the so-
called effects of these environmental factors, interpretation, 
and integration of data samples, when dealing with such a 
complex matrix like olive oil, are not straightforward tasks. 
A precise evaluation requires a favorable tool to estimate the 
geographical area and variety of olive oil not only during 
the submission of new geographic indications but also for 
inspection procedures. In this context, chemometrics can be 
utilized to reveal correlations between the contents of chemi-
cal components and numerous variables such as agronomic, 
technological, and environmental factors that may affect the 
chemical composition of olive oil [12].

In many recent studies, discriminative chemometric 
methods were used for evaluation and interpretation of the 
possible classifications among different olive oils [1, 3, 
13–19], detection of adulteration or method development for 
measurement of a specific constituent of olive oil [20]. The 
chemometric techniques used in these studies were gener-
ally; principle component analysis (PCA), soft independent 
modeling of class analogy (SIMCA), partial least squares 
discriminant analysis (PLS-DA), linear discrimination 
analysis (LDA), ward method, hierarchical cluster analysis 
(HCA). In particular, unsupervised chemometric techniques 
such as PCA, is used as an explanatory approach to oversee 
the discriminative predisposition of the data. In SIMCA, 
a supervised classification can be maintained by develop-
ing PCA models for each class using a training sample set 
and as new observations are projected into each PC model, 
residual distances are calculated. A sample is assigned to 
the model class if its residual distance is lower than the sta-
tistical limit. PLS-DA uses models developed by classical 
partial least squares regression where the response variable 
is a dummy variable level to express the class membership 
of the samples [21, 22].

Due to the increasing regional interest of the Turkish 
olive oils, the classification and characterization using above 
mentioned chemometric techniques has been discussed in 
several studies. Fatty acid composition and spectral data of 
olive oils were used for discrimination according to variety 
and harvest year [19], trace element contents for variety and 

region in another study [23], triglyceride composition for 
region and variety [24] and fatty acid composition for vari-
ety [25]. However, the regional and varietal classification 
of Turkish olive oils covering all olive producing regions in 
Turkey using sterol and fatty acid compositions combined 
were not studied in a previous study.

Our study aims to extend the efforts on the discrimination 
and classification of olive oils according to their variety and 
region. The possible groupings within Turkish virgin olive 
oil (VOO) samples were evaluated using PCA as an explana-
tory approach and modeled with respect to their region prior 
to classifying using SIMCA. As a second approach, PLS-DA 
was used as another supervised classification method. The 
classification results of SIMCA and PLS-DA were compara-
tively discussed.

Materials and methods

VOO samples were kindly donated by the Tariş Olive and 
Olive Oil Agriculture Sales Cooperatives Union refinery in 
Çiğli (İzmir, Turkey) and samples were stored at − 20 °C 
temperature until analysis. The study was started with a total 
97 VOO samples produced at different regions in Turkey in 
2013 (63 samples) and 2014 (34 samples) harvest seasons. 
Major olive oil producing areas in Turkey were divided into 
4 sub-regions as North Aegean (30 samples), South Aegean 
(32 samples), Mediterranean (20 samples), and Southeastern 
(15 samples). Regions were selected according to varying 
characteristics in geographical and climatic conditions in 
Turkey (Fig. 1). Selection of smaller regions in our study 
was avoided due to the information reported by Kritioti et al. 
and Karabagias et al., which clarifies it would be an unreal-
istic aim using chromatographic data for discrimination of 
VOO samples from smaller areas [26, 27].

All virgin olive oil samples were monovarietal obtained 
from Ayvalık (44 samples), Gemlik (8 samples), Halhalı (4 
samples), Kilis Yağlık (3 samples), Memecik (33 samples), 
Nizip Yağlık (2 samples), Sarı Ulak (2 samples) and Silifke 
Yağlık (one sample) varieties. Since VOO’s were commer-
cial samples, they possibly had some variations resulting 
from uncontrolled weather conditions and different cultiva-
tion practices. The free fatty acidity (FFA) analysis revealed 
that FFA levels of 17 out of 97 VOO samples were between 
0.8 and 2%. The FFA content of the rest of the samples were 
below 0.8%. The total size of the data matrix was 27 × 97 
(variables × samples) in the beginning of the study. 

Chemical analyses

To determine the fatty acid composition, the methyl-esters 
were prepared by vigorous shaking of a oil solution in 
n-heptane (0.5 ml in 7 ml) with 1 ml of 2 N methanolic 
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potash and analyzed with an Agilent (7820) gas chromatog-
raphy equipped with a flame ionization detector. A Supelco 
Silica capillary column (60 m length × 0.25–0.32 mm i.d.) 
coated with cynopropylsilicone phase (0.1–0.3 μm thick-
ness) was used for analysis. Supelco 37 Component FAME 
Mix (CRM47885) was used for the identification of fatty 
acids. Hydrogen was used as carrier gas with a flow rate 
through the column at 1 ml/min. The temperature of the 
oven, injector, and detector was set at 165 °C, 250 °C and 
270 °C, respectively. An injection volume of 1 μl was used 
(COI/T20/Doc.17).

