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Abstract
Prosecco wine is one of the most important products of the Italian oenological landscape. Its production is strictly regulated 
by several disciplinary. Thus, it is important to verify the quality of the final product, to defend the uniqueness of this wine. 
This work describes a rapid method to discriminate among varieties of Italian Prosecco wine using the volatile-fraction dis-
tribution as an untargeted fingerprint. The volatile profile corresponds to gas-chromatograms obtained in head-space mode. 
Principal components analysis of chromatograms allows discriminating the Prosecco samples depending on geographical 
origin, cultivation practices, and wine-making technologies. In particular, conventional vs. biological agriculture and manual 
vs. mechanical harvesting give well-separated clusters when projected on a scores plot. Influence plots allow evaluating which 
variables are the most effective to describe the differences between oenological classes, which are declared in the label and 
coded in the disciplinary of origin denomination. The identification of discriminating molecules in the volatile profile is also 
performed by Kovats indexes. Thus, possible chemical markers for the classification of Italian Prosecco wines are appointed.
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Introduction

The creation of an exclusive and inimitable wine is strictly 
linked to the grape variety, the climate, the soil, the environ-
ment, the viticultural and oenological practices. Every single 
choice defines the qualitative expression of wine and makes 
it unique in the competition with other cultures [1–3]. In the 
literature, there are several studies about markers to assess 
wine origin [4, 5], variety and age [6, 7], to detect frauds 
and ensure authenticity [5]. These concern also the aromatic 
profile [8–10].

The power of the synergy between grape, environment 
and human work is well represented by Prosecco wine. 
The grape variety of Prosecco wine is Glera, that consti-
tutes almost 85% of the final wine [11, 12]. Two Italian 

designations certify the excellence of Prosecco: the des-
ignation of controlled origin (Denominazione di Origine 
Controllata, DOC) and the designation of controlled and 
guaranteed origin (Denominazione di Origine Controllata e 
Garantita, DOCG). Such designations set wine productions 
and protect it from frauds and unfair competition.

Prosecco wine is an excellence in the Italian viticultural 
landscape. It is produced only in few provinces of the Veneto 
and Friuli-Venezia Giulia regions (north-eastern Italy), 
which are characterized by different morphology, climate, 
and origin: details are reported in the relevant disciplinary 
[11, 12].

A zonation study [2] evaluated the aromatic composition 
of Glera grape, throughout a chemical analysis of the volatile 
compounds in the must. That study analyzed three areas: 
West of Valdobbiadene, East of Conegliano and the zone 
between the two. The predominant aromatic molecules are 
the benzenoids, to which balsamic and spice notes are asso-
ciated. Monoterpenes are the second most important class, 
and floral and citrus notes characterize them. The norisopre-
noids are the last studied class and give to the wine notes of 
tropical and citrus fruits.
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Even compounds with concentration ranging from ng/L 
to mg/L considerably influence the aromatic profile of wine 
[13–16]. These are generally divided into three classes [17]. 
The primary, or varietal aromas, typical of the grape variety, 
is linked to the viticultural ecosystem, like grape, rootstock, 
climate, soil, cultural technique [13]. It is mainly constituted 
by terpenes [18, 19], norisoprenoids, benzenoids, pyrazine, 
ketones, and aldehydes deriving from the pulp, leaves, skins, 
and berries [1, 13, 14]. The secondary aromas are produced 
during crushing and the different fermentation processes. 
These are produced by bacteria and yeast metabolism [13, 
14]. The tertiary aromas are produced during aging, second-
ary fermentation, and oxidation–reduction reactions [14].

Further studies have demonstrated that the number of 
grapes per stump, the soil, the water availability [20], and 
the sunlight affect the aromatic profile [1]. The right equi-
librium between the leaf wall and the number of grapes is 
given by optimal light and temperature conditions. For the 
Glera, a great amount of grapes causes a low concentration 
of monoterpenes and norisoprenoids [2]. The soil physically 
sustains the crops and shares water and mineral salts with 
them. The grain size and water properties affect the wine 
aroma [1].

