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Abstract
In this paper, samples of Cabernet Sauvignon wines produced in California have been analyzed on the basis of their elemental 
content and classified according to its geographical origin by the use of machine learning. Overall, 13 metals (Al, Cd, Co, 
Cr, Cu, Li, Mn, Ni, P, Pb, Rb, Sr, and Zn) were determined by inductively coupled plasma mass spectrometry (ICP-MS). We 
used two algorithms of variable selection in order to estimate the relevance of each metal to classification. Predictive models 
based on chemometric tools and machine learning algorithms were developed to differentiate origin of wine samples. Li and 
Sr were identified as the main responsible for the differentiation of samples. The application of Random Forest permitted 
to correctly classify all samples. A second analysis was performed by removing the variables Li and Sr to investigate the 
relevance of the others metals. We found that a group of seven variables (Cd, Ni, Mn, Pb, Rb, Co, Cu) which were able to 
discriminate the wines in 89% of accuracy by using Support Vector Machines. Results suggested that the developed meth-
odology by advanced machine learning techniques is robust and reliable for the geographical classification of wine samples, 
and the study of the elements that characterize the regions.

Keywords Wine classification · Feature selection · Machine learning · Support vector machines · Elemental content

Introduction

The fingerprinting of the content of trace metals in wines is 
a valuable method to authenticate the geographical origin of 
the same. The presence and concentration of metals in soil 
on which vines were grown enables their use to characterize 
the wines, i.e., the elements move from rock to soil and from 
soil to grape [1]. In particular, the wine authenticity has been 

extensively investigated because this beverage is an easily 
adulterated product and there exists an interest of consum-
ers in foods strongly identified with a place of origin [1, 2].

The world wine production reached in 2018 a volume of 
292.3 million of hectoliters [3]. California, the geographi-
cal origin of the wines analyzed in this study, is a world-
renowned state for the ability to produce world class quality 
wine. Napa is a premier wine producing region producing a 
higher quality wines over the rest of California [4]. In this 
context, the authenticity of wines from California winery 
regions is an important issue. The multivariate data analysis 
and machine learning techniques are powerful tools to con-
duct quality control and wine authentication that have been 
used to discriminate wines from all around the world [1].

The Cabernet Sauvignon is by far the most important 
varietal for achieving high wine prices in California [4]. In 
spite of that, there are few researches that classified Cali-
fornia wines produced with this grape variety. Californian 
wines made of grapes in different maturation states were 
classified by Umali et al. based on tannin content [5], and 
Hopfer and coworkers [6] classified the intraregional origin 
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of red wines (Cabernet Sauvignon, Merlot and Pinot Noir) 
from North of California.

There are several studies as the mentioned above that had 
classified the geographical origin of red wines from differ-
ent countries based on chemometrics and machine learning 
techniques [6–12]. However, these studies used two or more 
varieties and disregard this aspect to construct the classifi-
cation model. The discrimination of wine-making origin of 
one variety allows to characterize the wine variety, providing 
information about the relationship between the variety and 
the origin, which can be useful to improve quality and avoid 
fraud. There are few studies that performed the geographi-
cal classification of one wine variety, such as the Cabernet 
Sauvignon [13], Malbec [14], and Sauvignon Blanc [15].

The most used classification techniques on the food 
authentication are the linear discriminant analysis, k-near-
est neighbors, partial least squares-discriminant analysis 
and soft independent modeling by class analogy, and some 
variations of these ones [16–18]. The use of linear meth-
ods is easy to understand and is enough to obtain satisfac-
tory results. Although most of the real-world datasets have 
several physical–chemical parameters, resulting in complex 
data with some nonlinearity, classical linear methods such as 
discriminant analysis cannot model this nonlinearity. Thus, 
nonlinear methods as advanced machine learning techniques 
are required to model complex problems [17, 19].