Sterol composition (%) was determined by the same gas 
chromatography equipment with fatty acid composition with 
a capillary column (20–30 m length × 0.25–0.32 mm i.d.) 
coated with SE-52 (0.30 μm thickness). A solution of 0.2% 
α-cholestanol (m/V) in chloroform was used as an internal 
standard for the identification of sterols. Working conditions 
were as follows: carrier gas, hydrogen; flow through the 
column, 1.3 ml/min; injector temperature, 280 °C; detector 
temperature, 290 °C; oven temperature, 260 °C; injection 
volume 1 μl (COI/T20/Doc 10).

Statistical analysis and chemometric methods

All statistical analyses were conducted in Unscrambler 
X v10.4 (Camo Analytics, Oslo, Norway). As well as the 
fatty acid composition and sterol composition, apparent 
β-sitosterol (sum of the β-sitosterol, sitostanol, Δ5,24-
stigmastadienol, clerosterol, and Δ5-avenasterol) and total 
sterol content were also imported into a data matrix. Region, 
and variety were defined as categorical variables. Prior to 
PCA, mean centering was applied to data as preprocessing. 
Data were mean-centered and randomized, cross-validation 
method was used for internal validation. All values were 

weighted as reciprocal of the standard deviation to elimi-
nate the size difference effect on the results. NIPALS was 
selected as the PCA algorithm. This procedure was applied 
to the whole dataset of VOO’s for unbiased explanatory 
discrimination with respect to region and variety as well 
as regional sub-groups of data individually to obtain PCA 
models prior to SIMCA. The first two principal component 
(PC) were visualized on two-dimensional biplots to deter-
mine the discrimination on the score plots. Hotelling’s T2 
ellipses with a 95% confidence limit used to reveal potential 
outliers.

Since regional classification in SIMCA and PLS-DA of 
the VOO samples was one of the aims of the study, the data-
set was randomly divided into two groups as calibration and 
classification sets, after exclusion of detected outliers with 
extreme leverage according to PCA. Calibration samples 
were used to develop models and classification samples were 
used as testing samples. Consequently, 15 samples from 
North Aegean, 16 samples from South Aegean, 10 samples 
from the Mediterranean, and 7 samples from Southeastern 
regions were selected randomly as calibration samples. The 
rest were grouped as classification samples. A standard pro-
cedure for PLS-DA algorithm was used for decisions and 
arbitrary thresholds [1]. Application details of SIMCA and 
PLS-DA were explained in detail below.

Results and discussion

Sharing the exact fatty acid composition and sterol composi-
tion of the samples in the text was avoided in the frame of 
confidentiality. Alternatively, summary tables with descrip-
tive statistics of the general fatty acid and sterol composition 
with respect to region and variety of VOO’s were presented. 

Fig. 1   Regions of VOO samples 
together with associated varie-
ties for each region
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This descriptive documentation of the general fatty acid and 
sterol profiles according to the region and variety of VOO 
samples is valuable to understand the chemical characteris-
tics of the samples (Tables 1, 2).

Mean values with standard deviations of the sterol 
composition, apparent β-sitosterol, total sterol content, 
and fatty acid composition were presented for four dif-
ferent regions (Table 1) and eight different VOO varie-
ties (Table 2) separately. The mean value of β-sitosterol, 
the abundant sterol of VOO’s, fluctuated around 79.78% 
and 87.96%. Total sterol content showed a significant dif-
ference not only between regions but also between VOO 
varieties. The highest mean sterol contents within each 
group were determined as 2083 mg/kg at North Aegean 
VOO’s and 2086 mg/kg for Ayvalık varieties. The mean 
value of oleic acid (C18:1), major fatty acid for olive oils, 

fluctuated between 68.25% and 73.09%. It was impossible 
to make good discrimination among samples only con-
sidering the means of individual fatty acids. Five major 
fatty acids were C18:1, C16:0, C18:2, C18:0, and C16:1 
for VOO’s. The first PCA was performed to identify unin-
formative variables and possible outliers that have high 
leverage (results not presented). For fatty acid composi-
tion, C14:0, C22:0 and C22:1, and for sterol composition 
24-methylenecholesterol, campastanol and clerosterol does 
not vary enough to provide an adequate signal for PCA 
model, which were excluded from PCA dataset later. In 
addition, one VOO sample of Memecik variety from the 
Southeastern region harvested in 2014 was determined 
as an outlier and dropped from the dataset due to high 
score leverage. Eventually, after the exclusion of so-called 
variables and one observation, another PCA, of which 

Table 1   Average values of 
sterol composition, apparent 
β-sitosterol, total sterol content 
and fatty acid composition by 
means of regions

a C16:0 palmitic acid, C16:1 palmitoleic acid, C17:0 margaric acid, C17:1 margoleic acid, C18:0 stearic 
acid, C18:1 oleic acid, C18:1 vaccenic acid, C18:2 linoleic acid, C18:3 linolenic acid, C20:0 arachidic 
acid, C20:1 gondoic acid, C22:0 behenic acid, C24:0 lignoceric acid