Cultivation practices can also influence the composition 
of wine aroma [1]. First of all, the exposure of the vineyard 
to the sunlight has a strong influence on the final product. 
The sun is responsible for the synthesis of numerous volatile 
compounds [1, 21, 22]. Irrigation affects water conditions, 
which, as previously said, greatly affect the wine aroma [20]. 
The presence of fungicides causes a marked change in the 
aromatic profile, both because they seem to persist, even if in 
traces, in must and wine, and because they alter the kinetics 
of fermentation [23–25]. Even nitrogen fertilization seems to 
change the volatile component, as it increases the precursors 
of the amino acids [1].

Among the many factors influencing the wine aroma, 
the contact with the lees after alcoholic fermentation may 
modify the volatile profile. In the production of sparkling 
wine, some companies use to put the lees in contact with 
the wine. The wine lees are “the residue that forms at the 
bottom of the recipient containing wine, after fermentation, 
during storage or after authorized treatments, as well as the 
residue obtained following the filtration or centrifugation of 
this product” (EEC regulation No. 337/79). The lees con-
tain microorganisms, yeasts, and, in less amount, inorganic 
matter and tartaric acid. Their composition is variable and 
depends on many factors [26]. When alcoholic fermenta-
tion ends, yeast autolysis frees several substances into the 
wine [27, 28]. Then, some volatile compounds are released 
and some are fixed [28]. This phenomenon could reduce or 
increase some compounds changing the wine aroma [28].

An important role in the creation of wine aromatic 
profile is played by the harvest techniques and by the 

period in which they are performed [29, 30]. The manual 
harvest involves a selective choice of ripe grapes, and, 
if necessary, the application of scalar harvest (collection 
of ripe bunches) is performed at a later time. In mechani-
cal harvest, all grapes are picked together indistinctively, 
thus increasing the percentage amount of not maturated 
grapes. It is a cheap and fast method, but it could cause 
a greater release of must from grape or crushing caused 
by the collection [31–33]. The must formed is exposed to 
oxidative phenomena thus promoting, in extreme cases, 
the growth of the spontaneous flora that gives organolep-
tic defects to the wine [32, 34]. The defects are due both 
to an increase in protein content and to an increase of 
phenolic compounds extracted from the skin and seeds, 
especially when grapes are transported from the harvest-
ing to the processing place [34, 35]. As a consequence of 
the mechanically harvested grapes, also the increase of 
two thiol compounds has been observed [30]: 3-mercapto-
hexanol and 3-mercapto-hexyl-acetate. These two mole-
cules contribute to the fruity and tropical aroma of white 
wine [30]. Furthermore, a slight increase in esters, such as 
ethyl hexanoate, ethyl octanoate, ethyl acetate, and isoa-
myl acetate has been associated with manual harvesting 
[29]. Grapes mechanically harvested and transported for a 
long time contain a high concentration of thermo-unstable 
proteins and, consequently, twice the amount of benton-
ite will be required to guarantee wine stability [34]. The 
bentonite is a chemically treated clay used in winemaking 
to reduce undesirable constituents and to prevent proteins 
haze formation after bottling, but it could compromise the 
wine quality [36, 37].

Temperature is a fundamental parameter in alcoholic 
fermentation, because it affects the fermentative kinetics, 
the cell metabolic activity in general and the concentration 
of yeast metabolism products. It considerably affects the 
organoleptic characteristics of the wine [38].

In the literature, many examples of analytical meth-
ods to study wines quality and authenticity are present: 
LC–MS [4], HPLC–DAD–MS [39], HPLC-Q/TOF–MS 
[40], ESI-FT–MS [41], LC–MS–MS [42], NMR [6, 43], 
FT-Raman [5], SERS technology [44, 45], and vibrational 
spectroscopy [46–48].