The present study brings a machine learning study for 
classification of Californian Cabernet Sauvignon wines 
from Napa and Paso Robles regions based on their elemen-
tal concentrations. We used seven classification algorithms 
(k-nearest neighbors, LDA, neural networks, partial least 
squares discriminant analysis, soft independent modeling 
class, random forest and support vector machines). The 
used methodology combines filter and wrapper-based fea-
ture selection procedures to characterize the wine-making 
regions. Although only 20 wine samples have been used 
to classify the geographical origin of Cabernet Sauvignon 
wines, the samples were collected from two wine regions 
(Napa and Paso Robles) and a similar number of samples, in 
the range of 15–24 samples, have been used in other chemo-
metric studies with satisfactory results [20–24]. Our prime 
contributions in this research are:

• We provide a classification model capable of predicting 
the geographical origin of Californian Cabernet Sauvi-
gnon wines from two specific wine-making regions;

• We perform a comparative study on the performance of 
classical and advanced machine learning classification 
algorithms, which can offer theoretical contributions 
toward the comparison of these techniques on a real-
world application;

• We apply feature selection methods in order to recognize 
the most elements that discriminate the wines, providing 

a detailed view of the behavior of Napa and Paso Robles 
wines.

Materials and methods

Instruments and apparatus

The determination of the elements was performed by ICP-
MS (PerkinElmer NexIon 300D, PerkinElmer, Norwalk, CT, 
USA). ICP-MS operating conditions are shown in Table 1.

Reagents and standards

All reagents used were of analytical-reagent grade except 
HNO3, which was purified in a quartz sub-boiling still 
(Kürner) before use. A clean laboratory and laminar-flow 
hood capable of producing class 100 were used for preparing 
solutions. High-purity de-ionized water (resistivity 18.2 MΩ 
cm) obtained using a Milli-Q water purification system (Mil-
lipore, Bedford, MA, USA) was used throughout. All solu-
tions were stored in high-density polyethylene bottles. Plas-
tic materials were cleaned by soaking in 10% (v/v)  HNO3 
for 24 h, rinsed five times with Milli-Q water and dried in a 
class 100 laminar flow hood before use. All operations were 
performed on a clean bench. Multi-element stock solutions 
containing 1000 mg/L of each element were obtained from 
PerkinElmer (PerkinElmer, Norwalk, CT).

Wine samples

A total of 20 Cabernet Sauvignon wine samples, 10 from the 
region of Napa, California, USA, and 10 from the region of 
and Paso Robles, California, USA, were collected during the 

Table 1  ICP-MS experimental conditions

PerkinElmer NexIon 300D
Spray chamber Cyclonic
Nebulizer Meinhard®
RF power (W) 1400
Ar nebulizer gas flow (L/min) 0.7–1.0 (optimized daily)
Auxiliary gas flow (L/min) 1.2
Scan mode Peak hopping
Resolution (amu) 0.7
Replicate time (s) 1
Dwell time (s) 50
Sweeps/reading 40
Integration time (ms) 1000
Replicates 3
Isotopes 7Li, 27Al, 31P, 53Cr, 55Mn, 59Co, 

60Ni, 65Cu, 66Zn, 85Rb, 88Sr, 111Cd, 
208Pb
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first quarter of 2016. The ICP-MS analysis determined the 
concentration of Al, Cd, Co, Cr, Cu, Li, Mn, Ni, P, Pb, Rb, 
Sr and Zn for each sample.

Instrumentation and analysis

A quadrupole inductively coupled plasma mass spectrom-
etry instrument (q-ICP-MS, NexIon 300 Perkin Elmer, 
USA) equipped with Universal Cell Technology™ (UCT), 
for interference removal, was used for the determination of 
elements in wine samples. The method proposed by [25] 
was applied for sample analysis. Briefly, prior to ICP-MS 
analysis, samples were diluted 1:10 with 1%  HNO3 and rho-
dium was added as internal standard (final concentration: 
10 μg/L). Data quantitation was achieved with reference to 
matrix-matched multi-element standards that had been pre-
pared in 1% ethanol. Isotopes determined by ICP-MS were 
7Li, 27Al, 31P, 53Cr, 55Mn, 59Co, 60Ni, 65Cu, 66Zn, 85Rb, 88Sr, 
111Cd, 208Pb.

Classification process

In this study, we organized the wine data in a matrix with 
dimension 20 × 14, 20 samples and 14 variables, 13 columns 
represented the chemical elementals, and one to represent 
the label (Napa and Paso Robles). We performed an analy-
sis using algorithms considered as classical chemometric 
methods and machine learning algorithms originated from 
computer science field along with variable selection methods 
to characterize and to classify the origin of Cabernet Sau-
vignon wine samples. The seven classification algorithms 
used to classify the wine data are supervised machine learn-
ing (ML) techniques. The supervised ML uses pre-defined 
classes to learn through a training phase how data is organ-
ized into these classes [26], making possible to predict unla-
beled samples based on the classification model. Figure 1 
shows the flowchart of our study, including the data acquisi-
tion, feature selection and the training models process.