Mediterranean 
olive oil samples

North Aegean 
olive oil samples

South Aegean 
olive oil samples

Southeastern 
olive oil sam-
ples

Sterol composition (%)
 Cholesterol 0.11 ± 0.04 0.07 ± 0.03 0.13 ± 0.05 0.15 ± 0.05

24- Methylenecholesterol 0.07 ± 0.04 0.07 ± 0.02 0.08 ± 0.02 0.08 ± 0.03
 Campesterol 3.08 ± 0.59 2.92 ± 0.18 3.09 ± 0.2 3.39 ± 0.41
 Campastanol 0.06 ± 0.02 0.06 ± 0.08 0.06 ± 0.03 0.05 ± 0.02
 Stigmasterol 0.62 ± 0.2 0.35 ± 0.15 1.38 ± 0.36 0.85 ± 0.16
 Clerosterol 1.07 ± 0.09 0.96 ± 0.17 1.13 ± 0.14 1.1 ± 0.1
 β-sitositerol 83.54 ± 2.79 81.33 ± 1.75 87.95 ± 1.41 85.41 ± 1.71
 Sitositanol 0.55 ± 0.31 0.47 ± 0.18 0.42 ± 0.12 0.78 ± 0.32
 Δ5-Avenasterol 8.37 ± 3.07 10.49 ± 1.55 4.57 ± 1.45 6.27 ± 1.92
 Δ5,24-Stigmastadienol 0.96 ± 0.31 1.58 ± 0.24 0.43 ± 0.06 0.7 ± 0.35
 Δ7-Stigmastenol 0.53 ± 0.16 0.47 ± 0.07 0.36 ± 0.06 0.46 ± 0.09
 Δ7-Avenasterol 1.01 ± 0.2 1.2 ± 0.2 0.4 ± 0.11 0.76 ± 0.15

Apparent β-Sitosterol (%) 94.49 ± 0.5 94.82 ± 0.27 94.51 ± 0.37 94.26 ± 0.36
Total sterol (mg/kg) 1853 ± 297 2083 ± 257 1196 ± 168 1693 ± 473
Fatty acid composition (%)a

 C14:0 0.02 ± 0 0.02 ± 0 0.02 ± 0 0.02 ± 0.01
 C16:0 14.17 ± 0.57 13.47 ± 0.5 12.57 ± 0.64 14.98 ± 0.76
 C16:1 1.1 ± 0.19 0.86 ± 0.06 0.87 ± 0.1 1.22 ± 0.19
 C17:0 0.16 ± 0.03 0.15 ± 0.01 0.05 ± 0.02 0.15 ± 0.02
 C17:1 0.26 ± 0.04 0.25 ± 0.01 0.08 ± 0.03 0.23 ± 0.04
 C18:0 2.95 ± 0.38 2.6 ± 0.12 2.63 ± 0.17 3.14 ± 0.64
 C18:1 69.67 ± 1.85 70.32 ± 0.75 73.09 ± 1.53 68.56 ± 2.1
 C18:2 10.08 ± 1.76 10.82 ± 0.6 9.09 ± 0.97 9.99 ± 2.5
 C18:3 0.66 ± 0.06 0.56 ± 0.05 0.68 ± 0.1 0.75 ± 0.11
 C20:0 0.44 ± 0.05 0.44 ± 0.04 0.45 ± 0.08 0.48 ± 0.07
 C20:1 0.28 ± 0.04 0.3 ± 0.02 0.31 ± 0.02 0.28 ± 0.04
 C22:0 0.11 ± 0.03 0.12 ± 0.03 0.11 ± 0.03 0.13 ± 0.04
 C22:1 0.08 ± 0.07 0.08 ± 0.02 0.07 ± 0.02 0.05 ± 0.02
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score plots (Fig. 2a, b) and loading plot (Fig. 2c) were 
presented, was carried out with the same settings to the 
whole remaining data matrix.

The first three PC’s explained 38.8%, 17.9%, and 15.4% 
the total sample variance, respectively. Consequently 
72.1% as the cumulative variance explained. When the 
sample groupings were labeled for different regions, it was 
determined that South Aegean VOO’s were clearly dis-
criminated from the rest of the samples mainly on the axis 
of PC1. Southeastern, Mediterranean, and North Aegean 
VOO samples were generally had negative loadings on 
the PC1 but showed discrimination from each other on 
the PC2 axis with slight overlaps. PC3 which contributes 
the lowest variance was ineffective for visualizing dis-
crimination among sample groups by regions. No sample 
was located outside of the Hotelling T2 ellipses on the 
score plot between PC1 and PC2. Discrimination between 
Mediterranean and Southeastern regions was compel-
ling since these were close to each other geographically. 