In this study, we applied an analytical approach based 
on the combined use of a gas-chromatographic technique 
(GC) [49–51] and multivariate analysis. The aim was to 
discriminate samples of Prosecco wine based on their 
denomination, origin area, and method of production, and 
to obtain useful analytical information about these prod-
ucts. An identification work was carried out to search for 
possible molecular markers that can describe the authen-
ticity and the typicality of Prosecco.
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Materials and methods

Wine samples

In this work, two types of Prosecco were studied: 14 sam-
ples of Prosecco DOC and 19 of Prosecco DOCG “Coneg-
liano-Valdobbiadene”. Among the DOC samples, eight are 
produced in the province of Treviso and are called “DOC 
Treviso”, four are produced in the Veneto and Friuli-Ven-
ezia Giulia regions and are called “DOC Veneto-Friuli” 
(VF), and two comes from biological agriculture (BIO). 
Among the four Prosecco DOC Veneto-Friuli samples, one 
is not filtered after the alcoholic fermentation and the wine 
remains in contact with yeast. This type of wine is called 
wine with lees or unfiltered (UNF) wine. The Prosecco 
DOCG samples due their names to the provinces of the 
region Veneto in which they are produced: Conegliano 
and Valdobbiadene.

Samples were purchased by the quality-control labora-
tory of COOP Italia, an Italian consortium that acts as a 
central retailer and one of the most important supermarket 
chains in Italy; samples were taken before the distribution 
in supermarket chains.

Each sample was recorded and tagged by a progressive 
number. Hence, traceability is always verifiable.

Sample preparation and analysis

For head-space (HS) GC analysis, an aliquot of wine was 
degassed with an ultrasonic bath, to remove the excess of 
CO2. A constant quantity of 2 g ± 1% of each degassed 
sample was directly placed in a vial, without any chemi-
cal pre-treatment. Each vial was closed with a special 
magnetic hermetic (air-tight) plug. For each wine sample, 
four vials were prepared, to obtain replicated analyses. 
The vials were put in a sample holder rack. Samples were 
prepared immediately after bottle opening.

Volatile compounds were analyzed by a gas chromato-
graph called Heracles II (Alpha M.O.S., Tolosa, France). 
Chromatographic separations were carried out in two 
columns working in parallel mode: a non-polar column 
MXT-05 (Column a, 5% di-phenyl, 95% methyl-poly-
siloxane, 10 m length, 180 μm diameter) and a slightly 
polar column MXT-1701 (Column b, 14% cyano-propyl-
phenyl, 86% methyl-poly-siloxane, 10 m length, 180 μm 
diameter). Each of them was connected to a flame ioniza-
tion detector (FID). The carrier gas was hydrogen, which 
is self-produced by a module of Heracles II. Each vial 
was taken by the auto-sampler and put in a shaker oven, 
where it remained for 1200 s at 40 °C, shaken at 500 rpm. 
In this way, the volatile compounds were concentrated in 

the headspace. Then, the vial silicone septum was pierced 
by a syringe, and 5 ml of the headspace were sampled 
and adsorbed on a CARBOWAX trap (at 40 °C for 60 s) 
before chromatographic analysis. The gas carrier flows 
inside such a trap to remove the excess of air and mois-
ture and to concentrate the analytes. When the temperature 
of the trap reached 240 °C, this temperature was kept for 
93 s. Then, the sample was desorbed and injected. The 
chromatographic thermal program started at a temperature 
of 40 °C, held up for 2 s, and then increased to 270 °C 
(3 °C s−1), and finally held up for 21 s. The total separation 
time was of 100 s. The signal was acquired and digitized 
every 0.01 s.

Volatile compounds identification

An alkane solution (from n-hexane to n-hexadecane) (Merck, 
Darmstadt, Germany) was used to convert the retention time 
to Kovats index using the following expression:

where RI is the Kovats retention index, RT is the retention 
time, x is the unknown compound, z is the number of carbon 
atoms of the n-alkane eluted before the unknown compound, 
z + 1 is the number of carbon atoms of the n-alkane eluted 
after the unknown compound.

Four replicated measurements of the n-alkane standard 
were injected.

The volatile compounds were tentatively identified by the 
database of the Heracles software, AroChemBase (Alpha 
M.O.S.), by Flavornet database [52], NIST database, and based 
on articles in the literature.

Data acquisition and software

The chromatograms were processed by Alpha Soft software 
(Alpha M.O.S.), which integrates the chromatogram peaks, 
transcribes peak-areas in a data matrix and calculates the 
Kovats indexes from the retention times.

The rows of the data matrix (objects) represent the repli-
cates of analyses performed on the samples, while the columns 
of the data matrix represent the peak areas (variables). The 
data matrix is the dataset for multivariate data processing. The 
dimension was: 132 rows (33 samples × 4 replicates) and 37 
columns (integrated HS-GC peak areas).