Linear discriminant analysis (LDA), k-nearest neighbors 
(K-NN), partial least squares discriminant analysis (PLS), 
and soft independent modeling by class analogy (SIMCA) 
are the most used chemometric tools [16–18]. LDA is the 
most studied and the oldest discrimination technique, pro-
posed by Fisher [27]. This method searches for discriminant 
functions that achieve maximum discrimination among the 
classes by minimizing the within-class variance and maxi-
mizing the between-class variance.

KNN is a classifier which aims to group data by correlat-
ing inputs to similar outputs. The classification model uses 
as parameters the number of k neighbors and the distance 
between the data points (such as Euclidean distance, Man-
hattan distance, or Minkowski distance relation). PLS discri-
minant analysis is a classifier based on PLS regression tech-
nique, which uses a value between zero and one to predict 
the class for each sample. This technique uses an approach 
similar to principal component analysis and searches for the 
variables with a maximum covariance with the class labels 
[28]. SIMCA is a class-modeling classifier based on prin-
cipal component analysis, which creates a separated model 
for each class [27]. These techniques were successfully used 
to classify from China [29], Argentina [7], and Washington 
State, USA [10].

The support vector machines (SVM), random forest (RF) 
and multilayer perceptron (MLP) are three popular tech-
niques which have yielded good results in the recent machine 
learning and data mining literature. These algorithms are 
more computationally intense than classical chemometric 
techniques, and in some cases do not have a reproducible 
solution [16]. Besides that, these algorithms show a great 
potential and more advantages compared to classical ones.

SVM is a classifier that obtains an optimal hyperplane 
with maximum margin to separate the classes of samples 
being a most robust and accurate methods in all well-known 
data mining algorithms [30]. Moreover, it is a useful clas-
sification algorithm when few training data are available 
[31]. RF algorithm is a classifier that generates multiple 

Fig. 1  The flowchart of the present study
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decision trees. Classification occurred according to the most 
voted class among the trees [32]. MLP is a complex struc-
ture based on biological neurons that can model real-world 
complex relationships being able to predict unknown sample 
classes [33]. The training process of the MLP propagates 
feed-forward through the network, layer after layer, by com-
puting the output of each neuron until the output layer. By 
means of backpropagation, whether the output is inconsist-
ent the error is calculated and propagated backward to adjust 
the connection weights and result into a new output. These 
techniques were successfully used to classify wines from 
Spain [34], Merlot and others wines from South America 
[8, 35].

Feature selection

Feature selection (FS) is a data mining preprocessing step 
which selects a subset of variables from the input which 
can efficiently describe the input data while reducing effects 
from noise or irrelevant variables and still provide good 
predictions. FS methods are capable of improving learning 
performance, lowering computational complexity, building 
better generalizable models, and decreasing required vari-
ables to obtain the desired model [36].

We used a two-phase feature selection by combining filter 
and wrapper methods. The filter methods use as principle a 
score value to order the variable importance into a ranking. 
We used the F-score and Random Forest Importance to gen-
erate two importance rankings and to create feature subsets 
based on the importance score to use on the wrapper phase.

F-score [37] is a simple technique which measures the 
discrimination of two sets of real numbers. Given training 
vectors x

k
, k = {1, ...,m} if the number of positive and nega-

tive instances are n+ and n− , respectively, then the F-score 
of the ith feature is defined as:
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is used to test the tree formed based on the bootstrap sample 
and to calculate the variable importance [32].

Wrapper methods select the best feature subset based on 
the performance of the features as input data to a classifier. 
We used an iterative forward-selection procedure according 
to the importance rankings. Thus, 13 feature subsets were 
generated for each filter feature selection method. Each fea-
ture subset was used as input data to the classifiers LDA, 
PLS discriminant analysis, KNN, SIMCA, SVM, MLP and 
RF.