In relation to that, Kritioti et al. reported that fatty acid 
composition alone did not provide adequate information 
when coupled with hierarchical cluster analysis to clas-
sify VOO’s obtained from southern region of Cyprus since 
the total area was small. Researcher indicated that, the 
climatic diversity was not large enough to make a signifi-
cant impact on composition of fatty acid composition [26]. 
Similarly, Karabagias et al. sampled VOO’s from 4 differ-
ent Greek islands on Ionian Sea and used chromatographic 
data to develop canonical discriminant functions to dis-
criminate VOO’s according to their geographical origins. 
Only VOO’s from Korfu island was discriminated from 
Lefkada, Kefalonya and Zakinthos islands’ VOO’s, since 
these three islands were located closer to each other while 
Korfu was located more distant from these three islands 
[27]. These findings support the thesis put forward by Kri-
tati et al. that it is difficult to achieve regional discrimina-
tion for small sampling areas using the chromatographic 
data alone with chemometric techniques.

Table 2   Average values of sterol composition, apparent β-sitosterol, total sterol content and fatty acid composition by means of VOO variety

Ayvalık Memecik Gemlik Halhalı Kilis yağlık Nizip yağlık Sarı ulak Silifke yağlık

Sterol composition (%)
 Cholesterol 0.08 ± 0.03 0.13 ± 0.05 0.11 ± 0.05 0.19 ± 0.06 0.16 ± 0.02 0.15 ± 0.04 0.15 ± 0.02 0.16 ± 0.01
 24-Methylenecholesterol 0.07 ± 0.03 0.07 ± 0.02 0.08 ± 0.04 0.09 ± 0.03 0.08 ± 0.02 0.09 ± 0.08 0.09 ± 0.06 0.06 ± 0.01
 Campesterol 3.09 ± 0.31 3.1 ± 0.21 3.11 ± 0.56 3.14 ± 0.53 3.11 ± 1.05 2.14 ± 0.25 3.19 ± 0.75 2.83 ± 0.01
 Campastanol 0.06 ± 0.06 0.06 ± 0.03 0.05 ± 0.02 0.08 ± 0.02 0.07 ± 0.01 0.07 ± 0.06 0.05 ± 0.01 0.08 ± 0.00
 Stigmasterol 0.43 ± 0.2 1.36 ± 0.38 0.69 ± 0.21 0.83 ± 0.07 0.75 ± 0.16 1.05 ± 0.06 1.07 ± 0.18 0.56 ± 0.01
 Clerosterol 1 ± 0.16 1.14 ± 0.14 1.09 ± 0.13 1.06 ± 0.08 1.03 ± 0.04 1.08 ± 0.06 1.13 ± 0.11 1.07 ± 0.02
 β-sitositerol 82.53 ± 2.38 87.96 ± 1.39 84.03 ± 1.64 85.46 ± 2.5 81.64 ± 4.82 79.78 ± 4.41 84.64 ± 0.51 83.21 ± 0.21
 Sitositanol 0.47 ± 0.18 0.43 ± 0.12 0.53 ± 0.32 0.9 ± 0.32 1.11 ± 0.35 0.52 ± 0.22 1.03 ± 0.5 0.81 ± 0.01
 Δ5-Avenasterol 9.23 ± 2.39 4.53 ± 1.44 7.93 ± 1.59 6.59 ± 2.53 10.29 ± 5.1 13.02 ± 5.59 6.6 ± 0.3 8.4 ± 0.01
 Δ5,24-Stigmastadienol 1.44 ± 0.33 0.43 ± 0.06 0.79 ± 0.27 0.5 ± 0.11 0.54 ± 0.21 0.66 ± 0.1 0.63 ± 0.07 0.9 ± 0.01
 Δ7-Stigmastenol 0.48 ± 0.07 0.37 ± 0.07 0.51 ± 0.19 0.45 ± 0.16 0.38 ± 0.07 0.48 ± 0.33 0.49 ± 0 0.74 ± 0.01
 Δ7-Avenasterol 1.11 ± 0.24 0.41 ± 0.14 0.99 ± 0.26 0.72 ± 0.15 0.8 ± 0.3 0.98 ± 0.4 0.94 ± 0.04 1.19 ± 0.01