Data processing was performed by the software CAT [53], 
based on the software R (R Core Team, Vienna, Austria).

RI(x) = 100 ⋅ z + 100 ⋅
RT(x) − RT(z)

RT(z + 1) − RT(z)
,
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Principal component analysis

Data processing was based on principal component analysis 
(PCA). PCA is a well-known chemometric procedure based 
on a linear transformation of the original variables into a 
new reference system whose axes are the principal compo-
nents (PCs), orthogonal to each other [54, 55] and oriented 
along the most informative directions of the mathematical 
space. PCA is mainly used to perform an explorative analy-
sis of data through scores plots, representing the objects in 
the principal components space, and loadings plots, describ-
ing the role of the original variables in the new reference 
system [54, 55].

Influence plots describe how the samples are compliant 
with the built model; in this work, they were created using 
Q and Hotelling T2 statistics [56]. The two statistics have 
independent confidence intervals and limits [52–54].

T2 statistic measures the distances between samples and 
the centroid of the PCA model, then it compares these dis-
tances with the model limits. The parameter T2 is defined 
as [55]:

where ti,m is the score value of i-th sample on m-th compo-
nent, λm are the eigenvalues of the m considered principal 
components (PCs).

Q statistic quantifies the distance between the original 
data and the PCA model: it is the measure of residuals [57]. 
The Q value is computed as [55]:

where ei is the i-th row of residuals matrix E [55].
The higher confidence limits for T2 and Q depend on 

the significant number of components retained in the PCA 
model and on the level of significance.

Results and discussion

Complete aroma compounds and the RI of analyzed Pro-
secco wines are reported in Table 1.

The identification obtained is the best with the use of the 
FID detectors.

The complete dataset of 129 objects (after removing 
three evident outliers) and 37 columns (integrated HS-GC 
peak areas) was studied by PCA. Figure 1 shows the scores 
plot. Figure 1 shows an overlap zone between DOC and 
DOCG samples, which is probably due to the closeness of 
the production areas of these two classes. The samples are 

T2
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visualized in the plane of the first two principal components, 
which explain the 43.2% of the total variance.

The general dataset was then divided into two parts: Pro-
secco DOC and Prosecco DOCG to make further exploration 
of these two classes.

Prosecco DOC

This dataset is composed of 56 objects and 37 variables (HS-
GC integrated peak areas). The objects are visualized in the 
plane of the first two principal components (Fig. 2), which 
explains 42.0% of the total variance. The VF samples (in 
red) are located on the right. This group includes the UNF 
samples (in pink). The DOC Treviso samples, in green, are 
clustered in the center of the score plot. The BIO samples (in 
black) are clustered on the left. The scores plot shows a good 
separation between the three classes (VF, Treviso, BIO).

These results could be attributed to the different geo-
graphical origins of the products, which is in agreement with 
several studies [62–64].

Indeed, the DOC Treviso samples are produced in the 
same province of Veneto; VF are produced either in other 
provinces of the same region Veneto or in a different region 
(Friuli-Venezia Giulia). As for BIO samples, in the literature, 
in-depth studies about volatile compounds in biological wine 
are missed; however, since during the production of biologi-
cal wine many compounds and oenological practices are for-
bidden [65], this could cause a variation in volatile profiles.

To examine in depth the study of BIO and UNF samples 
and to highlight potential differences from the VF and the 
DOC Treviso wines, further evaluations are performed.

Projection of BIO samples on the model of DOC 
Veneto‑Friuli and DOC Treviso

A new PCA model (named DOC VF-T model) including 
only VF and DOC Treviso samples has been recalculated. 
For each BIO sample, an “average sample” has been com-
puted as a sample whose variables are the mean values of 
the four replicates. The averaged samples are projected on 
the DOC VF-T model, which explains 70% of the total vari-
ance with five PCs. Significant differences are shown. The 
corresponding influence plot reporting Q and T2 statistics 
is reported in Fig. 3. It shows how much the BIO samples 
are compliant with the model. The BIO samples are located 
far beyond the limits of both the statistics at 0.1% of sig-
nificance level, indicating a strong difference with the other 
DOC samples. This evidence may be ascribed to specific 
rules that the European Regulation CE 203/2012 establishes 
for the production of a biological wine. In particular, in this 
production, the use of some oenological practices is forbid-
den: partial cold concentration, the addition of sulfur diox-
ide with physical proceedings, tartaric stabilization with 
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Table 1   Identification of all 
volatile compounds of analyzed 
samples

a Database identification: A = AroChemBase (Alpha M.O.S. database); F = Flavornet database; N = NIST 
database