Model evaluation

To evaluate the model’s predictive performance, we used 
the tenfold cross-validation repeated 10 times method. In k-
fold cross-validation technique randomly split data set D into 
k subsets D1,D2,… ,D

k
 (the folds) of approximately equal 

size. The process of build the classification model occurs for 
k times, which the model was constructed with the training 
set ( k − 1 folds, each fold at a time was left out) and predic-
tion ability was tested on the samples of fold omitted. The 
model accuracy is obtained based on the correct classifi-
cations, divided by the number of instances in the dataset. 
The final estimate of accuracy (i.e., the model performance) 
is the mean of all estimates computed. This process was 
repeated 10 times.

The predictions were organized in a confusion matrix 
to compute the accuracy, sensitivity and specificity based 
on the true positive (TP), true negative (TN), false posi-
tive (FP), and false negative (FN) prediction values. The 
accuracy is the percentage of the model that has been right 
in its predictions. Sensitivity refers to the percentage of cor-
rect answers regarding the positive class. Specificity is the 
percentage of correct answers regarding the negative class. 
These measures are computed as fallows:

Results and discussion

Trace elements of Napa and Paso Robles samples

The entire analysis was conducted using R software [38], 
which provides the packages that we use in this data analysis, 

(2)Accuracy =
TP + TN

TP + TN + FP + FN
× 100,

(3)Sensitivity =
TP

TP + FN
× 100,

(4)Specificity =
TN

TN + FP
× 100.
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including classification, variable selection and data visu-
alization [39–41]. Table 2 shows the mean, minimum and 
maximum concentration of the determined elements (µg/L) 
in the wine samples from the two regions, and the p value 
obtained from the Kruskal–Wallis test to compare the means 
populations. In an initial observation, we can see that the 

levels of Al, Cd, Co, Cu, Li, Mn, and Sr were higher in Paso 
Robles than Napa. For the remaining variables (Cr, Ni, Rb, 
P, Pb, and Zn), the levels were not so different between Napa 
and Paso Robles regions. However, the Kruskal–Wallis test 
shows that there is only a statistically significant difference 
(p value < 0.05) between the Napa and Paso Robles groups 
for the variables Cd, Li, Mn and Sr.

After establishing reference ranges for 13 metals in Napa 
and Paso Robles wine samples, a variable importance was 
established for classification models construction.

Variable importance

Figure 2 shows the importance values assigned to each vari-
able (i.e., the elements) according to the filter algorithms 
F-score (a), and RFI (b). These values represent their rela-
tive importance to determinate the sample labels. The higher 
the value is, more significant the variables are to discrimi-
nate the classes according to the metrics.

The Li and Sr elements were the first two most important 
variables in both methods in alternated orders. Mn and Cd 
elements are in the third and fourth orders in both rankings 
in alternated orders. These top four variables are the same 
variables which demonstrated a statistically significant dif-
ference based on the Kruskal–Wallis test. The remaining 
variables have different ranking positions.

After computing the relative importance of the vari-
ables, we generate the variable subsets which were used 
to build the classification models based on the wrap-
per methodology. Each subset is generated with those 
variables that achieved the top i  score values, with 
i = {1, 2,… , 13} . Subset #X1 has the variable with the 
higher importance according to the variable selection 
method X; subset #X2 has the two variables with the 
higher importance, and so forth. The last subset, #X13, 
contains all the original variables. Each subset was 

Table 2  Range (minimum–maximum) and average concentration of 
13 elements in wine samples from Napa and Paso Robles

DL detection limit value

Variable Napa Paso Robles p value

Al (μg/L) 286.83
(105.3–503.4)

321.34
(94.18–1023.69)

0.4496

Cd (μg/L) 0.2
(< DL - 1.36)

0.57
(< DL - 1.44)

0.0287

Co (μg/L) 3.47
(0.93–5.56)

6.15
(1.28–42.44)

0.2264

Cr (μg/L) 289.87
(250.93–352.21)

283.43
(238.88–331.53)

0.6501

Cu (μg/L) 57.23
(16.28–91.09)

70.78
(19.24–214.28)

0.7623

Li (ug/L) 9.56
(1.47–17.94)

61.48
(31.65–163.98)

0.0001

Mn (mg/L) 1.05
(0.76–1.36)

1.28
(0.95–1.85)

0.0412

Ni (μg/L) 44.23
(32.95–60.8)

43.63
(22.48–130.06)