Apparent β-Sitosterol (%) 94.66 ± 0.36 94.49 ± 0.37 94.36 ± 0.45 94.51 ± 0.32 94.62 ± 0.88 95.05 ± 0.91 94.02 ± 0.66 94.39 ± 0.56
Total Sterol (mg/kg) 2086 ± 263 1226 ± 236 1660 ± 198 1439 ± 199 1397 ± 191 1535 ± 280 1291 ± 179 2080 ± 121
Fatty acid composition (%)
 C14:0 0.02 ± 0.01 0.02 ± 0 0.02 ± 0 0.02 ± 0.01 0.02 ± 0.01 0.01 ± 0 0.02 ± 0.01 0.02 ± 0.00
 C16:0 13.86 ± 0.83 12.59 ± 0.64 14.34 ± 0.56 14.43 ± 0.7 14.78 ± 0.56 14.17 ± 0.26 15.4 ± 0.09 12.95 ± 0.04
 C16:1 0.96 ± 0.18 0.87 ± 0.1 1.09 ± 0.2 1.01 ± 0.16 1.16 ± 0.16 1.48 ± 0.08 1.31 ± 0.23 0.97 ± 0.01
 C17:0 0.15 ± 0.01 0.05 ± 0.02 0.18 ± 0.05 0.17 ± 0.01 0.16 ± 0.01 0.15 ± 0.01 0.17 ± 0.03 0.18 ± 0.01
 C17:1 0.25 ± 0.01 0.08 ± 0.04 0.28 ± 0.06 0.21 ± 0.02 0.2 ± 0.02 0.27 ± 0.01 0.32 ± 0.01 0.29 ± 0.01
 C18:0 2.63 ± 0.13 2.64 ± 0.18 2.96 ± 0.42 3.69 ± 0.45 3.93 ± 0.5 3.11 ± 0.05 2.82 ± 0.06 3.28 ± 0.02
 C18:1 69.96 ± 0.98 72.79 ± 2.27 69.18 ± 2.63 69.31 ± 2.13 70.19 ± 1.87 71.87 ± 0.69 68.25 ± 1.77 68.89 ± 0.21
 C18:2 10.63 ± 0.73 9.34 ± 1.72 10.36 ± 2.17 9.49 ± 1.88 7.98 ± 0.79 7.32 ± 0.2 10.05 ± 2.17 11.74 ± 0.11
 C18:3 0.6 ± 0.08 0.69 ± 0.12 0.69 ± 0.07 0.7 ± 0.09 0.66 ± 0.05 0.68 ± 0.01 0.73 ± 0.04 0.76 ± 0.01
 C20:0 0.44 ± 0.04 0.45 ± 0.08 0.44 ± 0.05 0.5 ± 0.08 0.51 ± 0.16 0.42 ± 0.02 0.48 ± 0.1 0.44 ± 0.01
 C20:1 0.3 ± 0.02 0.31 ± 0.02 0.29 ± 0.03 0.29 ± 0.07 0.23 ± 0.05 0.24 ± 0.03 0.29 ± 0.04 0.28 ± 0.01
 C22:0 0.12 ± 0.03 0.11 ± 0.03 0.13 ± 0.02 0.13 ± 0.04 0.12 ± 0.03 0.1 ± 0.02 0.13 ± 0.01 0.1 ± 0.01
 C22:1 0.07 ± 0.02 0.07 ± 0.02 0.05 ± 0.03 0.06 ± 0.03 0.06 ± 0.01 0.21 ± 0.18 0.06 ± 0 0.1 ± 0.01
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When the PCA score plot was labeled according to the 
VOO variety (Fig. 2b), the discrimination of South Aegean 
VOO’s on the PCA was also determined for Memecik vari-
ety since South Aegean samples only consisted Memecik 
VOO’s. However, one Memecik sample belongs to South 
Aegean was located far from other South Aegean samples 
near to other Southeastern samples proved that, the region 
may be stronger determining factor for discrimination for 
Memecik variety. In fact, all samples except Memecik were 
overlapped and no clear discrimination was determined 
when the VOO samples were grouped according to their 
variety. These results showed that although the variety of 
the VOO was significantly effective on the sterol and the 
fatty acid composition when region become a variable on 
the sampling, region becomes abundant determinative factor 
possibly because of difference in climatic conditions where 
the olive tree has grown [28].

The correlation loadings are direct coordinates of the 
variables on the correlation loading plot. If the loadings 
are close to “1” means that contribution of this variable 
gets higher on that PC (Table 3). Therefore, the level of 
variable becomes more determinative for a sample in posi-
tioning along with that PC. To determine which variable 

was accounted for the mentioned discrimination among 
samples, absolute values of the variable loadings were 
presented in Table 3, which can be applied to each score 
plot. Stigmasterol, β-sitositerol, Δ5,24-Stigmastadienol, 
Δ7-Avenasterol, C17:0, and C17:1 content of VOO’s were 
effective on the seperation of the samples along with the 
PC1 since their correlation loadings were highest. The 
levels of these variables are directly effective on the dis-
crimination of South Aegean VOO’s from the rest of the 
samples. Gouissous et al. found that composition of major 
fatty acids of VOO’s was useful for discrimination accord-
ing to variety and region when using PCA while minor 
components and fatty acids did not provide enough infor-
mation for such discrimination [29]. The correlated load-
ings of variables on PC2 were not shown as high levels 
as of PC1’s. Nevertheless, correlated loadings of appar-
ent β-sitosterol content, C16:0, C16:1, and C18:3 were 
higher and more responsible for the sample positioning 
along with the PC2. In general, a regional classification 
determined as a more reasonable aim than varietal clas-
sification since a great overlapping was observed on the 
negative side of the PC1 when the samples labeled accord-
ing to variety. In addition, the extent in varietal diversity 

(b)(a)

(c)

Fig. 2   Bi-plots of PCA scores for the first two PC’s of whole reduced VOO dataset labeled with respect to the region (a), variety (b) and the cor-
related loadings of the PCA (c)
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of VOO in the samples made it more difficult to achieve 
an interpretable classification result.