RI column a RI column b Compound Identification by 
databasea

Identifica-
tion by 
literature

438.41 491.69 Acetaldheyde A [58]
472.41 563.59 Ethanol A
546.60 Butane-2,3-dione A, F
546.60 660.36 1-Propanol A, F [58]
614.99 771.48 Acetic acid F [58, 59]
614.99 675.91 Ethyl acetate A, F, N [60]
614.99 2-Methyl-1-propanol A
653.94 2-Methyl butanal A [58]
653.94 722.14 3-Methyl-butanal A [58, 61]
653.94 2-Methyl-propanal A
672.77 Butanol F
719.12 857.10 Acetoin A, F [58]
719.12 722.14 Isopropyl acetate A [58]
719.12 771.48 Methyl butanoate A

771.48 Ethyl propionate A, F
753.36 813.74 Ethyl isobutyrate A, N
753.36 Ethyl-2-methyl-propanoate A [60]
768.76 857.10 (E)-pentenal A
768.76 857.10 3-Methyl-1-pentanol A
768.76 2-Methyl-propyl-acetate A
783.85 Methyl-2-butanol A
783.85 857.10 Ethyl butyrate A, F, N
798.35 945.12 2,3-Butenediol A
811.66 945.12 Butanoic acid A
811.66 Ethyl butanoate N [60]
877.69 945.12 Isobutyric acid A
877.69 Hexanol A, F, N
877.69 945.12 Isoamyl acetate A, F [58]
877.69 840.45 2-Methyl-butanol A, F

840.45 3-Methyl-butanol A, F [58, 61]
980.23 1-Hexanol A

1036.32 3-Methyl-butanoic acid A
996.14 1075.23 Hexyl acetate A, F
996.14 1075.23 Ethyl hexanoate A, F [60]
996.14 1075.23 (Z)-hexen-1-ol-acetate A

1207.67 1272.54 Ethyl octanoate A [60]
1207.67 1272.54 2-Methylisoborneol A
1207.67 Hexyl butyrate A
1329.04 Methyl decanoate A

1377.04 Unknown
1453.05 Cinnamaldheyde A

1418.01 (E)-β-damascone A
1418.01 1549.81 α-Ionone A
1479.64 Vanillin A
1479.64 1626.85 Ethyl cinnamate A [60]
1479.64 1626.85 β-Ionone A, F
1545.94 Unknown
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electro-dialysis or cationic exchangers, and wine partial de-
alcoholization. Other practices are limited or only allowed 
under certain conditions.

Normalized Q and T2 indices have been calculated for 
each variable of each sample (Fig. 4). The red horizontal 
line in Fig. 4 is the boundary corresponding to 5% signifi-
cance level [66]: variables overcoming this threshold make 
the corresponding samples not compliant with the DOC 
model. These parameters indicate which variables are mostly 
responsible for the discrimination of biological wines.

The influence plot in Fig. 3 and the Q and T2 statistics 
in Fig. 4 allow to identify the following potential volatile 
molecules that stave off the BIO samples from the DOC 
VF-T model. The corresponding RTs are specified among 
brackets. Alcohols: ethanol (472.41a, 563.59b), butanol 
(672.77a), 2-methyl-butanol (877.69a, 840.45b), 3-methyl-
butanol (840.45b), Hexanol (877.69a, 980.23b); alde-
hydes and ketones: acetaldehyde (438.41a, 491.69b) and 

butane-2,3-dione (546.60a); esters-acids: isoamyl acetate 
(877.69a, 945,12b), isobutyric acid (877.69a, 945.12b), 
hexyl acetate (996.14 a, 1075.23b), ethyl hexanoate 
(996.14 a, 1075.23b), (Z)-hexen-1-ol-acetate (996.14 a, 
1075.23b), ethyl octanoate (1207.67a, 1272.54b), ethyl cin-
namate (1479.64a, 1626.85b); terpenes: 2-methylisoboreol 
(1207.67a, 1272.54b); norisoprenoids: α-ionone (1418.01a, 
1549.81b), (E)-damascone (1418.01a), β-ionone (1479.64a, 
1626.85b); benzenoids: vanillin (1479.64a).