0.1736

P (mg/L) 345.92
(228.08–466,7)

331.71
(188.04–468.03)

0.8205

Pb (μg/L) 1.53
(< DL - 5.73)

1.51
(< DL - 3.06)

0.3826

Rb (mg/L) 2.17
(1.46–3.79)

1.98
(1.17–5.09)

0.0696

Sr (mg/L) 0.68
(0.48–0.95)

1.11
(0.87–1.44)

0.0002

Zn (μg/L) 748.95
(441.29–1199.84)

825.27
(302.16–1244.45)

0.4496

Fig. 2  Variable importance 
according to F-score and RFI 
for all variables
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applied to the classification algorithms KNN, LDA, MLP, 
PLS, RF, SIMCA and SVM, along with tenfold cross-
validation repeated 10 times.

Classification models

Figure 3 shows the results obtained from the application of 
generated subsets according to the F-score ranking on the 
classification models. The variable Sr by itself was capa-
ble of classify the origin of the wine samples in 95% of 

Fig. 3  Overall results from the classifications with the F-score ranking
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accuracy with the classifiers SVM and SIMCA. The mean 
concentration of this element is 682.49 ± 122.91 µg/L for 
the Napa samples and 1113.07 ± 182.82 µg/L, showing a 
significant difference between this elemental concentration 
(p value < 0.001), which explain the high prediction abil-
ity. The performance of the models generated by SIMCA 
decreased when adding other variables in the input subset. 
The results of RF models were the highest, followed by the 
SVM models. The highest sensitivity and specificity rates 
were also from the RF models.

By the use of Sr and Li, the RF achieved 97% of accuracy, 
and this value increases until achieved perfect classification 
with a group of a range of 6–11 variables (Sr, Li, Mn, Cd, 
Co, Cu, Zn, Rb, Cr, P, Al). The SVM model obtained 96.5% 
of accuracy with Sr and Li as input variables, and 99% of 
accuracy with 6 variables (Sr, Li, Mn, Cd, Co, Cu). The 
remaining classifiers achieved classification rates above 80% 
with up to 5 variables. The MLP, SIMCA, KNN and PLS 
resulted in prediction ability below 80% when using six or 
more variables.

Figure 4 shows the results obtained from the application 
of generated subsets according to the RFI ranking on the 
classification models. For this ranking, the Li was considered 
as the most important variable. A perfect classification rate 
was obtained by the use of just this variable as input to the 
classifiers SVM, RF, MLP, and KNN. The concentration val-
ues of this elemental for the Napa class is 9.56 ± 4.69 µg/L, 
and for the Paso Robles class is 61.48 ± 40.03 µg/L, showing 
a significant difference between the classes (p value < 0.001). 
This explains the classification rate as Li concentration value 
is higher on the Paso Robles than Napa samples.

The RF models achieved a classification rate with a range 
of 97.5–100% to all feature subsets. The remaining classifi-
ers keep the classification rate on a specific range or decrease 
when adding new input variables. The highest sensitivity 
and specificity rates were also from the RF models for this 
importance ranking.

Based on these classification results it is possible to see 
that the Li and Sr are the two main elements responsible 
for discriminating between the wines from Paso Robles and 
Napa based on our dataset. Figure 5 shows the biplot of 
variables Li and Sr. The samples are grouped according to 
its respective class. These elementals were also found as 
important to discriminate other wines. Sr was one of the 
main elements to discriminate Tempranillo blanco wines 
from different zones of the AOC Rioja [42]. Strontium was 
also one of the indicators to discriminate soils and wines of 
the three major wine-producing regions in Romania (Mn, 
Cr, Sr, Ag and Co) [43].

Li was found as the main descriptor to classify wines 
from Argentina, Brazil, France, and Spain by using linear 
discriminant analysis [44]. Lithium was also one of the five 
elements which showed a significant vineyard effect (Be, 

Eu, Ga, Li, Si) to wines from regions of Northern California 
(closest to Napa region) [6]. The authors conclude that these 
elements were not changed at all during the wine-making 
process or changed to the same extent in all regions ana-
lyzed. Despite the limited set of our samples, these results 
showed that the concentrations of Li and Sr were signifi-
cantly different among the Cabernet Sauvignon wines and 
could reliably discriminate the wines from Napa and Paso 
Robles regions.