SIMCA was one of the approaches for VOO classification 
in regions. Prior to SIMCA, the sample set was divided into 
calibration and classification datasets as described in meth-
ods. PCA was applied to all VOO sample groups for each 
region separately. Data were mean-centered, randomized, 
cross-validated, and values were weighted as reciprocal of 
standard deviation, and NIPALS was selected as PCA algo-
rithm. After saving all PCA models, SIMCA was applied to 
the classification dataset. To evaluate the results of SIMCA 
classification, the Coomans’ plot, is a useful tool for deter-
mination of sample groupings on two axes that represents 
the distance of every validation sample to the individual 
PCA model. The critical levels were indicated as straight 
red lines displaying the boundaries for significant model 
similarity. When a sample has a position to a range greater 
than the critical distance, it is determined at outside of the 
class model, therefore rejected as an outlier for the spe-
cific group [19]. If a sample rejected by its correct sample 
group model, mentioned as “false negative” in this article. 

Likewise, if a sample gets accepted by a model of another 
sample group incorrectly it was mentioned as “false posi-
tive”. SIMCA did not give a good classification result for 
our VOO dataset especially for the Mediterranean, North 
Aegean and Southeastern samples that were classified with 
many false positives and negatives. Hence, Coomans’ plots 
of these not given. Two different Coomans’ plots repre-
senting the separation of South Aegean VOO’s from North 
Aegean and Mediterranean VOO’s was shown in Figs. 3 and 
4. The red and blue dots indicate calibration samples for 
each PCA model. Green dots were classification samples and 
samples in circles are false negatives for the classification 
model given on the x-axis, while samples in rectangles are 
false negatives for the classification model given on y-axis 
for both Coomans’ plot. South Aegean VOO’s were sepa-
rated from North Aegean and Mediterranean VOO’s with 
few false negatives according to the SIMCA. Main responsi-
ble variables were C17:0, C17:1, Stigmasterol, β-sitositerol, 
Δ5-Avenasterol, Δ7-Avenasterol and Δ5,24-Stigmastadienol 
for discrimination between North Aegean and South Aegean 
VOO’s. The big variance within calibration samples of 

Table 3   Absolute values of 
variable correlation loadings

a Not plotted in the text

Variables PC1 PC2 PC3a Variables PC1 PC2 PC3a

Cholesterol 0.396 0.336 0.520 C16:0 0.533 0.686 0.060
Campasterol 0.209 0.424 0.563 C16:1 0.223 0.660 0.296
Stigmasterol 0.862 0.188 0.030 C17:0 0.912 0.261 0.064
β-sitositerol 0.830 0.318 0.321 C17:1 0.931 0.223 0.006
Sitositanol 0.180 0.422 0.590 C18:0 0.118 0.496 0.550
Δ5-Avenasterol 0.773 0.398 0.381 C18:1 0.686 0.573 0.311
Δ5,24-Stigmastadienol 0.801 0.391 0.190 C18:2 0.523 0.109 0.649
Δ7-Stigmastenol 0.584 0.300 0.207 C18:3 0.335 0.690 0.185
Δ7-Avenasterol 0.937 0.121 0.031 C20:0 0.259 0.266 0.687
Apparent β-Sitosterol 0.225 0.635 0.473
Total Sterol 0.790 0.039 0.344

(a) (b)

Fig. 3   a Cooman’s plot between North Aegean and South Aegean VOO models, red lines indicate 5% significance level for each model. b Sam-
ple discrimination power of x variables between North Aegean and South Aegean VOO’s
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the same region causes an increase in the critical level for 
acceptance. The variance was so high in Southeastern and 
Mediterranean VOO models that even calibration samples 
fall into the wrong region in Coomans’ plots of SIMCA 
(plot not given). The same situation was observed between 
North Aegean and Mediterranean models. On the Coomans’ 
plot of the Mediterranean versus Noth Aegean models, all 
Mediterranean VOO’s were rejected by the North Aegean 
model. However, 13 out of 15 North Aegean VOO calibra-
tion samples were false positive for Mediterranean model. 
According to the Coomans’ plot of the Mediterranean versus 
Southeastern models, 2 out of 7 Southeastern calibration 
samples were false positive for the Mediterranean model, 
while all Mediterranean calibration set was accepted by 
Southeastern model. Therefore, there were numerous false 
positives for Southeastern and Mediterranean models as seen 
in the classification results of SIMCA (Table 4). The results 
showed that the weakest model in SIMCA was Southeastern 
model according to the classification table and Coomans’ 

plots. On the other hand, Mediterranean model was found 
to be weakest in PLS-DA when the RMSEP and Q2 values 
were compared. The performance of the SIMCA classifica-
tion according to VOO regions was poorer in our study than 
that of samples were classified according to variety using 
fatty acid composition and mid-IR data which was studied 
and reported previously [19]. In another study using FTIR 
spectral data to classify olive oils according to their variety 
and geographical origin, it was reported that LDA classified 
more than 98% of the olive oil samples according to variety 
and with 96% of them according to origin [30]. These pre-
vious findings showed that spectroscopic data may provide 
more information on VOO’s for classification purposes using 
chemometric techniques. The results of SIMCA was given 
together with PLS-DA results to represent a clear compari-
son between methods in Table 4.