Projection of UNF samples on the model of VF and DOC 
Treviso

Unfiltered samples are “wine on lees”. After alcoholic 
fermentation, these samples lie on yeasts. When autolysis 
occurs the cell wall degrades and releases enzymes and 
mannoproteins [27]. Some volatile compounds are absorbed 
from cell walls and volatile compounds precursors increase 
[28]. The volatile profile is affected also by the time of con-
tact and the type of yeast [28, 67].

To explore the volatile species characterizing the UNF 
samples, the same analysis as in the previous paragraph 
3.1.1 has been carried out for these samples. The “average 
UNF sample” has been projected on the same PCA VF-T 
model. The influence plot is calculated with five principal 
components, explaining about 70% of the total variance 
(Fig. 5).

The sample is located out of Q statistics confidence limits 
at 0.1% of significance level.

Fig. 1   Scores plot of all samples. In black DOC samples, in red 
DOCG samples

Fig. 2   Scores plot of Prosecco DOC samples. Red points represent 
VF samples, pink points the UNF (sub-class of Veneto-Friuli), green 
points the DOC Treviso, and black points BIO samples

Fig. 3   Influence plot for the projection of the BIO samples (in red) on 
the DOC VF-T model with 5 PCs (DOC standard samples in black). 
The continue, dashed, and dotted lines correspond to the confidence 
limits at significance levels of 5%, 1%, and 0.1%, respectively
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Normalized Q indices of all variables of the sample have 
been evaluated (Fig. 6).

Figure 6 shows a difference between the UNF pro-
jected sample and the DOC VF-T model, in particular 
in the amount of acetaldheyde (438.41a, 491.69b), ethyl 
acetate (614.99a, 675.91b), butane-2,3-dione (546.60a), 
3-methyl-butanal (653.94a, 722.14b), 2-methyl-buta-
nal (653.94a), 2-methyl-propanal (653.94a), acetoin 
(719.12a, 857.10b), 3-methyl-butanol (840.45b), hexyl 
acetate (996.14a, 1075.23b), ethyl hexanoate (996.14a, 
1075.23b), (Z)-hexen-1-ol-acetate (996.14a, 1075.23b).

These results are in agreement with the study conducted 
by Bueno et al. [27], who analyzed the effect on the vola-
tile profile of two wines (Airen and Macabeo) due to short 
contact time with lees. This study shows how the contact 
with lees changes the concentration of ethyl acetate, hexyl 
acetate, ethyl-hexanoate, 3-methyl-butanol, and others.

Prosecco DOCG

An analogous study has been carried out for Prosecco 
DOCG. After removing three evident outliers (data not 
reported), the model shown in Fig. 7 has been computed. It 
is created basing on 73 objects and 37 variables. The first 
two principal components explain 44.2% of the total vari-
ance. Figure 7 shows a group samples from a particular com-
pany (C. Company) laying on the left side of the score plot, 
while the other samples lay on the right side.

The only difference declared by the C. Company is that 
it performs the manual harvesting of grapes. The harvest-
ing type could influence the quality of a wine, as reported 
in several studies [30, 34, 68]. Such difference encouraged 
performing a T2 and Q analysis, to understand how manual 
harvesting affects the volatile fraction of wine.

Fig. 4   a and b Q and T2 values of all variables for the sample 1 and c and d for the sample 2 after the projection of the BIO sample on the DOC 
VF-T model. The red lines correspond to the confidence limits at the significance level of 5%
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A PCA model (DOCG model) has been computed with 
Prosecco DOCG samples excluding those produced from 
the C. Company.

For all the samples produced by the C. Company, the rep-
licates average samples have been calculated. These samples 

have been projected on the DOCG model, as it is shown in 
the influence plot in Fig. 8. The influence plot is calculated 
with seven PCs explaining about 75% of the total variance.