Importance of others metals

A second analysis was performed by removing the variables 
Li and Sr to investigate the relevance of the others metals 
(Al, Cd, Co, Cr, Cu, Mn, Ni, P, Pb, Rb, and Zn). The rel-
evance of other chemical elementals subset can be useful 
to characterize Napa and Paso Robles wines in situations 
where Li and Sr variables cannot be measured, and for dem-
onstrating that hidden patterns can be found from advanced 
machine learning techniques.

Figure 6 shows the importance values assigned to each 
variable without Li and Sr. The F-score importance order is 
the same importance order of Fig. 2 without Li and Sr, as 
the F-score computation is performed by considering each 
variable at time. However, the RFI order is not the same of 
Fig. 2 as the importance order is computed based on the 
whole dataset. Both importance rankings show different 
importance values and ordering to each variable. New sub-
sets of variables were generated based on these new impor-
tance rankings.

Figures 7 and 8 show the performance of the classifica-
tion models to the feature subsets generated based on the 
F-score and RFI ranking. By removing the features Li and 
Sr it was not possible to classify the California wine-mak-
ing regions with a good classification rate by the use of the 
classical chemometrics algorithms LDA, PLS-DA, SIMCA 
and KNN. All these classification models obtained a perfor-
mance below 78% of accuracy.

However, SVM was able to classify the samples with 89% 
of accuracy using seven variables selected by RFI (Cd, Ni, 
Mn, Pb, Rb, Co, Cu). The best result based on the F-score 
ranking was composed of six variables, which achieved 
83% of accuracy using six variables (Mn, Cd, Co, Cu, Zn, 
Rb). The combination of the chemical elements in these 
two subsets allowed SVM to classify the samples in a good 
performance. This fact indicates that these subsets are also 
capable of discriminating the wine-production regions, Napa 
and Paso Robles, without using the Li and Sr concentrations 
as input data to the classifiers.

These results suggest that advanced machine learn-
ing techniques are needed when dealing with complex 
information. The Li and Sr played an important role to 
discriminate the origin of Cabernet Sauvignon wines. 
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However, classical techniques can model the data based 
on these elementals. The removal of these variables from 
the classification model and the use of advance algorithms 
allowed us to find information about the composition of 
wines and how the variables characterize the wine-pro-
ducing regions.

According to a recent review, the combination of chemi-
cal information and mathematical models is the future of 
wine authentication [45]. The results of this study showed 
that beyond the mathematical model an ensemble of algo-
rithms and critical analysis of the results is needed to 
improve the wine analysis to provide improved classification 

Fig. 4  Overall results from the classifications with the RFI ranking
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models that can result in useful information to wine authen-
tication, improve quality and to avoid fraud.

Conclusion

To our knowledge, this is the first paper to analyze the origin 
of Cabernet Sauvignon wine samples from California by 
the use of machine learning techniques and ICP-MS. A first 
analysis identified that among the 13 elements found in the 
composition of wine samples, the Li and Sr are the vari-
ables with major discriminating power for origin samples 
according to the F-score and RFI. The concentration of these 
elementals is higher in wines produced on Paso Robles than 
Napa, explaining the high performance of the classifier.

A second data analysis allowed us to identify others 
chemical compounds that characterize the regions. We 

found that the variables Cd, Ni, Mn, Pb, Rb, Co, and Cu, 
can classify the geographical origin in 89% of accuracy by 
using SVM based on the collected samples from Napa and 
Paso Robles. The results demonstrate that feature selection 
and its critical analysis to remove some variables from the 
classification model is useful to identify the chemical ele-
ments that characterize the wine-producing regions of Cali-
fornia, Napa and Paso Robles. Moreover, it also showed that 
in face of complex food data the use of advanced machine 
learning techniques is needed. The used methodology is use-
ful to identify the characteristics of others wines and food 
products, and from others regions. For future studies, we 
expect that some limitations found in our present research 
can be addressed, such as the expansion of wine data. Future 
research could be expanded to include wines from other 
regions and varieties, and to model chemical information 
obtained from other analytical methods.

Fig. 5  Biplot of Sr and Li concentrations

Fig. 6  Variable importance 
according to F-score and RFI 
without Li and Sr variables
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Fig. 7  Overall results from the classifications with the F-score ranking without Li and Sr
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