PLS regression was applied to all calibration VOO samples 
of different regions separately prior to discrimination analysis. 
To build the models with a sufficient number of representative 

(a) (b)

Fig. 4   a Coomans’ plot between Mediterranean and South Aegean 
VOO models, red lines indicate 5% critical level for each model. b 
Sample discrimination power of x variables between the Mediterra-

nean and South Aegean VOO’s. RMSEP root mean square error of 
prediction, Q2 goodness of prediction

Table 4   VOO classification results of SIMCA and PLS-DA

Acc accepted, Unc uncertain, Rej rejected, n/a not applicable, Med, NAE, SAE and South are calibration samples of Mediterranean, North 
Aegean, South Aegean, and Southeastern regions, respectively

Mediterranean (n = 10) North Aegean (n = 15) South Aegean (n = 16) Southeastern (n = 7)

SIMCA
Acc: 4 False positives

Med: –
NAE: 15
SAE: –
South: 2

Acc: 12 False positives
Med: 1
NAE: –
SAE: –
South: –

Acc: 14 False positives
Med: –
NAE: –
SAE: –
South: –

Acc: 7 False positives
Med: 8
NAE: 16
SAE: 6
South: –

Unc: n/a Unc: n/a Unc: n/a Unc: n/a
Rej: 6 Rej: 3 Rej: 2 Rej: –

PLS-DA
Acc: – False positives

Med: –
NAE: –
SAE: –
South: –

Acc: 9 False positives
Med: 2
NAE: –
SAE: –
South: –

Acc: 14 False positives
Med: –
NAE: –
SAE: –
South: –

Acc: - False positives
Med: 1
NAE: –
SAE: –
South: –

Unc: 7 Unc: 6 Unc: 2 Unc: 7
Rej: 3 Rej: – Rej: – Rej: –
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samples from each variety, approximately half of the sam-
ples were randomly selected and used as a calibration set to 
train the PLS models likewise SIMCA. Every PLS regres-
sion model was built to predict particular variety against all 
calibration sets with a binary coding indicating if a sample 
belongs to modeled variety to give a value of 1, else to give 
a value of 0. However, depending on the degree of residuals 
and regression coefficients, the calibration resulted in a Y-score 
between 0 and 1 in general. Therefore, a classical PLS-DA 
arbitrary threshold with uncertainty zone was used as a limit 
to accept or reject classification samples properly. The inter-
vals suggested in a previous study were used with conserva-
tive thresholds and samples were determined as accepted to 
the modeled variety if their predicted Y-score was between 
0.7 and 1.3. Likewise, the sample rejected by the modeled 
variety if they positioned within the band of − 0.3 and 0.3 [1]. 
Samples, of which predicted Y-score falls outside of these 
acceptance and rejection zones, could not be clearly classified 
to modeled variety and classified as “uncertain samples”. It 
was useful to interpret the PLS-DA Y-scores of classification 
samples together with their standard deviations because as the 
deviation gets smaller PLS model gets more robust which is 
significant a successful classification. RMSEP is an indica-
tor of the reliability and predictive ability of the model while 
Q2 indicated the predicted relevance of the model where low 
levels of RMSEP and high values of Q2 (close to 1) mean 
the prediction-classification capability of the model is good 
[31]. In our study, all PLS models were developed with three 
components since models had the highest Q2 values at first 
three components. At first glance, South Aegean and North 
Aegean models were more robust than others by comparing 
the RMSEP and Q2 statistics which were 0.092 and 0.961 for 
the South Aegean model, 0.182 and 0.853 for North Aegean 
model, respectively. Mediterranean model was weaker than 
the Southeastern model, unlikely to the outcomes of SIMCA, 
according to their RMSEP and Q2 statistics which were 0.410, 
0.156 for Mediterranean model and 0.223, 0.619 for South-
eastern model, respectively. As expected, the best classification 
results with PLS-DA were achieved for South Aegean samples, 
where 14 samples out of 16 were identified, because of the 
low deviation within the group. Because of the availability of 
the discrimination rule that we set to consider the uncertainty, 
PLS-DA did not completely reject remained 2 South Aegean 
samples that was not accepted, while SIMCA directly rejected 
those because of its algorithm. Similarly good geographical 
discrimination of south Aegean Memecik olive oils from the 
rest of the Aegean olive oils by applying discriminant analy-
sis only on fatty acid composition was reported in a previous 
study [25]. Alkan et al. indicated that discrimination of South 
Aegean and North Aegean VOO’s was possible when PLS-DA 
was applied on the phenolic profiles of the samples, especially 
this differentiation was deepened since the varieties of these 
two regions were also different [32].