Also in this case, the influence plot indicates a strong 
difference between C. Company samples and the other 
DOCG, as the former are far beyond the confidence limits 
at 0.1% significance level. Thus, for each variable of each 
sample, normalized Q and T2 indices have been calculated; 
they are displayed in Fig. 9.

The volatile compounds that discriminate the C. Company 
samples from the other ones are the following. Alcohols: etha-
nol (472.74a, 563.59b), butanol (672.77a), 2-methyl-1-propanol 
(614.99a), 2-methyl-butanol (877.69a, 840.45b), 3-methyl-
butanol (840.45b); esters: ethyl acetate (614.99a, 675.91b), iso-
propyl acetate (719.12a, 840.45b), methyl butanoate (719.12a, 
771.48b), ethyl butyrate (783.85a), ethyl isobutyrate (813.74b), 
isoamyl acetate (877.69a, 945.12b), hexyl acetate (996.14a, 
945.12b), ethyl hexanoate (996.14a), hexyl ottanoate (996.14a), 
methyl decanoate (1329.04a), methyl butanoate (771.48b), ethyl 
propionate (771.48b); other compounds: acetic acid (614.99a, 
771.48b), 2,3-butendiol (798.35a), vanillin (1479.64a), ethyl 
cinnamate (1479.64a), β-ionone (1479.64a).

Comparison with previous studies

A study led by Olejar et  al. [29] showed a difference 
between hand-picked wine and machine harvested wine in 

Fig. 5   Influence plot of the projection of the unfiltered sample (in 
red) on the DOC VF-T model with 5 PCs. Standard samples in black. 
The continue, dashed, and dotted lines correspond to the confidence 
limits at the significance levels of 5%, 1%, and 0.1%, respectively

Fig. 6   Q values. Average UF sample projected on the DOC VF-T model. The red line corresponds to the confidence limits at the significance 
level of 5%
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ethyl and acetate esters content. Arfelli et al. [69] showed 
a difference in higher alcohols, volatile acids, esters and 
other volatile compounds between hand-picked grapes and 
mechanically harvested grapes. Pocock et al. [35] argued 
that mechanical harvesting and long-distance transport 
may influence the extraction of haze-forming proteins into 
juice. In particular, some proteins derived from mechani-
cally damaged grapes are precursors of specific volatile 
compounds.

Our study confirms the differences reported in these studies 
and shows that there could be other molecules influenced by 
the manual harvesting.

Conclusions

This work demonstrates that the head-space gas-chromato-
grams of Italian Prosecco wines are suitable as untargeted 
fingerprints, allowing to evaluate how the oenological prac-
tices and the different areas of production can affect the aroma 
of the final products obtained from the same grape (Glera). 
Therefore, the volatile profile has been used to create multi-
variate models allowing to study the differences between sev-
eral categories of Italian Prosecco: DOC, DOCG, biological, 
unfiltered, manual harvested. Moreover, the application of T2 
and Q statistics to PCA models allowed to identify some vola-
tile species as possible markers for the discrimination among 
these categories.

The PCA showed that DOC wines produced in Treviso can 
be distinguished from the ones produced in other provinces of 
the region of Veneto and another region (Friuli Venetia Giulia). 
Moreover, the biological samples are well discriminated from 
the other DOC samples. About DOCG wines, discrimination 
between the wines produced by hand-picked harvesting and 
those obtained by mechanical harvesting is shown.

The influence plot resulted to be a useful tool to find which 
variables are responsible for the different behavior of BIO, 
UNF, and manually harvested samples.

The method here proposed provides a low-cost screening 
method for the authentication of Italian Prosecco wine, based 
on the combined application of multivariate statistics and flash 
HS-GC-FID.

Fig. 7   Scores plot of all Prosecco DOCG samples. On the left, the 
samples produced by the C. Company; on the right, the other samples

Fig. 8   Influence plot of the projection of C. Company samples on the 
DOCG model with seven PCs (in red). Standard samples in black. 
The continued, dashed, and dotted lines correspond to the confidence 
limits at the significance levels of 5%, 1%, and 0.1%, respectively
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