PLS-DA classified 9 out of 15 North Aegean VOO’s 
with 2 false negatives from Mediterranean samples. PLS-
DA did not offer satisfactory results for Mediterranean 
and Southeastern VOO models, as no sample from these 
regions was accepted by the related models. High devia-
tion in the Y-scores was observed for Mediterranean VOO’s 
while the Southeastern VOO samples were only able to be 
dragged into uncertainty zone by its own model without any 
acceptance. This may be associated with two factors. First, 
North Aegean samples were mainly consisting of Ayvalık 
variety while South Aegean samples were completely from 
Memecik variety which may become a significant subsidiary 
factor to increase the robustness of South Aegean and North 
Aegean models. Second, if there is an unbalance in the num-
ber of the sample of each group and the number of modeled 
region’s samples are fewer than the sum of samples from the 
other regions, this causes lower Y-scores from the modeled 
cultivar than expected level of 1, which fits Southeastern and 
Mediterranean VOO results in Fig. 5 [33]. Latter may over-
come through setting balanced calibration sets by selecting 
the same number of samples from the modeled region and 
other regions for each PLS model [1]. However, while such 
customization is proposed on the structure of sample sets 
for every model in various cases to increase the accuracy of 
the expected classification, this application is not feasible 
if chemometric approaches are offered as a determinative 
tool not only for scientific purposes but also for legal cases, 
which is a prudential target for such studies.

The classification approach was highly determinant for 
the results when SIMCA and PLS-DA results compared. 
SIMCA relies on PCA models and the success of the classifi-
cation is directly dependent on discrimination of the sample 
groups on PCA of whole sample dataset. Separate regression 
models for each calibration set were developed with PLS 
to give a binary level of response. Although SIMCA was 
more successful on acceptance counts, especially for Medi-
terranean, North Aegean, and Southeastern samples, these 
acceptances come with many false positives when compared 
with PLS-DA. In PLS-DA, the acceptance numbers were 
comparably lower but because of the arbitrary threshold 
that was set for uncertainty, unaccepted samples not directly 
rejected and a second determination may be applied to these 
uncertain samples to verify their region more accurately. In 
addition, when the low number of false positives and lower 
rejected VOO counts considered, PLS-DA was more suc-
cessful than SIMCA for the classification of VOO’s.

Conclusion

In this study, Turkish VOO’s of eight different varieties from 
four major producing regions were discriminated and classi-
fied using chemometric techniques, namely PCA, SIMCA, 
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and PLS-DA, to reveal possible discrimination using chro-
matographic data. Initial PCA results were useful for the 
identification of possible outliers and variable selection for 
further determination. Secondary PCA results also showed a 
fair grouping of South Aegean samples away from the rest of 
the VOO samples, where Stigmasterol, β-sitositerol, Δ5,24-
Stigmastadienol, Δ7-Avenasterol, C17:0 and C17:1 found 
to be mainly responsible for this separation. North Aegean 
samples were also grouped and separated except few over-
laps with Mediterranean and Southeastern VOO samples. 

Although, there was a visual separation between Mediter-
ranean and Southeastern VOO samples, the distribution 
within each group was noteworthy. Groupings or discrimi-
nation when samples were labeled according to their varie-
ties was not clear as like the regions. SIMCA was applied 
after developing PCA models for each region separately. 
While there was good separation between North Aegean 
and South Aegean models with only a few false negatives, 
many false positives were accepted by the Mediterranean 
model on Coomans’ plot because of high disturbances. Even 

(a)

(b)

(c)

(d)

Accepted

Rejected

Uncertain

Accepted

Rejected

Uncertain

Accepted

Rejected

Uncertain

Accepted

Rejected

Uncertain

Mediterranean samples

North Aegean samples

South Aegean samples

S. Eastern samples

VOO classification with PLS model of Mediterranean samples. RMSEP: 0.410, Q2: 0.156

VOO classification with PLS model of North Aegean samples. RMSEP: 0.182, Q2: 0.853

VOO classification with PLS model of South Aegean samples. RMSEP: 0.092, Q2: 0.961

VOO classification with PLS model of Southeastern samples. RMSEP: 0.223, Q2: 0.619

Fig. 5   Y scores with standard deviations of VOO samples for each region model
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calibration samples could not be separated within the sig-
nificance level when Southeastern models were involved in 
Coomans’ plots. PLS-DA classification was offered compa-
rably successful results than SIMCA. However, for South-
eastern and Mediterranean models, their own samples were 
not rejected but remained as “uncertain” because of the 
evaluation method, which gives a second chance to false-
negative samples. There was no surprise when the results 
of all chemometrics considered, generally, the degree of 
discrimination followed a similar pattern through the study. 
Although today chromatographic data offer main informa-
tion for the characterization of VOO’s, the extent of the 
computational power of chemometrics may handle bigger 
datasets consists of more variables. Thus, new spectroscopic 
techniques may offer more informative data after a proper 
preprocessing and selection method to develop robust mod-
els with higher classification capability.
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